Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/proc_fs.h>
25 #include <linux/pci.h>
26 #include <linux/pfn.h>
27 #include <linux/poison.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/module.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/nmi.h>
32
33 #include <asm/processor.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/dma.h>
40 #include <asm/fixmap.h>
41 #include <asm/e820.h>
42 #include <asm/apic.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45 #include <asm/proto.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/kdebug.h>
49 #include <asm/numa.h>
50 #include <asm/cacheflush.h>
51 #include <asm/init.h>
52
53 static unsigned long dma_reserve __initdata;
54
55 static int __init parse_direct_gbpages_off(char *arg)
56 {
57         direct_gbpages = 0;
58         return 0;
59 }
60 early_param("nogbpages", parse_direct_gbpages_off);
61
62 static int __init parse_direct_gbpages_on(char *arg)
63 {
64         direct_gbpages = 1;
65         return 0;
66 }
67 early_param("gbpages", parse_direct_gbpages_on);
68
69 /*
70  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71  * physical space so we can cache the place of the first one and move
72  * around without checking the pgd every time.
73  */
74
75 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76 EXPORT_SYMBOL_GPL(__supported_pte_mask);
77
78 int force_personality32;
79
80 /*
81  * noexec32=on|off
82  * Control non executable heap for 32bit processes.
83  * To control the stack too use noexec=off
84  *
85  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86  * off  PROT_READ implies PROT_EXEC
87  */
88 static int __init nonx32_setup(char *str)
89 {
90         if (!strcmp(str, "on"))
91                 force_personality32 &= ~READ_IMPLIES_EXEC;
92         else if (!strcmp(str, "off"))
93                 force_personality32 |= READ_IMPLIES_EXEC;
94         return 1;
95 }
96 __setup("noexec32=", nonx32_setup);
97
98 /*
99  * NOTE: This function is marked __ref because it calls __init function
100  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
101  */
102 static __ref void *spp_getpage(void)
103 {
104         void *ptr;
105
106         if (after_bootmem)
107                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
108         else
109                 ptr = alloc_bootmem_pages(PAGE_SIZE);
110
111         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
112                 panic("set_pte_phys: cannot allocate page data %s\n",
113                         after_bootmem ? "after bootmem" : "");
114         }
115
116         pr_debug("spp_getpage %p\n", ptr);
117
118         return ptr;
119 }
120
121 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
122 {
123         if (pgd_none(*pgd)) {
124                 pud_t *pud = (pud_t *)spp_getpage();
125                 pgd_populate(&init_mm, pgd, pud);
126                 if (pud != pud_offset(pgd, 0))
127                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
128                                pud, pud_offset(pgd, 0));
129         }
130         return pud_offset(pgd, vaddr);
131 }
132
133 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
134 {
135         if (pud_none(*pud)) {
136                 pmd_t *pmd = (pmd_t *) spp_getpage();
137                 pud_populate(&init_mm, pud, pmd);
138                 if (pmd != pmd_offset(pud, 0))
139                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
140                                pmd, pmd_offset(pud, 0));
141         }
142         return pmd_offset(pud, vaddr);
143 }
144
145 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
146 {
147         if (pmd_none(*pmd)) {
148                 pte_t *pte = (pte_t *) spp_getpage();
149                 pmd_populate_kernel(&init_mm, pmd, pte);
150                 if (pte != pte_offset_kernel(pmd, 0))
151                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
152         }
153         return pte_offset_kernel(pmd, vaddr);
154 }
155
156 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
157 {
158         pud_t *pud;
159         pmd_t *pmd;
160         pte_t *pte;
161
162         pud = pud_page + pud_index(vaddr);
163         pmd = fill_pmd(pud, vaddr);
164         pte = fill_pte(pmd, vaddr);
165
166         set_pte(pte, new_pte);
167
168         /*
169          * It's enough to flush this one mapping.
170          * (PGE mappings get flushed as well)
171          */
172         __flush_tlb_one(vaddr);
173 }
174
175 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
176 {
177         pgd_t *pgd;
178         pud_t *pud_page;
179
180         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
181
182         pgd = pgd_offset_k(vaddr);
183         if (pgd_none(*pgd)) {
184                 printk(KERN_ERR
185                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
186                 return;
187         }
188         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
189         set_pte_vaddr_pud(pud_page, vaddr, pteval);
190 }
191
192 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
193 {
194         pgd_t *pgd;
195         pud_t *pud;
196
197         pgd = pgd_offset_k(vaddr);
198         pud = fill_pud(pgd, vaddr);
199         return fill_pmd(pud, vaddr);
200 }
201
202 pte_t * __init populate_extra_pte(unsigned long vaddr)
203 {
204         pmd_t *pmd;
205
206         pmd = populate_extra_pmd(vaddr);
207         return fill_pte(pmd, vaddr);
208 }
209
210 /*
211  * Create large page table mappings for a range of physical addresses.
212  */
213 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
214                                                 pgprot_t prot)
215 {
216         pgd_t *pgd;
217         pud_t *pud;
218         pmd_t *pmd;
219
220         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
221         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
222                 pgd = pgd_offset_k((unsigned long)__va(phys));
223                 if (pgd_none(*pgd)) {
224                         pud = (pud_t *) spp_getpage();
225                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
226                                                 _PAGE_USER));
227                 }
228                 pud = pud_offset(pgd, (unsigned long)__va(phys));
229                 if (pud_none(*pud)) {
230                         pmd = (pmd_t *) spp_getpage();
231                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
232                                                 _PAGE_USER));
233                 }
234                 pmd = pmd_offset(pud, phys);
235                 BUG_ON(!pmd_none(*pmd));
236                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
237         }
238 }
239
240 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
241 {
242         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
243 }
244
245 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
246 {
247         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
248 }
249
250 /*
251  * The head.S code sets up the kernel high mapping:
252  *
253  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
254  *
255  * phys_addr holds the negative offset to the kernel, which is added
256  * to the compile time generated pmds. This results in invalid pmds up
257  * to the point where we hit the physaddr 0 mapping.
258  *
259  * We limit the mappings to the region from _text to _end.  _end is
260  * rounded up to the 2MB boundary. This catches the invalid pmds as
261  * well, as they are located before _text:
262  */
263 void __init cleanup_highmap(void)
264 {
265         unsigned long vaddr = __START_KERNEL_map;
266         unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
267         pmd_t *pmd = level2_kernel_pgt;
268         pmd_t *last_pmd = pmd + PTRS_PER_PMD;
269
270         for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
271                 if (pmd_none(*pmd))
272                         continue;
273                 if (vaddr < (unsigned long) _text || vaddr > end)
274                         set_pmd(pmd, __pmd(0));
275         }
276 }
277
278 static __ref void *alloc_low_page(unsigned long *phys)
279 {
280         unsigned long pfn = e820_table_end++;
281         void *adr;
282
283         if (after_bootmem) {
284                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
285                 *phys = __pa(adr);
286
287                 return adr;
288         }
289
290         if (pfn >= e820_table_top)
291                 panic("alloc_low_page: ran out of memory");
292
293         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
294         memset(adr, 0, PAGE_SIZE);
295         *phys  = pfn * PAGE_SIZE;
296         return adr;
297 }
298
299 static __ref void unmap_low_page(void *adr)
300 {
301         if (after_bootmem)
302                 return;
303
304         early_iounmap(adr, PAGE_SIZE);
305 }
306
307 static unsigned long __meminit
308 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
309               pgprot_t prot)
310 {
311         unsigned pages = 0;
312         unsigned long last_map_addr = end;
313         int i;
314
315         pte_t *pte = pte_page + pte_index(addr);
316
317         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
318
319                 if (addr >= end) {
320                         if (!after_bootmem) {
321                                 for(; i < PTRS_PER_PTE; i++, pte++)
322                                         set_pte(pte, __pte(0));
323                         }
324                         break;
325                 }
326
327                 /*
328                  * We will re-use the existing mapping.
329                  * Xen for example has some special requirements, like mapping
330                  * pagetable pages as RO. So assume someone who pre-setup
331                  * these mappings are more intelligent.
332                  */
333                 if (pte_val(*pte)) {
334                         pages++;
335                         continue;
336                 }
337
338                 if (0)
339                         printk("   pte=%p addr=%lx pte=%016lx\n",
340                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
341                 pages++;
342                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
343                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
344         }
345
346         update_page_count(PG_LEVEL_4K, pages);
347
348         return last_map_addr;
349 }
350
351 static unsigned long __meminit
352 phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
353                 pgprot_t prot)
354 {
355         pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
356
357         return phys_pte_init(pte, address, end, prot);
358 }
359
360 static unsigned long __meminit
361 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
362               unsigned long page_size_mask, pgprot_t prot)
363 {
364         unsigned long pages = 0;
365         unsigned long last_map_addr = end;
366
367         int i = pmd_index(address);
368
369         for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
370                 unsigned long pte_phys;
371                 pmd_t *pmd = pmd_page + pmd_index(address);
372                 pte_t *pte;
373                 pgprot_t new_prot = prot;
374
375                 if (address >= end) {
376                         if (!after_bootmem) {
377                                 for (; i < PTRS_PER_PMD; i++, pmd++)
378                                         set_pmd(pmd, __pmd(0));
379                         }
380                         break;
381                 }
382
383                 if (pmd_val(*pmd)) {
384                         if (!pmd_large(*pmd)) {
385                                 spin_lock(&init_mm.page_table_lock);
386                                 last_map_addr = phys_pte_update(pmd, address,
387                                                                 end, prot);
388                                 spin_unlock(&init_mm.page_table_lock);
389                                 continue;
390                         }
391                         /*
392                          * If we are ok with PG_LEVEL_2M mapping, then we will
393                          * use the existing mapping,
394                          *
395                          * Otherwise, we will split the large page mapping but
396                          * use the same existing protection bits except for
397                          * large page, so that we don't violate Intel's TLB
398                          * Application note (317080) which says, while changing
399                          * the page sizes, new and old translations should
400                          * not differ with respect to page frame and
401                          * attributes.
402                          */
403                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
404                                 pages++;
405                                 continue;
406                         }
407                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
408                 }
409
410                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
411                         pages++;
412                         spin_lock(&init_mm.page_table_lock);
413                         set_pte((pte_t *)pmd,
414                                 pfn_pte(address >> PAGE_SHIFT,
415                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
416                         spin_unlock(&init_mm.page_table_lock);
417                         last_map_addr = (address & PMD_MASK) + PMD_SIZE;
418                         continue;
419                 }
420
421                 pte = alloc_low_page(&pte_phys);
422                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
423                 unmap_low_page(pte);
424
425                 spin_lock(&init_mm.page_table_lock);
426                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
427                 spin_unlock(&init_mm.page_table_lock);
428         }
429         update_page_count(PG_LEVEL_2M, pages);
430         return last_map_addr;
431 }
432
433 static unsigned long __meminit
434 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
435                 unsigned long page_size_mask, pgprot_t prot)
436 {
437         pmd_t *pmd = pmd_offset(pud, 0);
438         unsigned long last_map_addr;
439
440         last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
441         __flush_tlb_all();
442         return last_map_addr;
443 }
444
445 static unsigned long __meminit
446 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
447                          unsigned long page_size_mask)
448 {
449         unsigned long pages = 0;
450         unsigned long last_map_addr = end;
451         int i = pud_index(addr);
452
453         for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
454                 unsigned long pmd_phys;
455                 pud_t *pud = pud_page + pud_index(addr);
456                 pmd_t *pmd;
457                 pgprot_t prot = PAGE_KERNEL;
458
459                 if (addr >= end)
460                         break;
461
462                 if (!after_bootmem &&
463                                 !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
464                         set_pud(pud, __pud(0));
465                         continue;
466                 }
467
468                 if (pud_val(*pud)) {
469                         if (!pud_large(*pud)) {
470                                 last_map_addr = phys_pmd_update(pud, addr, end,
471                                                          page_size_mask, prot);
472                                 continue;
473                         }
474                         /*
475                          * If we are ok with PG_LEVEL_1G mapping, then we will
476                          * use the existing mapping.
477                          *
478                          * Otherwise, we will split the gbpage mapping but use
479                          * the same existing protection  bits except for large
480                          * page, so that we don't violate Intel's TLB
481                          * Application note (317080) which says, while changing
482                          * the page sizes, new and old translations should
483                          * not differ with respect to page frame and
484                          * attributes.
485                          */
486                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
487                                 pages++;
488                                 continue;
489                         }
490                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
491                 }
492
493                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
494                         pages++;
495                         spin_lock(&init_mm.page_table_lock);
496                         set_pte((pte_t *)pud,
497                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
498                         spin_unlock(&init_mm.page_table_lock);
499                         last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
500                         continue;
501                 }
502
503                 pmd = alloc_low_page(&pmd_phys);
504                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
505                                               prot);
506                 unmap_low_page(pmd);
507
508                 spin_lock(&init_mm.page_table_lock);
509                 pud_populate(&init_mm, pud, __va(pmd_phys));
510                 spin_unlock(&init_mm.page_table_lock);
511         }
512         __flush_tlb_all();
513
514         update_page_count(PG_LEVEL_1G, pages);
515
516         return last_map_addr;
517 }
518
519 static unsigned long __meminit
520 phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
521                  unsigned long page_size_mask)
522 {
523         pud_t *pud;
524
525         pud = (pud_t *)pgd_page_vaddr(*pgd);
526
527         return phys_pud_init(pud, addr, end, page_size_mask);
528 }
529
530 unsigned long __meminit
531 kernel_physical_mapping_init(unsigned long start,
532                              unsigned long end,
533                              unsigned long page_size_mask)
534 {
535
536         unsigned long next, last_map_addr = end;
537
538         start = (unsigned long)__va(start);
539         end = (unsigned long)__va(end);
540
541         for (; start < end; start = next) {
542                 pgd_t *pgd = pgd_offset_k(start);
543                 unsigned long pud_phys;
544                 pud_t *pud;
545
546                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
547                 if (next > end)
548                         next = end;
549
550                 if (pgd_val(*pgd)) {
551                         last_map_addr = phys_pud_update(pgd, __pa(start),
552                                                  __pa(end), page_size_mask);
553                         continue;
554                 }
555
556                 pud = alloc_low_page(&pud_phys);
557                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
558                                                  page_size_mask);
559                 unmap_low_page(pud);
560
561                 spin_lock(&init_mm.page_table_lock);
562                 pgd_populate(&init_mm, pgd, __va(pud_phys));
563                 spin_unlock(&init_mm.page_table_lock);
564         }
565         __flush_tlb_all();
566
567         return last_map_addr;
568 }
569
570 #ifndef CONFIG_NUMA
571 void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
572 {
573         unsigned long bootmap_size, bootmap;
574
575         bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
576         bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
577                                  PAGE_SIZE);
578         if (bootmap == -1L)
579                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
580         /* don't touch min_low_pfn */
581         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
582                                          0, end_pfn);
583         e820_register_active_regions(0, start_pfn, end_pfn);
584         free_bootmem_with_active_regions(0, end_pfn);
585         early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
586         reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
587 }
588 #endif
589
590 void __init paging_init(void)
591 {
592         unsigned long max_zone_pfns[MAX_NR_ZONES];
593
594         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
595         max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
596         max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
597         max_zone_pfns[ZONE_NORMAL] = max_pfn;
598
599         sparse_memory_present_with_active_regions(MAX_NUMNODES);
600         sparse_init();
601
602         /*
603          * clear the default setting with node 0
604          * note: don't use nodes_clear here, that is really clearing when
605          *       numa support is not compiled in, and later node_set_state
606          *       will not set it back.
607          */
608         node_clear_state(0, N_NORMAL_MEMORY);
609
610         free_area_init_nodes(max_zone_pfns);
611 }
612
613 /*
614  * Memory hotplug specific functions
615  */
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618  * Memory is added always to NORMAL zone. This means you will never get
619  * additional DMA/DMA32 memory.
620  */
621 int arch_add_memory(int nid, u64 start, u64 size)
622 {
623         struct pglist_data *pgdat = NODE_DATA(nid);
624         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
625         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
626         unsigned long nr_pages = size >> PAGE_SHIFT;
627         int ret;
628
629         last_mapped_pfn = init_memory_mapping(start, start + size);
630         if (last_mapped_pfn > max_pfn_mapped)
631                 max_pfn_mapped = last_mapped_pfn;
632
633         ret = __add_pages(nid, zone, start_pfn, nr_pages);
634         WARN_ON_ONCE(ret);
635
636         return ret;
637 }
638 EXPORT_SYMBOL_GPL(arch_add_memory);
639
640 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
641 int memory_add_physaddr_to_nid(u64 start)
642 {
643         return 0;
644 }
645 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
646 #endif
647
648 #endif /* CONFIG_MEMORY_HOTPLUG */
649
650 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
651                          kcore_modules, kcore_vsyscall;
652
653 void __init mem_init(void)
654 {
655         long codesize, reservedpages, datasize, initsize;
656         unsigned long absent_pages;
657
658         pci_iommu_alloc();
659
660         /* clear_bss() already clear the empty_zero_page */
661
662         reservedpages = 0;
663
664         /* this will put all low memory onto the freelists */
665 #ifdef CONFIG_NUMA
666         totalram_pages = numa_free_all_bootmem();
667 #else
668         totalram_pages = free_all_bootmem();
669 #endif
670
671         absent_pages = absent_pages_in_range(0, max_pfn);
672         reservedpages = max_pfn - totalram_pages - absent_pages;
673         after_bootmem = 1;
674
675         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
676         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
677         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
678
679         /* Register memory areas for /proc/kcore */
680         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
681         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
682                    VMALLOC_END-VMALLOC_START);
683         kclist_add(&kcore_kernel, &_stext, _end - _stext);
684         kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
685         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
686                                  VSYSCALL_END - VSYSCALL_START);
687
688         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
689                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
690                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
691                 max_pfn << (PAGE_SHIFT-10),
692                 codesize >> 10,
693                 absent_pages << (PAGE_SHIFT-10),
694                 reservedpages << (PAGE_SHIFT-10),
695                 datasize >> 10,
696                 initsize >> 10);
697 }
698
699 #ifdef CONFIG_DEBUG_RODATA
700 const int rodata_test_data = 0xC3;
701 EXPORT_SYMBOL_GPL(rodata_test_data);
702
703 static int kernel_set_to_readonly;
704
705 void set_kernel_text_rw(void)
706 {
707         unsigned long start = PFN_ALIGN(_stext);
708         unsigned long end = PFN_ALIGN(__start_rodata);
709
710         if (!kernel_set_to_readonly)
711                 return;
712
713         pr_debug("Set kernel text: %lx - %lx for read write\n",
714                  start, end);
715
716         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
717 }
718
719 void set_kernel_text_ro(void)
720 {
721         unsigned long start = PFN_ALIGN(_stext);
722         unsigned long end = PFN_ALIGN(__start_rodata);
723
724         if (!kernel_set_to_readonly)
725                 return;
726
727         pr_debug("Set kernel text: %lx - %lx for read only\n",
728                  start, end);
729
730         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
731 }
732
733 void mark_rodata_ro(void)
734 {
735         unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
736         unsigned long rodata_start =
737                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
738
739         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
740                (end - start) >> 10);
741         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
742
743         kernel_set_to_readonly = 1;
744
745         /*
746          * The rodata section (but not the kernel text!) should also be
747          * not-executable.
748          */
749         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
750
751         rodata_test();
752
753 #ifdef CONFIG_CPA_DEBUG
754         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
755         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
756
757         printk(KERN_INFO "Testing CPA: again\n");
758         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
759 #endif
760 }
761
762 #endif
763
764 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
765                                    int flags)
766 {
767 #ifdef CONFIG_NUMA
768         int nid, next_nid;
769         int ret;
770 #endif
771         unsigned long pfn = phys >> PAGE_SHIFT;
772
773         if (pfn >= max_pfn) {
774                 /*
775                  * This can happen with kdump kernels when accessing
776                  * firmware tables:
777                  */
778                 if (pfn < max_pfn_mapped)
779                         return -EFAULT;
780
781                 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
782                                 phys, len);
783                 return -EFAULT;
784         }
785
786         /* Should check here against the e820 map to avoid double free */
787 #ifdef CONFIG_NUMA
788         nid = phys_to_nid(phys);
789         next_nid = phys_to_nid(phys + len - 1);
790         if (nid == next_nid)
791                 ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
792         else
793                 ret = reserve_bootmem(phys, len, flags);
794
795         if (ret != 0)
796                 return ret;
797
798 #else
799         reserve_bootmem(phys, len, flags);
800 #endif
801
802         if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
803                 dma_reserve += len / PAGE_SIZE;
804                 set_dma_reserve(dma_reserve);
805         }
806
807         return 0;
808 }
809
810 int kern_addr_valid(unsigned long addr)
811 {
812         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
813         pgd_t *pgd;
814         pud_t *pud;
815         pmd_t *pmd;
816         pte_t *pte;
817
818         if (above != 0 && above != -1UL)
819                 return 0;
820
821         pgd = pgd_offset_k(addr);
822         if (pgd_none(*pgd))
823                 return 0;
824
825         pud = pud_offset(pgd, addr);
826         if (pud_none(*pud))
827                 return 0;
828
829         pmd = pmd_offset(pud, addr);
830         if (pmd_none(*pmd))
831                 return 0;
832
833         if (pmd_large(*pmd))
834                 return pfn_valid(pmd_pfn(*pmd));
835
836         pte = pte_offset_kernel(pmd, addr);
837         if (pte_none(*pte))
838                 return 0;
839
840         return pfn_valid(pte_pfn(*pte));
841 }
842
843 /*
844  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
845  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
846  * not need special handling anymore:
847  */
848 static struct vm_area_struct gate_vma = {
849         .vm_start       = VSYSCALL_START,
850         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
851         .vm_page_prot   = PAGE_READONLY_EXEC,
852         .vm_flags       = VM_READ | VM_EXEC
853 };
854
855 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
856 {
857 #ifdef CONFIG_IA32_EMULATION
858         if (test_tsk_thread_flag(tsk, TIF_IA32))
859                 return NULL;
860 #endif
861         return &gate_vma;
862 }
863
864 int in_gate_area(struct task_struct *task, unsigned long addr)
865 {
866         struct vm_area_struct *vma = get_gate_vma(task);
867
868         if (!vma)
869                 return 0;
870
871         return (addr >= vma->vm_start) && (addr < vma->vm_end);
872 }
873
874 /*
875  * Use this when you have no reliable task/vma, typically from interrupt
876  * context. It is less reliable than using the task's vma and may give
877  * false positives:
878  */
879 int in_gate_area_no_task(unsigned long addr)
880 {
881         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
882 }
883
884 const char *arch_vma_name(struct vm_area_struct *vma)
885 {
886         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
887                 return "[vdso]";
888         if (vma == &gate_vma)
889                 return "[vsyscall]";
890         return NULL;
891 }
892
893 #ifdef CONFIG_SPARSEMEM_VMEMMAP
894 /*
895  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
896  */
897 static long __meminitdata addr_start, addr_end;
898 static void __meminitdata *p_start, *p_end;
899 static int __meminitdata node_start;
900
901 int __meminit
902 vmemmap_populate(struct page *start_page, unsigned long size, int node)
903 {
904         unsigned long addr = (unsigned long)start_page;
905         unsigned long end = (unsigned long)(start_page + size);
906         unsigned long next;
907         pgd_t *pgd;
908         pud_t *pud;
909         pmd_t *pmd;
910
911         for (; addr < end; addr = next) {
912                 void *p = NULL;
913
914                 pgd = vmemmap_pgd_populate(addr, node);
915                 if (!pgd)
916                         return -ENOMEM;
917
918                 pud = vmemmap_pud_populate(pgd, addr, node);
919                 if (!pud)
920                         return -ENOMEM;
921
922                 if (!cpu_has_pse) {
923                         next = (addr + PAGE_SIZE) & PAGE_MASK;
924                         pmd = vmemmap_pmd_populate(pud, addr, node);
925
926                         if (!pmd)
927                                 return -ENOMEM;
928
929                         p = vmemmap_pte_populate(pmd, addr, node);
930
931                         if (!p)
932                                 return -ENOMEM;
933
934                         addr_end = addr + PAGE_SIZE;
935                         p_end = p + PAGE_SIZE;
936                 } else {
937                         next = pmd_addr_end(addr, end);
938
939                         pmd = pmd_offset(pud, addr);
940                         if (pmd_none(*pmd)) {
941                                 pte_t entry;
942
943                                 p = vmemmap_alloc_block(PMD_SIZE, node);
944                                 if (!p)
945                                         return -ENOMEM;
946
947                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
948                                                 PAGE_KERNEL_LARGE);
949                                 set_pmd(pmd, __pmd(pte_val(entry)));
950
951                                 /* check to see if we have contiguous blocks */
952                                 if (p_end != p || node_start != node) {
953                                         if (p_start)
954                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
955                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
956                                         addr_start = addr;
957                                         node_start = node;
958                                         p_start = p;
959                                 }
960
961                                 addr_end = addr + PMD_SIZE;
962                                 p_end = p + PMD_SIZE;
963                         } else
964                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
965                 }
966
967         }
968         return 0;
969 }
970
971 void __meminit vmemmap_populate_print_last(void)
972 {
973         if (p_start) {
974                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
975                         addr_start, addr_end-1, p_start, p_end-1, node_start);
976                 p_start = NULL;
977                 p_end = NULL;
978                 node_start = 0;
979         }
980 }
981 #endif