xen: register xen pci notifier
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33
34 #include <xen/xen.h>
35 #include <xen/interface/xen.h>
36 #include <xen/interface/version.h>
37 #include <xen/interface/physdev.h>
38 #include <xen/interface/vcpu.h>
39 #include <xen/interface/memory.h>
40 #include <xen/features.h>
41 #include <xen/page.h>
42 #include <xen/hvm.h>
43 #include <xen/hvc-console.h>
44
45 #include <asm/paravirt.h>
46 #include <asm/apic.h>
47 #include <asm/page.h>
48 #include <asm/xen/pci.h>
49 #include <asm/xen/hypercall.h>
50 #include <asm/xen/hypervisor.h>
51 #include <asm/fixmap.h>
52 #include <asm/processor.h>
53 #include <asm/proto.h>
54 #include <asm/msr-index.h>
55 #include <asm/traps.h>
56 #include <asm/setup.h>
57 #include <asm/desc.h>
58 #include <asm/pgalloc.h>
59 #include <asm/pgtable.h>
60 #include <asm/tlbflush.h>
61 #include <asm/reboot.h>
62 #include <asm/setup.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 struct start_info *xen_start_info;
79 EXPORT_SYMBOL_GPL(xen_start_info);
80
81 struct shared_info xen_dummy_shared_info;
82
83 void *xen_initial_gdt;
84
85 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
86 __read_mostly int xen_have_vector_callback;
87 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
88
89 /*
90  * Point at some empty memory to start with. We map the real shared_info
91  * page as soon as fixmap is up and running.
92  */
93 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
94
95 /*
96  * Flag to determine whether vcpu info placement is available on all
97  * VCPUs.  We assume it is to start with, and then set it to zero on
98  * the first failure.  This is because it can succeed on some VCPUs
99  * and not others, since it can involve hypervisor memory allocation,
100  * or because the guest failed to guarantee all the appropriate
101  * constraints on all VCPUs (ie buffer can't cross a page boundary).
102  *
103  * Note that any particular CPU may be using a placed vcpu structure,
104  * but we can only optimise if the all are.
105  *
106  * 0: not available, 1: available
107  */
108 static int have_vcpu_info_placement = 1;
109
110 static void clamp_max_cpus(void)
111 {
112 #ifdef CONFIG_SMP
113         if (setup_max_cpus > MAX_VIRT_CPUS)
114                 setup_max_cpus = MAX_VIRT_CPUS;
115 #endif
116 }
117
118 static void xen_vcpu_setup(int cpu)
119 {
120         struct vcpu_register_vcpu_info info;
121         int err;
122         struct vcpu_info *vcpup;
123
124         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
125
126         if (cpu < MAX_VIRT_CPUS)
127                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
128
129         if (!have_vcpu_info_placement) {
130                 if (cpu >= MAX_VIRT_CPUS)
131                         clamp_max_cpus();
132                 return;
133         }
134
135         vcpup = &per_cpu(xen_vcpu_info, cpu);
136         info.mfn = arbitrary_virt_to_mfn(vcpup);
137         info.offset = offset_in_page(vcpup);
138
139         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
140                cpu, vcpup, info.mfn, info.offset);
141
142         /* Check to see if the hypervisor will put the vcpu_info
143            structure where we want it, which allows direct access via
144            a percpu-variable. */
145         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
146
147         if (err) {
148                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
149                 have_vcpu_info_placement = 0;
150                 clamp_max_cpus();
151         } else {
152                 /* This cpu is using the registered vcpu info, even if
153                    later ones fail to. */
154                 per_cpu(xen_vcpu, cpu) = vcpup;
155
156                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
157                        cpu, vcpup);
158         }
159 }
160
161 /*
162  * On restore, set the vcpu placement up again.
163  * If it fails, then we're in a bad state, since
164  * we can't back out from using it...
165  */
166 void xen_vcpu_restore(void)
167 {
168         int cpu;
169
170         for_each_online_cpu(cpu) {
171                 bool other_cpu = (cpu != smp_processor_id());
172
173                 if (other_cpu &&
174                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
175                         BUG();
176
177                 xen_setup_runstate_info(cpu);
178
179                 if (have_vcpu_info_placement)
180                         xen_vcpu_setup(cpu);
181
182                 if (other_cpu &&
183                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184                         BUG();
185         }
186 }
187
188 static void __init xen_banner(void)
189 {
190         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
191         struct xen_extraversion extra;
192         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
193
194         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
195                pv_info.name);
196         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
197                version >> 16, version & 0xffff, extra.extraversion,
198                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
199 }
200
201 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
202 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
203
204 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
205                       unsigned int *cx, unsigned int *dx)
206 {
207         unsigned maskebx = ~0;
208         unsigned maskecx = ~0;
209         unsigned maskedx = ~0;
210
211         /*
212          * Mask out inconvenient features, to try and disable as many
213          * unsupported kernel subsystems as possible.
214          */
215         switch (*ax) {
216         case 1:
217                 maskecx = cpuid_leaf1_ecx_mask;
218                 maskedx = cpuid_leaf1_edx_mask;
219                 break;
220
221         case 0xb:
222                 /* Suppress extended topology stuff */
223                 maskebx = 0;
224                 break;
225         }
226
227         asm(XEN_EMULATE_PREFIX "cpuid"
228                 : "=a" (*ax),
229                   "=b" (*bx),
230                   "=c" (*cx),
231                   "=d" (*dx)
232                 : "0" (*ax), "2" (*cx));
233
234         *bx &= maskebx;
235         *cx &= maskecx;
236         *dx &= maskedx;
237 }
238
239 static __init void xen_init_cpuid_mask(void)
240 {
241         unsigned int ax, bx, cx, dx;
242
243         cpuid_leaf1_edx_mask =
244                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
245                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
246                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
247                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
248
249         if (!xen_initial_domain())
250                 cpuid_leaf1_edx_mask &=
251                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
252                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
253
254         ax = 1;
255         cx = 0;
256         xen_cpuid(&ax, &bx, &cx, &dx);
257
258         /* cpuid claims we support xsave; try enabling it to see what happens */
259         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
260                 unsigned long cr4;
261
262                 set_in_cr4(X86_CR4_OSXSAVE);
263                 
264                 cr4 = read_cr4();
265
266                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
267                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
268
269                 clear_in_cr4(X86_CR4_OSXSAVE);
270         }
271 }
272
273 static void xen_set_debugreg(int reg, unsigned long val)
274 {
275         HYPERVISOR_set_debugreg(reg, val);
276 }
277
278 static unsigned long xen_get_debugreg(int reg)
279 {
280         return HYPERVISOR_get_debugreg(reg);
281 }
282
283 static void xen_end_context_switch(struct task_struct *next)
284 {
285         xen_mc_flush();
286         paravirt_end_context_switch(next);
287 }
288
289 static unsigned long xen_store_tr(void)
290 {
291         return 0;
292 }
293
294 /*
295  * Set the page permissions for a particular virtual address.  If the
296  * address is a vmalloc mapping (or other non-linear mapping), then
297  * find the linear mapping of the page and also set its protections to
298  * match.
299  */
300 static void set_aliased_prot(void *v, pgprot_t prot)
301 {
302         int level;
303         pte_t *ptep;
304         pte_t pte;
305         unsigned long pfn;
306         struct page *page;
307
308         ptep = lookup_address((unsigned long)v, &level);
309         BUG_ON(ptep == NULL);
310
311         pfn = pte_pfn(*ptep);
312         page = pfn_to_page(pfn);
313
314         pte = pfn_pte(pfn, prot);
315
316         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
317                 BUG();
318
319         if (!PageHighMem(page)) {
320                 void *av = __va(PFN_PHYS(pfn));
321
322                 if (av != v)
323                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
324                                 BUG();
325         } else
326                 kmap_flush_unused();
327 }
328
329 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
330 {
331         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
332         int i;
333
334         for(i = 0; i < entries; i += entries_per_page)
335                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
336 }
337
338 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
339 {
340         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
341         int i;
342
343         for(i = 0; i < entries; i += entries_per_page)
344                 set_aliased_prot(ldt + i, PAGE_KERNEL);
345 }
346
347 static void xen_set_ldt(const void *addr, unsigned entries)
348 {
349         struct mmuext_op *op;
350         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
351
352         op = mcs.args;
353         op->cmd = MMUEXT_SET_LDT;
354         op->arg1.linear_addr = (unsigned long)addr;
355         op->arg2.nr_ents = entries;
356
357         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
358
359         xen_mc_issue(PARAVIRT_LAZY_CPU);
360 }
361
362 static void xen_load_gdt(const struct desc_ptr *dtr)
363 {
364         unsigned long va = dtr->address;
365         unsigned int size = dtr->size + 1;
366         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
367         unsigned long frames[pages];
368         int f;
369
370         /*
371          * A GDT can be up to 64k in size, which corresponds to 8192
372          * 8-byte entries, or 16 4k pages..
373          */
374
375         BUG_ON(size > 65536);
376         BUG_ON(va & ~PAGE_MASK);
377
378         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
379                 int level;
380                 pte_t *ptep;
381                 unsigned long pfn, mfn;
382                 void *virt;
383
384                 /*
385                  * The GDT is per-cpu and is in the percpu data area.
386                  * That can be virtually mapped, so we need to do a
387                  * page-walk to get the underlying MFN for the
388                  * hypercall.  The page can also be in the kernel's
389                  * linear range, so we need to RO that mapping too.
390                  */
391                 ptep = lookup_address(va, &level);
392                 BUG_ON(ptep == NULL);
393
394                 pfn = pte_pfn(*ptep);
395                 mfn = pfn_to_mfn(pfn);
396                 virt = __va(PFN_PHYS(pfn));
397
398                 frames[f] = mfn;
399
400                 make_lowmem_page_readonly((void *)va);
401                 make_lowmem_page_readonly(virt);
402         }
403
404         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
405                 BUG();
406 }
407
408 /*
409  * load_gdt for early boot, when the gdt is only mapped once
410  */
411 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
412 {
413         unsigned long va = dtr->address;
414         unsigned int size = dtr->size + 1;
415         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
416         unsigned long frames[pages];
417         int f;
418
419         /*
420          * A GDT can be up to 64k in size, which corresponds to 8192
421          * 8-byte entries, or 16 4k pages..
422          */
423
424         BUG_ON(size > 65536);
425         BUG_ON(va & ~PAGE_MASK);
426
427         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
428                 pte_t pte;
429                 unsigned long pfn, mfn;
430
431                 pfn = virt_to_pfn(va);
432                 mfn = pfn_to_mfn(pfn);
433
434                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
435
436                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
437                         BUG();
438
439                 frames[f] = mfn;
440         }
441
442         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
443                 BUG();
444 }
445
446 static void load_TLS_descriptor(struct thread_struct *t,
447                                 unsigned int cpu, unsigned int i)
448 {
449         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
450         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
451         struct multicall_space mc = __xen_mc_entry(0);
452
453         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
454 }
455
456 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
457 {
458         /*
459          * XXX sleazy hack: If we're being called in a lazy-cpu zone
460          * and lazy gs handling is enabled, it means we're in a
461          * context switch, and %gs has just been saved.  This means we
462          * can zero it out to prevent faults on exit from the
463          * hypervisor if the next process has no %gs.  Either way, it
464          * has been saved, and the new value will get loaded properly.
465          * This will go away as soon as Xen has been modified to not
466          * save/restore %gs for normal hypercalls.
467          *
468          * On x86_64, this hack is not used for %gs, because gs points
469          * to KERNEL_GS_BASE (and uses it for PDA references), so we
470          * must not zero %gs on x86_64
471          *
472          * For x86_64, we need to zero %fs, otherwise we may get an
473          * exception between the new %fs descriptor being loaded and
474          * %fs being effectively cleared at __switch_to().
475          */
476         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
477 #ifdef CONFIG_X86_32
478                 lazy_load_gs(0);
479 #else
480                 loadsegment(fs, 0);
481 #endif
482         }
483
484         xen_mc_batch();
485
486         load_TLS_descriptor(t, cpu, 0);
487         load_TLS_descriptor(t, cpu, 1);
488         load_TLS_descriptor(t, cpu, 2);
489
490         xen_mc_issue(PARAVIRT_LAZY_CPU);
491 }
492
493 #ifdef CONFIG_X86_64
494 static void xen_load_gs_index(unsigned int idx)
495 {
496         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
497                 BUG();
498 }
499 #endif
500
501 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
502                                 const void *ptr)
503 {
504         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
505         u64 entry = *(u64 *)ptr;
506
507         preempt_disable();
508
509         xen_mc_flush();
510         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
511                 BUG();
512
513         preempt_enable();
514 }
515
516 static int cvt_gate_to_trap(int vector, const gate_desc *val,
517                             struct trap_info *info)
518 {
519         unsigned long addr;
520
521         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
522                 return 0;
523
524         info->vector = vector;
525
526         addr = gate_offset(*val);
527 #ifdef CONFIG_X86_64
528         /*
529          * Look for known traps using IST, and substitute them
530          * appropriately.  The debugger ones are the only ones we care
531          * about.  Xen will handle faults like double_fault and
532          * machine_check, so we should never see them.  Warn if
533          * there's an unexpected IST-using fault handler.
534          */
535         if (addr == (unsigned long)debug)
536                 addr = (unsigned long)xen_debug;
537         else if (addr == (unsigned long)int3)
538                 addr = (unsigned long)xen_int3;
539         else if (addr == (unsigned long)stack_segment)
540                 addr = (unsigned long)xen_stack_segment;
541         else if (addr == (unsigned long)double_fault ||
542                  addr == (unsigned long)nmi) {
543                 /* Don't need to handle these */
544                 return 0;
545 #ifdef CONFIG_X86_MCE
546         } else if (addr == (unsigned long)machine_check) {
547                 return 0;
548 #endif
549         } else {
550                 /* Some other trap using IST? */
551                 if (WARN_ON(val->ist != 0))
552                         return 0;
553         }
554 #endif  /* CONFIG_X86_64 */
555         info->address = addr;
556
557         info->cs = gate_segment(*val);
558         info->flags = val->dpl;
559         /* interrupt gates clear IF */
560         if (val->type == GATE_INTERRUPT)
561                 info->flags |= 1 << 2;
562
563         return 1;
564 }
565
566 /* Locations of each CPU's IDT */
567 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
568
569 /* Set an IDT entry.  If the entry is part of the current IDT, then
570    also update Xen. */
571 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
572 {
573         unsigned long p = (unsigned long)&dt[entrynum];
574         unsigned long start, end;
575
576         preempt_disable();
577
578         start = __get_cpu_var(idt_desc).address;
579         end = start + __get_cpu_var(idt_desc).size + 1;
580
581         xen_mc_flush();
582
583         native_write_idt_entry(dt, entrynum, g);
584
585         if (p >= start && (p + 8) <= end) {
586                 struct trap_info info[2];
587
588                 info[1].address = 0;
589
590                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
591                         if (HYPERVISOR_set_trap_table(info))
592                                 BUG();
593         }
594
595         preempt_enable();
596 }
597
598 static void xen_convert_trap_info(const struct desc_ptr *desc,
599                                   struct trap_info *traps)
600 {
601         unsigned in, out, count;
602
603         count = (desc->size+1) / sizeof(gate_desc);
604         BUG_ON(count > 256);
605
606         for (in = out = 0; in < count; in++) {
607                 gate_desc *entry = (gate_desc*)(desc->address) + in;
608
609                 if (cvt_gate_to_trap(in, entry, &traps[out]))
610                         out++;
611         }
612         traps[out].address = 0;
613 }
614
615 void xen_copy_trap_info(struct trap_info *traps)
616 {
617         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
618
619         xen_convert_trap_info(desc, traps);
620 }
621
622 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
623    hold a spinlock to protect the static traps[] array (static because
624    it avoids allocation, and saves stack space). */
625 static void xen_load_idt(const struct desc_ptr *desc)
626 {
627         static DEFINE_SPINLOCK(lock);
628         static struct trap_info traps[257];
629
630         spin_lock(&lock);
631
632         __get_cpu_var(idt_desc) = *desc;
633
634         xen_convert_trap_info(desc, traps);
635
636         xen_mc_flush();
637         if (HYPERVISOR_set_trap_table(traps))
638                 BUG();
639
640         spin_unlock(&lock);
641 }
642
643 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
644    they're handled differently. */
645 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
646                                 const void *desc, int type)
647 {
648         preempt_disable();
649
650         switch (type) {
651         case DESC_LDT:
652         case DESC_TSS:
653                 /* ignore */
654                 break;
655
656         default: {
657                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
658
659                 xen_mc_flush();
660                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
661                         BUG();
662         }
663
664         }
665
666         preempt_enable();
667 }
668
669 /*
670  * Version of write_gdt_entry for use at early boot-time needed to
671  * update an entry as simply as possible.
672  */
673 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
674                                             const void *desc, int type)
675 {
676         switch (type) {
677         case DESC_LDT:
678         case DESC_TSS:
679                 /* ignore */
680                 break;
681
682         default: {
683                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
684
685                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
686                         dt[entry] = *(struct desc_struct *)desc;
687         }
688
689         }
690 }
691
692 static void xen_load_sp0(struct tss_struct *tss,
693                          struct thread_struct *thread)
694 {
695         struct multicall_space mcs = xen_mc_entry(0);
696         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
697         xen_mc_issue(PARAVIRT_LAZY_CPU);
698 }
699
700 static void xen_set_iopl_mask(unsigned mask)
701 {
702         struct physdev_set_iopl set_iopl;
703
704         /* Force the change at ring 0. */
705         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
706         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
707 }
708
709 static void xen_io_delay(void)
710 {
711 }
712
713 #ifdef CONFIG_X86_LOCAL_APIC
714 static u32 xen_apic_read(u32 reg)
715 {
716         return 0;
717 }
718
719 static void xen_apic_write(u32 reg, u32 val)
720 {
721         /* Warn to see if there's any stray references */
722         WARN_ON(1);
723 }
724
725 static u64 xen_apic_icr_read(void)
726 {
727         return 0;
728 }
729
730 static void xen_apic_icr_write(u32 low, u32 id)
731 {
732         /* Warn to see if there's any stray references */
733         WARN_ON(1);
734 }
735
736 static void xen_apic_wait_icr_idle(void)
737 {
738         return;
739 }
740
741 static u32 xen_safe_apic_wait_icr_idle(void)
742 {
743         return 0;
744 }
745
746 static void set_xen_basic_apic_ops(void)
747 {
748         apic->read = xen_apic_read;
749         apic->write = xen_apic_write;
750         apic->icr_read = xen_apic_icr_read;
751         apic->icr_write = xen_apic_icr_write;
752         apic->wait_icr_idle = xen_apic_wait_icr_idle;
753         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
754 }
755
756 #endif
757
758 static void xen_clts(void)
759 {
760         struct multicall_space mcs;
761
762         mcs = xen_mc_entry(0);
763
764         MULTI_fpu_taskswitch(mcs.mc, 0);
765
766         xen_mc_issue(PARAVIRT_LAZY_CPU);
767 }
768
769 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
770
771 static unsigned long xen_read_cr0(void)
772 {
773         unsigned long cr0 = percpu_read(xen_cr0_value);
774
775         if (unlikely(cr0 == 0)) {
776                 cr0 = native_read_cr0();
777                 percpu_write(xen_cr0_value, cr0);
778         }
779
780         return cr0;
781 }
782
783 static void xen_write_cr0(unsigned long cr0)
784 {
785         struct multicall_space mcs;
786
787         percpu_write(xen_cr0_value, cr0);
788
789         /* Only pay attention to cr0.TS; everything else is
790            ignored. */
791         mcs = xen_mc_entry(0);
792
793         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
794
795         xen_mc_issue(PARAVIRT_LAZY_CPU);
796 }
797
798 static void xen_write_cr4(unsigned long cr4)
799 {
800         cr4 &= ~X86_CR4_PGE;
801         cr4 &= ~X86_CR4_PSE;
802
803         native_write_cr4(cr4);
804 }
805
806 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
807 {
808         int ret;
809
810         ret = 0;
811
812         switch (msr) {
813 #ifdef CONFIG_X86_64
814                 unsigned which;
815                 u64 base;
816
817         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
818         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
819         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
820
821         set:
822                 base = ((u64)high << 32) | low;
823                 if (HYPERVISOR_set_segment_base(which, base) != 0)
824                         ret = -EIO;
825                 break;
826 #endif
827
828         case MSR_STAR:
829         case MSR_CSTAR:
830         case MSR_LSTAR:
831         case MSR_SYSCALL_MASK:
832         case MSR_IA32_SYSENTER_CS:
833         case MSR_IA32_SYSENTER_ESP:
834         case MSR_IA32_SYSENTER_EIP:
835                 /* Fast syscall setup is all done in hypercalls, so
836                    these are all ignored.  Stub them out here to stop
837                    Xen console noise. */
838                 break;
839
840         default:
841                 ret = native_write_msr_safe(msr, low, high);
842         }
843
844         return ret;
845 }
846
847 void xen_setup_shared_info(void)
848 {
849         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
850                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
851                            xen_start_info->shared_info);
852
853                 HYPERVISOR_shared_info =
854                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
855         } else
856                 HYPERVISOR_shared_info =
857                         (struct shared_info *)__va(xen_start_info->shared_info);
858
859 #ifndef CONFIG_SMP
860         /* In UP this is as good a place as any to set up shared info */
861         xen_setup_vcpu_info_placement();
862 #endif
863
864         xen_setup_mfn_list_list();
865 }
866
867 /* This is called once we have the cpu_possible_map */
868 void xen_setup_vcpu_info_placement(void)
869 {
870         int cpu;
871
872         for_each_possible_cpu(cpu)
873                 xen_vcpu_setup(cpu);
874
875         /* xen_vcpu_setup managed to place the vcpu_info within the
876            percpu area for all cpus, so make use of it */
877         if (have_vcpu_info_placement) {
878                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
879
880                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
881                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
882                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
883                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
884                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
885         }
886 }
887
888 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
889                           unsigned long addr, unsigned len)
890 {
891         char *start, *end, *reloc;
892         unsigned ret;
893
894         start = end = reloc = NULL;
895
896 #define SITE(op, x)                                                     \
897         case PARAVIRT_PATCH(op.x):                                      \
898         if (have_vcpu_info_placement) {                                 \
899                 start = (char *)xen_##x##_direct;                       \
900                 end = xen_##x##_direct_end;                             \
901                 reloc = xen_##x##_direct_reloc;                         \
902         }                                                               \
903         goto patch_site
904
905         switch (type) {
906                 SITE(pv_irq_ops, irq_enable);
907                 SITE(pv_irq_ops, irq_disable);
908                 SITE(pv_irq_ops, save_fl);
909                 SITE(pv_irq_ops, restore_fl);
910 #undef SITE
911
912         patch_site:
913                 if (start == NULL || (end-start) > len)
914                         goto default_patch;
915
916                 ret = paravirt_patch_insns(insnbuf, len, start, end);
917
918                 /* Note: because reloc is assigned from something that
919                    appears to be an array, gcc assumes it's non-null,
920                    but doesn't know its relationship with start and
921                    end. */
922                 if (reloc > start && reloc < end) {
923                         int reloc_off = reloc - start;
924                         long *relocp = (long *)(insnbuf + reloc_off);
925                         long delta = start - (char *)addr;
926
927                         *relocp += delta;
928                 }
929                 break;
930
931         default_patch:
932         default:
933                 ret = paravirt_patch_default(type, clobbers, insnbuf,
934                                              addr, len);
935                 break;
936         }
937
938         return ret;
939 }
940
941 static const struct pv_info xen_info __initdata = {
942         .paravirt_enabled = 1,
943         .shared_kernel_pmd = 0,
944
945         .name = "Xen",
946 };
947
948 static const struct pv_init_ops xen_init_ops __initdata = {
949         .patch = xen_patch,
950 };
951
952 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
953         .cpuid = xen_cpuid,
954
955         .set_debugreg = xen_set_debugreg,
956         .get_debugreg = xen_get_debugreg,
957
958         .clts = xen_clts,
959
960         .read_cr0 = xen_read_cr0,
961         .write_cr0 = xen_write_cr0,
962
963         .read_cr4 = native_read_cr4,
964         .read_cr4_safe = native_read_cr4_safe,
965         .write_cr4 = xen_write_cr4,
966
967         .wbinvd = native_wbinvd,
968
969         .read_msr = native_read_msr_safe,
970         .write_msr = xen_write_msr_safe,
971         .read_tsc = native_read_tsc,
972         .read_pmc = native_read_pmc,
973
974         .iret = xen_iret,
975         .irq_enable_sysexit = xen_sysexit,
976 #ifdef CONFIG_X86_64
977         .usergs_sysret32 = xen_sysret32,
978         .usergs_sysret64 = xen_sysret64,
979 #endif
980
981         .load_tr_desc = paravirt_nop,
982         .set_ldt = xen_set_ldt,
983         .load_gdt = xen_load_gdt,
984         .load_idt = xen_load_idt,
985         .load_tls = xen_load_tls,
986 #ifdef CONFIG_X86_64
987         .load_gs_index = xen_load_gs_index,
988 #endif
989
990         .alloc_ldt = xen_alloc_ldt,
991         .free_ldt = xen_free_ldt,
992
993         .store_gdt = native_store_gdt,
994         .store_idt = native_store_idt,
995         .store_tr = xen_store_tr,
996
997         .write_ldt_entry = xen_write_ldt_entry,
998         .write_gdt_entry = xen_write_gdt_entry,
999         .write_idt_entry = xen_write_idt_entry,
1000         .load_sp0 = xen_load_sp0,
1001
1002         .set_iopl_mask = xen_set_iopl_mask,
1003         .io_delay = xen_io_delay,
1004
1005         /* Xen takes care of %gs when switching to usermode for us */
1006         .swapgs = paravirt_nop,
1007
1008         .start_context_switch = paravirt_start_context_switch,
1009         .end_context_switch = xen_end_context_switch,
1010 };
1011
1012 static const struct pv_apic_ops xen_apic_ops __initdata = {
1013 #ifdef CONFIG_X86_LOCAL_APIC
1014         .startup_ipi_hook = paravirt_nop,
1015 #endif
1016 };
1017
1018 static void xen_reboot(int reason)
1019 {
1020         struct sched_shutdown r = { .reason = reason };
1021
1022 #ifdef CONFIG_SMP
1023         smp_send_stop();
1024 #endif
1025
1026         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1027                 BUG();
1028 }
1029
1030 static void xen_restart(char *msg)
1031 {
1032         xen_reboot(SHUTDOWN_reboot);
1033 }
1034
1035 static void xen_emergency_restart(void)
1036 {
1037         xen_reboot(SHUTDOWN_reboot);
1038 }
1039
1040 static void xen_machine_halt(void)
1041 {
1042         xen_reboot(SHUTDOWN_poweroff);
1043 }
1044
1045 static void xen_crash_shutdown(struct pt_regs *regs)
1046 {
1047         xen_reboot(SHUTDOWN_crash);
1048 }
1049
1050 static int
1051 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1052 {
1053         xen_reboot(SHUTDOWN_crash);
1054         return NOTIFY_DONE;
1055 }
1056
1057 static struct notifier_block xen_panic_block = {
1058         .notifier_call= xen_panic_event,
1059 };
1060
1061 int xen_panic_handler_init(void)
1062 {
1063         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1064         return 0;
1065 }
1066
1067 static const struct machine_ops __initdata xen_machine_ops = {
1068         .restart = xen_restart,
1069         .halt = xen_machine_halt,
1070         .power_off = xen_machine_halt,
1071         .shutdown = xen_machine_halt,
1072         .crash_shutdown = xen_crash_shutdown,
1073         .emergency_restart = xen_emergency_restart,
1074 };
1075
1076 /*
1077  * Set up the GDT and segment registers for -fstack-protector.  Until
1078  * we do this, we have to be careful not to call any stack-protected
1079  * function, which is most of the kernel.
1080  */
1081 static void __init xen_setup_stackprotector(void)
1082 {
1083         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1084         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1085
1086         setup_stack_canary_segment(0);
1087         switch_to_new_gdt(0);
1088
1089         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1090         pv_cpu_ops.load_gdt = xen_load_gdt;
1091 }
1092
1093 /* First C function to be called on Xen boot */
1094 asmlinkage void __init xen_start_kernel(void)
1095 {
1096         pgd_t *pgd;
1097
1098         if (!xen_start_info)
1099                 return;
1100
1101         xen_domain_type = XEN_PV_DOMAIN;
1102
1103         /* Install Xen paravirt ops */
1104         pv_info = xen_info;
1105         pv_init_ops = xen_init_ops;
1106         pv_cpu_ops = xen_cpu_ops;
1107         pv_apic_ops = xen_apic_ops;
1108
1109         x86_init.resources.memory_setup = xen_memory_setup;
1110         x86_init.oem.arch_setup = xen_arch_setup;
1111         x86_init.oem.banner = xen_banner;
1112
1113         xen_init_time_ops();
1114
1115         /*
1116          * Set up some pagetable state before starting to set any ptes.
1117          */
1118
1119         xen_init_mmu_ops();
1120
1121         /* Prevent unwanted bits from being set in PTEs. */
1122         __supported_pte_mask &= ~_PAGE_GLOBAL;
1123         if (!xen_initial_domain())
1124                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1125
1126         __supported_pte_mask |= _PAGE_IOMAP;
1127
1128         /*
1129          * Prevent page tables from being allocated in highmem, even
1130          * if CONFIG_HIGHPTE is enabled.
1131          */
1132         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1133
1134         /* Work out if we support NX */
1135         x86_configure_nx();
1136
1137         xen_setup_features();
1138
1139         /* Get mfn list */
1140         if (!xen_feature(XENFEAT_auto_translated_physmap))
1141                 xen_build_dynamic_phys_to_machine();
1142
1143         /*
1144          * Set up kernel GDT and segment registers, mainly so that
1145          * -fstack-protector code can be executed.
1146          */
1147         xen_setup_stackprotector();
1148
1149         xen_init_irq_ops();
1150         xen_init_cpuid_mask();
1151
1152 #ifdef CONFIG_X86_LOCAL_APIC
1153         /*
1154          * set up the basic apic ops.
1155          */
1156         set_xen_basic_apic_ops();
1157 #endif
1158
1159         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1160                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1161                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1162         }
1163
1164         machine_ops = xen_machine_ops;
1165
1166         /*
1167          * The only reliable way to retain the initial address of the
1168          * percpu gdt_page is to remember it here, so we can go and
1169          * mark it RW later, when the initial percpu area is freed.
1170          */
1171         xen_initial_gdt = &per_cpu(gdt_page, 0);
1172
1173         xen_smp_init();
1174
1175         pgd = (pgd_t *)xen_start_info->pt_base;
1176
1177         if (!xen_initial_domain())
1178                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1179
1180         __supported_pte_mask |= _PAGE_IOMAP;
1181         /* Don't do the full vcpu_info placement stuff until we have a
1182            possible map and a non-dummy shared_info. */
1183         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1184
1185         local_irq_disable();
1186         early_boot_irqs_off();
1187
1188         xen_raw_console_write("mapping kernel into physical memory\n");
1189         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1190         xen_ident_map_ISA();
1191
1192         init_mm.pgd = pgd;
1193
1194         /* keep using Xen gdt for now; no urgent need to change it */
1195
1196 #ifdef CONFIG_X86_32
1197         pv_info.kernel_rpl = 1;
1198         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1199                 pv_info.kernel_rpl = 0;
1200 #else
1201         pv_info.kernel_rpl = 0;
1202 #endif
1203
1204         /* set the limit of our address space */
1205         xen_reserve_top();
1206
1207 #ifdef CONFIG_X86_32
1208         /* set up basic CPUID stuff */
1209         cpu_detect(&new_cpu_data);
1210         new_cpu_data.hard_math = 1;
1211         new_cpu_data.wp_works_ok = 1;
1212         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1213 #endif
1214
1215         /* Poke various useful things into boot_params */
1216         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1217         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1218                 ? __pa(xen_start_info->mod_start) : 0;
1219         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1220         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1221
1222         if (!xen_initial_domain()) {
1223                 add_preferred_console("xenboot", 0, NULL);
1224                 add_preferred_console("tty", 0, NULL);
1225                 add_preferred_console("hvc", 0, NULL);
1226                 if (pci_xen)
1227                         x86_init.pci.arch_init = pci_xen_init;
1228         } else {
1229                 /* Make sure ACS will be enabled */
1230                 pci_request_acs();
1231         }
1232                 
1233
1234         xen_raw_console_write("about to get started...\n");
1235
1236         xen_setup_runstate_info(0);
1237
1238         /* Start the world */
1239 #ifdef CONFIG_X86_32
1240         i386_start_kernel();
1241 #else
1242         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1243 #endif
1244 }
1245
1246 static uint32_t xen_cpuid_base(void)
1247 {
1248         uint32_t base, eax, ebx, ecx, edx;
1249         char signature[13];
1250
1251         for (base = 0x40000000; base < 0x40010000; base += 0x100) {
1252                 cpuid(base, &eax, &ebx, &ecx, &edx);
1253                 *(uint32_t *)(signature + 0) = ebx;
1254                 *(uint32_t *)(signature + 4) = ecx;
1255                 *(uint32_t *)(signature + 8) = edx;
1256                 signature[12] = 0;
1257
1258                 if (!strcmp("XenVMMXenVMM", signature) && ((eax - base) >= 2))
1259                         return base;
1260         }
1261
1262         return 0;
1263 }
1264
1265 static int init_hvm_pv_info(int *major, int *minor)
1266 {
1267         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1268         u64 pfn;
1269
1270         base = xen_cpuid_base();
1271         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1272
1273         *major = eax >> 16;
1274         *minor = eax & 0xffff;
1275         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1276
1277         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1278
1279         pfn = __pa(hypercall_page);
1280         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1281
1282         xen_setup_features();
1283
1284         pv_info = xen_info;
1285         pv_info.kernel_rpl = 0;
1286
1287         xen_domain_type = XEN_HVM_DOMAIN;
1288
1289         return 0;
1290 }
1291
1292 void xen_hvm_init_shared_info(void)
1293 {
1294         int cpu;
1295         struct xen_add_to_physmap xatp;
1296         static struct shared_info *shared_info_page = 0;
1297
1298         if (!shared_info_page)
1299                 shared_info_page = (struct shared_info *)
1300                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1301         xatp.domid = DOMID_SELF;
1302         xatp.idx = 0;
1303         xatp.space = XENMAPSPACE_shared_info;
1304         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1305         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1306                 BUG();
1307
1308         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1309
1310         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1311          * page, we use it in the event channel upcall and in some pvclock
1312          * related functions. We don't need the vcpu_info placement
1313          * optimizations because we don't use any pv_mmu or pv_irq op on
1314          * HVM.
1315          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1316          * online but xen_hvm_init_shared_info is run at resume time too and
1317          * in that case multiple vcpus might be online. */
1318         for_each_online_cpu(cpu) {
1319                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1320         }
1321 }
1322
1323 #ifdef CONFIG_XEN_PVHVM
1324 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1325                                     unsigned long action, void *hcpu)
1326 {
1327         int cpu = (long)hcpu;
1328         switch (action) {
1329         case CPU_UP_PREPARE:
1330                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1331                 break;
1332         default:
1333                 break;
1334         }
1335         return NOTIFY_OK;
1336 }
1337
1338 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1339         .notifier_call  = xen_hvm_cpu_notify,
1340 };
1341
1342 static void __init xen_hvm_guest_init(void)
1343 {
1344         int r;
1345         int major, minor;
1346
1347         r = init_hvm_pv_info(&major, &minor);
1348         if (r < 0)
1349                 return;
1350
1351         xen_hvm_init_shared_info();
1352
1353         if (xen_feature(XENFEAT_hvm_callback_vector))
1354                 xen_have_vector_callback = 1;
1355         register_cpu_notifier(&xen_hvm_cpu_notifier);
1356         xen_unplug_emulated_devices();
1357         have_vcpu_info_placement = 0;
1358         x86_init.irqs.intr_init = xen_init_IRQ;
1359         xen_hvm_init_time_ops();
1360         xen_hvm_init_mmu_ops();
1361 }
1362
1363 static bool __init xen_hvm_platform(void)
1364 {
1365         if (xen_pv_domain())
1366                 return false;
1367
1368         if (!xen_cpuid_base())
1369                 return false;
1370
1371         return true;
1372 }
1373
1374 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1375         .name                   = "Xen HVM",
1376         .detect                 = xen_hvm_platform,
1377         .init_platform          = xen_hvm_guest_init,
1378 };
1379 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1380 #endif