Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
37
38 #include <asm/paravirt.h>
39 #include <asm/page.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
50
51 #include "xen-ops.h"
52 #include "mmu.h"
53 #include "multicalls.h"
54
55 EXPORT_SYMBOL_GPL(hypercall_page);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59
60 /*
61  * Identity map, in addition to plain kernel map.  This needs to be
62  * large enough to allocate page table pages to allocate the rest.
63  * Each page can map 2MB.
64  */
65 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
66
67 #ifdef CONFIG_X86_64
68 /* l3 pud for userspace vsyscall mapping */
69 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
70 #endif /* CONFIG_X86_64 */
71
72 /*
73  * Note about cr3 (pagetable base) values:
74  *
75  * xen_cr3 contains the current logical cr3 value; it contains the
76  * last set cr3.  This may not be the current effective cr3, because
77  * its update may be being lazily deferred.  However, a vcpu looking
78  * at its own cr3 can use this value knowing that it everything will
79  * be self-consistent.
80  *
81  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
82  * hypercall to set the vcpu cr3 is complete (so it may be a little
83  * out of date, but it will never be set early).  If one vcpu is
84  * looking at another vcpu's cr3 value, it should use this variable.
85  */
86 DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
87 DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
88
89 struct start_info *xen_start_info;
90 EXPORT_SYMBOL_GPL(xen_start_info);
91
92 struct shared_info xen_dummy_shared_info;
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void xen_vcpu_setup(int cpu)
116 {
117         struct vcpu_register_vcpu_info info;
118         int err;
119         struct vcpu_info *vcpup;
120
121         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
122         per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
123
124         if (!have_vcpu_info_placement)
125                 return;         /* already tested, not available */
126
127         vcpup = &per_cpu(xen_vcpu_info, cpu);
128
129         info.mfn = virt_to_mfn(vcpup);
130         info.offset = offset_in_page(vcpup);
131
132         printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
133                cpu, vcpup, info.mfn, info.offset);
134
135         /* Check to see if the hypervisor will put the vcpu_info
136            structure where we want it, which allows direct access via
137            a percpu-variable. */
138         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
139
140         if (err) {
141                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
142                 have_vcpu_info_placement = 0;
143         } else {
144                 /* This cpu is using the registered vcpu info, even if
145                    later ones fail to. */
146                 per_cpu(xen_vcpu, cpu) = vcpup;
147
148                 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
149                        cpu, vcpup);
150         }
151 }
152
153 /*
154  * On restore, set the vcpu placement up again.
155  * If it fails, then we're in a bad state, since
156  * we can't back out from using it...
157  */
158 void xen_vcpu_restore(void)
159 {
160         if (have_vcpu_info_placement) {
161                 int cpu;
162
163                 for_each_online_cpu(cpu) {
164                         bool other_cpu = (cpu != smp_processor_id());
165
166                         if (other_cpu &&
167                             HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
168                                 BUG();
169
170                         xen_vcpu_setup(cpu);
171
172                         if (other_cpu &&
173                             HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
174                                 BUG();
175                 }
176
177                 BUG_ON(!have_vcpu_info_placement);
178         }
179 }
180
181 static void __init xen_banner(void)
182 {
183         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
184         struct xen_extraversion extra;
185         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
186
187         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
188                pv_info.name);
189         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
190                version >> 16, version & 0xffff, extra.extraversion,
191                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
192 }
193
194 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
195                       unsigned int *cx, unsigned int *dx)
196 {
197         unsigned maskedx = ~0;
198
199         /*
200          * Mask out inconvenient features, to try and disable as many
201          * unsupported kernel subsystems as possible.
202          */
203         if (*ax == 1)
204                 maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */
205                             (1 << X86_FEATURE_ACPI) |  /* disable ACPI */
206                             (1 << X86_FEATURE_MCE)  |  /* disable MCE */
207                             (1 << X86_FEATURE_MCA)  |  /* disable MCA */
208                             (1 << X86_FEATURE_ACC));   /* thermal monitoring */
209
210         asm(XEN_EMULATE_PREFIX "cpuid"
211                 : "=a" (*ax),
212                   "=b" (*bx),
213                   "=c" (*cx),
214                   "=d" (*dx)
215                 : "0" (*ax), "2" (*cx));
216         *dx &= maskedx;
217 }
218
219 static void xen_set_debugreg(int reg, unsigned long val)
220 {
221         HYPERVISOR_set_debugreg(reg, val);
222 }
223
224 static unsigned long xen_get_debugreg(int reg)
225 {
226         return HYPERVISOR_get_debugreg(reg);
227 }
228
229 static unsigned long xen_save_fl(void)
230 {
231         struct vcpu_info *vcpu;
232         unsigned long flags;
233
234         vcpu = x86_read_percpu(xen_vcpu);
235
236         /* flag has opposite sense of mask */
237         flags = !vcpu->evtchn_upcall_mask;
238
239         /* convert to IF type flag
240            -0 -> 0x00000000
241            -1 -> 0xffffffff
242         */
243         return (-flags) & X86_EFLAGS_IF;
244 }
245
246 static void xen_restore_fl(unsigned long flags)
247 {
248         struct vcpu_info *vcpu;
249
250         /* convert from IF type flag */
251         flags = !(flags & X86_EFLAGS_IF);
252
253         /* There's a one instruction preempt window here.  We need to
254            make sure we're don't switch CPUs between getting the vcpu
255            pointer and updating the mask. */
256         preempt_disable();
257         vcpu = x86_read_percpu(xen_vcpu);
258         vcpu->evtchn_upcall_mask = flags;
259         preempt_enable_no_resched();
260
261         /* Doesn't matter if we get preempted here, because any
262            pending event will get dealt with anyway. */
263
264         if (flags == 0) {
265                 preempt_check_resched();
266                 barrier(); /* unmask then check (avoid races) */
267                 if (unlikely(vcpu->evtchn_upcall_pending))
268                         force_evtchn_callback();
269         }
270 }
271
272 static void xen_irq_disable(void)
273 {
274         /* There's a one instruction preempt window here.  We need to
275            make sure we're don't switch CPUs between getting the vcpu
276            pointer and updating the mask. */
277         preempt_disable();
278         x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
279         preempt_enable_no_resched();
280 }
281
282 static void xen_irq_enable(void)
283 {
284         struct vcpu_info *vcpu;
285
286         /* We don't need to worry about being preempted here, since
287            either a) interrupts are disabled, so no preemption, or b)
288            the caller is confused and is trying to re-enable interrupts
289            on an indeterminate processor. */
290
291         vcpu = x86_read_percpu(xen_vcpu);
292         vcpu->evtchn_upcall_mask = 0;
293
294         /* Doesn't matter if we get preempted here, because any
295            pending event will get dealt with anyway. */
296
297         barrier(); /* unmask then check (avoid races) */
298         if (unlikely(vcpu->evtchn_upcall_pending))
299                 force_evtchn_callback();
300 }
301
302 static void xen_safe_halt(void)
303 {
304         /* Blocking includes an implicit local_irq_enable(). */
305         if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
306                 BUG();
307 }
308
309 static void xen_halt(void)
310 {
311         if (irqs_disabled())
312                 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
313         else
314                 xen_safe_halt();
315 }
316
317 static void xen_leave_lazy(void)
318 {
319         paravirt_leave_lazy(paravirt_get_lazy_mode());
320         xen_mc_flush();
321 }
322
323 static unsigned long xen_store_tr(void)
324 {
325         return 0;
326 }
327
328 static void xen_set_ldt(const void *addr, unsigned entries)
329 {
330         struct mmuext_op *op;
331         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
332
333         op = mcs.args;
334         op->cmd = MMUEXT_SET_LDT;
335         op->arg1.linear_addr = (unsigned long)addr;
336         op->arg2.nr_ents = entries;
337
338         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
339
340         xen_mc_issue(PARAVIRT_LAZY_CPU);
341 }
342
343 static void xen_load_gdt(const struct desc_ptr *dtr)
344 {
345         unsigned long *frames;
346         unsigned long va = dtr->address;
347         unsigned int size = dtr->size + 1;
348         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
349         int f;
350         struct multicall_space mcs;
351
352         /* A GDT can be up to 64k in size, which corresponds to 8192
353            8-byte entries, or 16 4k pages.. */
354
355         BUG_ON(size > 65536);
356         BUG_ON(va & ~PAGE_MASK);
357
358         mcs = xen_mc_entry(sizeof(*frames) * pages);
359         frames = mcs.args;
360
361         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
362                 frames[f] = virt_to_mfn(va);
363                 make_lowmem_page_readonly((void *)va);
364         }
365
366         MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
367
368         xen_mc_issue(PARAVIRT_LAZY_CPU);
369 }
370
371 static void load_TLS_descriptor(struct thread_struct *t,
372                                 unsigned int cpu, unsigned int i)
373 {
374         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
375         xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
376         struct multicall_space mc = __xen_mc_entry(0);
377
378         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
379 }
380
381 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
382 {
383         /*
384          * XXX sleazy hack: If we're being called in a lazy-cpu zone,
385          * it means we're in a context switch, and %gs has just been
386          * saved.  This means we can zero it out to prevent faults on
387          * exit from the hypervisor if the next process has no %gs.
388          * Either way, it has been saved, and the new value will get
389          * loaded properly.  This will go away as soon as Xen has been
390          * modified to not save/restore %gs for normal hypercalls.
391          *
392          * On x86_64, this hack is not used for %gs, because gs points
393          * to KERNEL_GS_BASE (and uses it for PDA references), so we
394          * must not zero %gs on x86_64
395          *
396          * For x86_64, we need to zero %fs, otherwise we may get an
397          * exception between the new %fs descriptor being loaded and
398          * %fs being effectively cleared at __switch_to().
399          */
400         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
401 #ifdef CONFIG_X86_32
402                 loadsegment(gs, 0);
403 #else
404                 loadsegment(fs, 0);
405 #endif
406         }
407
408         xen_mc_batch();
409
410         load_TLS_descriptor(t, cpu, 0);
411         load_TLS_descriptor(t, cpu, 1);
412         load_TLS_descriptor(t, cpu, 2);
413
414         xen_mc_issue(PARAVIRT_LAZY_CPU);
415 }
416
417 #ifdef CONFIG_X86_64
418 static void xen_load_gs_index(unsigned int idx)
419 {
420         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
421                 BUG();
422 }
423 #endif
424
425 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
426                                 const void *ptr)
427 {
428         unsigned long lp = (unsigned long)&dt[entrynum];
429         xmaddr_t mach_lp = virt_to_machine(lp);
430         u64 entry = *(u64 *)ptr;
431
432         preempt_disable();
433
434         xen_mc_flush();
435         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
436                 BUG();
437
438         preempt_enable();
439 }
440
441 static int cvt_gate_to_trap(int vector, const gate_desc *val,
442                             struct trap_info *info)
443 {
444         if (val->type != 0xf && val->type != 0xe)
445                 return 0;
446
447         info->vector = vector;
448         info->address = gate_offset(*val);
449         info->cs = gate_segment(*val);
450         info->flags = val->dpl;
451         /* interrupt gates clear IF */
452         if (val->type == 0xe)
453                 info->flags |= 4;
454
455         return 1;
456 }
457
458 /* Locations of each CPU's IDT */
459 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
460
461 /* Set an IDT entry.  If the entry is part of the current IDT, then
462    also update Xen. */
463 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
464 {
465         unsigned long p = (unsigned long)&dt[entrynum];
466         unsigned long start, end;
467
468         preempt_disable();
469
470         start = __get_cpu_var(idt_desc).address;
471         end = start + __get_cpu_var(idt_desc).size + 1;
472
473         xen_mc_flush();
474
475         native_write_idt_entry(dt, entrynum, g);
476
477         if (p >= start && (p + 8) <= end) {
478                 struct trap_info info[2];
479
480                 info[1].address = 0;
481
482                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
483                         if (HYPERVISOR_set_trap_table(info))
484                                 BUG();
485         }
486
487         preempt_enable();
488 }
489
490 static void xen_convert_trap_info(const struct desc_ptr *desc,
491                                   struct trap_info *traps)
492 {
493         unsigned in, out, count;
494
495         count = (desc->size+1) / sizeof(gate_desc);
496         BUG_ON(count > 256);
497
498         for (in = out = 0; in < count; in++) {
499                 gate_desc *entry = (gate_desc*)(desc->address) + in;
500
501                 if (cvt_gate_to_trap(in, entry, &traps[out]))
502                         out++;
503         }
504         traps[out].address = 0;
505 }
506
507 void xen_copy_trap_info(struct trap_info *traps)
508 {
509         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
510
511         xen_convert_trap_info(desc, traps);
512 }
513
514 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
515    hold a spinlock to protect the static traps[] array (static because
516    it avoids allocation, and saves stack space). */
517 static void xen_load_idt(const struct desc_ptr *desc)
518 {
519         static DEFINE_SPINLOCK(lock);
520         static struct trap_info traps[257];
521
522         spin_lock(&lock);
523
524         __get_cpu_var(idt_desc) = *desc;
525
526         xen_convert_trap_info(desc, traps);
527
528         xen_mc_flush();
529         if (HYPERVISOR_set_trap_table(traps))
530                 BUG();
531
532         spin_unlock(&lock);
533 }
534
535 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
536    they're handled differently. */
537 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
538                                 const void *desc, int type)
539 {
540         preempt_disable();
541
542         switch (type) {
543         case DESC_LDT:
544         case DESC_TSS:
545                 /* ignore */
546                 break;
547
548         default: {
549                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
550
551                 xen_mc_flush();
552                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
553                         BUG();
554         }
555
556         }
557
558         preempt_enable();
559 }
560
561 static void xen_load_sp0(struct tss_struct *tss,
562                           struct thread_struct *thread)
563 {
564         struct multicall_space mcs = xen_mc_entry(0);
565         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
566         xen_mc_issue(PARAVIRT_LAZY_CPU);
567 }
568
569 static void xen_set_iopl_mask(unsigned mask)
570 {
571         struct physdev_set_iopl set_iopl;
572
573         /* Force the change at ring 0. */
574         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
575         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
576 }
577
578 static void xen_io_delay(void)
579 {
580 }
581
582 #ifdef CONFIG_X86_LOCAL_APIC
583 static u32 xen_apic_read(unsigned long reg)
584 {
585         return 0;
586 }
587
588 static void xen_apic_write(unsigned long reg, u32 val)
589 {
590         /* Warn to see if there's any stray references */
591         WARN_ON(1);
592 }
593 #endif
594
595 static void xen_flush_tlb(void)
596 {
597         struct mmuext_op *op;
598         struct multicall_space mcs;
599
600         preempt_disable();
601
602         mcs = xen_mc_entry(sizeof(*op));
603
604         op = mcs.args;
605         op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
606         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
607
608         xen_mc_issue(PARAVIRT_LAZY_MMU);
609
610         preempt_enable();
611 }
612
613 static void xen_flush_tlb_single(unsigned long addr)
614 {
615         struct mmuext_op *op;
616         struct multicall_space mcs;
617
618         preempt_disable();
619
620         mcs = xen_mc_entry(sizeof(*op));
621         op = mcs.args;
622         op->cmd = MMUEXT_INVLPG_LOCAL;
623         op->arg1.linear_addr = addr & PAGE_MASK;
624         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
625
626         xen_mc_issue(PARAVIRT_LAZY_MMU);
627
628         preempt_enable();
629 }
630
631 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
632                                  unsigned long va)
633 {
634         struct {
635                 struct mmuext_op op;
636                 cpumask_t mask;
637         } *args;
638         cpumask_t cpumask = *cpus;
639         struct multicall_space mcs;
640
641         /*
642          * A couple of (to be removed) sanity checks:
643          *
644          * - current CPU must not be in mask
645          * - mask must exist :)
646          */
647         BUG_ON(cpus_empty(cpumask));
648         BUG_ON(cpu_isset(smp_processor_id(), cpumask));
649         BUG_ON(!mm);
650
651         /* If a CPU which we ran on has gone down, OK. */
652         cpus_and(cpumask, cpumask, cpu_online_map);
653         if (cpus_empty(cpumask))
654                 return;
655
656         mcs = xen_mc_entry(sizeof(*args));
657         args = mcs.args;
658         args->mask = cpumask;
659         args->op.arg2.vcpumask = &args->mask;
660
661         if (va == TLB_FLUSH_ALL) {
662                 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
663         } else {
664                 args->op.cmd = MMUEXT_INVLPG_MULTI;
665                 args->op.arg1.linear_addr = va;
666         }
667
668         MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
669
670         xen_mc_issue(PARAVIRT_LAZY_MMU);
671 }
672
673 static void xen_clts(void)
674 {
675         struct multicall_space mcs;
676
677         mcs = xen_mc_entry(0);
678
679         MULTI_fpu_taskswitch(mcs.mc, 0);
680
681         xen_mc_issue(PARAVIRT_LAZY_CPU);
682 }
683
684 static void xen_write_cr0(unsigned long cr0)
685 {
686         struct multicall_space mcs;
687
688         /* Only pay attention to cr0.TS; everything else is
689            ignored. */
690         mcs = xen_mc_entry(0);
691
692         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
693
694         xen_mc_issue(PARAVIRT_LAZY_CPU);
695 }
696
697 static void xen_write_cr2(unsigned long cr2)
698 {
699         x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
700 }
701
702 static unsigned long xen_read_cr2(void)
703 {
704         return x86_read_percpu(xen_vcpu)->arch.cr2;
705 }
706
707 static unsigned long xen_read_cr2_direct(void)
708 {
709         return x86_read_percpu(xen_vcpu_info.arch.cr2);
710 }
711
712 static void xen_write_cr4(unsigned long cr4)
713 {
714         cr4 &= ~X86_CR4_PGE;
715         cr4 &= ~X86_CR4_PSE;
716
717         native_write_cr4(cr4);
718 }
719
720 static unsigned long xen_read_cr3(void)
721 {
722         return x86_read_percpu(xen_cr3);
723 }
724
725 static void set_current_cr3(void *v)
726 {
727         x86_write_percpu(xen_current_cr3, (unsigned long)v);
728 }
729
730 static void __xen_write_cr3(bool kernel, unsigned long cr3)
731 {
732         struct mmuext_op *op;
733         struct multicall_space mcs;
734         unsigned long mfn;
735
736         if (cr3)
737                 mfn = pfn_to_mfn(PFN_DOWN(cr3));
738         else
739                 mfn = 0;
740
741         WARN_ON(mfn == 0 && kernel);
742
743         mcs = __xen_mc_entry(sizeof(*op));
744
745         op = mcs.args;
746         op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
747         op->arg1.mfn = mfn;
748
749         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
750
751         if (kernel) {
752                 x86_write_percpu(xen_cr3, cr3);
753
754                 /* Update xen_current_cr3 once the batch has actually
755                    been submitted. */
756                 xen_mc_callback(set_current_cr3, (void *)cr3);
757         }
758 }
759
760 static void xen_write_cr3(unsigned long cr3)
761 {
762         BUG_ON(preemptible());
763
764         xen_mc_batch();  /* disables interrupts */
765
766         /* Update while interrupts are disabled, so its atomic with
767            respect to ipis */
768         x86_write_percpu(xen_cr3, cr3);
769
770         __xen_write_cr3(true, cr3);
771
772 #ifdef CONFIG_X86_64
773         {
774                 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
775                 if (user_pgd)
776                         __xen_write_cr3(false, __pa(user_pgd));
777                 else
778                         __xen_write_cr3(false, 0);
779         }
780 #endif
781
782         xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
783 }
784
785 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
786 {
787         int ret;
788
789         ret = 0;
790
791         switch(msr) {
792 #ifdef CONFIG_X86_64
793                 unsigned which;
794                 u64 base;
795
796         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
797         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
798         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
799
800         set:
801                 base = ((u64)high << 32) | low;
802                 if (HYPERVISOR_set_segment_base(which, base) != 0)
803                         ret = -EFAULT;
804                 break;
805 #endif
806         default:
807                 ret = native_write_msr_safe(msr, low, high);
808         }
809
810         return ret;
811 }
812
813 /* Early in boot, while setting up the initial pagetable, assume
814    everything is pinned. */
815 static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
816 {
817 #ifdef CONFIG_FLATMEM
818         BUG_ON(mem_map);        /* should only be used early */
819 #endif
820         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
821 }
822
823 /* Early release_pte assumes that all pts are pinned, since there's
824    only init_mm and anything attached to that is pinned. */
825 static void xen_release_pte_init(u32 pfn)
826 {
827         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
828 }
829
830 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
831 {
832         struct mmuext_op op;
833         op.cmd = cmd;
834         op.arg1.mfn = pfn_to_mfn(pfn);
835         if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
836                 BUG();
837 }
838
839 /* This needs to make sure the new pte page is pinned iff its being
840    attached to a pinned pagetable. */
841 static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
842 {
843         struct page *page = pfn_to_page(pfn);
844
845         if (PagePinned(virt_to_page(mm->pgd))) {
846                 SetPagePinned(page);
847
848                 if (!PageHighMem(page)) {
849                         make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
850                         if (level == PT_PTE)
851                                 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
852                 } else
853                         /* make sure there are no stray mappings of
854                            this page */
855                         kmap_flush_unused();
856         }
857 }
858
859 static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
860 {
861         xen_alloc_ptpage(mm, pfn, PT_PTE);
862 }
863
864 static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
865 {
866         xen_alloc_ptpage(mm, pfn, PT_PMD);
867 }
868
869 static int xen_pgd_alloc(struct mm_struct *mm)
870 {
871         pgd_t *pgd = mm->pgd;
872         int ret = 0;
873
874         BUG_ON(PagePinned(virt_to_page(pgd)));
875
876 #ifdef CONFIG_X86_64
877         {
878                 struct page *page = virt_to_page(pgd);
879                 pgd_t *user_pgd;
880
881                 BUG_ON(page->private != 0);
882
883                 ret = -ENOMEM;
884
885                 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
886                 page->private = (unsigned long)user_pgd;
887
888                 if (user_pgd != NULL) {
889                         user_pgd[pgd_index(VSYSCALL_START)] =
890                                 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
891                         ret = 0;
892                 }
893
894                 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
895         }
896 #endif
897
898         return ret;
899 }
900
901 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
902 {
903 #ifdef CONFIG_X86_64
904         pgd_t *user_pgd = xen_get_user_pgd(pgd);
905
906         if (user_pgd)
907                 free_page((unsigned long)user_pgd);
908 #endif
909 }
910
911 /* This should never happen until we're OK to use struct page */
912 static void xen_release_ptpage(u32 pfn, unsigned level)
913 {
914         struct page *page = pfn_to_page(pfn);
915
916         if (PagePinned(page)) {
917                 if (!PageHighMem(page)) {
918                         if (level == PT_PTE)
919                                 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
920                         make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
921                 }
922                 ClearPagePinned(page);
923         }
924 }
925
926 static void xen_release_pte(u32 pfn)
927 {
928         xen_release_ptpage(pfn, PT_PTE);
929 }
930
931 static void xen_release_pmd(u32 pfn)
932 {
933         xen_release_ptpage(pfn, PT_PMD);
934 }
935
936 #if PAGETABLE_LEVELS == 4
937 static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
938 {
939         xen_alloc_ptpage(mm, pfn, PT_PUD);
940 }
941
942 static void xen_release_pud(u32 pfn)
943 {
944         xen_release_ptpage(pfn, PT_PUD);
945 }
946 #endif
947
948 #ifdef CONFIG_HIGHPTE
949 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
950 {
951         pgprot_t prot = PAGE_KERNEL;
952
953         if (PagePinned(page))
954                 prot = PAGE_KERNEL_RO;
955
956         if (0 && PageHighMem(page))
957                 printk("mapping highpte %lx type %d prot %s\n",
958                        page_to_pfn(page), type,
959                        (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
960
961         return kmap_atomic_prot(page, type, prot);
962 }
963 #endif
964
965 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
966 {
967         /* If there's an existing pte, then don't allow _PAGE_RW to be set */
968         if (pte_val_ma(*ptep) & _PAGE_PRESENT)
969                 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
970                                pte_val_ma(pte));
971
972         return pte;
973 }
974
975 /* Init-time set_pte while constructing initial pagetables, which
976    doesn't allow RO pagetable pages to be remapped RW */
977 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
978 {
979         pte = mask_rw_pte(ptep, pte);
980
981         xen_set_pte(ptep, pte);
982 }
983
984 static __init void xen_pagetable_setup_start(pgd_t *base)
985 {
986 }
987
988 void xen_setup_shared_info(void)
989 {
990         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
991                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
992                            xen_start_info->shared_info);
993
994                 HYPERVISOR_shared_info =
995                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
996         } else
997                 HYPERVISOR_shared_info =
998                         (struct shared_info *)__va(xen_start_info->shared_info);
999
1000 #ifndef CONFIG_SMP
1001         /* In UP this is as good a place as any to set up shared info */
1002         xen_setup_vcpu_info_placement();
1003 #endif
1004
1005         xen_setup_mfn_list_list();
1006 }
1007
1008 static __init void xen_pagetable_setup_done(pgd_t *base)
1009 {
1010         xen_setup_shared_info();
1011 }
1012
1013 static __init void xen_post_allocator_init(void)
1014 {
1015         pv_mmu_ops.set_pte = xen_set_pte;
1016         pv_mmu_ops.set_pmd = xen_set_pmd;
1017         pv_mmu_ops.set_pud = xen_set_pud;
1018 #if PAGETABLE_LEVELS == 4
1019         pv_mmu_ops.set_pgd = xen_set_pgd;
1020 #endif
1021
1022         /* This will work as long as patching hasn't happened yet
1023            (which it hasn't) */
1024         pv_mmu_ops.alloc_pte = xen_alloc_pte;
1025         pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1026         pv_mmu_ops.release_pte = xen_release_pte;
1027         pv_mmu_ops.release_pmd = xen_release_pmd;
1028 #if PAGETABLE_LEVELS == 4
1029         pv_mmu_ops.alloc_pud = xen_alloc_pud;
1030         pv_mmu_ops.release_pud = xen_release_pud;
1031 #endif
1032
1033 #ifdef CONFIG_X86_64
1034         SetPagePinned(virt_to_page(level3_user_vsyscall));
1035 #endif
1036         xen_mark_init_mm_pinned();
1037 }
1038
1039 /* This is called once we have the cpu_possible_map */
1040 void xen_setup_vcpu_info_placement(void)
1041 {
1042         int cpu;
1043
1044         for_each_possible_cpu(cpu)
1045                 xen_vcpu_setup(cpu);
1046
1047         /* xen_vcpu_setup managed to place the vcpu_info within the
1048            percpu area for all cpus, so make use of it */
1049 #ifdef CONFIG_X86_32
1050         if (have_vcpu_info_placement) {
1051                 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1052
1053                 pv_irq_ops.save_fl = xen_save_fl_direct;
1054                 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1055                 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1056                 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1057                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1058         }
1059 #endif
1060 }
1061
1062 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1063                           unsigned long addr, unsigned len)
1064 {
1065         char *start, *end, *reloc;
1066         unsigned ret;
1067
1068         start = end = reloc = NULL;
1069
1070 #define SITE(op, x)                                                     \
1071         case PARAVIRT_PATCH(op.x):                                      \
1072         if (have_vcpu_info_placement) {                                 \
1073                 start = (char *)xen_##x##_direct;                       \
1074                 end = xen_##x##_direct_end;                             \
1075                 reloc = xen_##x##_direct_reloc;                         \
1076         }                                                               \
1077         goto patch_site
1078
1079         switch (type) {
1080 #ifdef CONFIG_X86_32
1081                 SITE(pv_irq_ops, irq_enable);
1082                 SITE(pv_irq_ops, irq_disable);
1083                 SITE(pv_irq_ops, save_fl);
1084                 SITE(pv_irq_ops, restore_fl);
1085 #endif /* CONFIG_X86_32 */
1086 #undef SITE
1087
1088         patch_site:
1089                 if (start == NULL || (end-start) > len)
1090                         goto default_patch;
1091
1092                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1093
1094                 /* Note: because reloc is assigned from something that
1095                    appears to be an array, gcc assumes it's non-null,
1096                    but doesn't know its relationship with start and
1097                    end. */
1098                 if (reloc > start && reloc < end) {
1099                         int reloc_off = reloc - start;
1100                         long *relocp = (long *)(insnbuf + reloc_off);
1101                         long delta = start - (char *)addr;
1102
1103                         *relocp += delta;
1104                 }
1105                 break;
1106
1107         default_patch:
1108         default:
1109                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1110                                              addr, len);
1111                 break;
1112         }
1113
1114         return ret;
1115 }
1116
1117 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1118 {
1119         pte_t pte;
1120
1121         phys >>= PAGE_SHIFT;
1122
1123         switch (idx) {
1124         case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1125 #ifdef CONFIG_X86_F00F_BUG
1126         case FIX_F00F_IDT:
1127 #endif
1128 #ifdef CONFIG_X86_32
1129         case FIX_WP_TEST:
1130         case FIX_VDSO:
1131 # ifdef CONFIG_HIGHMEM
1132         case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1133 # endif
1134 #else
1135         case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1136 #endif
1137 #ifdef CONFIG_X86_LOCAL_APIC
1138         case FIX_APIC_BASE:     /* maps dummy local APIC */
1139 #endif
1140                 pte = pfn_pte(phys, prot);
1141                 break;
1142
1143         default:
1144                 pte = mfn_pte(phys, prot);
1145                 break;
1146         }
1147
1148         __native_set_fixmap(idx, pte);
1149
1150 #ifdef CONFIG_X86_64
1151         /* Replicate changes to map the vsyscall page into the user
1152            pagetable vsyscall mapping. */
1153         if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1154                 unsigned long vaddr = __fix_to_virt(idx);
1155                 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1156         }
1157 #endif
1158 }
1159
1160 static const struct pv_info xen_info __initdata = {
1161         .paravirt_enabled = 1,
1162         .shared_kernel_pmd = 0,
1163
1164         .name = "Xen",
1165 };
1166
1167 static const struct pv_init_ops xen_init_ops __initdata = {
1168         .patch = xen_patch,
1169
1170         .banner = xen_banner,
1171         .memory_setup = xen_memory_setup,
1172         .arch_setup = xen_arch_setup,
1173         .post_allocator_init = xen_post_allocator_init,
1174 };
1175
1176 static const struct pv_time_ops xen_time_ops __initdata = {
1177         .time_init = xen_time_init,
1178
1179         .set_wallclock = xen_set_wallclock,
1180         .get_wallclock = xen_get_wallclock,
1181         .get_tsc_khz = xen_tsc_khz,
1182         .sched_clock = xen_sched_clock,
1183 };
1184
1185 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1186         .cpuid = xen_cpuid,
1187
1188         .set_debugreg = xen_set_debugreg,
1189         .get_debugreg = xen_get_debugreg,
1190
1191         .clts = xen_clts,
1192
1193         .read_cr0 = native_read_cr0,
1194         .write_cr0 = xen_write_cr0,
1195
1196         .read_cr4 = native_read_cr4,
1197         .read_cr4_safe = native_read_cr4_safe,
1198         .write_cr4 = xen_write_cr4,
1199
1200         .wbinvd = native_wbinvd,
1201
1202         .read_msr = native_read_msr_safe,
1203         .write_msr = xen_write_msr_safe,
1204         .read_tsc = native_read_tsc,
1205         .read_pmc = native_read_pmc,
1206
1207         .iret = xen_iret,
1208         .irq_enable_sysexit = xen_sysexit,
1209 #ifdef CONFIG_X86_64
1210         .usergs_sysret32 = xen_sysret32,
1211         .usergs_sysret64 = xen_sysret64,
1212 #endif
1213
1214         .load_tr_desc = paravirt_nop,
1215         .set_ldt = xen_set_ldt,
1216         .load_gdt = xen_load_gdt,
1217         .load_idt = xen_load_idt,
1218         .load_tls = xen_load_tls,
1219 #ifdef CONFIG_X86_64
1220         .load_gs_index = xen_load_gs_index,
1221 #endif
1222
1223         .store_gdt = native_store_gdt,
1224         .store_idt = native_store_idt,
1225         .store_tr = xen_store_tr,
1226
1227         .write_ldt_entry = xen_write_ldt_entry,
1228         .write_gdt_entry = xen_write_gdt_entry,
1229         .write_idt_entry = xen_write_idt_entry,
1230         .load_sp0 = xen_load_sp0,
1231
1232         .set_iopl_mask = xen_set_iopl_mask,
1233         .io_delay = xen_io_delay,
1234
1235         /* Xen takes care of %gs when switching to usermode for us */
1236         .swapgs = paravirt_nop,
1237
1238         .lazy_mode = {
1239                 .enter = paravirt_enter_lazy_cpu,
1240                 .leave = xen_leave_lazy,
1241         },
1242 };
1243
1244 static void __init __xen_init_IRQ(void)
1245 {
1246 #ifdef CONFIG_X86_64
1247         int i;
1248
1249         /* Create identity vector->irq map */
1250         for(i = 0; i < NR_VECTORS; i++) {
1251                 int cpu;
1252
1253                 for_each_possible_cpu(cpu)
1254                         per_cpu(vector_irq, cpu)[i] = i;
1255         }
1256 #endif  /* CONFIG_X86_64 */
1257
1258         xen_init_IRQ();
1259 }
1260
1261 static const struct pv_irq_ops xen_irq_ops __initdata = {
1262         .init_IRQ = __xen_init_IRQ,
1263         .save_fl = xen_save_fl,
1264         .restore_fl = xen_restore_fl,
1265         .irq_disable = xen_irq_disable,
1266         .irq_enable = xen_irq_enable,
1267         .safe_halt = xen_safe_halt,
1268         .halt = xen_halt,
1269 #ifdef CONFIG_X86_64
1270         .adjust_exception_frame = xen_adjust_exception_frame,
1271 #endif
1272 };
1273
1274 static const struct pv_apic_ops xen_apic_ops __initdata = {
1275 #ifdef CONFIG_X86_LOCAL_APIC
1276         .apic_write = xen_apic_write,
1277         .apic_read = xen_apic_read,
1278         .setup_boot_clock = paravirt_nop,
1279         .setup_secondary_clock = paravirt_nop,
1280         .startup_ipi_hook = paravirt_nop,
1281 #endif
1282 };
1283
1284 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1285         .pagetable_setup_start = xen_pagetable_setup_start,
1286         .pagetable_setup_done = xen_pagetable_setup_done,
1287
1288         .read_cr2 = xen_read_cr2,
1289         .write_cr2 = xen_write_cr2,
1290
1291         .read_cr3 = xen_read_cr3,
1292         .write_cr3 = xen_write_cr3,
1293
1294         .flush_tlb_user = xen_flush_tlb,
1295         .flush_tlb_kernel = xen_flush_tlb,
1296         .flush_tlb_single = xen_flush_tlb_single,
1297         .flush_tlb_others = xen_flush_tlb_others,
1298
1299         .pte_update = paravirt_nop,
1300         .pte_update_defer = paravirt_nop,
1301
1302         .pgd_alloc = xen_pgd_alloc,
1303         .pgd_free = xen_pgd_free,
1304
1305         .alloc_pte = xen_alloc_pte_init,
1306         .release_pte = xen_release_pte_init,
1307         .alloc_pmd = xen_alloc_pte_init,
1308         .alloc_pmd_clone = paravirt_nop,
1309         .release_pmd = xen_release_pte_init,
1310
1311 #ifdef CONFIG_HIGHPTE
1312         .kmap_atomic_pte = xen_kmap_atomic_pte,
1313 #endif
1314
1315 #ifdef CONFIG_X86_64
1316         .set_pte = xen_set_pte,
1317 #else
1318         .set_pte = xen_set_pte_init,
1319 #endif
1320         .set_pte_at = xen_set_pte_at,
1321         .set_pmd = xen_set_pmd_hyper,
1322
1323         .ptep_modify_prot_start = __ptep_modify_prot_start,
1324         .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1325
1326         .pte_val = xen_pte_val,
1327         .pte_flags = native_pte_val,
1328         .pgd_val = xen_pgd_val,
1329
1330         .make_pte = xen_make_pte,
1331         .make_pgd = xen_make_pgd,
1332
1333 #ifdef CONFIG_X86_PAE
1334         .set_pte_atomic = xen_set_pte_atomic,
1335         .set_pte_present = xen_set_pte_at,
1336         .pte_clear = xen_pte_clear,
1337         .pmd_clear = xen_pmd_clear,
1338 #endif  /* CONFIG_X86_PAE */
1339         .set_pud = xen_set_pud_hyper,
1340
1341         .make_pmd = xen_make_pmd,
1342         .pmd_val = xen_pmd_val,
1343
1344 #if PAGETABLE_LEVELS == 4
1345         .pud_val = xen_pud_val,
1346         .make_pud = xen_make_pud,
1347         .set_pgd = xen_set_pgd_hyper,
1348
1349         .alloc_pud = xen_alloc_pte_init,
1350         .release_pud = xen_release_pte_init,
1351 #endif  /* PAGETABLE_LEVELS == 4 */
1352
1353         .activate_mm = xen_activate_mm,
1354         .dup_mmap = xen_dup_mmap,
1355         .exit_mmap = xen_exit_mmap,
1356
1357         .lazy_mode = {
1358                 .enter = paravirt_enter_lazy_mmu,
1359                 .leave = xen_leave_lazy,
1360         },
1361
1362         .set_fixmap = xen_set_fixmap,
1363 };
1364
1365 static void xen_reboot(int reason)
1366 {
1367         struct sched_shutdown r = { .reason = reason };
1368
1369 #ifdef CONFIG_SMP
1370         smp_send_stop();
1371 #endif
1372
1373         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1374                 BUG();
1375 }
1376
1377 static void xen_restart(char *msg)
1378 {
1379         xen_reboot(SHUTDOWN_reboot);
1380 }
1381
1382 static void xen_emergency_restart(void)
1383 {
1384         xen_reboot(SHUTDOWN_reboot);
1385 }
1386
1387 static void xen_machine_halt(void)
1388 {
1389         xen_reboot(SHUTDOWN_poweroff);
1390 }
1391
1392 static void xen_crash_shutdown(struct pt_regs *regs)
1393 {
1394         xen_reboot(SHUTDOWN_crash);
1395 }
1396
1397 static const struct machine_ops __initdata xen_machine_ops = {
1398         .restart = xen_restart,
1399         .halt = xen_machine_halt,
1400         .power_off = xen_machine_halt,
1401         .shutdown = xen_machine_halt,
1402         .crash_shutdown = xen_crash_shutdown,
1403         .emergency_restart = xen_emergency_restart,
1404 };
1405
1406
1407 static void __init xen_reserve_top(void)
1408 {
1409 #ifdef CONFIG_X86_32
1410         unsigned long top = HYPERVISOR_VIRT_START;
1411         struct xen_platform_parameters pp;
1412
1413         if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1414                 top = pp.virt_start;
1415
1416         reserve_top_address(-top + 2 * PAGE_SIZE);
1417 #endif  /* CONFIG_X86_32 */
1418 }
1419
1420 /*
1421  * Like __va(), but returns address in the kernel mapping (which is
1422  * all we have until the physical memory mapping has been set up.
1423  */
1424 static void *__ka(phys_addr_t paddr)
1425 {
1426 #ifdef CONFIG_X86_64
1427         return (void *)(paddr + __START_KERNEL_map);
1428 #else
1429         return __va(paddr);
1430 #endif
1431 }
1432
1433 /* Convert a machine address to physical address */
1434 static unsigned long m2p(phys_addr_t maddr)
1435 {
1436         phys_addr_t paddr;
1437
1438         maddr &= PTE_MASK;
1439         paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1440
1441         return paddr;
1442 }
1443
1444 /* Convert a machine address to kernel virtual */
1445 static void *m2v(phys_addr_t maddr)
1446 {
1447         return __ka(m2p(maddr));
1448 }
1449
1450 #ifdef CONFIG_X86_64
1451 static void walk(pgd_t *pgd, unsigned long addr)
1452 {
1453         unsigned l4idx = pgd_index(addr);
1454         unsigned l3idx = pud_index(addr);
1455         unsigned l2idx = pmd_index(addr);
1456         unsigned l1idx = pte_index(addr);
1457         pgd_t l4;
1458         pud_t l3;
1459         pmd_t l2;
1460         pte_t l1;
1461
1462         xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
1463                        pgd, addr, l4idx, l3idx, l2idx, l1idx);
1464
1465         l4 = pgd[l4idx];
1466         xen_raw_printk("  l4: %016lx\n", l4.pgd);
1467         xen_raw_printk("      %016lx\n", pgd_val(l4));
1468
1469         l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
1470         xen_raw_printk("  l3: %016lx\n", l3.pud);
1471         xen_raw_printk("      %016lx\n", pud_val(l3));
1472
1473         l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
1474         xen_raw_printk("  l2: %016lx\n", l2.pmd);
1475         xen_raw_printk("      %016lx\n", pmd_val(l2));
1476
1477         l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
1478         xen_raw_printk("  l1: %016lx\n", l1.pte);
1479         xen_raw_printk("      %016lx\n", pte_val(l1));
1480 }
1481 #endif
1482
1483 static void set_page_prot(void *addr, pgprot_t prot)
1484 {
1485         unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1486         pte_t pte = pfn_pte(pfn, prot);
1487
1488         xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
1489                        addr, pfn, get_phys_to_machine(pfn),
1490                        pgprot_val(prot), pte.pte);
1491
1492         if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1493                 BUG();
1494 }
1495
1496 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1497 {
1498         unsigned pmdidx, pteidx;
1499         unsigned ident_pte;
1500         unsigned long pfn;
1501
1502         ident_pte = 0;
1503         pfn = 0;
1504         for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1505                 pte_t *pte_page;
1506
1507                 /* Reuse or allocate a page of ptes */
1508                 if (pmd_present(pmd[pmdidx]))
1509                         pte_page = m2v(pmd[pmdidx].pmd);
1510                 else {
1511                         /* Check for free pte pages */
1512                         if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1513                                 break;
1514
1515                         pte_page = &level1_ident_pgt[ident_pte];
1516                         ident_pte += PTRS_PER_PTE;
1517
1518                         pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1519                 }
1520
1521                 /* Install mappings */
1522                 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1523                         pte_t pte;
1524
1525                         if (pfn > max_pfn_mapped)
1526                                 max_pfn_mapped = pfn;
1527
1528                         if (!pte_none(pte_page[pteidx]))
1529                                 continue;
1530
1531                         pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1532                         pte_page[pteidx] = pte;
1533                 }
1534         }
1535
1536         for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1537                 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1538
1539         set_page_prot(pmd, PAGE_KERNEL_RO);
1540 }
1541
1542 #ifdef CONFIG_X86_64
1543 static void convert_pfn_mfn(void *v)
1544 {
1545         pte_t *pte = v;
1546         int i;
1547
1548         /* All levels are converted the same way, so just treat them
1549            as ptes. */
1550         for(i = 0; i < PTRS_PER_PTE; i++)
1551                 pte[i] = xen_make_pte(pte[i].pte);
1552 }
1553
1554 /*
1555  * Set up the inital kernel pagetable.
1556  *
1557  * We can construct this by grafting the Xen provided pagetable into
1558  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1559  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1560  * means that only the kernel has a physical mapping to start with -
1561  * but that's enough to get __va working.  We need to fill in the rest
1562  * of the physical mapping once some sort of allocator has been set
1563  * up.
1564  */
1565 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1566 {
1567         pud_t *l3;
1568         pmd_t *l2;
1569
1570         /* Zap identity mapping */
1571         init_level4_pgt[0] = __pgd(0);
1572
1573         /* Pre-constructed entries are in pfn, so convert to mfn */
1574         convert_pfn_mfn(init_level4_pgt);
1575         convert_pfn_mfn(level3_ident_pgt);
1576         convert_pfn_mfn(level3_kernel_pgt);
1577
1578         l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1579         l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1580
1581         memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1582         memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1583
1584         l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1585         l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1586         memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1587
1588         /* Set up identity map */
1589         xen_map_identity_early(level2_ident_pgt, max_pfn);
1590
1591         /* Make pagetable pieces RO */
1592         set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1593         set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1594         set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1595         set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1596         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1597         set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1598
1599         /* Pin down new L4 */
1600         pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1601                           PFN_DOWN(__pa_symbol(init_level4_pgt)));
1602
1603         /* Unpin Xen-provided one */
1604         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1605
1606         /* Switch over */
1607         pgd = init_level4_pgt;
1608
1609         /*
1610          * At this stage there can be no user pgd, and no page
1611          * structure to attach it to, so make sure we just set kernel
1612          * pgd.
1613          */
1614         xen_mc_batch();
1615         __xen_write_cr3(true, __pa(pgd));
1616         xen_mc_issue(PARAVIRT_LAZY_CPU);
1617
1618         reserve_early(__pa(xen_start_info->pt_base),
1619                       __pa(xen_start_info->pt_base +
1620                            xen_start_info->nr_pt_frames * PAGE_SIZE),
1621                       "XEN PAGETABLES");
1622
1623         return pgd;
1624 }
1625 #else   /* !CONFIG_X86_64 */
1626 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1627
1628 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1629 {
1630         pmd_t *kernel_pmd;
1631
1632         init_pg_tables_start = __pa(pgd);
1633         init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1634         max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1635
1636         kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1637         memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1638
1639         xen_map_identity_early(level2_kernel_pgt, max_pfn);
1640
1641         memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1642         set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1643                         __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1644
1645         set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1646         set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1647         set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1648
1649         pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1650
1651         xen_write_cr3(__pa(swapper_pg_dir));
1652
1653         pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1654
1655         return swapper_pg_dir;
1656 }
1657 #endif  /* CONFIG_X86_64 */
1658
1659 /* First C function to be called on Xen boot */
1660 asmlinkage void __init xen_start_kernel(void)
1661 {
1662         pgd_t *pgd;
1663
1664         if (!xen_start_info)
1665                 return;
1666
1667         BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1668
1669         xen_setup_features();
1670
1671         /* Install Xen paravirt ops */
1672         pv_info = xen_info;
1673         pv_init_ops = xen_init_ops;
1674         pv_time_ops = xen_time_ops;
1675         pv_cpu_ops = xen_cpu_ops;
1676         pv_irq_ops = xen_irq_ops;
1677         pv_apic_ops = xen_apic_ops;
1678         pv_mmu_ops = xen_mmu_ops;
1679
1680         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1681                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1682                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1683         }
1684
1685         machine_ops = xen_machine_ops;
1686
1687 #ifdef CONFIG_X86_64
1688         /* Disable until direct per-cpu data access. */
1689         have_vcpu_info_placement = 0;
1690         x86_64_init_pda();
1691 #endif
1692
1693         xen_smp_init();
1694
1695         /* Get mfn list */
1696         if (!xen_feature(XENFEAT_auto_translated_physmap))
1697                 xen_build_dynamic_phys_to_machine();
1698
1699         pgd = (pgd_t *)xen_start_info->pt_base;
1700
1701         /* Prevent unwanted bits from being set in PTEs. */
1702         __supported_pte_mask &= ~_PAGE_GLOBAL;
1703         if (!is_initial_xendomain())
1704                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1705
1706         /* Don't do the full vcpu_info placement stuff until we have a
1707            possible map and a non-dummy shared_info. */
1708         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1709
1710         xen_raw_console_write("mapping kernel into physical memory\n");
1711         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1712
1713         init_mm.pgd = pgd;
1714
1715         /* keep using Xen gdt for now; no urgent need to change it */
1716
1717         pv_info.kernel_rpl = 1;
1718         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1719                 pv_info.kernel_rpl = 0;
1720
1721         /* set the limit of our address space */
1722         xen_reserve_top();
1723
1724 #ifdef CONFIG_X86_32
1725         /* set up basic CPUID stuff */
1726         cpu_detect(&new_cpu_data);
1727         new_cpu_data.hard_math = 1;
1728         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1729 #endif
1730
1731         /* Poke various useful things into boot_params */
1732         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1733         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1734                 ? __pa(xen_start_info->mod_start) : 0;
1735         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1736         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1737
1738         if (!is_initial_xendomain()) {
1739                 add_preferred_console("xenboot", 0, NULL);
1740                 add_preferred_console("tty", 0, NULL);
1741                 add_preferred_console("hvc", 0, NULL);
1742         }
1743
1744         xen_raw_console_write("about to get started...\n");
1745
1746 #if 0
1747         xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
1748                        &boot_params, __pa_symbol(&boot_params),
1749                        __va(__pa_symbol(&boot_params)));
1750
1751         walk(pgd, &boot_params);
1752         walk(pgd, __va(__pa(&boot_params)));
1753 #endif
1754
1755         /* Start the world */
1756 #ifdef CONFIG_X86_32
1757         i386_start_kernel();
1758 #else
1759         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1760 #endif
1761 }