x86: introduce /dev/mem restrictions with a config option
[pandora-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
31
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
48 #include <asm/cacheflush.h>
49
50 static unsigned long dma_reserve __initdata;
51
52 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
53
54 int direct_gbpages __meminitdata
55 #ifdef CONFIG_DIRECT_GBPAGES
56                                 = 1
57 #endif
58 ;
59
60 static int __init parse_direct_gbpages_off(char *arg)
61 {
62         direct_gbpages = 0;
63         return 0;
64 }
65 early_param("nogbpages", parse_direct_gbpages_off);
66
67 static int __init parse_direct_gbpages_on(char *arg)
68 {
69         direct_gbpages = 1;
70         return 0;
71 }
72 early_param("gbpages", parse_direct_gbpages_on);
73
74 /*
75  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
76  * physical space so we can cache the place of the first one and move
77  * around without checking the pgd every time.
78  */
79
80 void show_mem(void)
81 {
82         long i, total = 0, reserved = 0;
83         long shared = 0, cached = 0;
84         struct page *page;
85         pg_data_t *pgdat;
86
87         printk(KERN_INFO "Mem-info:\n");
88         show_free_areas();
89         for_each_online_pgdat(pgdat) {
90                 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
91                         /*
92                          * This loop can take a while with 256 GB and
93                          * 4k pages so defer the NMI watchdog:
94                          */
95                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
96                                 touch_nmi_watchdog();
97
98                         if (!pfn_valid(pgdat->node_start_pfn + i))
99                                 continue;
100
101                         page = pfn_to_page(pgdat->node_start_pfn + i);
102                         total++;
103                         if (PageReserved(page))
104                                 reserved++;
105                         else if (PageSwapCache(page))
106                                 cached++;
107                         else if (page_count(page))
108                                 shared += page_count(page) - 1;
109                 }
110         }
111         printk(KERN_INFO "%lu pages of RAM\n",          total);
112         printk(KERN_INFO "%lu reserved pages\n",        reserved);
113         printk(KERN_INFO "%lu pages shared\n",          shared);
114         printk(KERN_INFO "%lu pages swap cached\n",     cached);
115 }
116
117 int after_bootmem;
118
119 static __init void *spp_getpage(void)
120 {
121         void *ptr;
122
123         if (after_bootmem)
124                 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
125         else
126                 ptr = alloc_bootmem_pages(PAGE_SIZE);
127
128         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
129                 panic("set_pte_phys: cannot allocate page data %s\n",
130                         after_bootmem ? "after bootmem" : "");
131         }
132
133         pr_debug("spp_getpage %p\n", ptr);
134
135         return ptr;
136 }
137
138 static __init void
139 set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
140 {
141         pgd_t *pgd;
142         pud_t *pud;
143         pmd_t *pmd;
144         pte_t *pte, new_pte;
145
146         pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
147
148         pgd = pgd_offset_k(vaddr);
149         if (pgd_none(*pgd)) {
150                 printk(KERN_ERR
151                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
152                 return;
153         }
154         pud = pud_offset(pgd, vaddr);
155         if (pud_none(*pud)) {
156                 pmd = (pmd_t *) spp_getpage();
157                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
158                 if (pmd != pmd_offset(pud, 0)) {
159                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160                                 pmd, pmd_offset(pud, 0));
161                         return;
162                 }
163         }
164         pmd = pmd_offset(pud, vaddr);
165         if (pmd_none(*pmd)) {
166                 pte = (pte_t *) spp_getpage();
167                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
168                 if (pte != pte_offset_kernel(pmd, 0)) {
169                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
170                         return;
171                 }
172         }
173         new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
174
175         pte = pte_offset_kernel(pmd, vaddr);
176         if (!pte_none(*pte) &&
177             pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
178                 pte_ERROR(*pte);
179         set_pte(pte, new_pte);
180
181         /*
182          * It's enough to flush this one mapping.
183          * (PGE mappings get flushed as well)
184          */
185         __flush_tlb_one(vaddr);
186 }
187
188 /*
189  * The head.S code sets up the kernel high mapping:
190  *
191  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
192  *
193  * phys_addr holds the negative offset to the kernel, which is added
194  * to the compile time generated pmds. This results in invalid pmds up
195  * to the point where we hit the physaddr 0 mapping.
196  *
197  * We limit the mappings to the region from _text to _end.  _end is
198  * rounded up to the 2MB boundary. This catches the invalid pmds as
199  * well, as they are located before _text:
200  */
201 void __init cleanup_highmap(void)
202 {
203         unsigned long vaddr = __START_KERNEL_map;
204         unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
205         pmd_t *pmd = level2_kernel_pgt;
206         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
207
208         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
209                 if (!pmd_present(*pmd))
210                         continue;
211                 if (vaddr < (unsigned long) _text || vaddr > end)
212                         set_pmd(pmd, __pmd(0));
213         }
214 }
215
216 /* NOTE: this is meant to be run only at boot */
217 void __init
218 __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
219 {
220         unsigned long address = __fix_to_virt(idx);
221
222         if (idx >= __end_of_fixed_addresses) {
223                 printk(KERN_ERR "Invalid __set_fixmap\n");
224                 return;
225         }
226         set_pte_phys(address, phys, prot);
227 }
228
229 static unsigned long __initdata table_start;
230 static unsigned long __meminitdata table_end;
231
232 static __meminit void *alloc_low_page(unsigned long *phys)
233 {
234         unsigned long pfn = table_end++;
235         void *adr;
236
237         if (after_bootmem) {
238                 adr = (void *)get_zeroed_page(GFP_ATOMIC);
239                 *phys = __pa(adr);
240
241                 return adr;
242         }
243
244         if (pfn >= end_pfn)
245                 panic("alloc_low_page: ran out of memory");
246
247         adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
248         memset(adr, 0, PAGE_SIZE);
249         *phys  = pfn * PAGE_SIZE;
250         return adr;
251 }
252
253 static __meminit void unmap_low_page(void *adr)
254 {
255         if (after_bootmem)
256                 return;
257
258         early_iounmap(adr, PAGE_SIZE);
259 }
260
261 /* Must run before zap_low_mappings */
262 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
263 {
264         pmd_t *pmd, *last_pmd;
265         unsigned long vaddr;
266         int i, pmds;
267
268         pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
269         vaddr = __START_KERNEL_map;
270         pmd = level2_kernel_pgt;
271         last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
272
273         for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
274                 for (i = 0; i < pmds; i++) {
275                         if (pmd_present(pmd[i]))
276                                 goto continue_outer_loop;
277                 }
278                 vaddr += addr & ~PMD_MASK;
279                 addr &= PMD_MASK;
280
281                 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
282                         set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
283                 __flush_tlb_all();
284
285                 return (void *)vaddr;
286 continue_outer_loop:
287                 ;
288         }
289         printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
290
291         return NULL;
292 }
293
294 /*
295  * To avoid virtual aliases later:
296  */
297 __meminit void early_iounmap(void *addr, unsigned long size)
298 {
299         unsigned long vaddr;
300         pmd_t *pmd;
301         int i, pmds;
302
303         vaddr = (unsigned long)addr;
304         pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
305         pmd = level2_kernel_pgt + pmd_index(vaddr);
306
307         for (i = 0; i < pmds; i++)
308                 pmd_clear(pmd + i);
309
310         __flush_tlb_all();
311 }
312
313 static unsigned long __meminit
314 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
315 {
316         int i = pmd_index(address);
317
318         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
319                 pmd_t *pmd = pmd_page + pmd_index(address);
320
321                 if (address >= end) {
322                         if (!after_bootmem) {
323                                 for (; i < PTRS_PER_PMD; i++, pmd++)
324                                         set_pmd(pmd, __pmd(0));
325                         }
326                         break;
327                 }
328
329                 if (pmd_val(*pmd))
330                         continue;
331
332                 set_pte((pte_t *)pmd,
333                         pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
334         }
335         return address;
336 }
337
338 static unsigned long __meminit
339 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
340 {
341         pmd_t *pmd = pmd_offset(pud, 0);
342         unsigned long last_map_addr;
343
344         spin_lock(&init_mm.page_table_lock);
345         last_map_addr = phys_pmd_init(pmd, address, end);
346         spin_unlock(&init_mm.page_table_lock);
347         __flush_tlb_all();
348         return last_map_addr;
349 }
350
351 static unsigned long __meminit
352 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
353 {
354         unsigned long last_map_addr = end;
355         int i = pud_index(addr);
356
357         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
358                 unsigned long pmd_phys;
359                 pud_t *pud = pud_page + pud_index(addr);
360                 pmd_t *pmd;
361
362                 if (addr >= end)
363                         break;
364
365                 if (!after_bootmem &&
366                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
367                         set_pud(pud, __pud(0));
368                         continue;
369                 }
370
371                 if (pud_val(*pud)) {
372                         if (!pud_large(*pud))
373                                 last_map_addr = phys_pmd_update(pud, addr, end);
374                         continue;
375                 }
376
377                 if (direct_gbpages) {
378                         set_pte((pte_t *)pud,
379                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
380                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
381                         continue;
382                 }
383
384                 pmd = alloc_low_page(&pmd_phys);
385
386                 spin_lock(&init_mm.page_table_lock);
387                 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
388                 last_map_addr = phys_pmd_init(pmd, addr, end);
389                 spin_unlock(&init_mm.page_table_lock);
390
391                 unmap_low_page(pmd);
392         }
393         __flush_tlb_all();
394
395         return last_map_addr >> PAGE_SHIFT;
396 }
397
398 static void __init find_early_table_space(unsigned long end)
399 {
400         unsigned long puds, pmds, tables, start;
401
402         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
403         tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
404         if (!direct_gbpages) {
405                 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
406                 tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
407         }
408
409         /*
410          * RED-PEN putting page tables only on node 0 could
411          * cause a hotspot and fill up ZONE_DMA. The page tables
412          * need roughly 0.5KB per GB.
413          */
414         start = 0x8000;
415         table_start = find_e820_area(start, end, tables, PAGE_SIZE);
416         if (table_start == -1UL)
417                 panic("Cannot find space for the kernel page tables");
418
419         table_start >>= PAGE_SHIFT;
420         table_end = table_start;
421
422         early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
423                 end, table_start << PAGE_SHIFT,
424                 (table_start << PAGE_SHIFT) + tables);
425 }
426
427 static void __init init_gbpages(void)
428 {
429         if (direct_gbpages && cpu_has_gbpages)
430                 printk(KERN_INFO "Using GB pages for direct mapping\n");
431         else
432                 direct_gbpages = 0;
433 }
434
435 #ifdef CONFIG_MEMTEST_BOOTPARAM
436
437 static void __init memtest(unsigned long start_phys, unsigned long size,
438                                  unsigned pattern)
439 {
440         unsigned long i;
441         unsigned long *start;
442         unsigned long start_bad;
443         unsigned long last_bad;
444         unsigned long val;
445         unsigned long start_phys_aligned;
446         unsigned long count;
447         unsigned long incr;
448
449         switch (pattern) {
450         case 0:
451                 val = 0UL;
452                 break;
453         case 1:
454                 val = -1UL;
455                 break;
456         case 2:
457                 val = 0x5555555555555555UL;
458                 break;
459         case 3:
460                 val = 0xaaaaaaaaaaaaaaaaUL;
461                 break;
462         default:
463                 return;
464         }
465
466         incr = sizeof(unsigned long);
467         start_phys_aligned = ALIGN(start_phys, incr);
468         count = (size - (start_phys_aligned - start_phys))/incr;
469         start = __va(start_phys_aligned);
470         start_bad = 0;
471         last_bad = 0;
472
473         for (i = 0; i < count; i++)
474                 start[i] = val;
475         for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
476                 if (*start != val) {
477                         if (start_phys_aligned == last_bad + incr) {
478                                 last_bad += incr;
479                         } else {
480                                 if (start_bad) {
481                                         printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
482                                                 val, start_bad, last_bad + incr);
483                                         reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
484                                 }
485                                 start_bad = last_bad = start_phys_aligned;
486                         }
487                 }
488         }
489         if (start_bad) {
490                 printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
491                         val, start_bad, last_bad + incr);
492                 reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
493         }
494
495 }
496
497 static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
498
499 static int __init parse_memtest(char *arg)
500 {
501         if (arg)
502                 memtest_pattern = simple_strtoul(arg, NULL, 0);
503         return 0;
504 }
505
506 early_param("memtest", parse_memtest);
507
508 static void __init early_memtest(unsigned long start, unsigned long end)
509 {
510         unsigned long t_start, t_size;
511         unsigned pattern;
512
513         if (!memtest_pattern)
514                 return;
515
516         printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
517         for (pattern = 0; pattern < memtest_pattern; pattern++) {
518                 t_start = start;
519                 t_size = 0;
520                 while (t_start < end) {
521                         t_start = find_e820_area_size(t_start, &t_size, 1);
522
523                         /* done ? */
524                         if (t_start >= end)
525                                 break;
526                         if (t_start + t_size > end)
527                                 t_size = end - t_start;
528
529                         printk(KERN_CONT "\n  %016lx - %016lx pattern %d",
530                                 t_start, t_start + t_size, pattern);
531
532                         memtest(t_start, t_size, pattern);
533
534                         t_start += t_size;
535                 }
536         }
537         printk(KERN_CONT "\n");
538 }
539 #else
540 static void __init early_memtest(unsigned long start, unsigned long end)
541 {
542 }
543 #endif
544
545 /*
546  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
547  * This runs before bootmem is initialized and gets pages directly from
548  * the physical memory. To access them they are temporarily mapped.
549  */
550 unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
551 {
552         unsigned long next, last_map_addr = end;
553         unsigned long start_phys = start, end_phys = end;
554
555         printk(KERN_INFO "init_memory_mapping\n");
556
557         /*
558          * Find space for the kernel direct mapping tables.
559          *
560          * Later we should allocate these tables in the local node of the
561          * memory mapped. Unfortunately this is done currently before the
562          * nodes are discovered.
563          */
564         if (!after_bootmem) {
565                 init_gbpages();
566                 find_early_table_space(end);
567         }
568
569         start = (unsigned long)__va(start);
570         end = (unsigned long)__va(end);
571
572         for (; start < end; start = next) {
573                 pgd_t *pgd = pgd_offset_k(start);
574                 unsigned long pud_phys;
575                 pud_t *pud;
576
577                 if (after_bootmem)
578                         pud = pud_offset(pgd, start & PGDIR_MASK);
579                 else
580                         pud = alloc_low_page(&pud_phys);
581
582                 next = start + PGDIR_SIZE;
583                 if (next > end)
584                         next = end;
585                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
586                 if (!after_bootmem)
587                         set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
588                 unmap_low_page(pud);
589         }
590
591         if (!after_bootmem)
592                 mmu_cr4_features = read_cr4();
593         __flush_tlb_all();
594
595         if (!after_bootmem)
596                 reserve_early(table_start << PAGE_SHIFT,
597                                  table_end << PAGE_SHIFT, "PGTABLE");
598
599         if (!after_bootmem)
600                 early_memtest(start_phys, end_phys);
601
602         return last_map_addr;
603 }
604
605 #ifndef CONFIG_NUMA
606 void __init paging_init(void)
607 {
608         unsigned long max_zone_pfns[MAX_NR_ZONES];
609
610         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
611         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
612         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
613         max_zone_pfns[ZONE_NORMAL] = end_pfn;
614
615         memory_present(0, 0, end_pfn);
616         sparse_init();
617         free_area_init_nodes(max_zone_pfns);
618 }
619 #endif
620
621 /*
622  * Memory hotplug specific functions
623  */
624 void online_page(struct page *page)
625 {
626         ClearPageReserved(page);
627         init_page_count(page);
628         __free_page(page);
629         totalram_pages++;
630         num_physpages++;
631 }
632
633 #ifdef CONFIG_MEMORY_HOTPLUG
634 /*
635  * Memory is added always to NORMAL zone. This means you will never get
636  * additional DMA/DMA32 memory.
637  */
638 int arch_add_memory(int nid, u64 start, u64 size)
639 {
640         struct pglist_data *pgdat = NODE_DATA(nid);
641         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
642         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
643         unsigned long nr_pages = size >> PAGE_SHIFT;
644         int ret;
645
646         last_mapped_pfn = init_memory_mapping(start, start + size-1);
647         if (last_mapped_pfn > max_pfn_mapped)
648                 max_pfn_mapped = last_mapped_pfn;
649
650         ret = __add_pages(zone, start_pfn, nr_pages);
651         WARN_ON(1);
652
653         return ret;
654 }
655 EXPORT_SYMBOL_GPL(arch_add_memory);
656
657 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
658 int memory_add_physaddr_to_nid(u64 start)
659 {
660         return 0;
661 }
662 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
663 #endif
664
665 #endif /* CONFIG_MEMORY_HOTPLUG */
666
667 /*
668  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
669  * is valid. The argument is a physical page number.
670  *
671  *
672  * On x86, access has to be given to the first megabyte of ram because that area
673  * contains bios code and data regions used by X and dosemu and similar apps.
674  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
675  * mmio resources as well as potential bios/acpi data regions.
676  */
677 int devmem_is_allowed(unsigned long pagenr)
678 {
679         if (pagenr <= 256)
680                 return 1;
681         if (!page_is_ram(pagenr))
682                 return 1;
683         return 0;
684 }
685
686
687 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
688                          kcore_modules, kcore_vsyscall;
689
690 void __init mem_init(void)
691 {
692         long codesize, reservedpages, datasize, initsize;
693
694         pci_iommu_alloc();
695
696         /* clear_bss() already clear the empty_zero_page */
697
698         reservedpages = 0;
699
700         /* this will put all low memory onto the freelists */
701 #ifdef CONFIG_NUMA
702         totalram_pages = numa_free_all_bootmem();
703 #else
704         totalram_pages = free_all_bootmem();
705 #endif
706         reservedpages = end_pfn - totalram_pages -
707                                         absent_pages_in_range(0, end_pfn);
708         after_bootmem = 1;
709
710         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
711         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
712         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
713
714         /* Register memory areas for /proc/kcore */
715         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
716         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
717                    VMALLOC_END-VMALLOC_START);
718         kclist_add(&kcore_kernel, &_stext, _end - _stext);
719         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
720         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
721                                  VSYSCALL_END - VSYSCALL_START);
722
723         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
724                                 "%ldk reserved, %ldk data, %ldk init)\n",
725                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
726                 end_pfn << (PAGE_SHIFT-10),
727                 codesize >> 10,
728                 reservedpages << (PAGE_SHIFT-10),
729                 datasize >> 10,
730                 initsize >> 10);
731
732         cpa_init();
733 }
734
735 void free_init_pages(char *what, unsigned long begin, unsigned long end)
736 {
737         unsigned long addr = begin;
738
739         if (addr >= end)
740                 return;
741
742         /*
743          * If debugging page accesses then do not free this memory but
744          * mark them not present - any buggy init-section access will
745          * create a kernel page fault:
746          */
747 #ifdef CONFIG_DEBUG_PAGEALLOC
748         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
749                 begin, PAGE_ALIGN(end));
750         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
751 #else
752         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
753
754         for (; addr < end; addr += PAGE_SIZE) {
755                 ClearPageReserved(virt_to_page(addr));
756                 init_page_count(virt_to_page(addr));
757                 memset((void *)(addr & ~(PAGE_SIZE-1)),
758                         POISON_FREE_INITMEM, PAGE_SIZE);
759                 free_page(addr);
760                 totalram_pages++;
761         }
762 #endif
763 }
764
765 void free_initmem(void)
766 {
767         free_init_pages("unused kernel memory",
768                         (unsigned long)(&__init_begin),
769                         (unsigned long)(&__init_end));
770 }
771
772 #ifdef CONFIG_DEBUG_RODATA
773 const int rodata_test_data = 0xC3;
774 EXPORT_SYMBOL_GPL(rodata_test_data);
775
776 void mark_rodata_ro(void)
777 {
778         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
779
780         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
781                (end - start) >> 10);
782         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
783
784         /*
785          * The rodata section (but not the kernel text!) should also be
786          * not-executable.
787          */
788         start = ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
789         set_memory_nx(start, (end - start) >> PAGE_SHIFT);
790
791         rodata_test();
792
793 #ifdef CONFIG_CPA_DEBUG
794         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
795         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
796
797         printk(KERN_INFO "Testing CPA: again\n");
798         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
799 #endif
800 }
801
802 #endif
803
804 #ifdef CONFIG_BLK_DEV_INITRD
805 void free_initrd_mem(unsigned long start, unsigned long end)
806 {
807         free_init_pages("initrd memory", start, end);
808 }
809 #endif
810
811 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
812 {
813 #ifdef CONFIG_NUMA
814         int nid = phys_to_nid(phys);
815 #endif
816         unsigned long pfn = phys >> PAGE_SHIFT;
817
818         if (pfn >= end_pfn) {
819                 /*
820                  * This can happen with kdump kernels when accessing
821                  * firmware tables:
822                  */
823                 if (pfn < max_pfn_mapped)
824                         return;
825
826                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
827                                 phys, len);
828                 return;
829         }
830
831         /* Should check here against the e820 map to avoid double free */
832 #ifdef CONFIG_NUMA
833         reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
834 #else
835         reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
836 #endif
837         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
838                 dma_reserve += len / PAGE_SIZE;
839                 set_dma_reserve(dma_reserve);
840         }
841 }
842
843 int kern_addr_valid(unsigned long addr)
844 {
845         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
846         pgd_t *pgd;
847         pud_t *pud;
848         pmd_t *pmd;
849         pte_t *pte;
850
851         if (above != 0 && above != -1UL)
852                 return 0;
853
854         pgd = pgd_offset_k(addr);
855         if (pgd_none(*pgd))
856                 return 0;
857
858         pud = pud_offset(pgd, addr);
859         if (pud_none(*pud))
860                 return 0;
861
862         pmd = pmd_offset(pud, addr);
863         if (pmd_none(*pmd))
864                 return 0;
865
866         if (pmd_large(*pmd))
867                 return pfn_valid(pmd_pfn(*pmd));
868
869         pte = pte_offset_kernel(pmd, addr);
870         if (pte_none(*pte))
871                 return 0;
872
873         return pfn_valid(pte_pfn(*pte));
874 }
875
876 /*
877  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
878  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
879  * not need special handling anymore:
880  */
881 static struct vm_area_struct gate_vma = {
882         .vm_start       = VSYSCALL_START,
883         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
884         .vm_page_prot   = PAGE_READONLY_EXEC,
885         .vm_flags       = VM_READ | VM_EXEC
886 };
887
888 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
889 {
890 #ifdef CONFIG_IA32_EMULATION
891         if (test_tsk_thread_flag(tsk, TIF_IA32))
892                 return NULL;
893 #endif
894         return &gate_vma;
895 }
896
897 int in_gate_area(struct task_struct *task, unsigned long addr)
898 {
899         struct vm_area_struct *vma = get_gate_vma(task);
900
901         if (!vma)
902                 return 0;
903
904         return (addr >= vma->vm_start) && (addr < vma->vm_end);
905 }
906
907 /*
908  * Use this when you have no reliable task/vma, typically from interrupt
909  * context. It is less reliable than using the task's vma and may give
910  * false positives:
911  */
912 int in_gate_area_no_task(unsigned long addr)
913 {
914         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
915 }
916
917 const char *arch_vma_name(struct vm_area_struct *vma)
918 {
919         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
920                 return "[vdso]";
921         if (vma == &gate_vma)
922                 return "[vsyscall]";
923         return NULL;
924 }
925
926 #ifdef CONFIG_SPARSEMEM_VMEMMAP
927 /*
928  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
929  */
930 int __meminit
931 vmemmap_populate(struct page *start_page, unsigned long size, int node)
932 {
933         unsigned long addr = (unsigned long)start_page;
934         unsigned long end = (unsigned long)(start_page + size);
935         unsigned long next;
936         pgd_t *pgd;
937         pud_t *pud;
938         pmd_t *pmd;
939
940         for (; addr < end; addr = next) {
941                 next = pmd_addr_end(addr, end);
942
943                 pgd = vmemmap_pgd_populate(addr, node);
944                 if (!pgd)
945                         return -ENOMEM;
946
947                 pud = vmemmap_pud_populate(pgd, addr, node);
948                 if (!pud)
949                         return -ENOMEM;
950
951                 pmd = pmd_offset(pud, addr);
952                 if (pmd_none(*pmd)) {
953                         pte_t entry;
954                         void *p;
955
956                         p = vmemmap_alloc_block(PMD_SIZE, node);
957                         if (!p)
958                                 return -ENOMEM;
959
960                         entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
961                                                         PAGE_KERNEL_LARGE);
962                         set_pmd(pmd, __pmd(pte_val(entry)));
963
964                         printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
965                                 addr, addr + PMD_SIZE - 1, p, node);
966                 } else {
967                         vmemmap_verify((pte_t *)pmd, node, addr, next);
968                 }
969         }
970         return 0;
971 }
972 #endif