Merge branch 'tip/perf/jump-label-2' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/hypercall.h>
50 #include <asm/xen/hypervisor.h>
51 #include <asm/fixmap.h>
52 #include <asm/processor.h>
53 #include <asm/proto.h>
54 #include <asm/msr-index.h>
55 #include <asm/traps.h>
56 #include <asm/setup.h>
57 #include <asm/desc.h>
58 #include <asm/pgalloc.h>
59 #include <asm/pgtable.h>
60 #include <asm/tlbflush.h>
61 #include <asm/reboot.h>
62 #include <asm/stackprotector.h>
63 #include <asm/hypervisor.h>
64
65 #include "xen-ops.h"
66 #include "mmu.h"
67 #include "multicalls.h"
68
69 EXPORT_SYMBOL_GPL(hypercall_page);
70
71 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
72 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
73
74 enum xen_domain_type xen_domain_type = XEN_NATIVE;
75 EXPORT_SYMBOL_GPL(xen_domain_type);
76
77 struct start_info *xen_start_info;
78 EXPORT_SYMBOL_GPL(xen_start_info);
79
80 struct shared_info xen_dummy_shared_info;
81
82 void *xen_initial_gdt;
83
84 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
85 __read_mostly int xen_have_vector_callback;
86 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
87
88 /*
89  * Point at some empty memory to start with. We map the real shared_info
90  * page as soon as fixmap is up and running.
91  */
92 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
93
94 /*
95  * Flag to determine whether vcpu info placement is available on all
96  * VCPUs.  We assume it is to start with, and then set it to zero on
97  * the first failure.  This is because it can succeed on some VCPUs
98  * and not others, since it can involve hypervisor memory allocation,
99  * or because the guest failed to guarantee all the appropriate
100  * constraints on all VCPUs (ie buffer can't cross a page boundary).
101  *
102  * Note that any particular CPU may be using a placed vcpu structure,
103  * but we can only optimise if the all are.
104  *
105  * 0: not available, 1: available
106  */
107 static int have_vcpu_info_placement = 1;
108
109 static void clamp_max_cpus(void)
110 {
111 #ifdef CONFIG_SMP
112         if (setup_max_cpus > MAX_VIRT_CPUS)
113                 setup_max_cpus = MAX_VIRT_CPUS;
114 #endif
115 }
116
117 static void xen_vcpu_setup(int cpu)
118 {
119         struct vcpu_register_vcpu_info info;
120         int err;
121         struct vcpu_info *vcpup;
122
123         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
124
125         if (cpu < MAX_VIRT_CPUS)
126                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
127
128         if (!have_vcpu_info_placement) {
129                 if (cpu >= MAX_VIRT_CPUS)
130                         clamp_max_cpus();
131                 return;
132         }
133
134         vcpup = &per_cpu(xen_vcpu_info, cpu);
135         info.mfn = arbitrary_virt_to_mfn(vcpup);
136         info.offset = offset_in_page(vcpup);
137
138         /* Check to see if the hypervisor will put the vcpu_info
139            structure where we want it, which allows direct access via
140            a percpu-variable. */
141         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
142
143         if (err) {
144                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
145                 have_vcpu_info_placement = 0;
146                 clamp_max_cpus();
147         } else {
148                 /* This cpu is using the registered vcpu info, even if
149                    later ones fail to. */
150                 per_cpu(xen_vcpu, cpu) = vcpup;
151         }
152 }
153
154 /*
155  * On restore, set the vcpu placement up again.
156  * If it fails, then we're in a bad state, since
157  * we can't back out from using it...
158  */
159 void xen_vcpu_restore(void)
160 {
161         int cpu;
162
163         for_each_online_cpu(cpu) {
164                 bool other_cpu = (cpu != smp_processor_id());
165
166                 if (other_cpu &&
167                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168                         BUG();
169
170                 xen_setup_runstate_info(cpu);
171
172                 if (have_vcpu_info_placement)
173                         xen_vcpu_setup(cpu);
174
175                 if (other_cpu &&
176                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
177                         BUG();
178         }
179 }
180
181 static void __init xen_banner(void)
182 {
183         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184         struct xen_extraversion extra;
185         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
186
187         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
188                pv_info.name);
189         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190                version >> 16, version & 0xffff, extra.extraversion,
191                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
192 }
193
194 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
195 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
196
197 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
198                       unsigned int *cx, unsigned int *dx)
199 {
200         unsigned maskebx = ~0;
201         unsigned maskecx = ~0;
202         unsigned maskedx = ~0;
203
204         /*
205          * Mask out inconvenient features, to try and disable as many
206          * unsupported kernel subsystems as possible.
207          */
208         switch (*ax) {
209         case 1:
210                 maskecx = cpuid_leaf1_ecx_mask;
211                 maskedx = cpuid_leaf1_edx_mask;
212                 break;
213
214         case 0xb:
215                 /* Suppress extended topology stuff */
216                 maskebx = 0;
217                 break;
218         }
219
220         asm(XEN_EMULATE_PREFIX "cpuid"
221                 : "=a" (*ax),
222                   "=b" (*bx),
223                   "=c" (*cx),
224                   "=d" (*dx)
225                 : "0" (*ax), "2" (*cx));
226
227         *bx &= maskebx;
228         *cx &= maskecx;
229         *dx &= maskedx;
230 }
231
232 static __init void xen_init_cpuid_mask(void)
233 {
234         unsigned int ax, bx, cx, dx;
235
236         cpuid_leaf1_edx_mask =
237                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
238                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
239                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
240
241         if (!xen_initial_domain())
242                 cpuid_leaf1_edx_mask &=
243                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
244                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
245
246         ax = 1;
247         cx = 0;
248         xen_cpuid(&ax, &bx, &cx, &dx);
249
250         /* cpuid claims we support xsave; try enabling it to see what happens */
251         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
252                 unsigned long cr4;
253
254                 set_in_cr4(X86_CR4_OSXSAVE);
255                 
256                 cr4 = read_cr4();
257
258                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
259                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
260
261                 clear_in_cr4(X86_CR4_OSXSAVE);
262         }
263 }
264
265 static void xen_set_debugreg(int reg, unsigned long val)
266 {
267         HYPERVISOR_set_debugreg(reg, val);
268 }
269
270 static unsigned long xen_get_debugreg(int reg)
271 {
272         return HYPERVISOR_get_debugreg(reg);
273 }
274
275 static void xen_end_context_switch(struct task_struct *next)
276 {
277         xen_mc_flush();
278         paravirt_end_context_switch(next);
279 }
280
281 static unsigned long xen_store_tr(void)
282 {
283         return 0;
284 }
285
286 /*
287  * Set the page permissions for a particular virtual address.  If the
288  * address is a vmalloc mapping (or other non-linear mapping), then
289  * find the linear mapping of the page and also set its protections to
290  * match.
291  */
292 static void set_aliased_prot(void *v, pgprot_t prot)
293 {
294         int level;
295         pte_t *ptep;
296         pte_t pte;
297         unsigned long pfn;
298         struct page *page;
299
300         ptep = lookup_address((unsigned long)v, &level);
301         BUG_ON(ptep == NULL);
302
303         pfn = pte_pfn(*ptep);
304         page = pfn_to_page(pfn);
305
306         pte = pfn_pte(pfn, prot);
307
308         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
309                 BUG();
310
311         if (!PageHighMem(page)) {
312                 void *av = __va(PFN_PHYS(pfn));
313
314                 if (av != v)
315                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
316                                 BUG();
317         } else
318                 kmap_flush_unused();
319 }
320
321 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
322 {
323         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
324         int i;
325
326         for(i = 0; i < entries; i += entries_per_page)
327                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
328 }
329
330 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
331 {
332         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
333         int i;
334
335         for(i = 0; i < entries; i += entries_per_page)
336                 set_aliased_prot(ldt + i, PAGE_KERNEL);
337 }
338
339 static void xen_set_ldt(const void *addr, unsigned entries)
340 {
341         struct mmuext_op *op;
342         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
343
344         op = mcs.args;
345         op->cmd = MMUEXT_SET_LDT;
346         op->arg1.linear_addr = (unsigned long)addr;
347         op->arg2.nr_ents = entries;
348
349         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
350
351         xen_mc_issue(PARAVIRT_LAZY_CPU);
352 }
353
354 static void xen_load_gdt(const struct desc_ptr *dtr)
355 {
356         unsigned long va = dtr->address;
357         unsigned int size = dtr->size + 1;
358         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
359         unsigned long frames[pages];
360         int f;
361
362         /*
363          * A GDT can be up to 64k in size, which corresponds to 8192
364          * 8-byte entries, or 16 4k pages..
365          */
366
367         BUG_ON(size > 65536);
368         BUG_ON(va & ~PAGE_MASK);
369
370         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
371                 int level;
372                 pte_t *ptep;
373                 unsigned long pfn, mfn;
374                 void *virt;
375
376                 /*
377                  * The GDT is per-cpu and is in the percpu data area.
378                  * That can be virtually mapped, so we need to do a
379                  * page-walk to get the underlying MFN for the
380                  * hypercall.  The page can also be in the kernel's
381                  * linear range, so we need to RO that mapping too.
382                  */
383                 ptep = lookup_address(va, &level);
384                 BUG_ON(ptep == NULL);
385
386                 pfn = pte_pfn(*ptep);
387                 mfn = pfn_to_mfn(pfn);
388                 virt = __va(PFN_PHYS(pfn));
389
390                 frames[f] = mfn;
391
392                 make_lowmem_page_readonly((void *)va);
393                 make_lowmem_page_readonly(virt);
394         }
395
396         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
397                 BUG();
398 }
399
400 /*
401  * load_gdt for early boot, when the gdt is only mapped once
402  */
403 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
404 {
405         unsigned long va = dtr->address;
406         unsigned int size = dtr->size + 1;
407         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
408         unsigned long frames[pages];
409         int f;
410
411         /*
412          * A GDT can be up to 64k in size, which corresponds to 8192
413          * 8-byte entries, or 16 4k pages..
414          */
415
416         BUG_ON(size > 65536);
417         BUG_ON(va & ~PAGE_MASK);
418
419         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
420                 pte_t pte;
421                 unsigned long pfn, mfn;
422
423                 pfn = virt_to_pfn(va);
424                 mfn = pfn_to_mfn(pfn);
425
426                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
427
428                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
429                         BUG();
430
431                 frames[f] = mfn;
432         }
433
434         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
435                 BUG();
436 }
437
438 static void load_TLS_descriptor(struct thread_struct *t,
439                                 unsigned int cpu, unsigned int i)
440 {
441         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
442         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
443         struct multicall_space mc = __xen_mc_entry(0);
444
445         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
446 }
447
448 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
449 {
450         /*
451          * XXX sleazy hack: If we're being called in a lazy-cpu zone
452          * and lazy gs handling is enabled, it means we're in a
453          * context switch, and %gs has just been saved.  This means we
454          * can zero it out to prevent faults on exit from the
455          * hypervisor if the next process has no %gs.  Either way, it
456          * has been saved, and the new value will get loaded properly.
457          * This will go away as soon as Xen has been modified to not
458          * save/restore %gs for normal hypercalls.
459          *
460          * On x86_64, this hack is not used for %gs, because gs points
461          * to KERNEL_GS_BASE (and uses it for PDA references), so we
462          * must not zero %gs on x86_64
463          *
464          * For x86_64, we need to zero %fs, otherwise we may get an
465          * exception between the new %fs descriptor being loaded and
466          * %fs being effectively cleared at __switch_to().
467          */
468         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
469 #ifdef CONFIG_X86_32
470                 lazy_load_gs(0);
471 #else
472                 loadsegment(fs, 0);
473 #endif
474         }
475
476         xen_mc_batch();
477
478         load_TLS_descriptor(t, cpu, 0);
479         load_TLS_descriptor(t, cpu, 1);
480         load_TLS_descriptor(t, cpu, 2);
481
482         xen_mc_issue(PARAVIRT_LAZY_CPU);
483 }
484
485 #ifdef CONFIG_X86_64
486 static void xen_load_gs_index(unsigned int idx)
487 {
488         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
489                 BUG();
490 }
491 #endif
492
493 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
494                                 const void *ptr)
495 {
496         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
497         u64 entry = *(u64 *)ptr;
498
499         preempt_disable();
500
501         xen_mc_flush();
502         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
503                 BUG();
504
505         preempt_enable();
506 }
507
508 static int cvt_gate_to_trap(int vector, const gate_desc *val,
509                             struct trap_info *info)
510 {
511         unsigned long addr;
512
513         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
514                 return 0;
515
516         info->vector = vector;
517
518         addr = gate_offset(*val);
519 #ifdef CONFIG_X86_64
520         /*
521          * Look for known traps using IST, and substitute them
522          * appropriately.  The debugger ones are the only ones we care
523          * about.  Xen will handle faults like double_fault and
524          * machine_check, so we should never see them.  Warn if
525          * there's an unexpected IST-using fault handler.
526          */
527         if (addr == (unsigned long)debug)
528                 addr = (unsigned long)xen_debug;
529         else if (addr == (unsigned long)int3)
530                 addr = (unsigned long)xen_int3;
531         else if (addr == (unsigned long)stack_segment)
532                 addr = (unsigned long)xen_stack_segment;
533         else if (addr == (unsigned long)double_fault ||
534                  addr == (unsigned long)nmi) {
535                 /* Don't need to handle these */
536                 return 0;
537 #ifdef CONFIG_X86_MCE
538         } else if (addr == (unsigned long)machine_check) {
539                 return 0;
540 #endif
541         } else {
542                 /* Some other trap using IST? */
543                 if (WARN_ON(val->ist != 0))
544                         return 0;
545         }
546 #endif  /* CONFIG_X86_64 */
547         info->address = addr;
548
549         info->cs = gate_segment(*val);
550         info->flags = val->dpl;
551         /* interrupt gates clear IF */
552         if (val->type == GATE_INTERRUPT)
553                 info->flags |= 1 << 2;
554
555         return 1;
556 }
557
558 /* Locations of each CPU's IDT */
559 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
560
561 /* Set an IDT entry.  If the entry is part of the current IDT, then
562    also update Xen. */
563 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
564 {
565         unsigned long p = (unsigned long)&dt[entrynum];
566         unsigned long start, end;
567
568         preempt_disable();
569
570         start = __get_cpu_var(idt_desc).address;
571         end = start + __get_cpu_var(idt_desc).size + 1;
572
573         xen_mc_flush();
574
575         native_write_idt_entry(dt, entrynum, g);
576
577         if (p >= start && (p + 8) <= end) {
578                 struct trap_info info[2];
579
580                 info[1].address = 0;
581
582                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
583                         if (HYPERVISOR_set_trap_table(info))
584                                 BUG();
585         }
586
587         preempt_enable();
588 }
589
590 static void xen_convert_trap_info(const struct desc_ptr *desc,
591                                   struct trap_info *traps)
592 {
593         unsigned in, out, count;
594
595         count = (desc->size+1) / sizeof(gate_desc);
596         BUG_ON(count > 256);
597
598         for (in = out = 0; in < count; in++) {
599                 gate_desc *entry = (gate_desc*)(desc->address) + in;
600
601                 if (cvt_gate_to_trap(in, entry, &traps[out]))
602                         out++;
603         }
604         traps[out].address = 0;
605 }
606
607 void xen_copy_trap_info(struct trap_info *traps)
608 {
609         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
610
611         xen_convert_trap_info(desc, traps);
612 }
613
614 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
615    hold a spinlock to protect the static traps[] array (static because
616    it avoids allocation, and saves stack space). */
617 static void xen_load_idt(const struct desc_ptr *desc)
618 {
619         static DEFINE_SPINLOCK(lock);
620         static struct trap_info traps[257];
621
622         spin_lock(&lock);
623
624         __get_cpu_var(idt_desc) = *desc;
625
626         xen_convert_trap_info(desc, traps);
627
628         xen_mc_flush();
629         if (HYPERVISOR_set_trap_table(traps))
630                 BUG();
631
632         spin_unlock(&lock);
633 }
634
635 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
636    they're handled differently. */
637 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
638                                 const void *desc, int type)
639 {
640         preempt_disable();
641
642         switch (type) {
643         case DESC_LDT:
644         case DESC_TSS:
645                 /* ignore */
646                 break;
647
648         default: {
649                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
650
651                 xen_mc_flush();
652                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
653                         BUG();
654         }
655
656         }
657
658         preempt_enable();
659 }
660
661 /*
662  * Version of write_gdt_entry for use at early boot-time needed to
663  * update an entry as simply as possible.
664  */
665 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
666                                             const void *desc, int type)
667 {
668         switch (type) {
669         case DESC_LDT:
670         case DESC_TSS:
671                 /* ignore */
672                 break;
673
674         default: {
675                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
676
677                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
678                         dt[entry] = *(struct desc_struct *)desc;
679         }
680
681         }
682 }
683
684 static void xen_load_sp0(struct tss_struct *tss,
685                          struct thread_struct *thread)
686 {
687         struct multicall_space mcs = xen_mc_entry(0);
688         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
689         xen_mc_issue(PARAVIRT_LAZY_CPU);
690 }
691
692 static void xen_set_iopl_mask(unsigned mask)
693 {
694         struct physdev_set_iopl set_iopl;
695
696         /* Force the change at ring 0. */
697         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
698         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
699 }
700
701 static void xen_io_delay(void)
702 {
703 }
704
705 #ifdef CONFIG_X86_LOCAL_APIC
706 static u32 xen_apic_read(u32 reg)
707 {
708         return 0;
709 }
710
711 static void xen_apic_write(u32 reg, u32 val)
712 {
713         /* Warn to see if there's any stray references */
714         WARN_ON(1);
715 }
716
717 static u64 xen_apic_icr_read(void)
718 {
719         return 0;
720 }
721
722 static void xen_apic_icr_write(u32 low, u32 id)
723 {
724         /* Warn to see if there's any stray references */
725         WARN_ON(1);
726 }
727
728 static void xen_apic_wait_icr_idle(void)
729 {
730         return;
731 }
732
733 static u32 xen_safe_apic_wait_icr_idle(void)
734 {
735         return 0;
736 }
737
738 static void set_xen_basic_apic_ops(void)
739 {
740         apic->read = xen_apic_read;
741         apic->write = xen_apic_write;
742         apic->icr_read = xen_apic_icr_read;
743         apic->icr_write = xen_apic_icr_write;
744         apic->wait_icr_idle = xen_apic_wait_icr_idle;
745         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
746 }
747
748 #endif
749
750 static void xen_clts(void)
751 {
752         struct multicall_space mcs;
753
754         mcs = xen_mc_entry(0);
755
756         MULTI_fpu_taskswitch(mcs.mc, 0);
757
758         xen_mc_issue(PARAVIRT_LAZY_CPU);
759 }
760
761 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
762
763 static unsigned long xen_read_cr0(void)
764 {
765         unsigned long cr0 = percpu_read(xen_cr0_value);
766
767         if (unlikely(cr0 == 0)) {
768                 cr0 = native_read_cr0();
769                 percpu_write(xen_cr0_value, cr0);
770         }
771
772         return cr0;
773 }
774
775 static void xen_write_cr0(unsigned long cr0)
776 {
777         struct multicall_space mcs;
778
779         percpu_write(xen_cr0_value, cr0);
780
781         /* Only pay attention to cr0.TS; everything else is
782            ignored. */
783         mcs = xen_mc_entry(0);
784
785         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
786
787         xen_mc_issue(PARAVIRT_LAZY_CPU);
788 }
789
790 static void xen_write_cr4(unsigned long cr4)
791 {
792         cr4 &= ~X86_CR4_PGE;
793         cr4 &= ~X86_CR4_PSE;
794
795         native_write_cr4(cr4);
796 }
797
798 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
799 {
800         int ret;
801
802         ret = 0;
803
804         switch (msr) {
805 #ifdef CONFIG_X86_64
806                 unsigned which;
807                 u64 base;
808
809         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
810         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
811         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
812
813         set:
814                 base = ((u64)high << 32) | low;
815                 if (HYPERVISOR_set_segment_base(which, base) != 0)
816                         ret = -EIO;
817                 break;
818 #endif
819
820         case MSR_STAR:
821         case MSR_CSTAR:
822         case MSR_LSTAR:
823         case MSR_SYSCALL_MASK:
824         case MSR_IA32_SYSENTER_CS:
825         case MSR_IA32_SYSENTER_ESP:
826         case MSR_IA32_SYSENTER_EIP:
827                 /* Fast syscall setup is all done in hypercalls, so
828                    these are all ignored.  Stub them out here to stop
829                    Xen console noise. */
830                 break;
831
832         case MSR_IA32_CR_PAT:
833                 if (smp_processor_id() == 0)
834                         xen_set_pat(((u64)high << 32) | low);
835                 break;
836
837         default:
838                 ret = native_write_msr_safe(msr, low, high);
839         }
840
841         return ret;
842 }
843
844 void xen_setup_shared_info(void)
845 {
846         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
847                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
848                            xen_start_info->shared_info);
849
850                 HYPERVISOR_shared_info =
851                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
852         } else
853                 HYPERVISOR_shared_info =
854                         (struct shared_info *)__va(xen_start_info->shared_info);
855
856 #ifndef CONFIG_SMP
857         /* In UP this is as good a place as any to set up shared info */
858         xen_setup_vcpu_info_placement();
859 #endif
860
861         xen_setup_mfn_list_list();
862 }
863
864 /* This is called once we have the cpu_possible_map */
865 void xen_setup_vcpu_info_placement(void)
866 {
867         int cpu;
868
869         for_each_possible_cpu(cpu)
870                 xen_vcpu_setup(cpu);
871
872         /* xen_vcpu_setup managed to place the vcpu_info within the
873            percpu area for all cpus, so make use of it */
874         if (have_vcpu_info_placement) {
875                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
876                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
877                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
878                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
879                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
880         }
881 }
882
883 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
884                           unsigned long addr, unsigned len)
885 {
886         char *start, *end, *reloc;
887         unsigned ret;
888
889         start = end = reloc = NULL;
890
891 #define SITE(op, x)                                                     \
892         case PARAVIRT_PATCH(op.x):                                      \
893         if (have_vcpu_info_placement) {                                 \
894                 start = (char *)xen_##x##_direct;                       \
895                 end = xen_##x##_direct_end;                             \
896                 reloc = xen_##x##_direct_reloc;                         \
897         }                                                               \
898         goto patch_site
899
900         switch (type) {
901                 SITE(pv_irq_ops, irq_enable);
902                 SITE(pv_irq_ops, irq_disable);
903                 SITE(pv_irq_ops, save_fl);
904                 SITE(pv_irq_ops, restore_fl);
905 #undef SITE
906
907         patch_site:
908                 if (start == NULL || (end-start) > len)
909                         goto default_patch;
910
911                 ret = paravirt_patch_insns(insnbuf, len, start, end);
912
913                 /* Note: because reloc is assigned from something that
914                    appears to be an array, gcc assumes it's non-null,
915                    but doesn't know its relationship with start and
916                    end. */
917                 if (reloc > start && reloc < end) {
918                         int reloc_off = reloc - start;
919                         long *relocp = (long *)(insnbuf + reloc_off);
920                         long delta = start - (char *)addr;
921
922                         *relocp += delta;
923                 }
924                 break;
925
926         default_patch:
927         default:
928                 ret = paravirt_patch_default(type, clobbers, insnbuf,
929                                              addr, len);
930                 break;
931         }
932
933         return ret;
934 }
935
936 static const struct pv_info xen_info __initdata = {
937         .paravirt_enabled = 1,
938         .shared_kernel_pmd = 0,
939
940         .name = "Xen",
941 };
942
943 static const struct pv_init_ops xen_init_ops __initdata = {
944         .patch = xen_patch,
945 };
946
947 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
948         .cpuid = xen_cpuid,
949
950         .set_debugreg = xen_set_debugreg,
951         .get_debugreg = xen_get_debugreg,
952
953         .clts = xen_clts,
954
955         .read_cr0 = xen_read_cr0,
956         .write_cr0 = xen_write_cr0,
957
958         .read_cr4 = native_read_cr4,
959         .read_cr4_safe = native_read_cr4_safe,
960         .write_cr4 = xen_write_cr4,
961
962         .wbinvd = native_wbinvd,
963
964         .read_msr = native_read_msr_safe,
965         .write_msr = xen_write_msr_safe,
966         .read_tsc = native_read_tsc,
967         .read_pmc = native_read_pmc,
968
969         .iret = xen_iret,
970         .irq_enable_sysexit = xen_sysexit,
971 #ifdef CONFIG_X86_64
972         .usergs_sysret32 = xen_sysret32,
973         .usergs_sysret64 = xen_sysret64,
974 #endif
975
976         .load_tr_desc = paravirt_nop,
977         .set_ldt = xen_set_ldt,
978         .load_gdt = xen_load_gdt,
979         .load_idt = xen_load_idt,
980         .load_tls = xen_load_tls,
981 #ifdef CONFIG_X86_64
982         .load_gs_index = xen_load_gs_index,
983 #endif
984
985         .alloc_ldt = xen_alloc_ldt,
986         .free_ldt = xen_free_ldt,
987
988         .store_gdt = native_store_gdt,
989         .store_idt = native_store_idt,
990         .store_tr = xen_store_tr,
991
992         .write_ldt_entry = xen_write_ldt_entry,
993         .write_gdt_entry = xen_write_gdt_entry,
994         .write_idt_entry = xen_write_idt_entry,
995         .load_sp0 = xen_load_sp0,
996
997         .set_iopl_mask = xen_set_iopl_mask,
998         .io_delay = xen_io_delay,
999
1000         /* Xen takes care of %gs when switching to usermode for us */
1001         .swapgs = paravirt_nop,
1002
1003         .start_context_switch = paravirt_start_context_switch,
1004         .end_context_switch = xen_end_context_switch,
1005 };
1006
1007 static const struct pv_apic_ops xen_apic_ops __initdata = {
1008 #ifdef CONFIG_X86_LOCAL_APIC
1009         .startup_ipi_hook = paravirt_nop,
1010 #endif
1011 };
1012
1013 static void xen_reboot(int reason)
1014 {
1015         struct sched_shutdown r = { .reason = reason };
1016
1017 #ifdef CONFIG_SMP
1018         stop_other_cpus();
1019 #endif
1020
1021         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1022                 BUG();
1023 }
1024
1025 static void xen_restart(char *msg)
1026 {
1027         xen_reboot(SHUTDOWN_reboot);
1028 }
1029
1030 static void xen_emergency_restart(void)
1031 {
1032         xen_reboot(SHUTDOWN_reboot);
1033 }
1034
1035 static void xen_machine_halt(void)
1036 {
1037         xen_reboot(SHUTDOWN_poweroff);
1038 }
1039
1040 static void xen_crash_shutdown(struct pt_regs *regs)
1041 {
1042         xen_reboot(SHUTDOWN_crash);
1043 }
1044
1045 static int
1046 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1047 {
1048         xen_reboot(SHUTDOWN_crash);
1049         return NOTIFY_DONE;
1050 }
1051
1052 static struct notifier_block xen_panic_block = {
1053         .notifier_call= xen_panic_event,
1054 };
1055
1056 int xen_panic_handler_init(void)
1057 {
1058         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1059         return 0;
1060 }
1061
1062 static const struct machine_ops __initdata xen_machine_ops = {
1063         .restart = xen_restart,
1064         .halt = xen_machine_halt,
1065         .power_off = xen_machine_halt,
1066         .shutdown = xen_machine_halt,
1067         .crash_shutdown = xen_crash_shutdown,
1068         .emergency_restart = xen_emergency_restart,
1069 };
1070
1071 /*
1072  * Set up the GDT and segment registers for -fstack-protector.  Until
1073  * we do this, we have to be careful not to call any stack-protected
1074  * function, which is most of the kernel.
1075  */
1076 static void __init xen_setup_stackprotector(void)
1077 {
1078         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1079         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1080
1081         setup_stack_canary_segment(0);
1082         switch_to_new_gdt(0);
1083
1084         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1085         pv_cpu_ops.load_gdt = xen_load_gdt;
1086 }
1087
1088 /* First C function to be called on Xen boot */
1089 asmlinkage void __init xen_start_kernel(void)
1090 {
1091         pgd_t *pgd;
1092
1093         if (!xen_start_info)
1094                 return;
1095
1096         xen_domain_type = XEN_PV_DOMAIN;
1097
1098         /* Install Xen paravirt ops */
1099         pv_info = xen_info;
1100         pv_init_ops = xen_init_ops;
1101         pv_cpu_ops = xen_cpu_ops;
1102         pv_apic_ops = xen_apic_ops;
1103
1104         x86_init.resources.memory_setup = xen_memory_setup;
1105         x86_init.oem.arch_setup = xen_arch_setup;
1106         x86_init.oem.banner = xen_banner;
1107
1108         xen_init_time_ops();
1109
1110         /*
1111          * Set up some pagetable state before starting to set any ptes.
1112          */
1113
1114         xen_init_mmu_ops();
1115
1116         /* Prevent unwanted bits from being set in PTEs. */
1117         __supported_pte_mask &= ~_PAGE_GLOBAL;
1118         if (!xen_initial_domain())
1119                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1120
1121         __supported_pte_mask |= _PAGE_IOMAP;
1122
1123         /*
1124          * Prevent page tables from being allocated in highmem, even
1125          * if CONFIG_HIGHPTE is enabled.
1126          */
1127         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1128
1129         /* Work out if we support NX */
1130         x86_configure_nx();
1131
1132         xen_setup_features();
1133
1134         /* Get mfn list */
1135         if (!xen_feature(XENFEAT_auto_translated_physmap))
1136                 xen_build_dynamic_phys_to_machine();
1137
1138         /*
1139          * Set up kernel GDT and segment registers, mainly so that
1140          * -fstack-protector code can be executed.
1141          */
1142         xen_setup_stackprotector();
1143
1144         xen_init_irq_ops();
1145         xen_init_cpuid_mask();
1146
1147 #ifdef CONFIG_X86_LOCAL_APIC
1148         /*
1149          * set up the basic apic ops.
1150          */
1151         set_xen_basic_apic_ops();
1152 #endif
1153
1154         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1155                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1156                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1157         }
1158
1159         machine_ops = xen_machine_ops;
1160
1161         /*
1162          * The only reliable way to retain the initial address of the
1163          * percpu gdt_page is to remember it here, so we can go and
1164          * mark it RW later, when the initial percpu area is freed.
1165          */
1166         xen_initial_gdt = &per_cpu(gdt_page, 0);
1167
1168         xen_smp_init();
1169
1170         pgd = (pgd_t *)xen_start_info->pt_base;
1171
1172         if (!xen_initial_domain())
1173                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1174
1175         __supported_pte_mask |= _PAGE_IOMAP;
1176         /* Don't do the full vcpu_info placement stuff until we have a
1177            possible map and a non-dummy shared_info. */
1178         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1179
1180         local_irq_disable();
1181         early_boot_irqs_off();
1182
1183         memblock_init();
1184
1185         xen_raw_console_write("mapping kernel into physical memory\n");
1186         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1187
1188         /* Allocate and initialize top and mid mfn levels for p2m structure */
1189         xen_build_mfn_list_list();
1190
1191         init_mm.pgd = pgd;
1192
1193         /* keep using Xen gdt for now; no urgent need to change it */
1194
1195 #ifdef CONFIG_X86_32
1196         pv_info.kernel_rpl = 1;
1197         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1198                 pv_info.kernel_rpl = 0;
1199 #else
1200         pv_info.kernel_rpl = 0;
1201 #endif
1202
1203         /* set the limit of our address space */
1204         xen_reserve_top();
1205
1206 #ifdef CONFIG_X86_32
1207         /* set up basic CPUID stuff */
1208         cpu_detect(&new_cpu_data);
1209         new_cpu_data.hard_math = 1;
1210         new_cpu_data.wp_works_ok = 1;
1211         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1212 #endif
1213
1214         /* Poke various useful things into boot_params */
1215         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1216         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1217                 ? __pa(xen_start_info->mod_start) : 0;
1218         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1219         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1220
1221         if (!xen_initial_domain()) {
1222                 add_preferred_console("xenboot", 0, NULL);
1223                 add_preferred_console("tty", 0, NULL);
1224                 add_preferred_console("hvc", 0, NULL);
1225         } else {
1226                 /* Make sure ACS will be enabled */
1227                 pci_request_acs();
1228         }
1229                 
1230
1231         xen_raw_console_write("about to get started...\n");
1232
1233         xen_setup_runstate_info(0);
1234
1235         /* Start the world */
1236 #ifdef CONFIG_X86_32
1237         i386_start_kernel();
1238 #else
1239         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1240 #endif
1241 }
1242
1243 static uint32_t xen_cpuid_base(void)
1244 {
1245         uint32_t base, eax, ebx, ecx, edx;
1246         char signature[13];
1247
1248         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1249                 cpuid(base, &eax, &ebx, &ecx, &edx);
1250                 *(uint32_t *)(signature + 0) = ebx;
1251                 *(uint32_t *)(signature + 4) = ecx;
1252                 *(uint32_t *)(signature + 8) = edx;
1253                 signature[12] = 0;
1254
1255                 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1256                         return base;
1257         }
1258
1259         return 0;
1260 }
1261
1262 static int init_hvm_pv_info(int *major, int *minor)
1263 {
1264         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1265         u64 pfn;
1266
1267         base = xen_cpuid_base();
1268         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1269
1270         *major = eax >> 16;
1271         *minor = eax & 0xffff;
1272         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1273
1274         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1275
1276         pfn = __pa(hypercall_page);
1277         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1278
1279         xen_setup_features();
1280
1281         pv_info = xen_info;
1282         pv_info.kernel_rpl = 0;
1283
1284         xen_domain_type = XEN_HVM_DOMAIN;
1285
1286         return 0;
1287 }
1288
1289 void xen_hvm_init_shared_info(void)
1290 {
1291         int cpu;
1292         struct xen_add_to_physmap xatp;
1293         static struct shared_info *shared_info_page = 0;
1294
1295         if (!shared_info_page)
1296                 shared_info_page = (struct shared_info *)
1297                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1298         xatp.domid = DOMID_SELF;
1299         xatp.idx = 0;
1300         xatp.space = XENMAPSPACE_shared_info;
1301         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1302         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1303                 BUG();
1304
1305         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1306
1307         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1308          * page, we use it in the event channel upcall and in some pvclock
1309          * related functions. We don't need the vcpu_info placement
1310          * optimizations because we don't use any pv_mmu or pv_irq op on
1311          * HVM.
1312          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1313          * online but xen_hvm_init_shared_info is run at resume time too and
1314          * in that case multiple vcpus might be online. */
1315         for_each_online_cpu(cpu) {
1316                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1317         }
1318 }
1319
1320 #ifdef CONFIG_XEN_PVHVM
1321 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1322                                     unsigned long action, void *hcpu)
1323 {
1324         int cpu = (long)hcpu;
1325         switch (action) {
1326         case CPU_UP_PREPARE:
1327                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1328                 break;
1329         default:
1330                 break;
1331         }
1332         return NOTIFY_OK;
1333 }
1334
1335 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1336         .notifier_call  = xen_hvm_cpu_notify,
1337 };
1338
1339 static void __init xen_hvm_guest_init(void)
1340 {
1341         int r;
1342         int major, minor;
1343
1344         r = init_hvm_pv_info(&major, &minor);
1345         if (r < 0)
1346                 return;
1347
1348         xen_hvm_init_shared_info();
1349
1350         if (xen_feature(XENFEAT_hvm_callback_vector))
1351                 xen_have_vector_callback = 1;
1352         register_cpu_notifier(&xen_hvm_cpu_notifier);
1353         xen_unplug_emulated_devices();
1354         have_vcpu_info_placement = 0;
1355         x86_init.irqs.intr_init = xen_init_IRQ;
1356         xen_hvm_init_time_ops();
1357         xen_hvm_init_mmu_ops();
1358 }
1359
1360 static bool __init xen_hvm_platform(void)
1361 {
1362         if (xen_pv_domain())
1363                 return false;
1364
1365         if (!xen_cpuid_base())
1366                 return false;
1367
1368         return true;
1369 }
1370
1371 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1372         .name                   = "Xen HVM",
1373         .detect                 = xen_hvm_platform,
1374         .init_platform          = xen_hvm_guest_init,
1375 };
1376 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1377 #endif