Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/spinlock.h>
35 #include <linux/uaccess.h>
36 #include <linux/time.h>
37 #include <linux/io.h>
38 #include <linux/reboot.h>
39 #include <linux/bcd.h>
40
41 #include <asm/setup.h>
42 #include <asm/efi.h>
43 #include <asm/time.h>
44 #include <asm/cacheflush.h>
45 #include <asm/tlbflush.h>
46 #include <asm/x86_init.h>
47
48 #define EFI_DEBUG       1
49 #define PFX             "EFI: "
50
51 int efi_enabled;
52 EXPORT_SYMBOL(efi_enabled);
53
54 struct efi efi;
55 EXPORT_SYMBOL(efi);
56
57 struct efi_memory_map memmap;
58
59 static struct efi efi_phys __initdata;
60 static efi_system_table_t efi_systab __initdata;
61
62 static int __init setup_noefi(char *arg)
63 {
64         efi_enabled = 0;
65         return 0;
66 }
67 early_param("noefi", setup_noefi);
68
69 int add_efi_memmap;
70 EXPORT_SYMBOL(add_efi_memmap);
71
72 static int __init setup_add_efi_memmap(char *arg)
73 {
74         add_efi_memmap = 1;
75         return 0;
76 }
77 early_param("add_efi_memmap", setup_add_efi_memmap);
78
79
80 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
81 {
82         return efi_call_virt2(get_time, tm, tc);
83 }
84
85 static efi_status_t virt_efi_set_time(efi_time_t *tm)
86 {
87         return efi_call_virt1(set_time, tm);
88 }
89
90 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
91                                              efi_bool_t *pending,
92                                              efi_time_t *tm)
93 {
94         return efi_call_virt3(get_wakeup_time,
95                               enabled, pending, tm);
96 }
97
98 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
99 {
100         return efi_call_virt2(set_wakeup_time,
101                               enabled, tm);
102 }
103
104 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
105                                           efi_guid_t *vendor,
106                                           u32 *attr,
107                                           unsigned long *data_size,
108                                           void *data)
109 {
110         return efi_call_virt5(get_variable,
111                               name, vendor, attr,
112                               data_size, data);
113 }
114
115 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
116                                                efi_char16_t *name,
117                                                efi_guid_t *vendor)
118 {
119         return efi_call_virt3(get_next_variable,
120                               name_size, name, vendor);
121 }
122
123 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
124                                           efi_guid_t *vendor,
125                                           unsigned long attr,
126                                           unsigned long data_size,
127                                           void *data)
128 {
129         return efi_call_virt5(set_variable,
130                               name, vendor, attr,
131                               data_size, data);
132 }
133
134 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
135 {
136         return efi_call_virt1(get_next_high_mono_count, count);
137 }
138
139 static void virt_efi_reset_system(int reset_type,
140                                   efi_status_t status,
141                                   unsigned long data_size,
142                                   efi_char16_t *data)
143 {
144         efi_call_virt4(reset_system, reset_type, status,
145                        data_size, data);
146 }
147
148 static efi_status_t virt_efi_set_virtual_address_map(
149         unsigned long memory_map_size,
150         unsigned long descriptor_size,
151         u32 descriptor_version,
152         efi_memory_desc_t *virtual_map)
153 {
154         return efi_call_virt4(set_virtual_address_map,
155                               memory_map_size, descriptor_size,
156                               descriptor_version, virtual_map);
157 }
158
159 static efi_status_t __init phys_efi_set_virtual_address_map(
160         unsigned long memory_map_size,
161         unsigned long descriptor_size,
162         u32 descriptor_version,
163         efi_memory_desc_t *virtual_map)
164 {
165         efi_status_t status;
166
167         efi_call_phys_prelog();
168         status = efi_call_phys4(efi_phys.set_virtual_address_map,
169                                 memory_map_size, descriptor_size,
170                                 descriptor_version, virtual_map);
171         efi_call_phys_epilog();
172         return status;
173 }
174
175 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
176                                              efi_time_cap_t *tc)
177 {
178         efi_status_t status;
179
180         efi_call_phys_prelog();
181         status = efi_call_phys2(efi_phys.get_time, tm, tc);
182         efi_call_phys_epilog();
183         return status;
184 }
185
186 int efi_set_rtc_mmss(unsigned long nowtime)
187 {
188         int real_seconds, real_minutes;
189         efi_status_t    status;
190         efi_time_t      eft;
191         efi_time_cap_t  cap;
192
193         status = efi.get_time(&eft, &cap);
194         if (status != EFI_SUCCESS) {
195                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
196                 return -1;
197         }
198
199         real_seconds = nowtime % 60;
200         real_minutes = nowtime / 60;
201         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
202                 real_minutes += 30;
203         real_minutes %= 60;
204         eft.minute = real_minutes;
205         eft.second = real_seconds;
206
207         status = efi.set_time(&eft);
208         if (status != EFI_SUCCESS) {
209                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
210                 return -1;
211         }
212         return 0;
213 }
214
215 unsigned long efi_get_time(void)
216 {
217         efi_status_t status;
218         efi_time_t eft;
219         efi_time_cap_t cap;
220
221         status = efi.get_time(&eft, &cap);
222         if (status != EFI_SUCCESS)
223                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
224
225         return mktime(eft.year, eft.month, eft.day, eft.hour,
226                       eft.minute, eft.second);
227 }
228
229 /*
230  * Tell the kernel about the EFI memory map.  This might include
231  * more than the max 128 entries that can fit in the e820 legacy
232  * (zeropage) memory map.
233  */
234
235 static void __init do_add_efi_memmap(void)
236 {
237         void *p;
238
239         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
240                 efi_memory_desc_t *md = p;
241                 unsigned long long start = md->phys_addr;
242                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
243                 int e820_type;
244
245                 switch (md->type) {
246                 case EFI_LOADER_CODE:
247                 case EFI_LOADER_DATA:
248                 case EFI_BOOT_SERVICES_CODE:
249                 case EFI_BOOT_SERVICES_DATA:
250                 case EFI_CONVENTIONAL_MEMORY:
251                         if (md->attribute & EFI_MEMORY_WB)
252                                 e820_type = E820_RAM;
253                         else
254                                 e820_type = E820_RESERVED;
255                         break;
256                 case EFI_ACPI_RECLAIM_MEMORY:
257                         e820_type = E820_ACPI;
258                         break;
259                 case EFI_ACPI_MEMORY_NVS:
260                         e820_type = E820_NVS;
261                         break;
262                 case EFI_UNUSABLE_MEMORY:
263                         e820_type = E820_UNUSABLE;
264                         break;
265                 default:
266                         /*
267                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
268                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
269                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
270                          */
271                         e820_type = E820_RESERVED;
272                         break;
273                 }
274                 e820_add_region(start, size, e820_type);
275         }
276         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
277 }
278
279 void __init efi_memblock_x86_reserve_range(void)
280 {
281         unsigned long pmap;
282
283 #ifdef CONFIG_X86_32
284         pmap = boot_params.efi_info.efi_memmap;
285 #else
286         pmap = (boot_params.efi_info.efi_memmap |
287                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
288 #endif
289         memmap.phys_map = (void *)pmap;
290         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
291                 boot_params.efi_info.efi_memdesc_size;
292         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
293         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
294         memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
295                       "EFI memmap");
296 }
297
298 #if EFI_DEBUG
299 static void __init print_efi_memmap(void)
300 {
301         efi_memory_desc_t *md;
302         void *p;
303         int i;
304
305         for (p = memmap.map, i = 0;
306              p < memmap.map_end;
307              p += memmap.desc_size, i++) {
308                 md = p;
309                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
310                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
311                         i, md->type, md->attribute, md->phys_addr,
312                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
313                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
314         }
315 }
316 #endif  /*  EFI_DEBUG  */
317
318 void __init efi_init(void)
319 {
320         efi_config_table_t *config_tables;
321         efi_runtime_services_t *runtime;
322         efi_char16_t *c16;
323         char vendor[100] = "unknown";
324         int i = 0;
325         void *tmp;
326
327 #ifdef CONFIG_X86_32
328         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
329 #else
330         efi_phys.systab = (efi_system_table_t *)
331                 (boot_params.efi_info.efi_systab |
332                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
333 #endif
334
335         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
336                                    sizeof(efi_system_table_t));
337         if (efi.systab == NULL)
338                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
339         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
340         early_iounmap(efi.systab, sizeof(efi_system_table_t));
341         efi.systab = &efi_systab;
342
343         /*
344          * Verify the EFI Table
345          */
346         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
347                 printk(KERN_ERR "EFI system table signature incorrect!\n");
348         if ((efi.systab->hdr.revision >> 16) == 0)
349                 printk(KERN_ERR "Warning: EFI system table version "
350                        "%d.%02d, expected 1.00 or greater!\n",
351                        efi.systab->hdr.revision >> 16,
352                        efi.systab->hdr.revision & 0xffff);
353
354         /*
355          * Show what we know for posterity
356          */
357         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
358         if (c16) {
359                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
360                         vendor[i] = *c16++;
361                 vendor[i] = '\0';
362         } else
363                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
364         early_iounmap(tmp, 2);
365
366         printk(KERN_INFO "EFI v%u.%.02u by %s\n",
367                efi.systab->hdr.revision >> 16,
368                efi.systab->hdr.revision & 0xffff, vendor);
369
370         /*
371          * Let's see what config tables the firmware passed to us.
372          */
373         config_tables = early_ioremap(
374                 efi.systab->tables,
375                 efi.systab->nr_tables * sizeof(efi_config_table_t));
376         if (config_tables == NULL)
377                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
378
379         printk(KERN_INFO);
380         for (i = 0; i < efi.systab->nr_tables; i++) {
381                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
382                         efi.mps = config_tables[i].table;
383                         printk(" MPS=0x%lx ", config_tables[i].table);
384                 } else if (!efi_guidcmp(config_tables[i].guid,
385                                         ACPI_20_TABLE_GUID)) {
386                         efi.acpi20 = config_tables[i].table;
387                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
388                 } else if (!efi_guidcmp(config_tables[i].guid,
389                                         ACPI_TABLE_GUID)) {
390                         efi.acpi = config_tables[i].table;
391                         printk(" ACPI=0x%lx ", config_tables[i].table);
392                 } else if (!efi_guidcmp(config_tables[i].guid,
393                                         SMBIOS_TABLE_GUID)) {
394                         efi.smbios = config_tables[i].table;
395                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
396 #ifdef CONFIG_X86_UV
397                 } else if (!efi_guidcmp(config_tables[i].guid,
398                                         UV_SYSTEM_TABLE_GUID)) {
399                         efi.uv_systab = config_tables[i].table;
400                         printk(" UVsystab=0x%lx ", config_tables[i].table);
401 #endif
402                 } else if (!efi_guidcmp(config_tables[i].guid,
403                                         HCDP_TABLE_GUID)) {
404                         efi.hcdp = config_tables[i].table;
405                         printk(" HCDP=0x%lx ", config_tables[i].table);
406                 } else if (!efi_guidcmp(config_tables[i].guid,
407                                         UGA_IO_PROTOCOL_GUID)) {
408                         efi.uga = config_tables[i].table;
409                         printk(" UGA=0x%lx ", config_tables[i].table);
410                 }
411         }
412         printk("\n");
413         early_iounmap(config_tables,
414                           efi.systab->nr_tables * sizeof(efi_config_table_t));
415
416         /*
417          * Check out the runtime services table. We need to map
418          * the runtime services table so that we can grab the physical
419          * address of several of the EFI runtime functions, needed to
420          * set the firmware into virtual mode.
421          */
422         runtime = early_ioremap((unsigned long)efi.systab->runtime,
423                                 sizeof(efi_runtime_services_t));
424         if (runtime != NULL) {
425                 /*
426                  * We will only need *early* access to the following
427                  * two EFI runtime services before set_virtual_address_map
428                  * is invoked.
429                  */
430                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
431                 efi_phys.set_virtual_address_map =
432                         (efi_set_virtual_address_map_t *)
433                         runtime->set_virtual_address_map;
434                 /*
435                  * Make efi_get_time can be called before entering
436                  * virtual mode.
437                  */
438                 efi.get_time = phys_efi_get_time;
439         } else
440                 printk(KERN_ERR "Could not map the EFI runtime service "
441                        "table!\n");
442         early_iounmap(runtime, sizeof(efi_runtime_services_t));
443
444         /* Map the EFI memory map */
445         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
446                                    memmap.nr_map * memmap.desc_size);
447         if (memmap.map == NULL)
448                 printk(KERN_ERR "Could not map the EFI memory map!\n");
449         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
450
451         if (memmap.desc_size != sizeof(efi_memory_desc_t))
452                 printk(KERN_WARNING
453                   "Kernel-defined memdesc doesn't match the one from EFI!\n");
454
455         if (add_efi_memmap)
456                 do_add_efi_memmap();
457
458 #ifdef CONFIG_X86_32
459         x86_platform.get_wallclock = efi_get_time;
460         x86_platform.set_wallclock = efi_set_rtc_mmss;
461 #endif
462
463         /* Setup for EFI runtime service */
464         reboot_type = BOOT_EFI;
465
466 #if EFI_DEBUG
467         print_efi_memmap();
468 #endif
469 }
470
471 static void __init runtime_code_page_mkexec(void)
472 {
473         efi_memory_desc_t *md;
474         void *p;
475         u64 addr, npages;
476
477         /* Make EFI runtime service code area executable */
478         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
479                 md = p;
480
481                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
482                         continue;
483
484                 addr = md->virt_addr;
485                 npages = md->num_pages;
486                 memrange_efi_to_native(&addr, &npages);
487                 set_memory_x(addr, npages);
488         }
489 }
490
491 /*
492  * This function will switch the EFI runtime services to virtual mode.
493  * Essentially, look through the EFI memmap and map every region that
494  * has the runtime attribute bit set in its memory descriptor and update
495  * that memory descriptor with the virtual address obtained from ioremap().
496  * This enables the runtime services to be called without having to
497  * thunk back into physical mode for every invocation.
498  */
499 void __init efi_enter_virtual_mode(void)
500 {
501         efi_memory_desc_t *md;
502         efi_status_t status;
503         unsigned long size;
504         u64 end, systab, addr, npages, end_pfn;
505         void *p, *va;
506
507         efi.systab = NULL;
508         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
509                 md = p;
510                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
511                         continue;
512
513                 size = md->num_pages << EFI_PAGE_SHIFT;
514                 end = md->phys_addr + size;
515
516                 end_pfn = PFN_UP(end);
517                 if (end_pfn <= max_low_pfn_mapped
518                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
519                         && end_pfn <= max_pfn_mapped))
520                         va = __va(md->phys_addr);
521                 else
522                         va = efi_ioremap(md->phys_addr, size, md->type);
523
524                 md->virt_addr = (u64) (unsigned long) va;
525
526                 if (!va) {
527                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
528                                (unsigned long long)md->phys_addr);
529                         continue;
530                 }
531
532                 if (!(md->attribute & EFI_MEMORY_WB)) {
533                         addr = md->virt_addr;
534                         npages = md->num_pages;
535                         memrange_efi_to_native(&addr, &npages);
536                         set_memory_uc(addr, npages);
537                 }
538
539                 systab = (u64) (unsigned long) efi_phys.systab;
540                 if (md->phys_addr <= systab && systab < end) {
541                         systab += md->virt_addr - md->phys_addr;
542                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
543                 }
544         }
545
546         BUG_ON(!efi.systab);
547
548         status = phys_efi_set_virtual_address_map(
549                 memmap.desc_size * memmap.nr_map,
550                 memmap.desc_size,
551                 memmap.desc_version,
552                 memmap.phys_map);
553
554         if (status != EFI_SUCCESS) {
555                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
556                        "(status=%lx)!\n", status);
557                 panic("EFI call to SetVirtualAddressMap() failed!");
558         }
559
560         /*
561          * Now that EFI is in virtual mode, update the function
562          * pointers in the runtime service table to the new virtual addresses.
563          *
564          * Call EFI services through wrapper functions.
565          */
566         efi.get_time = virt_efi_get_time;
567         efi.set_time = virt_efi_set_time;
568         efi.get_wakeup_time = virt_efi_get_wakeup_time;
569         efi.set_wakeup_time = virt_efi_set_wakeup_time;
570         efi.get_variable = virt_efi_get_variable;
571         efi.get_next_variable = virt_efi_get_next_variable;
572         efi.set_variable = virt_efi_set_variable;
573         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
574         efi.reset_system = virt_efi_reset_system;
575         efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
576         if (__supported_pte_mask & _PAGE_NX)
577                 runtime_code_page_mkexec();
578         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
579         memmap.map = NULL;
580 }
581
582 /*
583  * Convenience functions to obtain memory types and attributes
584  */
585 u32 efi_mem_type(unsigned long phys_addr)
586 {
587         efi_memory_desc_t *md;
588         void *p;
589
590         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
591                 md = p;
592                 if ((md->phys_addr <= phys_addr) &&
593                     (phys_addr < (md->phys_addr +
594                                   (md->num_pages << EFI_PAGE_SHIFT))))
595                         return md->type;
596         }
597         return 0;
598 }
599
600 u64 efi_mem_attributes(unsigned long phys_addr)
601 {
602         efi_memory_desc_t *md;
603         void *p;
604
605         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
606                 md = p;
607                 if ((md->phys_addr <= phys_addr) &&
608                     (phys_addr < (md->phys_addr +
609                                   (md->num_pages << EFI_PAGE_SHIFT))))
610                         return md->attribute;
611         }
612         return 0;
613 }