Merge branch 'hid-suspend' into picolcd
[pandora-kernel.git] / arch / x86 / mm / hugetlbpage.c
1 /*
2  * IA-32 Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5  */
6
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
18
19 static unsigned long page_table_shareable(struct vm_area_struct *svma,
20                                 struct vm_area_struct *vma,
21                                 unsigned long addr, pgoff_t idx)
22 {
23         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
24                                 svma->vm_start;
25         unsigned long sbase = saddr & PUD_MASK;
26         unsigned long s_end = sbase + PUD_SIZE;
27
28         /* Allow segments to share if only one is marked locked */
29         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
30         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
31
32         /*
33          * match the virtual addresses, permission and the alignment of the
34          * page table page.
35          */
36         if (pmd_index(addr) != pmd_index(saddr) ||
37             vm_flags != svm_flags ||
38             sbase < svma->vm_start || svma->vm_end < s_end)
39                 return 0;
40
41         return saddr;
42 }
43
44 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
45 {
46         unsigned long base = addr & PUD_MASK;
47         unsigned long end = base + PUD_SIZE;
48
49         /*
50          * check on proper vm_flags and page table alignment
51          */
52         if (vma->vm_flags & VM_MAYSHARE &&
53             vma->vm_start <= base && end <= vma->vm_end)
54                 return 1;
55         return 0;
56 }
57
58 /*
59  * search for a shareable pmd page for hugetlb.
60  */
61 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
62 {
63         struct vm_area_struct *vma = find_vma(mm, addr);
64         struct address_space *mapping = vma->vm_file->f_mapping;
65         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
66                         vma->vm_pgoff;
67         struct prio_tree_iter iter;
68         struct vm_area_struct *svma;
69         unsigned long saddr;
70         pte_t *spte = NULL;
71
72         if (!vma_shareable(vma, addr))
73                 return;
74
75         spin_lock(&mapping->i_mmap_lock);
76         vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
77                 if (svma == vma)
78                         continue;
79
80                 saddr = page_table_shareable(svma, vma, addr, idx);
81                 if (saddr) {
82                         spte = huge_pte_offset(svma->vm_mm, saddr);
83                         if (spte) {
84                                 get_page(virt_to_page(spte));
85                                 break;
86                         }
87                 }
88         }
89
90         if (!spte)
91                 goto out;
92
93         spin_lock(&mm->page_table_lock);
94         if (pud_none(*pud))
95                 pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
96         else
97                 put_page(virt_to_page(spte));
98         spin_unlock(&mm->page_table_lock);
99 out:
100         spin_unlock(&mapping->i_mmap_lock);
101 }
102
103 /*
104  * unmap huge page backed by shared pte.
105  *
106  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
107  * indicated by page_count > 1, unmap is achieved by clearing pud and
108  * decrementing the ref count. If count == 1, the pte page is not shared.
109  *
110  * called with vma->vm_mm->page_table_lock held.
111  *
112  * returns: 1 successfully unmapped a shared pte page
113  *          0 the underlying pte page is not shared, or it is the last user
114  */
115 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
116 {
117         pgd_t *pgd = pgd_offset(mm, *addr);
118         pud_t *pud = pud_offset(pgd, *addr);
119
120         BUG_ON(page_count(virt_to_page(ptep)) == 0);
121         if (page_count(virt_to_page(ptep)) == 1)
122                 return 0;
123
124         pud_clear(pud);
125         put_page(virt_to_page(ptep));
126         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
127         return 1;
128 }
129
130 pte_t *huge_pte_alloc(struct mm_struct *mm,
131                         unsigned long addr, unsigned long sz)
132 {
133         pgd_t *pgd;
134         pud_t *pud;
135         pte_t *pte = NULL;
136
137         pgd = pgd_offset(mm, addr);
138         pud = pud_alloc(mm, pgd, addr);
139         if (pud) {
140                 if (sz == PUD_SIZE) {
141                         pte = (pte_t *)pud;
142                 } else {
143                         BUG_ON(sz != PMD_SIZE);
144                         if (pud_none(*pud))
145                                 huge_pmd_share(mm, addr, pud);
146                         pte = (pte_t *) pmd_alloc(mm, pud, addr);
147                 }
148         }
149         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
150
151         return pte;
152 }
153
154 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
155 {
156         pgd_t *pgd;
157         pud_t *pud;
158         pmd_t *pmd = NULL;
159
160         pgd = pgd_offset(mm, addr);
161         if (pgd_present(*pgd)) {
162                 pud = pud_offset(pgd, addr);
163                 if (pud_present(*pud)) {
164                         if (pud_large(*pud))
165                                 return (pte_t *)pud;
166                         pmd = pmd_offset(pud, addr);
167                 }
168         }
169         return (pte_t *) pmd;
170 }
171
172 #if 0   /* This is just for testing */
173 struct page *
174 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
175 {
176         unsigned long start = address;
177         int length = 1;
178         int nr;
179         struct page *page;
180         struct vm_area_struct *vma;
181
182         vma = find_vma(mm, addr);
183         if (!vma || !is_vm_hugetlb_page(vma))
184                 return ERR_PTR(-EINVAL);
185
186         pte = huge_pte_offset(mm, address);
187
188         /* hugetlb should be locked, and hence, prefaulted */
189         WARN_ON(!pte || pte_none(*pte));
190
191         page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
192
193         WARN_ON(!PageHead(page));
194
195         return page;
196 }
197
198 int pmd_huge(pmd_t pmd)
199 {
200         return 0;
201 }
202
203 int pud_huge(pud_t pud)
204 {
205         return 0;
206 }
207
208 struct page *
209 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
210                 pmd_t *pmd, int write)
211 {
212         return NULL;
213 }
214
215 #else
216
217 struct page *
218 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
219 {
220         return ERR_PTR(-EINVAL);
221 }
222
223 int pmd_huge(pmd_t pmd)
224 {
225         return !!(pmd_val(pmd) & _PAGE_PSE);
226 }
227
228 int pud_huge(pud_t pud)
229 {
230         return !!(pud_val(pud) & _PAGE_PSE);
231 }
232
233 struct page *
234 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
235                 pmd_t *pmd, int write)
236 {
237         struct page *page;
238
239         page = pte_page(*(pte_t *)pmd);
240         if (page)
241                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
242         return page;
243 }
244
245 struct page *
246 follow_huge_pud(struct mm_struct *mm, unsigned long address,
247                 pud_t *pud, int write)
248 {
249         struct page *page;
250
251         page = pte_page(*(pte_t *)pud);
252         if (page)
253                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
254         return page;
255 }
256
257 #endif
258
259 /* x86_64 also uses this file */
260
261 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
263                 unsigned long addr, unsigned long len,
264                 unsigned long pgoff, unsigned long flags)
265 {
266         struct hstate *h = hstate_file(file);
267         struct mm_struct *mm = current->mm;
268         struct vm_area_struct *vma;
269         unsigned long start_addr;
270
271         if (len > mm->cached_hole_size) {
272                 start_addr = mm->free_area_cache;
273         } else {
274                 start_addr = TASK_UNMAPPED_BASE;
275                 mm->cached_hole_size = 0;
276         }
277
278 full_search:
279         addr = ALIGN(start_addr, huge_page_size(h));
280
281         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
282                 /* At this point:  (!vma || addr < vma->vm_end). */
283                 if (TASK_SIZE - len < addr) {
284                         /*
285                          * Start a new search - just in case we missed
286                          * some holes.
287                          */
288                         if (start_addr != TASK_UNMAPPED_BASE) {
289                                 start_addr = TASK_UNMAPPED_BASE;
290                                 mm->cached_hole_size = 0;
291                                 goto full_search;
292                         }
293                         return -ENOMEM;
294                 }
295                 if (!vma || addr + len <= vma->vm_start) {
296                         mm->free_area_cache = addr + len;
297                         return addr;
298                 }
299                 if (addr + mm->cached_hole_size < vma->vm_start)
300                         mm->cached_hole_size = vma->vm_start - addr;
301                 addr = ALIGN(vma->vm_end, huge_page_size(h));
302         }
303 }
304
305 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
306                 unsigned long addr0, unsigned long len,
307                 unsigned long pgoff, unsigned long flags)
308 {
309         struct hstate *h = hstate_file(file);
310         struct mm_struct *mm = current->mm;
311         struct vm_area_struct *vma, *prev_vma;
312         unsigned long base = mm->mmap_base, addr = addr0;
313         unsigned long largest_hole = mm->cached_hole_size;
314         int first_time = 1;
315
316         /* don't allow allocations above current base */
317         if (mm->free_area_cache > base)
318                 mm->free_area_cache = base;
319
320         if (len <= largest_hole) {
321                 largest_hole = 0;
322                 mm->free_area_cache  = base;
323         }
324 try_again:
325         /* make sure it can fit in the remaining address space */
326         if (mm->free_area_cache < len)
327                 goto fail;
328
329         /* either no address requested or cant fit in requested address hole */
330         addr = (mm->free_area_cache - len) & huge_page_mask(h);
331         do {
332                 /*
333                  * Lookup failure means no vma is above this address,
334                  * i.e. return with success:
335                  */
336                 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
337                         return addr;
338
339                 /*
340                  * new region fits between prev_vma->vm_end and
341                  * vma->vm_start, use it:
342                  */
343                 if (addr + len <= vma->vm_start &&
344                             (!prev_vma || (addr >= prev_vma->vm_end))) {
345                         /* remember the address as a hint for next time */
346                         mm->cached_hole_size = largest_hole;
347                         return (mm->free_area_cache = addr);
348                 } else {
349                         /* pull free_area_cache down to the first hole */
350                         if (mm->free_area_cache == vma->vm_end) {
351                                 mm->free_area_cache = vma->vm_start;
352                                 mm->cached_hole_size = largest_hole;
353                         }
354                 }
355
356                 /* remember the largest hole we saw so far */
357                 if (addr + largest_hole < vma->vm_start)
358                         largest_hole = vma->vm_start - addr;
359
360                 /* try just below the current vma->vm_start */
361                 addr = (vma->vm_start - len) & huge_page_mask(h);
362         } while (len <= vma->vm_start);
363
364 fail:
365         /*
366          * if hint left us with no space for the requested
367          * mapping then try again:
368          */
369         if (first_time) {
370                 mm->free_area_cache = base;
371                 largest_hole = 0;
372                 first_time = 0;
373                 goto try_again;
374         }
375         /*
376          * A failed mmap() very likely causes application failure,
377          * so fall back to the bottom-up function here. This scenario
378          * can happen with large stack limits and large mmap()
379          * allocations.
380          */
381         mm->free_area_cache = TASK_UNMAPPED_BASE;
382         mm->cached_hole_size = ~0UL;
383         addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
384                         len, pgoff, flags);
385
386         /*
387          * Restore the topdown base:
388          */
389         mm->free_area_cache = base;
390         mm->cached_hole_size = ~0UL;
391
392         return addr;
393 }
394
395 unsigned long
396 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
397                 unsigned long len, unsigned long pgoff, unsigned long flags)
398 {
399         struct hstate *h = hstate_file(file);
400         struct mm_struct *mm = current->mm;
401         struct vm_area_struct *vma;
402
403         if (len & ~huge_page_mask(h))
404                 return -EINVAL;
405         if (len > TASK_SIZE)
406                 return -ENOMEM;
407
408         if (flags & MAP_FIXED) {
409                 if (prepare_hugepage_range(file, addr, len))
410                         return -EINVAL;
411                 return addr;
412         }
413
414         if (addr) {
415                 addr = ALIGN(addr, huge_page_size(h));
416                 vma = find_vma(mm, addr);
417                 if (TASK_SIZE - len >= addr &&
418                     (!vma || addr + len <= vma->vm_start))
419                         return addr;
420         }
421         if (mm->get_unmapped_area == arch_get_unmapped_area)
422                 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
423                                 pgoff, flags);
424         else
425                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
426                                 pgoff, flags);
427 }
428
429 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
430
431 #ifdef CONFIG_X86_64
432 static __init int setup_hugepagesz(char *opt)
433 {
434         unsigned long ps = memparse(opt, &opt);
435         if (ps == PMD_SIZE) {
436                 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
437         } else if (ps == PUD_SIZE && cpu_has_gbpages) {
438                 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
439         } else {
440                 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
441                         ps >> 20);
442                 return 0;
443         }
444         return 1;
445 }
446 __setup("hugepagesz=", setup_hugepagesz);
447 #endif