Merge branch 'writeback' of git://git.kernel.dk/linux-2.6-block
[pandora-kernel.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16
17 #include <asm/e820.h>
18 #include <asm/processor.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/uaccess.h>
23 #include <asm/pgalloc.h>
24 #include <asm/proto.h>
25 #include <asm/pat.h>
26
27 /*
28  * The current flushing context - we pass it instead of 5 arguments:
29  */
30 struct cpa_data {
31         unsigned long   *vaddr;
32         pgprot_t        mask_set;
33         pgprot_t        mask_clr;
34         int             numpages;
35         int             flags;
36         unsigned long   pfn;
37         unsigned        force_split : 1;
38         int             curpage;
39         struct page     **pages;
40 };
41
42 /*
43  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
44  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
45  * entries change the page attribute in parallel to some other cpu
46  * splitting a large page entry along with changing the attribute.
47  */
48 static DEFINE_SPINLOCK(cpa_lock);
49
50 #define CPA_FLUSHTLB 1
51 #define CPA_ARRAY 2
52 #define CPA_PAGES_ARRAY 4
53
54 #ifdef CONFIG_PROC_FS
55 static unsigned long direct_pages_count[PG_LEVEL_NUM];
56
57 void update_page_count(int level, unsigned long pages)
58 {
59         unsigned long flags;
60
61         /* Protect against CPA */
62         spin_lock_irqsave(&pgd_lock, flags);
63         direct_pages_count[level] += pages;
64         spin_unlock_irqrestore(&pgd_lock, flags);
65 }
66
67 static void split_page_count(int level)
68 {
69         direct_pages_count[level]--;
70         direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72
73 void arch_report_meminfo(struct seq_file *m)
74 {
75         seq_printf(m, "DirectMap4k:    %8lu kB\n",
76                         direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78         seq_printf(m, "DirectMap2M:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81         seq_printf(m, "DirectMap4M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 #ifdef CONFIG_X86_64
85         if (direct_gbpages)
86                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
87                         direct_pages_count[PG_LEVEL_1G] << 20);
88 #endif
89 }
90 #else
91 static inline void split_page_count(int level) { }
92 #endif
93
94 #ifdef CONFIG_X86_64
95
96 static inline unsigned long highmap_start_pfn(void)
97 {
98         return __pa(_text) >> PAGE_SHIFT;
99 }
100
101 static inline unsigned long highmap_end_pfn(void)
102 {
103         return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
104 }
105
106 #endif
107
108 #ifdef CONFIG_DEBUG_PAGEALLOC
109 # define debug_pagealloc 1
110 #else
111 # define debug_pagealloc 0
112 #endif
113
114 static inline int
115 within(unsigned long addr, unsigned long start, unsigned long end)
116 {
117         return addr >= start && addr < end;
118 }
119
120 /*
121  * Flushing functions
122  */
123
124 /**
125  * clflush_cache_range - flush a cache range with clflush
126  * @addr:       virtual start address
127  * @size:       number of bytes to flush
128  *
129  * clflush is an unordered instruction which needs fencing with mfence
130  * to avoid ordering issues.
131  */
132 void clflush_cache_range(void *vaddr, unsigned int size)
133 {
134         void *vend = vaddr + size - 1;
135
136         mb();
137
138         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
139                 clflush(vaddr);
140         /*
141          * Flush any possible final partial cacheline:
142          */
143         clflush(vend);
144
145         mb();
146 }
147 EXPORT_SYMBOL_GPL(clflush_cache_range);
148
149 static void __cpa_flush_all(void *arg)
150 {
151         unsigned long cache = (unsigned long)arg;
152
153         /*
154          * Flush all to work around Errata in early athlons regarding
155          * large page flushing.
156          */
157         __flush_tlb_all();
158
159         if (cache && boot_cpu_data.x86 >= 4)
160                 wbinvd();
161 }
162
163 static void cpa_flush_all(unsigned long cache)
164 {
165         BUG_ON(irqs_disabled());
166
167         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
168 }
169
170 static void __cpa_flush_range(void *arg)
171 {
172         /*
173          * We could optimize that further and do individual per page
174          * tlb invalidates for a low number of pages. Caveat: we must
175          * flush the high aliases on 64bit as well.
176          */
177         __flush_tlb_all();
178 }
179
180 static void cpa_flush_range(unsigned long start, int numpages, int cache)
181 {
182         unsigned int i, level;
183         unsigned long addr;
184
185         BUG_ON(irqs_disabled());
186         WARN_ON(PAGE_ALIGN(start) != start);
187
188         on_each_cpu(__cpa_flush_range, NULL, 1);
189
190         if (!cache)
191                 return;
192
193         /*
194          * We only need to flush on one CPU,
195          * clflush is a MESI-coherent instruction that
196          * will cause all other CPUs to flush the same
197          * cachelines:
198          */
199         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
200                 pte_t *pte = lookup_address(addr, &level);
201
202                 /*
203                  * Only flush present addresses:
204                  */
205                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
206                         clflush_cache_range((void *) addr, PAGE_SIZE);
207         }
208 }
209
210 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
211                             int in_flags, struct page **pages)
212 {
213         unsigned int i, level;
214         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
215
216         BUG_ON(irqs_disabled());
217
218         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
219
220         if (!cache || do_wbinvd)
221                 return;
222
223         /*
224          * We only need to flush on one CPU,
225          * clflush is a MESI-coherent instruction that
226          * will cause all other CPUs to flush the same
227          * cachelines:
228          */
229         for (i = 0; i < numpages; i++) {
230                 unsigned long addr;
231                 pte_t *pte;
232
233                 if (in_flags & CPA_PAGES_ARRAY)
234                         addr = (unsigned long)page_address(pages[i]);
235                 else
236                         addr = start[i];
237
238                 pte = lookup_address(addr, &level);
239
240                 /*
241                  * Only flush present addresses:
242                  */
243                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
244                         clflush_cache_range((void *)addr, PAGE_SIZE);
245         }
246 }
247
248 /*
249  * Certain areas of memory on x86 require very specific protection flags,
250  * for example the BIOS area or kernel text. Callers don't always get this
251  * right (again, ioremap() on BIOS memory is not uncommon) so this function
252  * checks and fixes these known static required protection bits.
253  */
254 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
255                                    unsigned long pfn)
256 {
257         pgprot_t forbidden = __pgprot(0);
258
259         /*
260          * The BIOS area between 640k and 1Mb needs to be executable for
261          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
262          */
263         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264                 pgprot_val(forbidden) |= _PAGE_NX;
265
266         /*
267          * The kernel text needs to be executable for obvious reasons
268          * Does not cover __inittext since that is gone later on. On
269          * 64bit we do not enforce !NX on the low mapping
270          */
271         if (within(address, (unsigned long)_text, (unsigned long)_etext))
272                 pgprot_val(forbidden) |= _PAGE_NX;
273
274         /*
275          * The .rodata section needs to be read-only. Using the pfn
276          * catches all aliases.
277          */
278         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
279                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
280                 pgprot_val(forbidden) |= _PAGE_RW;
281
282         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
283
284         return prot;
285 }
286
287 /*
288  * Lookup the page table entry for a virtual address. Return a pointer
289  * to the entry and the level of the mapping.
290  *
291  * Note: We return pud and pmd either when the entry is marked large
292  * or when the present bit is not set. Otherwise we would return a
293  * pointer to a nonexisting mapping.
294  */
295 pte_t *lookup_address(unsigned long address, unsigned int *level)
296 {
297         pgd_t *pgd = pgd_offset_k(address);
298         pud_t *pud;
299         pmd_t *pmd;
300
301         *level = PG_LEVEL_NONE;
302
303         if (pgd_none(*pgd))
304                 return NULL;
305
306         pud = pud_offset(pgd, address);
307         if (pud_none(*pud))
308                 return NULL;
309
310         *level = PG_LEVEL_1G;
311         if (pud_large(*pud) || !pud_present(*pud))
312                 return (pte_t *)pud;
313
314         pmd = pmd_offset(pud, address);
315         if (pmd_none(*pmd))
316                 return NULL;
317
318         *level = PG_LEVEL_2M;
319         if (pmd_large(*pmd) || !pmd_present(*pmd))
320                 return (pte_t *)pmd;
321
322         *level = PG_LEVEL_4K;
323
324         return pte_offset_kernel(pmd, address);
325 }
326 EXPORT_SYMBOL_GPL(lookup_address);
327
328 /*
329  * Set the new pmd in all the pgds we know about:
330  */
331 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
332 {
333         /* change init_mm */
334         set_pte_atomic(kpte, pte);
335 #ifdef CONFIG_X86_32
336         if (!SHARED_KERNEL_PMD) {
337                 struct page *page;
338
339                 list_for_each_entry(page, &pgd_list, lru) {
340                         pgd_t *pgd;
341                         pud_t *pud;
342                         pmd_t *pmd;
343
344                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
345                         pud = pud_offset(pgd, address);
346                         pmd = pmd_offset(pud, address);
347                         set_pte_atomic((pte_t *)pmd, pte);
348                 }
349         }
350 #endif
351 }
352
353 static int
354 try_preserve_large_page(pte_t *kpte, unsigned long address,
355                         struct cpa_data *cpa)
356 {
357         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
358         pte_t new_pte, old_pte, *tmp;
359         pgprot_t old_prot, new_prot;
360         int i, do_split = 1;
361         unsigned int level;
362
363         if (cpa->force_split)
364                 return 1;
365
366         spin_lock_irqsave(&pgd_lock, flags);
367         /*
368          * Check for races, another CPU might have split this page
369          * up already:
370          */
371         tmp = lookup_address(address, &level);
372         if (tmp != kpte)
373                 goto out_unlock;
374
375         switch (level) {
376         case PG_LEVEL_2M:
377                 psize = PMD_PAGE_SIZE;
378                 pmask = PMD_PAGE_MASK;
379                 break;
380 #ifdef CONFIG_X86_64
381         case PG_LEVEL_1G:
382                 psize = PUD_PAGE_SIZE;
383                 pmask = PUD_PAGE_MASK;
384                 break;
385 #endif
386         default:
387                 do_split = -EINVAL;
388                 goto out_unlock;
389         }
390
391         /*
392          * Calculate the number of pages, which fit into this large
393          * page starting at address:
394          */
395         nextpage_addr = (address + psize) & pmask;
396         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
397         if (numpages < cpa->numpages)
398                 cpa->numpages = numpages;
399
400         /*
401          * We are safe now. Check whether the new pgprot is the same:
402          */
403         old_pte = *kpte;
404         old_prot = new_prot = pte_pgprot(old_pte);
405
406         pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
407         pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
408
409         /*
410          * old_pte points to the large page base address. So we need
411          * to add the offset of the virtual address:
412          */
413         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
414         cpa->pfn = pfn;
415
416         new_prot = static_protections(new_prot, address, pfn);
417
418         /*
419          * We need to check the full range, whether
420          * static_protection() requires a different pgprot for one of
421          * the pages in the range we try to preserve:
422          */
423         addr = address + PAGE_SIZE;
424         pfn++;
425         for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
426                 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
427
428                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
429                         goto out_unlock;
430         }
431
432         /*
433          * If there are no changes, return. maxpages has been updated
434          * above:
435          */
436         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
437                 do_split = 0;
438                 goto out_unlock;
439         }
440
441         /*
442          * We need to change the attributes. Check, whether we can
443          * change the large page in one go. We request a split, when
444          * the address is not aligned and the number of pages is
445          * smaller than the number of pages in the large page. Note
446          * that we limited the number of possible pages already to
447          * the number of pages in the large page.
448          */
449         if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
450                 /*
451                  * The address is aligned and the number of pages
452                  * covers the full page.
453                  */
454                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
455                 __set_pmd_pte(kpte, address, new_pte);
456                 cpa->flags |= CPA_FLUSHTLB;
457                 do_split = 0;
458         }
459
460 out_unlock:
461         spin_unlock_irqrestore(&pgd_lock, flags);
462
463         return do_split;
464 }
465
466 static int split_large_page(pte_t *kpte, unsigned long address)
467 {
468         unsigned long flags, pfn, pfninc = 1;
469         unsigned int i, level;
470         pte_t *pbase, *tmp;
471         pgprot_t ref_prot;
472         struct page *base;
473
474         if (!debug_pagealloc)
475                 spin_unlock(&cpa_lock);
476         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
477         if (!debug_pagealloc)
478                 spin_lock(&cpa_lock);
479         if (!base)
480                 return -ENOMEM;
481
482         spin_lock_irqsave(&pgd_lock, flags);
483         /*
484          * Check for races, another CPU might have split this page
485          * up for us already:
486          */
487         tmp = lookup_address(address, &level);
488         if (tmp != kpte)
489                 goto out_unlock;
490
491         pbase = (pte_t *)page_address(base);
492         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
493         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
494         /*
495          * If we ever want to utilize the PAT bit, we need to
496          * update this function to make sure it's converted from
497          * bit 12 to bit 7 when we cross from the 2MB level to
498          * the 4K level:
499          */
500         WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
501
502 #ifdef CONFIG_X86_64
503         if (level == PG_LEVEL_1G) {
504                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
505                 pgprot_val(ref_prot) |= _PAGE_PSE;
506         }
507 #endif
508
509         /*
510          * Get the target pfn from the original entry:
511          */
512         pfn = pte_pfn(*kpte);
513         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
514                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
515
516         if (address >= (unsigned long)__va(0) &&
517                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
518                 split_page_count(level);
519
520 #ifdef CONFIG_X86_64
521         if (address >= (unsigned long)__va(1UL<<32) &&
522                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
523                 split_page_count(level);
524 #endif
525
526         /*
527          * Install the new, split up pagetable.
528          *
529          * We use the standard kernel pagetable protections for the new
530          * pagetable protections, the actual ptes set above control the
531          * primary protection behavior:
532          */
533         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
534
535         /*
536          * Intel Atom errata AAH41 workaround.
537          *
538          * The real fix should be in hw or in a microcode update, but
539          * we also probabilistically try to reduce the window of having
540          * a large TLB mixed with 4K TLBs while instruction fetches are
541          * going on.
542          */
543         __flush_tlb_all();
544
545         base = NULL;
546
547 out_unlock:
548         /*
549          * If we dropped out via the lookup_address check under
550          * pgd_lock then stick the page back into the pool:
551          */
552         if (base)
553                 __free_page(base);
554         spin_unlock_irqrestore(&pgd_lock, flags);
555
556         return 0;
557 }
558
559 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
560                                int primary)
561 {
562         /*
563          * Ignore all non primary paths.
564          */
565         if (!primary)
566                 return 0;
567
568         /*
569          * Ignore the NULL PTE for kernel identity mapping, as it is expected
570          * to have holes.
571          * Also set numpages to '1' indicating that we processed cpa req for
572          * one virtual address page and its pfn. TBD: numpages can be set based
573          * on the initial value and the level returned by lookup_address().
574          */
575         if (within(vaddr, PAGE_OFFSET,
576                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
577                 cpa->numpages = 1;
578                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
579                 return 0;
580         } else {
581                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
582                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
583                         *cpa->vaddr);
584
585                 return -EFAULT;
586         }
587 }
588
589 static int __change_page_attr(struct cpa_data *cpa, int primary)
590 {
591         unsigned long address;
592         int do_split, err;
593         unsigned int level;
594         pte_t *kpte, old_pte;
595
596         if (cpa->flags & CPA_PAGES_ARRAY) {
597                 struct page *page = cpa->pages[cpa->curpage];
598                 if (unlikely(PageHighMem(page)))
599                         return 0;
600                 address = (unsigned long)page_address(page);
601         } else if (cpa->flags & CPA_ARRAY)
602                 address = cpa->vaddr[cpa->curpage];
603         else
604                 address = *cpa->vaddr;
605 repeat:
606         kpte = lookup_address(address, &level);
607         if (!kpte)
608                 return __cpa_process_fault(cpa, address, primary);
609
610         old_pte = *kpte;
611         if (!pte_val(old_pte))
612                 return __cpa_process_fault(cpa, address, primary);
613
614         if (level == PG_LEVEL_4K) {
615                 pte_t new_pte;
616                 pgprot_t new_prot = pte_pgprot(old_pte);
617                 unsigned long pfn = pte_pfn(old_pte);
618
619                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
620                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
621
622                 new_prot = static_protections(new_prot, address, pfn);
623
624                 /*
625                  * We need to keep the pfn from the existing PTE,
626                  * after all we're only going to change it's attributes
627                  * not the memory it points to
628                  */
629                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
630                 cpa->pfn = pfn;
631                 /*
632                  * Do we really change anything ?
633                  */
634                 if (pte_val(old_pte) != pte_val(new_pte)) {
635                         set_pte_atomic(kpte, new_pte);
636                         cpa->flags |= CPA_FLUSHTLB;
637                 }
638                 cpa->numpages = 1;
639                 return 0;
640         }
641
642         /*
643          * Check, whether we can keep the large page intact
644          * and just change the pte:
645          */
646         do_split = try_preserve_large_page(kpte, address, cpa);
647         /*
648          * When the range fits into the existing large page,
649          * return. cp->numpages and cpa->tlbflush have been updated in
650          * try_large_page:
651          */
652         if (do_split <= 0)
653                 return do_split;
654
655         /*
656          * We have to split the large page:
657          */
658         err = split_large_page(kpte, address);
659         if (!err) {
660                 /*
661                  * Do a global flush tlb after splitting the large page
662                  * and before we do the actual change page attribute in the PTE.
663                  *
664                  * With out this, we violate the TLB application note, that says
665                  * "The TLBs may contain both ordinary and large-page
666                  *  translations for a 4-KByte range of linear addresses. This
667                  *  may occur if software modifies the paging structures so that
668                  *  the page size used for the address range changes. If the two
669                  *  translations differ with respect to page frame or attributes
670                  *  (e.g., permissions), processor behavior is undefined and may
671                  *  be implementation-specific."
672                  *
673                  * We do this global tlb flush inside the cpa_lock, so that we
674                  * don't allow any other cpu, with stale tlb entries change the
675                  * page attribute in parallel, that also falls into the
676                  * just split large page entry.
677                  */
678                 flush_tlb_all();
679                 goto repeat;
680         }
681
682         return err;
683 }
684
685 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
686
687 static int cpa_process_alias(struct cpa_data *cpa)
688 {
689         struct cpa_data alias_cpa;
690         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
691         unsigned long vaddr;
692         int ret;
693
694         if (cpa->pfn >= max_pfn_mapped)
695                 return 0;
696
697 #ifdef CONFIG_X86_64
698         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
699                 return 0;
700 #endif
701         /*
702          * No need to redo, when the primary call touched the direct
703          * mapping already:
704          */
705         if (cpa->flags & CPA_PAGES_ARRAY) {
706                 struct page *page = cpa->pages[cpa->curpage];
707                 if (unlikely(PageHighMem(page)))
708                         return 0;
709                 vaddr = (unsigned long)page_address(page);
710         } else if (cpa->flags & CPA_ARRAY)
711                 vaddr = cpa->vaddr[cpa->curpage];
712         else
713                 vaddr = *cpa->vaddr;
714
715         if (!(within(vaddr, PAGE_OFFSET,
716                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
717
718                 alias_cpa = *cpa;
719                 alias_cpa.vaddr = &laddr;
720                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
721
722                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
723                 if (ret)
724                         return ret;
725         }
726
727 #ifdef CONFIG_X86_64
728         /*
729          * If the primary call didn't touch the high mapping already
730          * and the physical address is inside the kernel map, we need
731          * to touch the high mapped kernel as well:
732          */
733         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
734             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
735                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
736                                                __START_KERNEL_map - phys_base;
737                 alias_cpa = *cpa;
738                 alias_cpa.vaddr = &temp_cpa_vaddr;
739                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
740
741                 /*
742                  * The high mapping range is imprecise, so ignore the
743                  * return value.
744                  */
745                 __change_page_attr_set_clr(&alias_cpa, 0);
746         }
747 #endif
748
749         return 0;
750 }
751
752 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
753 {
754         int ret, numpages = cpa->numpages;
755
756         while (numpages) {
757                 /*
758                  * Store the remaining nr of pages for the large page
759                  * preservation check.
760                  */
761                 cpa->numpages = numpages;
762                 /* for array changes, we can't use large page */
763                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
764                         cpa->numpages = 1;
765
766                 if (!debug_pagealloc)
767                         spin_lock(&cpa_lock);
768                 ret = __change_page_attr(cpa, checkalias);
769                 if (!debug_pagealloc)
770                         spin_unlock(&cpa_lock);
771                 if (ret)
772                         return ret;
773
774                 if (checkalias) {
775                         ret = cpa_process_alias(cpa);
776                         if (ret)
777                                 return ret;
778                 }
779
780                 /*
781                  * Adjust the number of pages with the result of the
782                  * CPA operation. Either a large page has been
783                  * preserved or a single page update happened.
784                  */
785                 BUG_ON(cpa->numpages > numpages);
786                 numpages -= cpa->numpages;
787                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
788                         cpa->curpage++;
789                 else
790                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
791
792         }
793         return 0;
794 }
795
796 static inline int cache_attr(pgprot_t attr)
797 {
798         return pgprot_val(attr) &
799                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
800 }
801
802 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
803                                     pgprot_t mask_set, pgprot_t mask_clr,
804                                     int force_split, int in_flag,
805                                     struct page **pages)
806 {
807         struct cpa_data cpa;
808         int ret, cache, checkalias;
809         unsigned long baddr = 0;
810
811         /*
812          * Check, if we are requested to change a not supported
813          * feature:
814          */
815         mask_set = canon_pgprot(mask_set);
816         mask_clr = canon_pgprot(mask_clr);
817         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
818                 return 0;
819
820         /* Ensure we are PAGE_SIZE aligned */
821         if (in_flag & CPA_ARRAY) {
822                 int i;
823                 for (i = 0; i < numpages; i++) {
824                         if (addr[i] & ~PAGE_MASK) {
825                                 addr[i] &= PAGE_MASK;
826                                 WARN_ON_ONCE(1);
827                         }
828                 }
829         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
830                 /*
831                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
832                  * No need to cehck in that case
833                  */
834                 if (*addr & ~PAGE_MASK) {
835                         *addr &= PAGE_MASK;
836                         /*
837                          * People should not be passing in unaligned addresses:
838                          */
839                         WARN_ON_ONCE(1);
840                 }
841                 /*
842                  * Save address for cache flush. *addr is modified in the call
843                  * to __change_page_attr_set_clr() below.
844                  */
845                 baddr = *addr;
846         }
847
848         /* Must avoid aliasing mappings in the highmem code */
849         kmap_flush_unused();
850
851         vm_unmap_aliases();
852
853         cpa.vaddr = addr;
854         cpa.pages = pages;
855         cpa.numpages = numpages;
856         cpa.mask_set = mask_set;
857         cpa.mask_clr = mask_clr;
858         cpa.flags = 0;
859         cpa.curpage = 0;
860         cpa.force_split = force_split;
861
862         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
863                 cpa.flags |= in_flag;
864
865         /* No alias checking for _NX bit modifications */
866         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
867
868         ret = __change_page_attr_set_clr(&cpa, checkalias);
869
870         /*
871          * Check whether we really changed something:
872          */
873         if (!(cpa.flags & CPA_FLUSHTLB))
874                 goto out;
875
876         /*
877          * No need to flush, when we did not set any of the caching
878          * attributes:
879          */
880         cache = cache_attr(mask_set);
881
882         /*
883          * On success we use clflush, when the CPU supports it to
884          * avoid the wbindv. If the CPU does not support it and in the
885          * error case we fall back to cpa_flush_all (which uses
886          * wbindv):
887          */
888         if (!ret && cpu_has_clflush) {
889                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
890                         cpa_flush_array(addr, numpages, cache,
891                                         cpa.flags, pages);
892                 } else
893                         cpa_flush_range(baddr, numpages, cache);
894         } else
895                 cpa_flush_all(cache);
896
897 out:
898         return ret;
899 }
900
901 static inline int change_page_attr_set(unsigned long *addr, int numpages,
902                                        pgprot_t mask, int array)
903 {
904         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
905                 (array ? CPA_ARRAY : 0), NULL);
906 }
907
908 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
909                                          pgprot_t mask, int array)
910 {
911         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
912                 (array ? CPA_ARRAY : 0), NULL);
913 }
914
915 static inline int cpa_set_pages_array(struct page **pages, int numpages,
916                                        pgprot_t mask)
917 {
918         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
919                 CPA_PAGES_ARRAY, pages);
920 }
921
922 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
923                                          pgprot_t mask)
924 {
925         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
926                 CPA_PAGES_ARRAY, pages);
927 }
928
929 int _set_memory_uc(unsigned long addr, int numpages)
930 {
931         /*
932          * for now UC MINUS. see comments in ioremap_nocache()
933          */
934         return change_page_attr_set(&addr, numpages,
935                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
936 }
937
938 int set_memory_uc(unsigned long addr, int numpages)
939 {
940         int ret;
941
942         /*
943          * for now UC MINUS. see comments in ioremap_nocache()
944          */
945         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
946                             _PAGE_CACHE_UC_MINUS, NULL);
947         if (ret)
948                 goto out_err;
949
950         ret = _set_memory_uc(addr, numpages);
951         if (ret)
952                 goto out_free;
953
954         return 0;
955
956 out_free:
957         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
958 out_err:
959         return ret;
960 }
961 EXPORT_SYMBOL(set_memory_uc);
962
963 int set_memory_array_uc(unsigned long *addr, int addrinarray)
964 {
965         int i, j;
966         int ret;
967
968         /*
969          * for now UC MINUS. see comments in ioremap_nocache()
970          */
971         for (i = 0; i < addrinarray; i++) {
972                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
973                                         _PAGE_CACHE_UC_MINUS, NULL);
974                 if (ret)
975                         goto out_free;
976         }
977
978         ret = change_page_attr_set(addr, addrinarray,
979                                     __pgprot(_PAGE_CACHE_UC_MINUS), 1);
980         if (ret)
981                 goto out_free;
982
983         return 0;
984
985 out_free:
986         for (j = 0; j < i; j++)
987                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
988
989         return ret;
990 }
991 EXPORT_SYMBOL(set_memory_array_uc);
992
993 int _set_memory_wc(unsigned long addr, int numpages)
994 {
995         int ret;
996         unsigned long addr_copy = addr;
997
998         ret = change_page_attr_set(&addr, numpages,
999                                     __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1000         if (!ret) {
1001                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1002                                                __pgprot(_PAGE_CACHE_WC),
1003                                                __pgprot(_PAGE_CACHE_MASK),
1004                                                0, 0, NULL);
1005         }
1006         return ret;
1007 }
1008
1009 int set_memory_wc(unsigned long addr, int numpages)
1010 {
1011         int ret;
1012
1013         if (!pat_enabled)
1014                 return set_memory_uc(addr, numpages);
1015
1016         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1017                 _PAGE_CACHE_WC, NULL);
1018         if (ret)
1019                 goto out_err;
1020
1021         ret = _set_memory_wc(addr, numpages);
1022         if (ret)
1023                 goto out_free;
1024
1025         return 0;
1026
1027 out_free:
1028         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1029 out_err:
1030         return ret;
1031 }
1032 EXPORT_SYMBOL(set_memory_wc);
1033
1034 int _set_memory_wb(unsigned long addr, int numpages)
1035 {
1036         return change_page_attr_clear(&addr, numpages,
1037                                       __pgprot(_PAGE_CACHE_MASK), 0);
1038 }
1039
1040 int set_memory_wb(unsigned long addr, int numpages)
1041 {
1042         int ret;
1043
1044         ret = _set_memory_wb(addr, numpages);
1045         if (ret)
1046                 return ret;
1047
1048         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1049         return 0;
1050 }
1051 EXPORT_SYMBOL(set_memory_wb);
1052
1053 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1054 {
1055         int i;
1056         int ret;
1057
1058         ret = change_page_attr_clear(addr, addrinarray,
1059                                       __pgprot(_PAGE_CACHE_MASK), 1);
1060         if (ret)
1061                 return ret;
1062
1063         for (i = 0; i < addrinarray; i++)
1064                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1065
1066         return 0;
1067 }
1068 EXPORT_SYMBOL(set_memory_array_wb);
1069
1070 int set_memory_x(unsigned long addr, int numpages)
1071 {
1072         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1073 }
1074 EXPORT_SYMBOL(set_memory_x);
1075
1076 int set_memory_nx(unsigned long addr, int numpages)
1077 {
1078         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1079 }
1080 EXPORT_SYMBOL(set_memory_nx);
1081
1082 int set_memory_ro(unsigned long addr, int numpages)
1083 {
1084         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1085 }
1086 EXPORT_SYMBOL_GPL(set_memory_ro);
1087
1088 int set_memory_rw(unsigned long addr, int numpages)
1089 {
1090         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1091 }
1092 EXPORT_SYMBOL_GPL(set_memory_rw);
1093
1094 int set_memory_np(unsigned long addr, int numpages)
1095 {
1096         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1097 }
1098
1099 int set_memory_4k(unsigned long addr, int numpages)
1100 {
1101         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1102                                         __pgprot(0), 1, 0, NULL);
1103 }
1104
1105 int set_pages_uc(struct page *page, int numpages)
1106 {
1107         unsigned long addr = (unsigned long)page_address(page);
1108
1109         return set_memory_uc(addr, numpages);
1110 }
1111 EXPORT_SYMBOL(set_pages_uc);
1112
1113 int set_pages_array_uc(struct page **pages, int addrinarray)
1114 {
1115         unsigned long start;
1116         unsigned long end;
1117         int i;
1118         int free_idx;
1119
1120         for (i = 0; i < addrinarray; i++) {
1121                 if (PageHighMem(pages[i]))
1122                         continue;
1123                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1124                 end = start + PAGE_SIZE;
1125                 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
1126                         goto err_out;
1127         }
1128
1129         if (cpa_set_pages_array(pages, addrinarray,
1130                         __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
1131                 return 0; /* Success */
1132         }
1133 err_out:
1134         free_idx = i;
1135         for (i = 0; i < free_idx; i++) {
1136                 if (PageHighMem(pages[i]))
1137                         continue;
1138                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1139                 end = start + PAGE_SIZE;
1140                 free_memtype(start, end);
1141         }
1142         return -EINVAL;
1143 }
1144 EXPORT_SYMBOL(set_pages_array_uc);
1145
1146 int set_pages_wb(struct page *page, int numpages)
1147 {
1148         unsigned long addr = (unsigned long)page_address(page);
1149
1150         return set_memory_wb(addr, numpages);
1151 }
1152 EXPORT_SYMBOL(set_pages_wb);
1153
1154 int set_pages_array_wb(struct page **pages, int addrinarray)
1155 {
1156         int retval;
1157         unsigned long start;
1158         unsigned long end;
1159         int i;
1160
1161         retval = cpa_clear_pages_array(pages, addrinarray,
1162                         __pgprot(_PAGE_CACHE_MASK));
1163         if (retval)
1164                 return retval;
1165
1166         for (i = 0; i < addrinarray; i++) {
1167                 if (PageHighMem(pages[i]))
1168                         continue;
1169                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1170                 end = start + PAGE_SIZE;
1171                 free_memtype(start, end);
1172         }
1173
1174         return 0;
1175 }
1176 EXPORT_SYMBOL(set_pages_array_wb);
1177
1178 int set_pages_x(struct page *page, int numpages)
1179 {
1180         unsigned long addr = (unsigned long)page_address(page);
1181
1182         return set_memory_x(addr, numpages);
1183 }
1184 EXPORT_SYMBOL(set_pages_x);
1185
1186 int set_pages_nx(struct page *page, int numpages)
1187 {
1188         unsigned long addr = (unsigned long)page_address(page);
1189
1190         return set_memory_nx(addr, numpages);
1191 }
1192 EXPORT_SYMBOL(set_pages_nx);
1193
1194 int set_pages_ro(struct page *page, int numpages)
1195 {
1196         unsigned long addr = (unsigned long)page_address(page);
1197
1198         return set_memory_ro(addr, numpages);
1199 }
1200
1201 int set_pages_rw(struct page *page, int numpages)
1202 {
1203         unsigned long addr = (unsigned long)page_address(page);
1204
1205         return set_memory_rw(addr, numpages);
1206 }
1207
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
1209
1210 static int __set_pages_p(struct page *page, int numpages)
1211 {
1212         unsigned long tempaddr = (unsigned long) page_address(page);
1213         struct cpa_data cpa = { .vaddr = &tempaddr,
1214                                 .numpages = numpages,
1215                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1216                                 .mask_clr = __pgprot(0),
1217                                 .flags = 0};
1218
1219         /*
1220          * No alias checking needed for setting present flag. otherwise,
1221          * we may need to break large pages for 64-bit kernel text
1222          * mappings (this adds to complexity if we want to do this from
1223          * atomic context especially). Let's keep it simple!
1224          */
1225         return __change_page_attr_set_clr(&cpa, 0);
1226 }
1227
1228 static int __set_pages_np(struct page *page, int numpages)
1229 {
1230         unsigned long tempaddr = (unsigned long) page_address(page);
1231         struct cpa_data cpa = { .vaddr = &tempaddr,
1232                                 .numpages = numpages,
1233                                 .mask_set = __pgprot(0),
1234                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1235                                 .flags = 0};
1236
1237         /*
1238          * No alias checking needed for setting not present flag. otherwise,
1239          * we may need to break large pages for 64-bit kernel text
1240          * mappings (this adds to complexity if we want to do this from
1241          * atomic context especially). Let's keep it simple!
1242          */
1243         return __change_page_attr_set_clr(&cpa, 0);
1244 }
1245
1246 void kernel_map_pages(struct page *page, int numpages, int enable)
1247 {
1248         if (PageHighMem(page))
1249                 return;
1250         if (!enable) {
1251                 debug_check_no_locks_freed(page_address(page),
1252                                            numpages * PAGE_SIZE);
1253         }
1254
1255         /*
1256          * If page allocator is not up yet then do not call c_p_a():
1257          */
1258         if (!debug_pagealloc_enabled)
1259                 return;
1260
1261         /*
1262          * The return value is ignored as the calls cannot fail.
1263          * Large pages for identity mappings are not used at boot time
1264          * and hence no memory allocations during large page split.
1265          */
1266         if (enable)
1267                 __set_pages_p(page, numpages);
1268         else
1269                 __set_pages_np(page, numpages);
1270
1271         /*
1272          * We should perform an IPI and flush all tlbs,
1273          * but that can deadlock->flush only current cpu:
1274          */
1275         __flush_tlb_all();
1276 }
1277
1278 #ifdef CONFIG_HIBERNATION
1279
1280 bool kernel_page_present(struct page *page)
1281 {
1282         unsigned int level;
1283         pte_t *pte;
1284
1285         if (PageHighMem(page))
1286                 return false;
1287
1288         pte = lookup_address((unsigned long)page_address(page), &level);
1289         return (pte_val(*pte) & _PAGE_PRESENT);
1290 }
1291
1292 #endif /* CONFIG_HIBERNATION */
1293
1294 #endif /* CONFIG_DEBUG_PAGEALLOC */
1295
1296 /*
1297  * The testcases use internal knowledge of the implementation that shouldn't
1298  * be exposed to the rest of the kernel. Include these directly here.
1299  */
1300 #ifdef CONFIG_CPA_DEBUG
1301 #include "pageattr-test.c"
1302 #endif