Merge branch 'upstream/jump-label-noearly' of git://git.kernel.org/pub/scm/linux...
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <linux/pci.h>
48 #include <trace/events/kvm.h>
49
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52
53 #include <asm/debugreg.h>
54 #include <asm/msr.h>
55 #include <asm/desc.h>
56 #include <asm/mtrr.h>
57 #include <asm/mce.h>
58 #include <asm/i387.h>
59 #include <asm/xcr.h>
60 #include <asm/pvclock.h>
61 #include <asm/div64.h>
62
63 #define MAX_IO_MSRS 256
64 #define KVM_MAX_MCE_BANKS 32
65 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66
67 #define emul_to_vcpu(ctxt) \
68         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
69
70 /* EFER defaults:
71  * - enable syscall per default because its emulated by KVM
72  * - enable LME and LMA per default on 64 bit KVM
73  */
74 #ifdef CONFIG_X86_64
75 static
76 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
77 #else
78 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
79 #endif
80
81 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
82 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83
84 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
85 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
86                                     struct kvm_cpuid_entry2 __user *entries);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 #define KVM_NR_SHARED_MSRS 16
101
102 struct kvm_shared_msrs_global {
103         int nr;
104         u32 msrs[KVM_NR_SHARED_MSRS];
105 };
106
107 struct kvm_shared_msrs {
108         struct user_return_notifier urn;
109         bool registered;
110         struct kvm_shared_msr_values {
111                 u64 host;
112                 u64 curr;
113         } values[KVM_NR_SHARED_MSRS];
114 };
115
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
118
119 struct kvm_stats_debugfs_item debugfs_entries[] = {
120         { "pf_fixed", VCPU_STAT(pf_fixed) },
121         { "pf_guest", VCPU_STAT(pf_guest) },
122         { "tlb_flush", VCPU_STAT(tlb_flush) },
123         { "invlpg", VCPU_STAT(invlpg) },
124         { "exits", VCPU_STAT(exits) },
125         { "io_exits", VCPU_STAT(io_exits) },
126         { "mmio_exits", VCPU_STAT(mmio_exits) },
127         { "signal_exits", VCPU_STAT(signal_exits) },
128         { "irq_window", VCPU_STAT(irq_window_exits) },
129         { "nmi_window", VCPU_STAT(nmi_window_exits) },
130         { "halt_exits", VCPU_STAT(halt_exits) },
131         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
132         { "hypercalls", VCPU_STAT(hypercalls) },
133         { "request_irq", VCPU_STAT(request_irq_exits) },
134         { "irq_exits", VCPU_STAT(irq_exits) },
135         { "host_state_reload", VCPU_STAT(host_state_reload) },
136         { "efer_reload", VCPU_STAT(efer_reload) },
137         { "fpu_reload", VCPU_STAT(fpu_reload) },
138         { "insn_emulation", VCPU_STAT(insn_emulation) },
139         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140         { "irq_injections", VCPU_STAT(irq_injections) },
141         { "nmi_injections", VCPU_STAT(nmi_injections) },
142         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
144         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146         { "mmu_flooded", VM_STAT(mmu_flooded) },
147         { "mmu_recycled", VM_STAT(mmu_recycled) },
148         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149         { "mmu_unsync", VM_STAT(mmu_unsync) },
150         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151         { "largepages", VM_STAT(lpages) },
152         { NULL }
153 };
154
155 u64 __read_mostly host_xcr0;
156
157 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161         int i;
162         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163                 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168         unsigned slot;
169         struct kvm_shared_msrs *locals
170                 = container_of(urn, struct kvm_shared_msrs, urn);
171         struct kvm_shared_msr_values *values;
172
173         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174                 values = &locals->values[slot];
175                 if (values->host != values->curr) {
176                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
177                         values->curr = values->host;
178                 }
179         }
180         locals->registered = false;
181         user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186         struct kvm_shared_msrs *smsr;
187         u64 value;
188
189         smsr = &__get_cpu_var(shared_msrs);
190         /* only read, and nobody should modify it at this time,
191          * so don't need lock */
192         if (slot >= shared_msrs_global.nr) {
193                 printk(KERN_ERR "kvm: invalid MSR slot!");
194                 return;
195         }
196         rdmsrl_safe(msr, &value);
197         smsr->values[slot].host = value;
198         smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203         if (slot >= shared_msrs_global.nr)
204                 shared_msrs_global.nr = slot + 1;
205         shared_msrs_global.msrs[slot] = msr;
206         /* we need ensured the shared_msr_global have been updated */
207         smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213         unsigned i;
214
215         for (i = 0; i < shared_msrs_global.nr; ++i)
216                 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (((value ^ smsr->values[slot].curr) & mask) == 0)
224                 return;
225         smsr->values[slot].curr = value;
226         wrmsrl(shared_msrs_global.msrs[slot], value);
227         if (!smsr->registered) {
228                 smsr->urn.on_user_return = kvm_on_user_return;
229                 user_return_notifier_register(&smsr->urn);
230                 smsr->registered = true;
231         }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239         if (smsr->registered)
240                 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245         if (irqchip_in_kernel(vcpu->kvm))
246                 return vcpu->arch.apic_base;
247         else
248                 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254         /* TODO: reserve bits check */
255         if (irqchip_in_kernel(vcpu->kvm))
256                 kvm_lapic_set_base(vcpu, data);
257         else
258                 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339         if (err)
340                 kvm_inject_gp(vcpu, 0);
341         else
342                 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348         ++vcpu->stat.pf_guest;
349         vcpu->arch.cr2 = fault->address;
350         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358         else
359                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364         atomic_inc(&vcpu->arch.nmi_queued);
365         kvm_make_request(KVM_REQ_NMI, vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377         kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388                 return true;
389         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390         return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400                             gfn_t ngfn, void *data, int offset, int len,
401                             u32 access)
402 {
403         gfn_t real_gfn;
404         gpa_t ngpa;
405
406         ngpa     = gfn_to_gpa(ngfn);
407         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408         if (real_gfn == UNMAPPED_GVA)
409                 return -EFAULT;
410
411         real_gfn = gpa_to_gfn(real_gfn);
412
413         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418                                void *data, int offset, int len, u32 access)
419 {
420         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421                                        data, offset, len, access);
422 }
423
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431         int i;
432         int ret;
433         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436                                       offset * sizeof(u64), sizeof(pdpte),
437                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
438         if (ret < 0) {
439                 ret = 0;
440                 goto out;
441         }
442         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443                 if (is_present_gpte(pdpte[i]) &&
444                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445                         ret = 0;
446                         goto out;
447                 }
448         }
449         ret = 1;
450
451         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452         __set_bit(VCPU_EXREG_PDPTR,
453                   (unsigned long *)&vcpu->arch.regs_avail);
454         __set_bit(VCPU_EXREG_PDPTR,
455                   (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465         bool changed = true;
466         int offset;
467         gfn_t gfn;
468         int r;
469
470         if (is_long_mode(vcpu) || !is_pae(vcpu))
471                 return false;
472
473         if (!test_bit(VCPU_EXREG_PDPTR,
474                       (unsigned long *)&vcpu->arch.regs_avail))
475                 return true;
476
477         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
481         if (r < 0)
482                 goto out;
483         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486         return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491         unsigned long old_cr0 = kvm_read_cr0(vcpu);
492         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493                                     X86_CR0_CD | X86_CR0_NW;
494
495         cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498         if (cr0 & 0xffffffff00000000UL)
499                 return 1;
500 #endif
501
502         cr0 &= ~CR0_RESERVED_BITS;
503
504         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505                 return 1;
506
507         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508                 return 1;
509
510         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512                 if ((vcpu->arch.efer & EFER_LME)) {
513                         int cs_db, cs_l;
514
515                         if (!is_pae(vcpu))
516                                 return 1;
517                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518                         if (cs_l)
519                                 return 1;
520                 } else
521 #endif
522                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523                                                  kvm_read_cr3(vcpu)))
524                         return 1;
525         }
526
527         kvm_x86_ops->set_cr0(vcpu, cr0);
528
529         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530                 kvm_clear_async_pf_completion_queue(vcpu);
531                 kvm_async_pf_hash_reset(vcpu);
532         }
533
534         if ((cr0 ^ old_cr0) & update_bits)
535                 kvm_mmu_reset_context(vcpu);
536         return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548         u64 xcr0;
549
550         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
551         if (index != XCR_XFEATURE_ENABLED_MASK)
552                 return 1;
553         xcr0 = xcr;
554         if (kvm_x86_ops->get_cpl(vcpu) != 0)
555                 return 1;
556         if (!(xcr0 & XSTATE_FP))
557                 return 1;
558         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559                 return 1;
560         if (xcr0 & ~host_xcr0)
561                 return 1;
562         vcpu->arch.xcr0 = xcr0;
563         vcpu->guest_xcr0_loaded = 0;
564         return 0;
565 }
566
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569         if (__kvm_set_xcr(vcpu, index, xcr)) {
570                 kvm_inject_gp(vcpu, 0);
571                 return 1;
572         }
573         return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579         struct kvm_cpuid_entry2 *best;
580
581         best = kvm_find_cpuid_entry(vcpu, 1, 0);
582         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584
585 static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
586 {
587         struct kvm_cpuid_entry2 *best;
588
589         best = kvm_find_cpuid_entry(vcpu, 7, 0);
590         return best && (best->ebx & bit(X86_FEATURE_SMEP));
591 }
592
593 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
594 {
595         struct kvm_cpuid_entry2 *best;
596
597         best = kvm_find_cpuid_entry(vcpu, 7, 0);
598         return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
599 }
600
601 static void update_cpuid(struct kvm_vcpu *vcpu)
602 {
603         struct kvm_cpuid_entry2 *best;
604         struct kvm_lapic *apic = vcpu->arch.apic;
605         u32 timer_mode_mask;
606
607         best = kvm_find_cpuid_entry(vcpu, 1, 0);
608         if (!best)
609                 return;
610
611         /* Update OSXSAVE bit */
612         if (cpu_has_xsave && best->function == 0x1) {
613                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
614                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
615                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
616         }
617
618         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
619                 best->function == 0x1) {
620                 best->ecx |= bit(X86_FEATURE_TSC_DEADLINE_TIMER);
621                 timer_mode_mask = 3 << 17;
622         } else
623                 timer_mode_mask = 1 << 17;
624
625         if (apic)
626                 apic->lapic_timer.timer_mode_mask = timer_mode_mask;
627 }
628
629 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
630 {
631         unsigned long old_cr4 = kvm_read_cr4(vcpu);
632         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
633                                    X86_CR4_PAE | X86_CR4_SMEP;
634         if (cr4 & CR4_RESERVED_BITS)
635                 return 1;
636
637         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
638                 return 1;
639
640         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
641                 return 1;
642
643         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
644                 return 1;
645
646         if (is_long_mode(vcpu)) {
647                 if (!(cr4 & X86_CR4_PAE))
648                         return 1;
649         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
650                    && ((cr4 ^ old_cr4) & pdptr_bits)
651                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
652                                    kvm_read_cr3(vcpu)))
653                 return 1;
654
655         if (kvm_x86_ops->set_cr4(vcpu, cr4))
656                 return 1;
657
658         if ((cr4 ^ old_cr4) & pdptr_bits)
659                 kvm_mmu_reset_context(vcpu);
660
661         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
662                 update_cpuid(vcpu);
663
664         return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_cr4);
667
668 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
669 {
670         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
671                 kvm_mmu_sync_roots(vcpu);
672                 kvm_mmu_flush_tlb(vcpu);
673                 return 0;
674         }
675
676         if (is_long_mode(vcpu)) {
677                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
678                         return 1;
679         } else {
680                 if (is_pae(vcpu)) {
681                         if (cr3 & CR3_PAE_RESERVED_BITS)
682                                 return 1;
683                         if (is_paging(vcpu) &&
684                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
685                                 return 1;
686                 }
687                 /*
688                  * We don't check reserved bits in nonpae mode, because
689                  * this isn't enforced, and VMware depends on this.
690                  */
691         }
692
693         /*
694          * Does the new cr3 value map to physical memory? (Note, we
695          * catch an invalid cr3 even in real-mode, because it would
696          * cause trouble later on when we turn on paging anyway.)
697          *
698          * A real CPU would silently accept an invalid cr3 and would
699          * attempt to use it - with largely undefined (and often hard
700          * to debug) behavior on the guest side.
701          */
702         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
703                 return 1;
704         vcpu->arch.cr3 = cr3;
705         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
706         vcpu->arch.mmu.new_cr3(vcpu);
707         return 0;
708 }
709 EXPORT_SYMBOL_GPL(kvm_set_cr3);
710
711 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
712 {
713         if (cr8 & CR8_RESERVED_BITS)
714                 return 1;
715         if (irqchip_in_kernel(vcpu->kvm))
716                 kvm_lapic_set_tpr(vcpu, cr8);
717         else
718                 vcpu->arch.cr8 = cr8;
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(kvm_set_cr8);
722
723 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
724 {
725         if (irqchip_in_kernel(vcpu->kvm))
726                 return kvm_lapic_get_cr8(vcpu);
727         else
728                 return vcpu->arch.cr8;
729 }
730 EXPORT_SYMBOL_GPL(kvm_get_cr8);
731
732 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734         switch (dr) {
735         case 0 ... 3:
736                 vcpu->arch.db[dr] = val;
737                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
738                         vcpu->arch.eff_db[dr] = val;
739                 break;
740         case 4:
741                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
742                         return 1; /* #UD */
743                 /* fall through */
744         case 6:
745                 if (val & 0xffffffff00000000ULL)
746                         return -1; /* #GP */
747                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
748                 break;
749         case 5:
750                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
751                         return 1; /* #UD */
752                 /* fall through */
753         default: /* 7 */
754                 if (val & 0xffffffff00000000ULL)
755                         return -1; /* #GP */
756                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
757                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
758                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
759                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
760                 }
761                 break;
762         }
763
764         return 0;
765 }
766
767 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
768 {
769         int res;
770
771         res = __kvm_set_dr(vcpu, dr, val);
772         if (res > 0)
773                 kvm_queue_exception(vcpu, UD_VECTOR);
774         else if (res < 0)
775                 kvm_inject_gp(vcpu, 0);
776
777         return res;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_dr);
780
781 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
782 {
783         switch (dr) {
784         case 0 ... 3:
785                 *val = vcpu->arch.db[dr];
786                 break;
787         case 4:
788                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
789                         return 1;
790                 /* fall through */
791         case 6:
792                 *val = vcpu->arch.dr6;
793                 break;
794         case 5:
795                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
796                         return 1;
797                 /* fall through */
798         default: /* 7 */
799                 *val = vcpu->arch.dr7;
800                 break;
801         }
802
803         return 0;
804 }
805
806 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
807 {
808         if (_kvm_get_dr(vcpu, dr, val)) {
809                 kvm_queue_exception(vcpu, UD_VECTOR);
810                 return 1;
811         }
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_get_dr);
815
816 /*
817  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
818  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
819  *
820  * This list is modified at module load time to reflect the
821  * capabilities of the host cpu. This capabilities test skips MSRs that are
822  * kvm-specific. Those are put in the beginning of the list.
823  */
824
825 #define KVM_SAVE_MSRS_BEGIN     9
826 static u32 msrs_to_save[] = {
827         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
828         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
829         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
830         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
831         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
832         MSR_STAR,
833 #ifdef CONFIG_X86_64
834         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
835 #endif
836         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
837 };
838
839 static unsigned num_msrs_to_save;
840
841 static u32 emulated_msrs[] = {
842         MSR_IA32_TSCDEADLINE,
843         MSR_IA32_MISC_ENABLE,
844         MSR_IA32_MCG_STATUS,
845         MSR_IA32_MCG_CTL,
846 };
847
848 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
849 {
850         u64 old_efer = vcpu->arch.efer;
851
852         if (efer & efer_reserved_bits)
853                 return 1;
854
855         if (is_paging(vcpu)
856             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
857                 return 1;
858
859         if (efer & EFER_FFXSR) {
860                 struct kvm_cpuid_entry2 *feat;
861
862                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
863                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
864                         return 1;
865         }
866
867         if (efer & EFER_SVME) {
868                 struct kvm_cpuid_entry2 *feat;
869
870                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
871                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
872                         return 1;
873         }
874
875         efer &= ~EFER_LMA;
876         efer |= vcpu->arch.efer & EFER_LMA;
877
878         kvm_x86_ops->set_efer(vcpu, efer);
879
880         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
881
882         /* Update reserved bits */
883         if ((efer ^ old_efer) & EFER_NX)
884                 kvm_mmu_reset_context(vcpu);
885
886         return 0;
887 }
888
889 void kvm_enable_efer_bits(u64 mask)
890 {
891        efer_reserved_bits &= ~mask;
892 }
893 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
894
895
896 /*
897  * Writes msr value into into the appropriate "register".
898  * Returns 0 on success, non-0 otherwise.
899  * Assumes vcpu_load() was already called.
900  */
901 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
902 {
903         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
904 }
905
906 /*
907  * Adapt set_msr() to msr_io()'s calling convention
908  */
909 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
910 {
911         return kvm_set_msr(vcpu, index, *data);
912 }
913
914 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
915 {
916         int version;
917         int r;
918         struct pvclock_wall_clock wc;
919         struct timespec boot;
920
921         if (!wall_clock)
922                 return;
923
924         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
925         if (r)
926                 return;
927
928         if (version & 1)
929                 ++version;  /* first time write, random junk */
930
931         ++version;
932
933         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
934
935         /*
936          * The guest calculates current wall clock time by adding
937          * system time (updated by kvm_guest_time_update below) to the
938          * wall clock specified here.  guest system time equals host
939          * system time for us, thus we must fill in host boot time here.
940          */
941         getboottime(&boot);
942
943         wc.sec = boot.tv_sec;
944         wc.nsec = boot.tv_nsec;
945         wc.version = version;
946
947         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
948
949         version++;
950         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
951 }
952
953 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
954 {
955         uint32_t quotient, remainder;
956
957         /* Don't try to replace with do_div(), this one calculates
958          * "(dividend << 32) / divisor" */
959         __asm__ ( "divl %4"
960                   : "=a" (quotient), "=d" (remainder)
961                   : "0" (0), "1" (dividend), "r" (divisor) );
962         return quotient;
963 }
964
965 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
966                                s8 *pshift, u32 *pmultiplier)
967 {
968         uint64_t scaled64;
969         int32_t  shift = 0;
970         uint64_t tps64;
971         uint32_t tps32;
972
973         tps64 = base_khz * 1000LL;
974         scaled64 = scaled_khz * 1000LL;
975         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
976                 tps64 >>= 1;
977                 shift--;
978         }
979
980         tps32 = (uint32_t)tps64;
981         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
982                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
983                         scaled64 >>= 1;
984                 else
985                         tps32 <<= 1;
986                 shift++;
987         }
988
989         *pshift = shift;
990         *pmultiplier = div_frac(scaled64, tps32);
991
992         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
993                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
994 }
995
996 static inline u64 get_kernel_ns(void)
997 {
998         struct timespec ts;
999
1000         WARN_ON(preemptible());
1001         ktime_get_ts(&ts);
1002         monotonic_to_bootbased(&ts);
1003         return timespec_to_ns(&ts);
1004 }
1005
1006 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1007 unsigned long max_tsc_khz;
1008
1009 static inline int kvm_tsc_changes_freq(void)
1010 {
1011         int cpu = get_cpu();
1012         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1013                   cpufreq_quick_get(cpu) != 0;
1014         put_cpu();
1015         return ret;
1016 }
1017
1018 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1019 {
1020         if (vcpu->arch.virtual_tsc_khz)
1021                 return vcpu->arch.virtual_tsc_khz;
1022         else
1023                 return __this_cpu_read(cpu_tsc_khz);
1024 }
1025
1026 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1027 {
1028         u64 ret;
1029
1030         WARN_ON(preemptible());
1031         if (kvm_tsc_changes_freq())
1032                 printk_once(KERN_WARNING
1033                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1034         ret = nsec * vcpu_tsc_khz(vcpu);
1035         do_div(ret, USEC_PER_SEC);
1036         return ret;
1037 }
1038
1039 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1040 {
1041         /* Compute a scale to convert nanoseconds in TSC cycles */
1042         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1043                            &vcpu->arch.tsc_catchup_shift,
1044                            &vcpu->arch.tsc_catchup_mult);
1045 }
1046
1047 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1048 {
1049         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1050                                       vcpu->arch.tsc_catchup_mult,
1051                                       vcpu->arch.tsc_catchup_shift);
1052         tsc += vcpu->arch.last_tsc_write;
1053         return tsc;
1054 }
1055
1056 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1057 {
1058         struct kvm *kvm = vcpu->kvm;
1059         u64 offset, ns, elapsed;
1060         unsigned long flags;
1061         s64 sdiff;
1062
1063         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1064         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1065         ns = get_kernel_ns();
1066         elapsed = ns - kvm->arch.last_tsc_nsec;
1067         sdiff = data - kvm->arch.last_tsc_write;
1068         if (sdiff < 0)
1069                 sdiff = -sdiff;
1070
1071         /*
1072          * Special case: close write to TSC within 5 seconds of
1073          * another CPU is interpreted as an attempt to synchronize
1074          * The 5 seconds is to accommodate host load / swapping as
1075          * well as any reset of TSC during the boot process.
1076          *
1077          * In that case, for a reliable TSC, we can match TSC offsets,
1078          * or make a best guest using elapsed value.
1079          */
1080         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1081             elapsed < 5ULL * NSEC_PER_SEC) {
1082                 if (!check_tsc_unstable()) {
1083                         offset = kvm->arch.last_tsc_offset;
1084                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1085                 } else {
1086                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1087                         offset += delta;
1088                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1089                 }
1090                 ns = kvm->arch.last_tsc_nsec;
1091         }
1092         kvm->arch.last_tsc_nsec = ns;
1093         kvm->arch.last_tsc_write = data;
1094         kvm->arch.last_tsc_offset = offset;
1095         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1096         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1097
1098         /* Reset of TSC must disable overshoot protection below */
1099         vcpu->arch.hv_clock.tsc_timestamp = 0;
1100         vcpu->arch.last_tsc_write = data;
1101         vcpu->arch.last_tsc_nsec = ns;
1102 }
1103 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1104
1105 static int kvm_guest_time_update(struct kvm_vcpu *v)
1106 {
1107         unsigned long flags;
1108         struct kvm_vcpu_arch *vcpu = &v->arch;
1109         void *shared_kaddr;
1110         unsigned long this_tsc_khz;
1111         s64 kernel_ns, max_kernel_ns;
1112         u64 tsc_timestamp;
1113
1114         /* Keep irq disabled to prevent changes to the clock */
1115         local_irq_save(flags);
1116         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1117         kernel_ns = get_kernel_ns();
1118         this_tsc_khz = vcpu_tsc_khz(v);
1119         if (unlikely(this_tsc_khz == 0)) {
1120                 local_irq_restore(flags);
1121                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1122                 return 1;
1123         }
1124
1125         /*
1126          * We may have to catch up the TSC to match elapsed wall clock
1127          * time for two reasons, even if kvmclock is used.
1128          *   1) CPU could have been running below the maximum TSC rate
1129          *   2) Broken TSC compensation resets the base at each VCPU
1130          *      entry to avoid unknown leaps of TSC even when running
1131          *      again on the same CPU.  This may cause apparent elapsed
1132          *      time to disappear, and the guest to stand still or run
1133          *      very slowly.
1134          */
1135         if (vcpu->tsc_catchup) {
1136                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1137                 if (tsc > tsc_timestamp) {
1138                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1139                         tsc_timestamp = tsc;
1140                 }
1141         }
1142
1143         local_irq_restore(flags);
1144
1145         if (!vcpu->time_page)
1146                 return 0;
1147
1148         /*
1149          * Time as measured by the TSC may go backwards when resetting the base
1150          * tsc_timestamp.  The reason for this is that the TSC resolution is
1151          * higher than the resolution of the other clock scales.  Thus, many
1152          * possible measurments of the TSC correspond to one measurement of any
1153          * other clock, and so a spread of values is possible.  This is not a
1154          * problem for the computation of the nanosecond clock; with TSC rates
1155          * around 1GHZ, there can only be a few cycles which correspond to one
1156          * nanosecond value, and any path through this code will inevitably
1157          * take longer than that.  However, with the kernel_ns value itself,
1158          * the precision may be much lower, down to HZ granularity.  If the
1159          * first sampling of TSC against kernel_ns ends in the low part of the
1160          * range, and the second in the high end of the range, we can get:
1161          *
1162          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1163          *
1164          * As the sampling errors potentially range in the thousands of cycles,
1165          * it is possible such a time value has already been observed by the
1166          * guest.  To protect against this, we must compute the system time as
1167          * observed by the guest and ensure the new system time is greater.
1168          */
1169         max_kernel_ns = 0;
1170         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1171                 max_kernel_ns = vcpu->last_guest_tsc -
1172                                 vcpu->hv_clock.tsc_timestamp;
1173                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1174                                     vcpu->hv_clock.tsc_to_system_mul,
1175                                     vcpu->hv_clock.tsc_shift);
1176                 max_kernel_ns += vcpu->last_kernel_ns;
1177         }
1178
1179         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1180                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1181                                    &vcpu->hv_clock.tsc_shift,
1182                                    &vcpu->hv_clock.tsc_to_system_mul);
1183                 vcpu->hw_tsc_khz = this_tsc_khz;
1184         }
1185
1186         if (max_kernel_ns > kernel_ns)
1187                 kernel_ns = max_kernel_ns;
1188
1189         /* With all the info we got, fill in the values */
1190         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1191         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1192         vcpu->last_kernel_ns = kernel_ns;
1193         vcpu->last_guest_tsc = tsc_timestamp;
1194         vcpu->hv_clock.flags = 0;
1195
1196         /*
1197          * The interface expects us to write an even number signaling that the
1198          * update is finished. Since the guest won't see the intermediate
1199          * state, we just increase by 2 at the end.
1200          */
1201         vcpu->hv_clock.version += 2;
1202
1203         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1204
1205         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1206                sizeof(vcpu->hv_clock));
1207
1208         kunmap_atomic(shared_kaddr, KM_USER0);
1209
1210         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1211         return 0;
1212 }
1213
1214 static bool msr_mtrr_valid(unsigned msr)
1215 {
1216         switch (msr) {
1217         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1218         case MSR_MTRRfix64K_00000:
1219         case MSR_MTRRfix16K_80000:
1220         case MSR_MTRRfix16K_A0000:
1221         case MSR_MTRRfix4K_C0000:
1222         case MSR_MTRRfix4K_C8000:
1223         case MSR_MTRRfix4K_D0000:
1224         case MSR_MTRRfix4K_D8000:
1225         case MSR_MTRRfix4K_E0000:
1226         case MSR_MTRRfix4K_E8000:
1227         case MSR_MTRRfix4K_F0000:
1228         case MSR_MTRRfix4K_F8000:
1229         case MSR_MTRRdefType:
1230         case MSR_IA32_CR_PAT:
1231                 return true;
1232         case 0x2f8:
1233                 return true;
1234         }
1235         return false;
1236 }
1237
1238 static bool valid_pat_type(unsigned t)
1239 {
1240         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1241 }
1242
1243 static bool valid_mtrr_type(unsigned t)
1244 {
1245         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1246 }
1247
1248 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1249 {
1250         int i;
1251
1252         if (!msr_mtrr_valid(msr))
1253                 return false;
1254
1255         if (msr == MSR_IA32_CR_PAT) {
1256                 for (i = 0; i < 8; i++)
1257                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1258                                 return false;
1259                 return true;
1260         } else if (msr == MSR_MTRRdefType) {
1261                 if (data & ~0xcff)
1262                         return false;
1263                 return valid_mtrr_type(data & 0xff);
1264         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1265                 for (i = 0; i < 8 ; i++)
1266                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1267                                 return false;
1268                 return true;
1269         }
1270
1271         /* variable MTRRs */
1272         return valid_mtrr_type(data & 0xff);
1273 }
1274
1275 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1276 {
1277         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1278
1279         if (!mtrr_valid(vcpu, msr, data))
1280                 return 1;
1281
1282         if (msr == MSR_MTRRdefType) {
1283                 vcpu->arch.mtrr_state.def_type = data;
1284                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1285         } else if (msr == MSR_MTRRfix64K_00000)
1286                 p[0] = data;
1287         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1288                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1289         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1290                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1291         else if (msr == MSR_IA32_CR_PAT)
1292                 vcpu->arch.pat = data;
1293         else {  /* Variable MTRRs */
1294                 int idx, is_mtrr_mask;
1295                 u64 *pt;
1296
1297                 idx = (msr - 0x200) / 2;
1298                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1299                 if (!is_mtrr_mask)
1300                         pt =
1301                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1302                 else
1303                         pt =
1304                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1305                 *pt = data;
1306         }
1307
1308         kvm_mmu_reset_context(vcpu);
1309         return 0;
1310 }
1311
1312 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1313 {
1314         u64 mcg_cap = vcpu->arch.mcg_cap;
1315         unsigned bank_num = mcg_cap & 0xff;
1316
1317         switch (msr) {
1318         case MSR_IA32_MCG_STATUS:
1319                 vcpu->arch.mcg_status = data;
1320                 break;
1321         case MSR_IA32_MCG_CTL:
1322                 if (!(mcg_cap & MCG_CTL_P))
1323                         return 1;
1324                 if (data != 0 && data != ~(u64)0)
1325                         return -1;
1326                 vcpu->arch.mcg_ctl = data;
1327                 break;
1328         default:
1329                 if (msr >= MSR_IA32_MC0_CTL &&
1330                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1331                         u32 offset = msr - MSR_IA32_MC0_CTL;
1332                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1333                          * some Linux kernels though clear bit 10 in bank 4 to
1334                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1335                          * this to avoid an uncatched #GP in the guest
1336                          */
1337                         if ((offset & 0x3) == 0 &&
1338                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1339                                 return -1;
1340                         vcpu->arch.mce_banks[offset] = data;
1341                         break;
1342                 }
1343                 return 1;
1344         }
1345         return 0;
1346 }
1347
1348 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1349 {
1350         struct kvm *kvm = vcpu->kvm;
1351         int lm = is_long_mode(vcpu);
1352         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1353                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1354         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1355                 : kvm->arch.xen_hvm_config.blob_size_32;
1356         u32 page_num = data & ~PAGE_MASK;
1357         u64 page_addr = data & PAGE_MASK;
1358         u8 *page;
1359         int r;
1360
1361         r = -E2BIG;
1362         if (page_num >= blob_size)
1363                 goto out;
1364         r = -ENOMEM;
1365         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1366         if (!page)
1367                 goto out;
1368         r = -EFAULT;
1369         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1370                 goto out_free;
1371         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1372                 goto out_free;
1373         r = 0;
1374 out_free:
1375         kfree(page);
1376 out:
1377         return r;
1378 }
1379
1380 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1381 {
1382         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1383 }
1384
1385 static bool kvm_hv_msr_partition_wide(u32 msr)
1386 {
1387         bool r = false;
1388         switch (msr) {
1389         case HV_X64_MSR_GUEST_OS_ID:
1390         case HV_X64_MSR_HYPERCALL:
1391                 r = true;
1392                 break;
1393         }
1394
1395         return r;
1396 }
1397
1398 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 {
1400         struct kvm *kvm = vcpu->kvm;
1401
1402         switch (msr) {
1403         case HV_X64_MSR_GUEST_OS_ID:
1404                 kvm->arch.hv_guest_os_id = data;
1405                 /* setting guest os id to zero disables hypercall page */
1406                 if (!kvm->arch.hv_guest_os_id)
1407                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1408                 break;
1409         case HV_X64_MSR_HYPERCALL: {
1410                 u64 gfn;
1411                 unsigned long addr;
1412                 u8 instructions[4];
1413
1414                 /* if guest os id is not set hypercall should remain disabled */
1415                 if (!kvm->arch.hv_guest_os_id)
1416                         break;
1417                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1418                         kvm->arch.hv_hypercall = data;
1419                         break;
1420                 }
1421                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1422                 addr = gfn_to_hva(kvm, gfn);
1423                 if (kvm_is_error_hva(addr))
1424                         return 1;
1425                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1426                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1427                 if (__copy_to_user((void __user *)addr, instructions, 4))
1428                         return 1;
1429                 kvm->arch.hv_hypercall = data;
1430                 break;
1431         }
1432         default:
1433                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1434                           "data 0x%llx\n", msr, data);
1435                 return 1;
1436         }
1437         return 0;
1438 }
1439
1440 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1441 {
1442         switch (msr) {
1443         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1444                 unsigned long addr;
1445
1446                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1447                         vcpu->arch.hv_vapic = data;
1448                         break;
1449                 }
1450                 addr = gfn_to_hva(vcpu->kvm, data >>
1451                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1452                 if (kvm_is_error_hva(addr))
1453                         return 1;
1454                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1455                         return 1;
1456                 vcpu->arch.hv_vapic = data;
1457                 break;
1458         }
1459         case HV_X64_MSR_EOI:
1460                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1461         case HV_X64_MSR_ICR:
1462                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1463         case HV_X64_MSR_TPR:
1464                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1465         default:
1466                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1467                           "data 0x%llx\n", msr, data);
1468                 return 1;
1469         }
1470
1471         return 0;
1472 }
1473
1474 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1475 {
1476         gpa_t gpa = data & ~0x3f;
1477
1478         /* Bits 2:5 are resrved, Should be zero */
1479         if (data & 0x3c)
1480                 return 1;
1481
1482         vcpu->arch.apf.msr_val = data;
1483
1484         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1485                 kvm_clear_async_pf_completion_queue(vcpu);
1486                 kvm_async_pf_hash_reset(vcpu);
1487                 return 0;
1488         }
1489
1490         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1491                 return 1;
1492
1493         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1494         kvm_async_pf_wakeup_all(vcpu);
1495         return 0;
1496 }
1497
1498 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1499 {
1500         if (vcpu->arch.time_page) {
1501                 kvm_release_page_dirty(vcpu->arch.time_page);
1502                 vcpu->arch.time_page = NULL;
1503         }
1504 }
1505
1506 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1507 {
1508         u64 delta;
1509
1510         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1511                 return;
1512
1513         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1514         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1515         vcpu->arch.st.accum_steal = delta;
1516 }
1517
1518 static void record_steal_time(struct kvm_vcpu *vcpu)
1519 {
1520         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1521                 return;
1522
1523         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1524                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1525                 return;
1526
1527         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1528         vcpu->arch.st.steal.version += 2;
1529         vcpu->arch.st.accum_steal = 0;
1530
1531         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1532                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1533 }
1534
1535 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1536 {
1537         switch (msr) {
1538         case MSR_EFER:
1539                 return set_efer(vcpu, data);
1540         case MSR_K7_HWCR:
1541                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1542                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1543                 if (data != 0) {
1544                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1545                                 data);
1546                         return 1;
1547                 }
1548                 break;
1549         case MSR_FAM10H_MMIO_CONF_BASE:
1550                 if (data != 0) {
1551                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1552                                 "0x%llx\n", data);
1553                         return 1;
1554                 }
1555                 break;
1556         case MSR_AMD64_NB_CFG:
1557                 break;
1558         case MSR_IA32_DEBUGCTLMSR:
1559                 if (!data) {
1560                         /* We support the non-activated case already */
1561                         break;
1562                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1563                         /* Values other than LBR and BTF are vendor-specific,
1564                            thus reserved and should throw a #GP */
1565                         return 1;
1566                 }
1567                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1568                         __func__, data);
1569                 break;
1570         case MSR_IA32_UCODE_REV:
1571         case MSR_IA32_UCODE_WRITE:
1572         case MSR_VM_HSAVE_PA:
1573         case MSR_AMD64_PATCH_LOADER:
1574                 break;
1575         case 0x200 ... 0x2ff:
1576                 return set_msr_mtrr(vcpu, msr, data);
1577         case MSR_IA32_APICBASE:
1578                 kvm_set_apic_base(vcpu, data);
1579                 break;
1580         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1581                 return kvm_x2apic_msr_write(vcpu, msr, data);
1582         case MSR_IA32_TSCDEADLINE:
1583                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1584                 break;
1585         case MSR_IA32_MISC_ENABLE:
1586                 vcpu->arch.ia32_misc_enable_msr = data;
1587                 break;
1588         case MSR_KVM_WALL_CLOCK_NEW:
1589         case MSR_KVM_WALL_CLOCK:
1590                 vcpu->kvm->arch.wall_clock = data;
1591                 kvm_write_wall_clock(vcpu->kvm, data);
1592                 break;
1593         case MSR_KVM_SYSTEM_TIME_NEW:
1594         case MSR_KVM_SYSTEM_TIME: {
1595                 kvmclock_reset(vcpu);
1596
1597                 vcpu->arch.time = data;
1598                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1599
1600                 /* we verify if the enable bit is set... */
1601                 if (!(data & 1))
1602                         break;
1603
1604                 /* ...but clean it before doing the actual write */
1605                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1606
1607                 vcpu->arch.time_page =
1608                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1609
1610                 if (is_error_page(vcpu->arch.time_page)) {
1611                         kvm_release_page_clean(vcpu->arch.time_page);
1612                         vcpu->arch.time_page = NULL;
1613                 }
1614                 break;
1615         }
1616         case MSR_KVM_ASYNC_PF_EN:
1617                 if (kvm_pv_enable_async_pf(vcpu, data))
1618                         return 1;
1619                 break;
1620         case MSR_KVM_STEAL_TIME:
1621
1622                 if (unlikely(!sched_info_on()))
1623                         return 1;
1624
1625                 if (data & KVM_STEAL_RESERVED_MASK)
1626                         return 1;
1627
1628                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1629                                                         data & KVM_STEAL_VALID_BITS))
1630                         return 1;
1631
1632                 vcpu->arch.st.msr_val = data;
1633
1634                 if (!(data & KVM_MSR_ENABLED))
1635                         break;
1636
1637                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1638
1639                 preempt_disable();
1640                 accumulate_steal_time(vcpu);
1641                 preempt_enable();
1642
1643                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1644
1645                 break;
1646
1647         case MSR_IA32_MCG_CTL:
1648         case MSR_IA32_MCG_STATUS:
1649         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1650                 return set_msr_mce(vcpu, msr, data);
1651
1652         /* Performance counters are not protected by a CPUID bit,
1653          * so we should check all of them in the generic path for the sake of
1654          * cross vendor migration.
1655          * Writing a zero into the event select MSRs disables them,
1656          * which we perfectly emulate ;-). Any other value should be at least
1657          * reported, some guests depend on them.
1658          */
1659         case MSR_P6_EVNTSEL0:
1660         case MSR_P6_EVNTSEL1:
1661         case MSR_K7_EVNTSEL0:
1662         case MSR_K7_EVNTSEL1:
1663         case MSR_K7_EVNTSEL2:
1664         case MSR_K7_EVNTSEL3:
1665                 if (data != 0)
1666                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1667                                 "0x%x data 0x%llx\n", msr, data);
1668                 break;
1669         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1670          * so we ignore writes to make it happy.
1671          */
1672         case MSR_P6_PERFCTR0:
1673         case MSR_P6_PERFCTR1:
1674         case MSR_K7_PERFCTR0:
1675         case MSR_K7_PERFCTR1:
1676         case MSR_K7_PERFCTR2:
1677         case MSR_K7_PERFCTR3:
1678                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1679                         "0x%x data 0x%llx\n", msr, data);
1680                 break;
1681         case MSR_K7_CLK_CTL:
1682                 /*
1683                  * Ignore all writes to this no longer documented MSR.
1684                  * Writes are only relevant for old K7 processors,
1685                  * all pre-dating SVM, but a recommended workaround from
1686                  * AMD for these chips. It is possible to speicify the
1687                  * affected processor models on the command line, hence
1688                  * the need to ignore the workaround.
1689                  */
1690                 break;
1691         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1692                 if (kvm_hv_msr_partition_wide(msr)) {
1693                         int r;
1694                         mutex_lock(&vcpu->kvm->lock);
1695                         r = set_msr_hyperv_pw(vcpu, msr, data);
1696                         mutex_unlock(&vcpu->kvm->lock);
1697                         return r;
1698                 } else
1699                         return set_msr_hyperv(vcpu, msr, data);
1700                 break;
1701         case MSR_IA32_BBL_CR_CTL3:
1702                 /* Drop writes to this legacy MSR -- see rdmsr
1703                  * counterpart for further detail.
1704                  */
1705                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1706                 break;
1707         default:
1708                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1709                         return xen_hvm_config(vcpu, data);
1710                 if (!ignore_msrs) {
1711                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1712                                 msr, data);
1713                         return 1;
1714                 } else {
1715                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1716                                 msr, data);
1717                         break;
1718                 }
1719         }
1720         return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1723
1724
1725 /*
1726  * Reads an msr value (of 'msr_index') into 'pdata'.
1727  * Returns 0 on success, non-0 otherwise.
1728  * Assumes vcpu_load() was already called.
1729  */
1730 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1731 {
1732         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1733 }
1734
1735 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1736 {
1737         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1738
1739         if (!msr_mtrr_valid(msr))
1740                 return 1;
1741
1742         if (msr == MSR_MTRRdefType)
1743                 *pdata = vcpu->arch.mtrr_state.def_type +
1744                          (vcpu->arch.mtrr_state.enabled << 10);
1745         else if (msr == MSR_MTRRfix64K_00000)
1746                 *pdata = p[0];
1747         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1748                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1749         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1750                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1751         else if (msr == MSR_IA32_CR_PAT)
1752                 *pdata = vcpu->arch.pat;
1753         else {  /* Variable MTRRs */
1754                 int idx, is_mtrr_mask;
1755                 u64 *pt;
1756
1757                 idx = (msr - 0x200) / 2;
1758                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1759                 if (!is_mtrr_mask)
1760                         pt =
1761                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1762                 else
1763                         pt =
1764                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1765                 *pdata = *pt;
1766         }
1767
1768         return 0;
1769 }
1770
1771 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1772 {
1773         u64 data;
1774         u64 mcg_cap = vcpu->arch.mcg_cap;
1775         unsigned bank_num = mcg_cap & 0xff;
1776
1777         switch (msr) {
1778         case MSR_IA32_P5_MC_ADDR:
1779         case MSR_IA32_P5_MC_TYPE:
1780                 data = 0;
1781                 break;
1782         case MSR_IA32_MCG_CAP:
1783                 data = vcpu->arch.mcg_cap;
1784                 break;
1785         case MSR_IA32_MCG_CTL:
1786                 if (!(mcg_cap & MCG_CTL_P))
1787                         return 1;
1788                 data = vcpu->arch.mcg_ctl;
1789                 break;
1790         case MSR_IA32_MCG_STATUS:
1791                 data = vcpu->arch.mcg_status;
1792                 break;
1793         default:
1794                 if (msr >= MSR_IA32_MC0_CTL &&
1795                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1796                         u32 offset = msr - MSR_IA32_MC0_CTL;
1797                         data = vcpu->arch.mce_banks[offset];
1798                         break;
1799                 }
1800                 return 1;
1801         }
1802         *pdata = data;
1803         return 0;
1804 }
1805
1806 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1807 {
1808         u64 data = 0;
1809         struct kvm *kvm = vcpu->kvm;
1810
1811         switch (msr) {
1812         case HV_X64_MSR_GUEST_OS_ID:
1813                 data = kvm->arch.hv_guest_os_id;
1814                 break;
1815         case HV_X64_MSR_HYPERCALL:
1816                 data = kvm->arch.hv_hypercall;
1817                 break;
1818         default:
1819                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1820                 return 1;
1821         }
1822
1823         *pdata = data;
1824         return 0;
1825 }
1826
1827 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829         u64 data = 0;
1830
1831         switch (msr) {
1832         case HV_X64_MSR_VP_INDEX: {
1833                 int r;
1834                 struct kvm_vcpu *v;
1835                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1836                         if (v == vcpu)
1837                                 data = r;
1838                 break;
1839         }
1840         case HV_X64_MSR_EOI:
1841                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1842         case HV_X64_MSR_ICR:
1843                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1844         case HV_X64_MSR_TPR:
1845                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1846         case HV_X64_MSR_APIC_ASSIST_PAGE:
1847                 data = vcpu->arch.hv_vapic;
1848                 break;
1849         default:
1850                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1851                 return 1;
1852         }
1853         *pdata = data;
1854         return 0;
1855 }
1856
1857 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1858 {
1859         u64 data;
1860
1861         switch (msr) {
1862         case MSR_IA32_PLATFORM_ID:
1863         case MSR_IA32_EBL_CR_POWERON:
1864         case MSR_IA32_DEBUGCTLMSR:
1865         case MSR_IA32_LASTBRANCHFROMIP:
1866         case MSR_IA32_LASTBRANCHTOIP:
1867         case MSR_IA32_LASTINTFROMIP:
1868         case MSR_IA32_LASTINTTOIP:
1869         case MSR_K8_SYSCFG:
1870         case MSR_K7_HWCR:
1871         case MSR_VM_HSAVE_PA:
1872         case MSR_P6_PERFCTR0:
1873         case MSR_P6_PERFCTR1:
1874         case MSR_P6_EVNTSEL0:
1875         case MSR_P6_EVNTSEL1:
1876         case MSR_K7_EVNTSEL0:
1877         case MSR_K7_PERFCTR0:
1878         case MSR_K8_INT_PENDING_MSG:
1879         case MSR_AMD64_NB_CFG:
1880         case MSR_FAM10H_MMIO_CONF_BASE:
1881                 data = 0;
1882                 break;
1883         case MSR_IA32_UCODE_REV:
1884                 data = 0x100000000ULL;
1885                 break;
1886         case MSR_MTRRcap:
1887                 data = 0x500 | KVM_NR_VAR_MTRR;
1888                 break;
1889         case 0x200 ... 0x2ff:
1890                 return get_msr_mtrr(vcpu, msr, pdata);
1891         case 0xcd: /* fsb frequency */
1892                 data = 3;
1893                 break;
1894                 /*
1895                  * MSR_EBC_FREQUENCY_ID
1896                  * Conservative value valid for even the basic CPU models.
1897                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1898                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1899                  * and 266MHz for model 3, or 4. Set Core Clock
1900                  * Frequency to System Bus Frequency Ratio to 1 (bits
1901                  * 31:24) even though these are only valid for CPU
1902                  * models > 2, however guests may end up dividing or
1903                  * multiplying by zero otherwise.
1904                  */
1905         case MSR_EBC_FREQUENCY_ID:
1906                 data = 1 << 24;
1907                 break;
1908         case MSR_IA32_APICBASE:
1909                 data = kvm_get_apic_base(vcpu);
1910                 break;
1911         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1912                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1913                 break;
1914         case MSR_IA32_TSCDEADLINE:
1915                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1916                 break;
1917         case MSR_IA32_MISC_ENABLE:
1918                 data = vcpu->arch.ia32_misc_enable_msr;
1919                 break;
1920         case MSR_IA32_PERF_STATUS:
1921                 /* TSC increment by tick */
1922                 data = 1000ULL;
1923                 /* CPU multiplier */
1924                 data |= (((uint64_t)4ULL) << 40);
1925                 break;
1926         case MSR_EFER:
1927                 data = vcpu->arch.efer;
1928                 break;
1929         case MSR_KVM_WALL_CLOCK:
1930         case MSR_KVM_WALL_CLOCK_NEW:
1931                 data = vcpu->kvm->arch.wall_clock;
1932                 break;
1933         case MSR_KVM_SYSTEM_TIME:
1934         case MSR_KVM_SYSTEM_TIME_NEW:
1935                 data = vcpu->arch.time;
1936                 break;
1937         case MSR_KVM_ASYNC_PF_EN:
1938                 data = vcpu->arch.apf.msr_val;
1939                 break;
1940         case MSR_KVM_STEAL_TIME:
1941                 data = vcpu->arch.st.msr_val;
1942                 break;
1943         case MSR_IA32_P5_MC_ADDR:
1944         case MSR_IA32_P5_MC_TYPE:
1945         case MSR_IA32_MCG_CAP:
1946         case MSR_IA32_MCG_CTL:
1947         case MSR_IA32_MCG_STATUS:
1948         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1949                 return get_msr_mce(vcpu, msr, pdata);
1950         case MSR_K7_CLK_CTL:
1951                 /*
1952                  * Provide expected ramp-up count for K7. All other
1953                  * are set to zero, indicating minimum divisors for
1954                  * every field.
1955                  *
1956                  * This prevents guest kernels on AMD host with CPU
1957                  * type 6, model 8 and higher from exploding due to
1958                  * the rdmsr failing.
1959                  */
1960                 data = 0x20000000;
1961                 break;
1962         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1963                 if (kvm_hv_msr_partition_wide(msr)) {
1964                         int r;
1965                         mutex_lock(&vcpu->kvm->lock);
1966                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1967                         mutex_unlock(&vcpu->kvm->lock);
1968                         return r;
1969                 } else
1970                         return get_msr_hyperv(vcpu, msr, pdata);
1971                 break;
1972         case MSR_IA32_BBL_CR_CTL3:
1973                 /* This legacy MSR exists but isn't fully documented in current
1974                  * silicon.  It is however accessed by winxp in very narrow
1975                  * scenarios where it sets bit #19, itself documented as
1976                  * a "reserved" bit.  Best effort attempt to source coherent
1977                  * read data here should the balance of the register be
1978                  * interpreted by the guest:
1979                  *
1980                  * L2 cache control register 3: 64GB range, 256KB size,
1981                  * enabled, latency 0x1, configured
1982                  */
1983                 data = 0xbe702111;
1984                 break;
1985         default:
1986                 if (!ignore_msrs) {
1987                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1988                         return 1;
1989                 } else {
1990                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1991                         data = 0;
1992                 }
1993                 break;
1994         }
1995         *pdata = data;
1996         return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1999
2000 /*
2001  * Read or write a bunch of msrs. All parameters are kernel addresses.
2002  *
2003  * @return number of msrs set successfully.
2004  */
2005 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2006                     struct kvm_msr_entry *entries,
2007                     int (*do_msr)(struct kvm_vcpu *vcpu,
2008                                   unsigned index, u64 *data))
2009 {
2010         int i, idx;
2011
2012         idx = srcu_read_lock(&vcpu->kvm->srcu);
2013         for (i = 0; i < msrs->nmsrs; ++i)
2014                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2015                         break;
2016         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2017
2018         return i;
2019 }
2020
2021 /*
2022  * Read or write a bunch of msrs. Parameters are user addresses.
2023  *
2024  * @return number of msrs set successfully.
2025  */
2026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2027                   int (*do_msr)(struct kvm_vcpu *vcpu,
2028                                 unsigned index, u64 *data),
2029                   int writeback)
2030 {
2031         struct kvm_msrs msrs;
2032         struct kvm_msr_entry *entries;
2033         int r, n;
2034         unsigned size;
2035
2036         r = -EFAULT;
2037         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2038                 goto out;
2039
2040         r = -E2BIG;
2041         if (msrs.nmsrs >= MAX_IO_MSRS)
2042                 goto out;
2043
2044         r = -ENOMEM;
2045         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2046         entries = kmalloc(size, GFP_KERNEL);
2047         if (!entries)
2048                 goto out;
2049
2050         r = -EFAULT;
2051         if (copy_from_user(entries, user_msrs->entries, size))
2052                 goto out_free;
2053
2054         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2055         if (r < 0)
2056                 goto out_free;
2057
2058         r = -EFAULT;
2059         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2060                 goto out_free;
2061
2062         r = n;
2063
2064 out_free:
2065         kfree(entries);
2066 out:
2067         return r;
2068 }
2069
2070 int kvm_dev_ioctl_check_extension(long ext)
2071 {
2072         int r;
2073
2074         switch (ext) {
2075         case KVM_CAP_IRQCHIP:
2076         case KVM_CAP_HLT:
2077         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2078         case KVM_CAP_SET_TSS_ADDR:
2079         case KVM_CAP_EXT_CPUID:
2080         case KVM_CAP_CLOCKSOURCE:
2081         case KVM_CAP_PIT:
2082         case KVM_CAP_NOP_IO_DELAY:
2083         case KVM_CAP_MP_STATE:
2084         case KVM_CAP_SYNC_MMU:
2085         case KVM_CAP_USER_NMI:
2086         case KVM_CAP_REINJECT_CONTROL:
2087         case KVM_CAP_IRQ_INJECT_STATUS:
2088         case KVM_CAP_ASSIGN_DEV_IRQ:
2089         case KVM_CAP_IRQFD:
2090         case KVM_CAP_IOEVENTFD:
2091         case KVM_CAP_PIT2:
2092         case KVM_CAP_PIT_STATE2:
2093         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2094         case KVM_CAP_XEN_HVM:
2095         case KVM_CAP_ADJUST_CLOCK:
2096         case KVM_CAP_VCPU_EVENTS:
2097         case KVM_CAP_HYPERV:
2098         case KVM_CAP_HYPERV_VAPIC:
2099         case KVM_CAP_HYPERV_SPIN:
2100         case KVM_CAP_PCI_SEGMENT:
2101         case KVM_CAP_DEBUGREGS:
2102         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2103         case KVM_CAP_XSAVE:
2104         case KVM_CAP_ASYNC_PF:
2105         case KVM_CAP_GET_TSC_KHZ:
2106                 r = 1;
2107                 break;
2108         case KVM_CAP_COALESCED_MMIO:
2109                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2110                 break;
2111         case KVM_CAP_VAPIC:
2112                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2113                 break;
2114         case KVM_CAP_NR_VCPUS:
2115                 r = KVM_SOFT_MAX_VCPUS;
2116                 break;
2117         case KVM_CAP_MAX_VCPUS:
2118                 r = KVM_MAX_VCPUS;
2119                 break;
2120         case KVM_CAP_NR_MEMSLOTS:
2121                 r = KVM_MEMORY_SLOTS;
2122                 break;
2123         case KVM_CAP_PV_MMU:    /* obsolete */
2124                 r = 0;
2125                 break;
2126         case KVM_CAP_IOMMU:
2127                 r = iommu_present(&pci_bus_type);
2128                 break;
2129         case KVM_CAP_MCE:
2130                 r = KVM_MAX_MCE_BANKS;
2131                 break;
2132         case KVM_CAP_XCRS:
2133                 r = cpu_has_xsave;
2134                 break;
2135         case KVM_CAP_TSC_CONTROL:
2136                 r = kvm_has_tsc_control;
2137                 break;
2138         default:
2139                 r = 0;
2140                 break;
2141         }
2142         return r;
2143
2144 }
2145
2146 long kvm_arch_dev_ioctl(struct file *filp,
2147                         unsigned int ioctl, unsigned long arg)
2148 {
2149         void __user *argp = (void __user *)arg;
2150         long r;
2151
2152         switch (ioctl) {
2153         case KVM_GET_MSR_INDEX_LIST: {
2154                 struct kvm_msr_list __user *user_msr_list = argp;
2155                 struct kvm_msr_list msr_list;
2156                 unsigned n;
2157
2158                 r = -EFAULT;
2159                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2160                         goto out;
2161                 n = msr_list.nmsrs;
2162                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2163                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2164                         goto out;
2165                 r = -E2BIG;
2166                 if (n < msr_list.nmsrs)
2167                         goto out;
2168                 r = -EFAULT;
2169                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2170                                  num_msrs_to_save * sizeof(u32)))
2171                         goto out;
2172                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2173                                  &emulated_msrs,
2174                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2175                         goto out;
2176                 r = 0;
2177                 break;
2178         }
2179         case KVM_GET_SUPPORTED_CPUID: {
2180                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2181                 struct kvm_cpuid2 cpuid;
2182
2183                 r = -EFAULT;
2184                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2185                         goto out;
2186                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2187                                                       cpuid_arg->entries);
2188                 if (r)
2189                         goto out;
2190
2191                 r = -EFAULT;
2192                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2193                         goto out;
2194                 r = 0;
2195                 break;
2196         }
2197         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2198                 u64 mce_cap;
2199
2200                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2201                 r = -EFAULT;
2202                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2203                         goto out;
2204                 r = 0;
2205                 break;
2206         }
2207         default:
2208                 r = -EINVAL;
2209         }
2210 out:
2211         return r;
2212 }
2213
2214 static void wbinvd_ipi(void *garbage)
2215 {
2216         wbinvd();
2217 }
2218
2219 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2220 {
2221         return vcpu->kvm->arch.iommu_domain &&
2222                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2223 }
2224
2225 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2226 {
2227         /* Address WBINVD may be executed by guest */
2228         if (need_emulate_wbinvd(vcpu)) {
2229                 if (kvm_x86_ops->has_wbinvd_exit())
2230                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2231                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2232                         smp_call_function_single(vcpu->cpu,
2233                                         wbinvd_ipi, NULL, 1);
2234         }
2235
2236         kvm_x86_ops->vcpu_load(vcpu, cpu);
2237         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2238                 /* Make sure TSC doesn't go backwards */
2239                 s64 tsc_delta;
2240                 u64 tsc;
2241
2242                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2243                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2244                              tsc - vcpu->arch.last_guest_tsc;
2245
2246                 if (tsc_delta < 0)
2247                         mark_tsc_unstable("KVM discovered backwards TSC");
2248                 if (check_tsc_unstable()) {
2249                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2250                         vcpu->arch.tsc_catchup = 1;
2251                 }
2252                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2253                 if (vcpu->cpu != cpu)
2254                         kvm_migrate_timers(vcpu);
2255                 vcpu->cpu = cpu;
2256         }
2257
2258         accumulate_steal_time(vcpu);
2259         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2260 }
2261
2262 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2263 {
2264         kvm_x86_ops->vcpu_put(vcpu);
2265         kvm_put_guest_fpu(vcpu);
2266         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2267 }
2268
2269 static int is_efer_nx(void)
2270 {
2271         unsigned long long efer = 0;
2272
2273         rdmsrl_safe(MSR_EFER, &efer);
2274         return efer & EFER_NX;
2275 }
2276
2277 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2278 {
2279         int i;
2280         struct kvm_cpuid_entry2 *e, *entry;
2281
2282         entry = NULL;
2283         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2284                 e = &vcpu->arch.cpuid_entries[i];
2285                 if (e->function == 0x80000001) {
2286                         entry = e;
2287                         break;
2288                 }
2289         }
2290         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2291                 entry->edx &= ~(1 << 20);
2292                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2293         }
2294 }
2295
2296 /* when an old userspace process fills a new kernel module */
2297 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2298                                     struct kvm_cpuid *cpuid,
2299                                     struct kvm_cpuid_entry __user *entries)
2300 {
2301         int r, i;
2302         struct kvm_cpuid_entry *cpuid_entries;
2303
2304         r = -E2BIG;
2305         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2306                 goto out;
2307         r = -ENOMEM;
2308         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2309         if (!cpuid_entries)
2310                 goto out;
2311         r = -EFAULT;
2312         if (copy_from_user(cpuid_entries, entries,
2313                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2314                 goto out_free;
2315         for (i = 0; i < cpuid->nent; i++) {
2316                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2317                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2318                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2319                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2320                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2321                 vcpu->arch.cpuid_entries[i].index = 0;
2322                 vcpu->arch.cpuid_entries[i].flags = 0;
2323                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2324                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2325                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2326         }
2327         vcpu->arch.cpuid_nent = cpuid->nent;
2328         cpuid_fix_nx_cap(vcpu);
2329         r = 0;
2330         kvm_apic_set_version(vcpu);
2331         kvm_x86_ops->cpuid_update(vcpu);
2332         update_cpuid(vcpu);
2333
2334 out_free:
2335         vfree(cpuid_entries);
2336 out:
2337         return r;
2338 }
2339
2340 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2341                                      struct kvm_cpuid2 *cpuid,
2342                                      struct kvm_cpuid_entry2 __user *entries)
2343 {
2344         int r;
2345
2346         r = -E2BIG;
2347         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2348                 goto out;
2349         r = -EFAULT;
2350         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2351                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2352                 goto out;
2353         vcpu->arch.cpuid_nent = cpuid->nent;
2354         kvm_apic_set_version(vcpu);
2355         kvm_x86_ops->cpuid_update(vcpu);
2356         update_cpuid(vcpu);
2357         return 0;
2358
2359 out:
2360         return r;
2361 }
2362
2363 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2364                                      struct kvm_cpuid2 *cpuid,
2365                                      struct kvm_cpuid_entry2 __user *entries)
2366 {
2367         int r;
2368
2369         r = -E2BIG;
2370         if (cpuid->nent < vcpu->arch.cpuid_nent)
2371                 goto out;
2372         r = -EFAULT;
2373         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2374                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2375                 goto out;
2376         return 0;
2377
2378 out:
2379         cpuid->nent = vcpu->arch.cpuid_nent;
2380         return r;
2381 }
2382
2383 static void cpuid_mask(u32 *word, int wordnum)
2384 {
2385         *word &= boot_cpu_data.x86_capability[wordnum];
2386 }
2387
2388 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2389                            u32 index)
2390 {
2391         entry->function = function;
2392         entry->index = index;
2393         cpuid_count(entry->function, entry->index,
2394                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2395         entry->flags = 0;
2396 }
2397
2398 static bool supported_xcr0_bit(unsigned bit)
2399 {
2400         u64 mask = ((u64)1 << bit);
2401
2402         return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2403 }
2404
2405 #define F(x) bit(X86_FEATURE_##x)
2406
2407 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2408                          u32 index, int *nent, int maxnent)
2409 {
2410         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2411 #ifdef CONFIG_X86_64
2412         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2413                                 ? F(GBPAGES) : 0;
2414         unsigned f_lm = F(LM);
2415 #else
2416         unsigned f_gbpages = 0;
2417         unsigned f_lm = 0;
2418 #endif
2419         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2420
2421         /* cpuid 1.edx */
2422         const u32 kvm_supported_word0_x86_features =
2423                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2424                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2425                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2426                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2427                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2428                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2429                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2430                 0 /* HTT, TM, Reserved, PBE */;
2431         /* cpuid 0x80000001.edx */
2432         const u32 kvm_supported_word1_x86_features =
2433                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2434                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2435                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2436                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2437                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2438                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2439                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2440                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2441         /* cpuid 1.ecx */
2442         const u32 kvm_supported_word4_x86_features =
2443                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2444                 0 /* DS-CPL, VMX, SMX, EST */ |
2445                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2446                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2447                 0 /* Reserved, DCA */ | F(XMM4_1) |
2448                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2449                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2450                 F(F16C) | F(RDRAND);
2451         /* cpuid 0x80000001.ecx */
2452         const u32 kvm_supported_word6_x86_features =
2453                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2454                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2455                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2456                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2457
2458         /* cpuid 0xC0000001.edx */
2459         const u32 kvm_supported_word5_x86_features =
2460                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2461                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2462                 F(PMM) | F(PMM_EN);
2463
2464         /* cpuid 7.0.ebx */
2465         const u32 kvm_supported_word9_x86_features =
2466                 F(SMEP) | F(FSGSBASE) | F(ERMS);
2467
2468         /* all calls to cpuid_count() should be made on the same cpu */
2469         get_cpu();
2470         do_cpuid_1_ent(entry, function, index);
2471         ++*nent;
2472
2473         switch (function) {
2474         case 0:
2475                 entry->eax = min(entry->eax, (u32)0xd);
2476                 break;
2477         case 1:
2478                 entry->edx &= kvm_supported_word0_x86_features;
2479                 cpuid_mask(&entry->edx, 0);
2480                 entry->ecx &= kvm_supported_word4_x86_features;
2481                 cpuid_mask(&entry->ecx, 4);
2482                 /* we support x2apic emulation even if host does not support
2483                  * it since we emulate x2apic in software */
2484                 entry->ecx |= F(X2APIC);
2485                 break;
2486         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2487          * may return different values. This forces us to get_cpu() before
2488          * issuing the first command, and also to emulate this annoying behavior
2489          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2490         case 2: {
2491                 int t, times = entry->eax & 0xff;
2492
2493                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2494                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2495                 for (t = 1; t < times && *nent < maxnent; ++t) {
2496                         do_cpuid_1_ent(&entry[t], function, 0);
2497                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2498                         ++*nent;
2499                 }
2500                 break;
2501         }
2502         /* function 4 has additional index. */
2503         case 4: {
2504                 int i, cache_type;
2505
2506                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2507                 /* read more entries until cache_type is zero */
2508                 for (i = 1; *nent < maxnent; ++i) {
2509                         cache_type = entry[i - 1].eax & 0x1f;
2510                         if (!cache_type)
2511                                 break;
2512                         do_cpuid_1_ent(&entry[i], function, i);
2513                         entry[i].flags |=
2514                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2515                         ++*nent;
2516                 }
2517                 break;
2518         }
2519         case 7: {
2520                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2521                 /* Mask ebx against host capbability word 9 */
2522                 if (index == 0) {
2523                         entry->ebx &= kvm_supported_word9_x86_features;
2524                         cpuid_mask(&entry->ebx, 9);
2525                 } else
2526                         entry->ebx = 0;
2527                 entry->eax = 0;
2528                 entry->ecx = 0;
2529                 entry->edx = 0;
2530                 break;
2531         }
2532         case 9:
2533                 break;
2534         /* function 0xb has additional index. */
2535         case 0xb: {
2536                 int i, level_type;
2537
2538                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2539                 /* read more entries until level_type is zero */
2540                 for (i = 1; *nent < maxnent; ++i) {
2541                         level_type = entry[i - 1].ecx & 0xff00;
2542                         if (!level_type)
2543                                 break;
2544                         do_cpuid_1_ent(&entry[i], function, i);
2545                         entry[i].flags |=
2546                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2547                         ++*nent;
2548                 }
2549                 break;
2550         }
2551         case 0xd: {
2552                 int idx, i;
2553
2554                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2555                 for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2556                         do_cpuid_1_ent(&entry[i], function, idx);
2557                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2558                                 continue;
2559                         entry[i].flags |=
2560                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2561                         ++*nent;
2562                         ++i;
2563                 }
2564                 break;
2565         }
2566         case KVM_CPUID_SIGNATURE: {
2567                 char signature[12] = "KVMKVMKVM\0\0";
2568                 u32 *sigptr = (u32 *)signature;
2569                 entry->eax = 0;
2570                 entry->ebx = sigptr[0];
2571                 entry->ecx = sigptr[1];
2572                 entry->edx = sigptr[2];
2573                 break;
2574         }
2575         case KVM_CPUID_FEATURES:
2576                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2577                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2578                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2579                              (1 << KVM_FEATURE_ASYNC_PF) |
2580                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2581
2582                 if (sched_info_on())
2583                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2584
2585                 entry->ebx = 0;
2586                 entry->ecx = 0;
2587                 entry->edx = 0;
2588                 break;
2589         case 0x80000000:
2590                 entry->eax = min(entry->eax, 0x8000001a);
2591                 break;
2592         case 0x80000001:
2593                 entry->edx &= kvm_supported_word1_x86_features;
2594                 cpuid_mask(&entry->edx, 1);
2595                 entry->ecx &= kvm_supported_word6_x86_features;
2596                 cpuid_mask(&entry->ecx, 6);
2597                 break;
2598         case 0x80000008: {
2599                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2600                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2601                 unsigned phys_as = entry->eax & 0xff;
2602
2603                 if (!g_phys_as)
2604                         g_phys_as = phys_as;
2605                 entry->eax = g_phys_as | (virt_as << 8);
2606                 entry->ebx = entry->edx = 0;
2607                 break;
2608         }
2609         case 0x80000019:
2610                 entry->ecx = entry->edx = 0;
2611                 break;
2612         case 0x8000001a:
2613                 break;
2614         case 0x8000001d:
2615                 break;
2616         /*Add support for Centaur's CPUID instruction*/
2617         case 0xC0000000:
2618                 /*Just support up to 0xC0000004 now*/
2619                 entry->eax = min(entry->eax, 0xC0000004);
2620                 break;
2621         case 0xC0000001:
2622                 entry->edx &= kvm_supported_word5_x86_features;
2623                 cpuid_mask(&entry->edx, 5);
2624                 break;
2625         case 3: /* Processor serial number */
2626         case 5: /* MONITOR/MWAIT */
2627         case 6: /* Thermal management */
2628         case 0xA: /* Architectural Performance Monitoring */
2629         case 0x80000007: /* Advanced power management */
2630         case 0xC0000002:
2631         case 0xC0000003:
2632         case 0xC0000004:
2633         default:
2634                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2635                 break;
2636         }
2637
2638         kvm_x86_ops->set_supported_cpuid(function, entry);
2639
2640         put_cpu();
2641 }
2642
2643 #undef F
2644
2645 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2646                                      struct kvm_cpuid_entry2 __user *entries)
2647 {
2648         struct kvm_cpuid_entry2 *cpuid_entries;
2649         int limit, nent = 0, r = -E2BIG;
2650         u32 func;
2651
2652         if (cpuid->nent < 1)
2653                 goto out;
2654         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2655                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2656         r = -ENOMEM;
2657         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2658         if (!cpuid_entries)
2659                 goto out;
2660
2661         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2662         limit = cpuid_entries[0].eax;
2663         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2664                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2665                              &nent, cpuid->nent);
2666         r = -E2BIG;
2667         if (nent >= cpuid->nent)
2668                 goto out_free;
2669
2670         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2671         limit = cpuid_entries[nent - 1].eax;
2672         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2673                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2674                              &nent, cpuid->nent);
2675
2676
2677
2678         r = -E2BIG;
2679         if (nent >= cpuid->nent)
2680                 goto out_free;
2681
2682         /* Add support for Centaur's CPUID instruction. */
2683         if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2684                 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2685                                 &nent, cpuid->nent);
2686
2687                 r = -E2BIG;
2688                 if (nent >= cpuid->nent)
2689                         goto out_free;
2690
2691                 limit = cpuid_entries[nent - 1].eax;
2692                 for (func = 0xC0000001;
2693                         func <= limit && nent < cpuid->nent; ++func)
2694                         do_cpuid_ent(&cpuid_entries[nent], func, 0,
2695                                         &nent, cpuid->nent);
2696
2697                 r = -E2BIG;
2698                 if (nent >= cpuid->nent)
2699                         goto out_free;
2700         }
2701
2702         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2703                      cpuid->nent);
2704
2705         r = -E2BIG;
2706         if (nent >= cpuid->nent)
2707                 goto out_free;
2708
2709         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2710                      cpuid->nent);
2711
2712         r = -E2BIG;
2713         if (nent >= cpuid->nent)
2714                 goto out_free;
2715
2716         r = -EFAULT;
2717         if (copy_to_user(entries, cpuid_entries,
2718                          nent * sizeof(struct kvm_cpuid_entry2)))
2719                 goto out_free;
2720         cpuid->nent = nent;
2721         r = 0;
2722
2723 out_free:
2724         vfree(cpuid_entries);
2725 out:
2726         return r;
2727 }
2728
2729 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2730                                     struct kvm_lapic_state *s)
2731 {
2732         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2733
2734         return 0;
2735 }
2736
2737 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2738                                     struct kvm_lapic_state *s)
2739 {
2740         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2741         kvm_apic_post_state_restore(vcpu);
2742         update_cr8_intercept(vcpu);
2743
2744         return 0;
2745 }
2746
2747 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2748                                     struct kvm_interrupt *irq)
2749 {
2750         if (irq->irq < 0 || irq->irq >= 256)
2751                 return -EINVAL;
2752         if (irqchip_in_kernel(vcpu->kvm))
2753                 return -ENXIO;
2754
2755         kvm_queue_interrupt(vcpu, irq->irq, false);
2756         kvm_make_request(KVM_REQ_EVENT, vcpu);
2757
2758         return 0;
2759 }
2760
2761 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2762 {
2763         kvm_inject_nmi(vcpu);
2764
2765         return 0;
2766 }
2767
2768 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2769                                            struct kvm_tpr_access_ctl *tac)
2770 {
2771         if (tac->flags)
2772                 return -EINVAL;
2773         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2774         return 0;
2775 }
2776
2777 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2778                                         u64 mcg_cap)
2779 {
2780         int r;
2781         unsigned bank_num = mcg_cap & 0xff, bank;
2782
2783         r = -EINVAL;
2784         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2785                 goto out;
2786         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2787                 goto out;
2788         r = 0;
2789         vcpu->arch.mcg_cap = mcg_cap;
2790         /* Init IA32_MCG_CTL to all 1s */
2791         if (mcg_cap & MCG_CTL_P)
2792                 vcpu->arch.mcg_ctl = ~(u64)0;
2793         /* Init IA32_MCi_CTL to all 1s */
2794         for (bank = 0; bank < bank_num; bank++)
2795                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2796 out:
2797         return r;
2798 }
2799
2800 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2801                                       struct kvm_x86_mce *mce)
2802 {
2803         u64 mcg_cap = vcpu->arch.mcg_cap;
2804         unsigned bank_num = mcg_cap & 0xff;
2805         u64 *banks = vcpu->arch.mce_banks;
2806
2807         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2808                 return -EINVAL;
2809         /*
2810          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2811          * reporting is disabled
2812          */
2813         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2814             vcpu->arch.mcg_ctl != ~(u64)0)
2815                 return 0;
2816         banks += 4 * mce->bank;
2817         /*
2818          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2819          * reporting is disabled for the bank
2820          */
2821         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2822                 return 0;
2823         if (mce->status & MCI_STATUS_UC) {
2824                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2825                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2826                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2827                         return 0;
2828                 }
2829                 if (banks[1] & MCI_STATUS_VAL)
2830                         mce->status |= MCI_STATUS_OVER;
2831                 banks[2] = mce->addr;
2832                 banks[3] = mce->misc;
2833                 vcpu->arch.mcg_status = mce->mcg_status;
2834                 banks[1] = mce->status;
2835                 kvm_queue_exception(vcpu, MC_VECTOR);
2836         } else if (!(banks[1] & MCI_STATUS_VAL)
2837                    || !(banks[1] & MCI_STATUS_UC)) {
2838                 if (banks[1] & MCI_STATUS_VAL)
2839                         mce->status |= MCI_STATUS_OVER;
2840                 banks[2] = mce->addr;
2841                 banks[3] = mce->misc;
2842                 banks[1] = mce->status;
2843         } else
2844                 banks[1] |= MCI_STATUS_OVER;
2845         return 0;
2846 }
2847
2848 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2849                                                struct kvm_vcpu_events *events)
2850 {
2851         process_nmi(vcpu);
2852         events->exception.injected =
2853                 vcpu->arch.exception.pending &&
2854                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2855         events->exception.nr = vcpu->arch.exception.nr;
2856         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2857         events->exception.pad = 0;
2858         events->exception.error_code = vcpu->arch.exception.error_code;
2859
2860         events->interrupt.injected =
2861                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2862         events->interrupt.nr = vcpu->arch.interrupt.nr;
2863         events->interrupt.soft = 0;
2864         events->interrupt.shadow =
2865                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2866                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2867
2868         events->nmi.injected = vcpu->arch.nmi_injected;
2869         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2870         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2871         events->nmi.pad = 0;
2872
2873         events->sipi_vector = vcpu->arch.sipi_vector;
2874
2875         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2876                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877                          | KVM_VCPUEVENT_VALID_SHADOW);
2878         memset(&events->reserved, 0, sizeof(events->reserved));
2879 }
2880
2881 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2882                                               struct kvm_vcpu_events *events)
2883 {
2884         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2885                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2886                               | KVM_VCPUEVENT_VALID_SHADOW))
2887                 return -EINVAL;
2888
2889         process_nmi(vcpu);
2890         vcpu->arch.exception.pending = events->exception.injected;
2891         vcpu->arch.exception.nr = events->exception.nr;
2892         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2893         vcpu->arch.exception.error_code = events->exception.error_code;
2894
2895         vcpu->arch.interrupt.pending = events->interrupt.injected;
2896         vcpu->arch.interrupt.nr = events->interrupt.nr;
2897         vcpu->arch.interrupt.soft = events->interrupt.soft;
2898         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2899                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2900                                                   events->interrupt.shadow);
2901
2902         vcpu->arch.nmi_injected = events->nmi.injected;
2903         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2904                 vcpu->arch.nmi_pending = events->nmi.pending;
2905         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2906
2907         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2908                 vcpu->arch.sipi_vector = events->sipi_vector;
2909
2910         kvm_make_request(KVM_REQ_EVENT, vcpu);
2911
2912         return 0;
2913 }
2914
2915 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2916                                              struct kvm_debugregs *dbgregs)
2917 {
2918         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2919         dbgregs->dr6 = vcpu->arch.dr6;
2920         dbgregs->dr7 = vcpu->arch.dr7;
2921         dbgregs->flags = 0;
2922         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2923 }
2924
2925 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2926                                             struct kvm_debugregs *dbgregs)
2927 {
2928         if (dbgregs->flags)
2929                 return -EINVAL;
2930
2931         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2932         vcpu->arch.dr6 = dbgregs->dr6;
2933         vcpu->arch.dr7 = dbgregs->dr7;
2934
2935         return 0;
2936 }
2937
2938 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2939                                          struct kvm_xsave *guest_xsave)
2940 {
2941         if (cpu_has_xsave)
2942                 memcpy(guest_xsave->region,
2943                         &vcpu->arch.guest_fpu.state->xsave,
2944                         xstate_size);
2945         else {
2946                 memcpy(guest_xsave->region,
2947                         &vcpu->arch.guest_fpu.state->fxsave,
2948                         sizeof(struct i387_fxsave_struct));
2949                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2950                         XSTATE_FPSSE;
2951         }
2952 }
2953
2954 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2955                                         struct kvm_xsave *guest_xsave)
2956 {
2957         u64 xstate_bv =
2958                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2959
2960         if (cpu_has_xsave)
2961                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2962                         guest_xsave->region, xstate_size);
2963         else {
2964                 if (xstate_bv & ~XSTATE_FPSSE)
2965                         return -EINVAL;
2966                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2967                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2968         }
2969         return 0;
2970 }
2971
2972 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2973                                         struct kvm_xcrs *guest_xcrs)
2974 {
2975         if (!cpu_has_xsave) {
2976                 guest_xcrs->nr_xcrs = 0;
2977                 return;
2978         }
2979
2980         guest_xcrs->nr_xcrs = 1;
2981         guest_xcrs->flags = 0;
2982         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2983         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2984 }
2985
2986 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2987                                        struct kvm_xcrs *guest_xcrs)
2988 {
2989         int i, r = 0;
2990
2991         if (!cpu_has_xsave)
2992                 return -EINVAL;
2993
2994         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2995                 return -EINVAL;
2996
2997         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2998                 /* Only support XCR0 currently */
2999                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3000                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3001                                 guest_xcrs->xcrs[0].value);
3002                         break;
3003                 }
3004         if (r)
3005                 r = -EINVAL;
3006         return r;
3007 }
3008
3009 long kvm_arch_vcpu_ioctl(struct file *filp,
3010                          unsigned int ioctl, unsigned long arg)
3011 {
3012         struct kvm_vcpu *vcpu = filp->private_data;
3013         void __user *argp = (void __user *)arg;
3014         int r;
3015         union {
3016                 struct kvm_lapic_state *lapic;
3017                 struct kvm_xsave *xsave;
3018                 struct kvm_xcrs *xcrs;
3019                 void *buffer;
3020         } u;
3021
3022         u.buffer = NULL;
3023         switch (ioctl) {
3024         case KVM_GET_LAPIC: {
3025                 r = -EINVAL;
3026                 if (!vcpu->arch.apic)
3027                         goto out;
3028                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3029
3030                 r = -ENOMEM;
3031                 if (!u.lapic)
3032                         goto out;
3033                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3034                 if (r)
3035                         goto out;
3036                 r = -EFAULT;
3037                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3038                         goto out;
3039                 r = 0;
3040                 break;
3041         }
3042         case KVM_SET_LAPIC: {
3043                 r = -EINVAL;
3044                 if (!vcpu->arch.apic)
3045                         goto out;
3046                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3047                 r = -ENOMEM;
3048                 if (!u.lapic)
3049                         goto out;
3050                 r = -EFAULT;
3051                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3052                         goto out;
3053                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3054                 if (r)
3055                         goto out;
3056                 r = 0;
3057                 break;
3058         }
3059         case KVM_INTERRUPT: {
3060                 struct kvm_interrupt irq;
3061
3062                 r = -EFAULT;
3063                 if (copy_from_user(&irq, argp, sizeof irq))
3064                         goto out;
3065                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3066                 if (r)
3067                         goto out;
3068                 r = 0;
3069                 break;
3070         }
3071         case KVM_NMI: {
3072                 r = kvm_vcpu_ioctl_nmi(vcpu);
3073                 if (r)
3074                         goto out;
3075                 r = 0;
3076                 break;
3077         }
3078         case KVM_SET_CPUID: {
3079                 struct kvm_cpuid __user *cpuid_arg = argp;
3080                 struct kvm_cpuid cpuid;
3081
3082                 r = -EFAULT;
3083                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3084                         goto out;
3085                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3086                 if (r)
3087                         goto out;
3088                 break;
3089         }
3090         case KVM_SET_CPUID2: {
3091                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3092                 struct kvm_cpuid2 cpuid;
3093
3094                 r = -EFAULT;
3095                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3096                         goto out;
3097                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3098                                               cpuid_arg->entries);
3099                 if (r)
3100                         goto out;
3101                 break;
3102         }
3103         case KVM_GET_CPUID2: {
3104                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3105                 struct kvm_cpuid2 cpuid;
3106
3107                 r = -EFAULT;
3108                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3109                         goto out;
3110                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3111                                               cpuid_arg->entries);
3112                 if (r)
3113                         goto out;
3114                 r = -EFAULT;
3115                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3116                         goto out;
3117                 r = 0;
3118                 break;
3119         }
3120         case KVM_GET_MSRS:
3121                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3122                 break;
3123         case KVM_SET_MSRS:
3124                 r = msr_io(vcpu, argp, do_set_msr, 0);
3125                 break;
3126         case KVM_TPR_ACCESS_REPORTING: {
3127                 struct kvm_tpr_access_ctl tac;
3128
3129                 r = -EFAULT;
3130                 if (copy_from_user(&tac, argp, sizeof tac))
3131                         goto out;
3132                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3133                 if (r)
3134                         goto out;
3135                 r = -EFAULT;
3136                 if (copy_to_user(argp, &tac, sizeof tac))
3137                         goto out;
3138                 r = 0;
3139                 break;
3140         };
3141         case KVM_SET_VAPIC_ADDR: {
3142                 struct kvm_vapic_addr va;
3143
3144                 r = -EINVAL;
3145                 if (!irqchip_in_kernel(vcpu->kvm))
3146                         goto out;
3147                 r = -EFAULT;
3148                 if (copy_from_user(&va, argp, sizeof va))
3149                         goto out;
3150                 r = 0;
3151                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3152                 break;
3153         }
3154         case KVM_X86_SETUP_MCE: {
3155                 u64 mcg_cap;
3156
3157                 r = -EFAULT;
3158                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3159                         goto out;
3160                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3161                 break;
3162         }
3163         case KVM_X86_SET_MCE: {
3164                 struct kvm_x86_mce mce;
3165
3166                 r = -EFAULT;
3167                 if (copy_from_user(&mce, argp, sizeof mce))
3168                         goto out;
3169                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3170                 break;
3171         }
3172         case KVM_GET_VCPU_EVENTS: {
3173                 struct kvm_vcpu_events events;
3174
3175                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3176
3177                 r = -EFAULT;
3178                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3179                         break;
3180                 r = 0;
3181                 break;
3182         }
3183         case KVM_SET_VCPU_EVENTS: {
3184                 struct kvm_vcpu_events events;
3185
3186                 r = -EFAULT;
3187                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3188                         break;
3189
3190                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3191                 break;
3192         }
3193         case KVM_GET_DEBUGREGS: {
3194                 struct kvm_debugregs dbgregs;
3195
3196                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3197
3198                 r = -EFAULT;
3199                 if (copy_to_user(argp, &dbgregs,
3200                                  sizeof(struct kvm_debugregs)))
3201                         break;
3202                 r = 0;
3203                 break;
3204         }
3205         case KVM_SET_DEBUGREGS: {
3206                 struct kvm_debugregs dbgregs;
3207
3208                 r = -EFAULT;
3209                 if (copy_from_user(&dbgregs, argp,
3210                                    sizeof(struct kvm_debugregs)))
3211                         break;
3212
3213                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3214                 break;
3215         }
3216         case KVM_GET_XSAVE: {
3217                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3218                 r = -ENOMEM;
3219                 if (!u.xsave)
3220                         break;
3221
3222                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3223
3224                 r = -EFAULT;
3225                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3226                         break;
3227                 r = 0;
3228                 break;
3229         }
3230         case KVM_SET_XSAVE: {
3231                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3232                 r = -ENOMEM;
3233                 if (!u.xsave)
3234                         break;
3235
3236                 r = -EFAULT;
3237                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3238                         break;
3239
3240                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3241                 break;
3242         }
3243         case KVM_GET_XCRS: {
3244                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3245                 r = -ENOMEM;
3246                 if (!u.xcrs)
3247                         break;
3248
3249                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3250
3251                 r = -EFAULT;
3252                 if (copy_to_user(argp, u.xcrs,
3253                                  sizeof(struct kvm_xcrs)))
3254                         break;
3255                 r = 0;
3256                 break;
3257         }
3258         case KVM_SET_XCRS: {
3259                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3260                 r = -ENOMEM;
3261                 if (!u.xcrs)
3262                         break;
3263
3264                 r = -EFAULT;
3265                 if (copy_from_user(u.xcrs, argp,
3266                                    sizeof(struct kvm_xcrs)))
3267                         break;
3268
3269                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3270                 break;
3271         }
3272         case KVM_SET_TSC_KHZ: {
3273                 u32 user_tsc_khz;
3274
3275                 r = -EINVAL;
3276                 if (!kvm_has_tsc_control)
3277                         break;
3278
3279                 user_tsc_khz = (u32)arg;
3280
3281                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3282                         goto out;
3283
3284                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3285
3286                 r = 0;
3287                 goto out;
3288         }
3289         case KVM_GET_TSC_KHZ: {
3290                 r = -EIO;
3291                 if (check_tsc_unstable())
3292                         goto out;
3293
3294                 r = vcpu_tsc_khz(vcpu);
3295
3296                 goto out;
3297         }
3298         default:
3299                 r = -EINVAL;
3300         }
3301 out:
3302         kfree(u.buffer);
3303         return r;
3304 }
3305
3306 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3307 {
3308         int ret;
3309
3310         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3311                 return -1;
3312         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3313         return ret;
3314 }
3315
3316 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3317                                               u64 ident_addr)
3318 {
3319         kvm->arch.ept_identity_map_addr = ident_addr;
3320         return 0;
3321 }
3322
3323 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3324                                           u32 kvm_nr_mmu_pages)
3325 {
3326         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3327                 return -EINVAL;
3328
3329         mutex_lock(&kvm->slots_lock);
3330         spin_lock(&kvm->mmu_lock);
3331
3332         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3333         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3334
3335         spin_unlock(&kvm->mmu_lock);
3336         mutex_unlock(&kvm->slots_lock);
3337         return 0;
3338 }
3339
3340 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3341 {
3342         return kvm->arch.n_max_mmu_pages;
3343 }
3344
3345 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3346 {
3347         int r;
3348
3349         r = 0;
3350         switch (chip->chip_id) {
3351         case KVM_IRQCHIP_PIC_MASTER:
3352                 memcpy(&chip->chip.pic,
3353                         &pic_irqchip(kvm)->pics[0],
3354                         sizeof(struct kvm_pic_state));
3355                 break;
3356         case KVM_IRQCHIP_PIC_SLAVE:
3357                 memcpy(&chip->chip.pic,
3358                         &pic_irqchip(kvm)->pics[1],
3359                         sizeof(struct kvm_pic_state));
3360                 break;
3361         case KVM_IRQCHIP_IOAPIC:
3362                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3363                 break;
3364         default:
3365                 r = -EINVAL;
3366                 break;
3367         }
3368         return r;
3369 }
3370
3371 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3372 {
3373         int r;
3374
3375         r = 0;
3376         switch (chip->chip_id) {
3377         case KVM_IRQCHIP_PIC_MASTER:
3378                 spin_lock(&pic_irqchip(kvm)->lock);
3379                 memcpy(&pic_irqchip(kvm)->pics[0],
3380                         &chip->chip.pic,
3381                         sizeof(struct kvm_pic_state));
3382                 spin_unlock(&pic_irqchip(kvm)->lock);
3383                 break;
3384         case KVM_IRQCHIP_PIC_SLAVE:
3385                 spin_lock(&pic_irqchip(kvm)->lock);
3386                 memcpy(&pic_irqchip(kvm)->pics[1],
3387                         &chip->chip.pic,
3388                         sizeof(struct kvm_pic_state));
3389                 spin_unlock(&pic_irqchip(kvm)->lock);
3390                 break;
3391         case KVM_IRQCHIP_IOAPIC:
3392                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3393                 break;
3394         default:
3395                 r = -EINVAL;
3396                 break;
3397         }
3398         kvm_pic_update_irq(pic_irqchip(kvm));
3399         return r;
3400 }
3401
3402 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3403 {
3404         int r = 0;
3405
3406         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3407         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3408         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3409         return r;
3410 }
3411
3412 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3413 {
3414         int r = 0;
3415
3416         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3417         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3418         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3419         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3420         return r;
3421 }
3422
3423 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3424 {
3425         int r = 0;
3426
3427         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3428         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3429                 sizeof(ps->channels));
3430         ps->flags = kvm->arch.vpit->pit_state.flags;
3431         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432         memset(&ps->reserved, 0, sizeof(ps->reserved));
3433         return r;
3434 }
3435
3436 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3437 {
3438         int r = 0, start = 0;
3439         u32 prev_legacy, cur_legacy;
3440         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3442         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3443         if (!prev_legacy && cur_legacy)
3444                 start = 1;
3445         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3446                sizeof(kvm->arch.vpit->pit_state.channels));
3447         kvm->arch.vpit->pit_state.flags = ps->flags;
3448         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3449         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3450         return r;
3451 }
3452
3453 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3454                                  struct kvm_reinject_control *control)
3455 {
3456         if (!kvm->arch.vpit)
3457                 return -ENXIO;
3458         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3459         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3460         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3461         return 0;
3462 }
3463
3464 /*
3465  * Get (and clear) the dirty memory log for a memory slot.
3466  */
3467 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3468                                       struct kvm_dirty_log *log)
3469 {
3470         int r, i;
3471         struct kvm_memory_slot *memslot;
3472         unsigned long n;
3473         unsigned long is_dirty = 0;
3474
3475         mutex_lock(&kvm->slots_lock);
3476
3477         r = -EINVAL;
3478         if (log->slot >= KVM_MEMORY_SLOTS)
3479                 goto out;
3480
3481         memslot = &kvm->memslots->memslots[log->slot];
3482         r = -ENOENT;
3483         if (!memslot->dirty_bitmap)
3484                 goto out;
3485
3486         n = kvm_dirty_bitmap_bytes(memslot);
3487
3488         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3489                 is_dirty = memslot->dirty_bitmap[i];
3490
3491         /* If nothing is dirty, don't bother messing with page tables. */
3492         if (is_dirty) {
3493                 struct kvm_memslots *slots, *old_slots;
3494                 unsigned long *dirty_bitmap;
3495
3496                 dirty_bitmap = memslot->dirty_bitmap_head;
3497                 if (memslot->dirty_bitmap == dirty_bitmap)
3498                         dirty_bitmap += n / sizeof(long);
3499                 memset(dirty_bitmap, 0, n);
3500
3501                 r = -ENOMEM;
3502                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3503                 if (!slots)
3504                         goto out;
3505                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3506                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3507                 slots->generation++;
3508
3509                 old_slots = kvm->memslots;
3510                 rcu_assign_pointer(kvm->memslots, slots);
3511                 synchronize_srcu_expedited(&kvm->srcu);
3512                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3513                 kfree(old_slots);
3514
3515                 spin_lock(&kvm->mmu_lock);
3516                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3517                 spin_unlock(&kvm->mmu_lock);
3518
3519                 r = -EFAULT;
3520                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3521                         goto out;
3522         } else {
3523                 r = -EFAULT;
3524                 if (clear_user(log->dirty_bitmap, n))
3525                         goto out;
3526         }
3527
3528         r = 0;
3529 out:
3530         mutex_unlock(&kvm->slots_lock);
3531         return r;
3532 }
3533
3534 long kvm_arch_vm_ioctl(struct file *filp,
3535                        unsigned int ioctl, unsigned long arg)
3536 {
3537         struct kvm *kvm = filp->private_data;
3538         void __user *argp = (void __user *)arg;
3539         int r = -ENOTTY;
3540         /*
3541          * This union makes it completely explicit to gcc-3.x
3542          * that these two variables' stack usage should be
3543          * combined, not added together.
3544          */
3545         union {
3546                 struct kvm_pit_state ps;
3547                 struct kvm_pit_state2 ps2;
3548                 struct kvm_pit_config pit_config;
3549         } u;
3550
3551         switch (ioctl) {
3552         case KVM_SET_TSS_ADDR:
3553                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3554                 if (r < 0)
3555                         goto out;
3556                 break;
3557         case KVM_SET_IDENTITY_MAP_ADDR: {
3558                 u64 ident_addr;
3559
3560                 r = -EFAULT;
3561                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3562                         goto out;
3563                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3564                 if (r < 0)
3565                         goto out;
3566                 break;
3567         }
3568         case KVM_SET_NR_MMU_PAGES:
3569                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3570                 if (r)
3571                         goto out;
3572                 break;
3573         case KVM_GET_NR_MMU_PAGES:
3574                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3575                 break;
3576         case KVM_CREATE_IRQCHIP: {
3577                 struct kvm_pic *vpic;
3578
3579                 mutex_lock(&kvm->lock);
3580                 r = -EEXIST;
3581                 if (kvm->arch.vpic)
3582                         goto create_irqchip_unlock;
3583                 r = -ENOMEM;
3584                 vpic = kvm_create_pic(kvm);
3585                 if (vpic) {
3586                         r = kvm_ioapic_init(kvm);
3587                         if (r) {
3588                                 mutex_lock(&kvm->slots_lock);
3589                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3590                                                           &vpic->dev_master);
3591                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3592                                                           &vpic->dev_slave);
3593                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3594                                                           &vpic->dev_eclr);
3595                                 mutex_unlock(&kvm->slots_lock);
3596                                 kfree(vpic);
3597                                 goto create_irqchip_unlock;
3598                         }
3599                 } else
3600                         goto create_irqchip_unlock;
3601                 smp_wmb();
3602                 kvm->arch.vpic = vpic;
3603                 smp_wmb();
3604                 r = kvm_setup_default_irq_routing(kvm);
3605                 if (r) {
3606                         mutex_lock(&kvm->slots_lock);
3607                         mutex_lock(&kvm->irq_lock);
3608                         kvm_ioapic_destroy(kvm);
3609                         kvm_destroy_pic(kvm);
3610                         mutex_unlock(&kvm->irq_lock);
3611                         mutex_unlock(&kvm->slots_lock);
3612                 }
3613         create_irqchip_unlock:
3614                 mutex_unlock(&kvm->lock);
3615                 break;
3616         }
3617         case KVM_CREATE_PIT:
3618                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3619                 goto create_pit;
3620         case KVM_CREATE_PIT2:
3621                 r = -EFAULT;
3622                 if (copy_from_user(&u.pit_config, argp,
3623                                    sizeof(struct kvm_pit_config)))
3624                         goto out;
3625         create_pit:
3626                 mutex_lock(&kvm->slots_lock);
3627                 r = -EEXIST;
3628                 if (kvm->arch.vpit)
3629                         goto create_pit_unlock;
3630                 r = -ENOMEM;
3631                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3632                 if (kvm->arch.vpit)
3633                         r = 0;
3634         create_pit_unlock:
3635                 mutex_unlock(&kvm->slots_lock);
3636                 break;
3637         case KVM_IRQ_LINE_STATUS:
3638         case KVM_IRQ_LINE: {
3639                 struct kvm_irq_level irq_event;
3640
3641                 r = -EFAULT;
3642                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3643                         goto out;
3644                 r = -ENXIO;
3645                 if (irqchip_in_kernel(kvm)) {
3646                         __s32 status;
3647                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3648                                         irq_event.irq, irq_event.level);
3649                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3650                                 r = -EFAULT;
3651                                 irq_event.status = status;
3652                                 if (copy_to_user(argp, &irq_event,
3653                                                         sizeof irq_event))
3654                                         goto out;
3655                         }
3656                         r = 0;
3657                 }
3658                 break;
3659         }
3660         case KVM_GET_IRQCHIP: {
3661                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3663
3664                 r = -ENOMEM;
3665                 if (!chip)
3666                         goto out;
3667                 r = -EFAULT;
3668                 if (copy_from_user(chip, argp, sizeof *chip))
3669                         goto get_irqchip_out;
3670                 r = -ENXIO;
3671                 if (!irqchip_in_kernel(kvm))
3672                         goto get_irqchip_out;
3673                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3674                 if (r)
3675                         goto get_irqchip_out;
3676                 r = -EFAULT;
3677                 if (copy_to_user(argp, chip, sizeof *chip))
3678                         goto get_irqchip_out;
3679                 r = 0;
3680         get_irqchip_out:
3681                 kfree(chip);
3682                 if (r)
3683                         goto out;
3684                 break;
3685         }
3686         case KVM_SET_IRQCHIP: {
3687                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3688                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3689
3690                 r = -ENOMEM;
3691                 if (!chip)
3692                         goto out;
3693                 r = -EFAULT;
3694                 if (copy_from_user(chip, argp, sizeof *chip))
3695                         goto set_irqchip_out;
3696                 r = -ENXIO;
3697                 if (!irqchip_in_kernel(kvm))
3698                         goto set_irqchip_out;
3699                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3700                 if (r)
3701                         goto set_irqchip_out;
3702                 r = 0;
3703         set_irqchip_out:
3704                 kfree(chip);
3705                 if (r)
3706                         goto out;
3707                 break;
3708         }
3709         case KVM_GET_PIT: {
3710                 r = -EFAULT;
3711                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3712                         goto out;
3713                 r = -ENXIO;
3714                 if (!kvm->arch.vpit)
3715                         goto out;
3716                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3717                 if (r)
3718                         goto out;
3719                 r = -EFAULT;
3720                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3721                         goto out;
3722                 r = 0;
3723                 break;
3724         }
3725         case KVM_SET_PIT: {
3726                 r = -EFAULT;
3727                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3728                         goto out;
3729                 r = -ENXIO;
3730                 if (!kvm->arch.vpit)
3731                         goto out;
3732                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3733                 if (r)
3734                         goto out;
3735                 r = 0;
3736                 break;
3737         }
3738         case KVM_GET_PIT2: {
3739                 r = -ENXIO;
3740                 if (!kvm->arch.vpit)
3741                         goto out;
3742                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3743                 if (r)
3744                         goto out;
3745                 r = -EFAULT;
3746                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3747                         goto out;
3748                 r = 0;
3749                 break;
3750         }
3751         case KVM_SET_PIT2: {
3752                 r = -EFAULT;
3753                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3754                         goto out;
3755                 r = -ENXIO;
3756                 if (!kvm->arch.vpit)
3757                         goto out;
3758                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3759                 if (r)
3760                         goto out;
3761                 r = 0;
3762                 break;
3763         }
3764         case KVM_REINJECT_CONTROL: {
3765                 struct kvm_reinject_control control;
3766                 r =  -EFAULT;
3767                 if (copy_from_user(&control, argp, sizeof(control)))
3768                         goto out;
3769                 r = kvm_vm_ioctl_reinject(kvm, &control);
3770                 if (r)
3771                         goto out;
3772                 r = 0;
3773                 break;
3774         }
3775         case KVM_XEN_HVM_CONFIG: {
3776                 r = -EFAULT;
3777                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3778                                    sizeof(struct kvm_xen_hvm_config)))
3779                         goto out;
3780                 r = -EINVAL;
3781                 if (kvm->arch.xen_hvm_config.flags)
3782                         goto out;
3783                 r = 0;
3784                 break;
3785         }
3786         case KVM_SET_CLOCK: {
3787                 struct kvm_clock_data user_ns;
3788                 u64 now_ns;
3789                 s64 delta;
3790
3791                 r = -EFAULT;
3792                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3793                         goto out;
3794
3795                 r = -EINVAL;
3796                 if (user_ns.flags)
3797                         goto out;
3798
3799                 r = 0;
3800                 local_irq_disable();
3801                 now_ns = get_kernel_ns();
3802                 delta = user_ns.clock - now_ns;
3803                 local_irq_enable();
3804                 kvm->arch.kvmclock_offset = delta;
3805                 break;
3806         }
3807         case KVM_GET_CLOCK: {
3808                 struct kvm_clock_data user_ns;
3809                 u64 now_ns;
3810
3811                 local_irq_disable();
3812                 now_ns = get_kernel_ns();
3813                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3814                 local_irq_enable();
3815                 user_ns.flags = 0;
3816                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3817
3818                 r = -EFAULT;
3819                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3820                         goto out;
3821                 r = 0;
3822                 break;
3823         }
3824
3825         default:
3826                 ;
3827         }
3828 out:
3829         return r;
3830 }
3831
3832 static void kvm_init_msr_list(void)
3833 {
3834         u32 dummy[2];
3835         unsigned i, j;
3836
3837         /* skip the first msrs in the list. KVM-specific */
3838         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3839                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3840                         continue;
3841                 if (j < i)
3842                         msrs_to_save[j] = msrs_to_save[i];
3843                 j++;
3844         }
3845         num_msrs_to_save = j;
3846 }
3847
3848 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3849                            const void *v)
3850 {
3851         int handled = 0;
3852         int n;
3853
3854         do {
3855                 n = min(len, 8);
3856                 if (!(vcpu->arch.apic &&
3857                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3858                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3859                         break;
3860                 handled += n;
3861                 addr += n;
3862                 len -= n;
3863                 v += n;
3864         } while (len);
3865
3866         return handled;
3867 }
3868
3869 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3870 {
3871         int handled = 0;
3872         int n;
3873
3874         do {
3875                 n = min(len, 8);
3876                 if (!(vcpu->arch.apic &&
3877                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3878                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3879                         break;
3880                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3881                 handled += n;
3882                 addr += n;
3883                 len -= n;
3884                 v += n;
3885         } while (len);
3886
3887         return handled;
3888 }
3889
3890 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3891                         struct kvm_segment *var, int seg)
3892 {
3893         kvm_x86_ops->set_segment(vcpu, var, seg);
3894 }
3895
3896 void kvm_get_segment(struct kvm_vcpu *vcpu,
3897                      struct kvm_segment *var, int seg)
3898 {
3899         kvm_x86_ops->get_segment(vcpu, var, seg);
3900 }
3901
3902 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3903 {
3904         return gpa;
3905 }
3906
3907 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3908 {
3909         gpa_t t_gpa;
3910         struct x86_exception exception;
3911
3912         BUG_ON(!mmu_is_nested(vcpu));
3913
3914         /* NPT walks are always user-walks */
3915         access |= PFERR_USER_MASK;
3916         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3917
3918         return t_gpa;
3919 }
3920
3921 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3922                               struct x86_exception *exception)
3923 {
3924         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3925         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3926 }
3927
3928  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3929                                 struct x86_exception *exception)
3930 {
3931         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3932         access |= PFERR_FETCH_MASK;
3933         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3934 }
3935
3936 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3937                                struct x86_exception *exception)
3938 {
3939         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3940         access |= PFERR_WRITE_MASK;
3941         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3942 }
3943
3944 /* uses this to access any guest's mapped memory without checking CPL */
3945 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3946                                 struct x86_exception *exception)
3947 {
3948         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3949 }
3950
3951 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3952                                       struct kvm_vcpu *vcpu, u32 access,
3953                                       struct x86_exception *exception)
3954 {
3955         void *data = val;
3956         int r = X86EMUL_CONTINUE;
3957
3958         while (bytes) {
3959                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3960                                                             exception);
3961                 unsigned offset = addr & (PAGE_SIZE-1);
3962                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3963                 int ret;
3964
3965                 if (gpa == UNMAPPED_GVA)
3966                         return X86EMUL_PROPAGATE_FAULT;
3967                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3968                 if (ret < 0) {
3969                         r = X86EMUL_IO_NEEDED;
3970                         goto out;
3971                 }
3972
3973                 bytes -= toread;
3974                 data += toread;
3975                 addr += toread;
3976         }
3977 out:
3978         return r;
3979 }
3980
3981 /* used for instruction fetching */
3982 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3983                                 gva_t addr, void *val, unsigned int bytes,
3984                                 struct x86_exception *exception)
3985 {
3986         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3987         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3988
3989         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3990                                           access | PFERR_FETCH_MASK,
3991                                           exception);
3992 }
3993
3994 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3995                                gva_t addr, void *val, unsigned int bytes,
3996                                struct x86_exception *exception)
3997 {
3998         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3999         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4000
4001         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4002                                           exception);
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4005
4006 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4007                                       gva_t addr, void *val, unsigned int bytes,
4008                                       struct x86_exception *exception)
4009 {
4010         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4011         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4012 }
4013
4014 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4015                                        gva_t addr, void *val,
4016                                        unsigned int bytes,
4017                                        struct x86_exception *exception)
4018 {
4019         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4020         void *data = val;
4021         int r = X86EMUL_CONTINUE;
4022
4023         while (bytes) {
4024                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4025                                                              PFERR_WRITE_MASK,
4026                                                              exception);
4027                 unsigned offset = addr & (PAGE_SIZE-1);
4028                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4029                 int ret;
4030
4031                 if (gpa == UNMAPPED_GVA)
4032                         return X86EMUL_PROPAGATE_FAULT;
4033                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4034                 if (ret < 0) {
4035                         r = X86EMUL_IO_NEEDED;
4036                         goto out;
4037                 }
4038
4039                 bytes -= towrite;
4040                 data += towrite;
4041                 addr += towrite;
4042         }
4043 out:
4044         return r;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4047
4048 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4049                                 gpa_t *gpa, struct x86_exception *exception,
4050                                 bool write)
4051 {
4052         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4053
4054         if (vcpu_match_mmio_gva(vcpu, gva) &&
4055                   check_write_user_access(vcpu, write, access,
4056                   vcpu->arch.access)) {
4057                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4058                                         (gva & (PAGE_SIZE - 1));
4059                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4060                 return 1;
4061         }
4062
4063         if (write)
4064                 access |= PFERR_WRITE_MASK;
4065
4066         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4067
4068         if (*gpa == UNMAPPED_GVA)
4069                 return -1;
4070
4071         /* For APIC access vmexit */
4072         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4073                 return 1;
4074
4075         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4076                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4077                 return 1;
4078         }
4079
4080         return 0;
4081 }
4082
4083 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4084                         const void *val, int bytes)
4085 {
4086         int ret;
4087
4088         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4089         if (ret < 0)
4090                 return 0;
4091         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4092         return 1;
4093 }
4094
4095 struct read_write_emulator_ops {
4096         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4097                                   int bytes);
4098         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099                                   void *val, int bytes);
4100         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4101                                int bytes, void *val);
4102         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4103                                     void *val, int bytes);
4104         bool write;
4105 };
4106
4107 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4108 {
4109         if (vcpu->mmio_read_completed) {
4110                 memcpy(val, vcpu->mmio_data, bytes);
4111                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4112                                vcpu->mmio_phys_addr, *(u64 *)val);
4113                 vcpu->mmio_read_completed = 0;
4114                 return 1;
4115         }
4116
4117         return 0;
4118 }
4119
4120 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4121                         void *val, int bytes)
4122 {
4123         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4124 }
4125
4126 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4127                          void *val, int bytes)
4128 {
4129         return emulator_write_phys(vcpu, gpa, val, bytes);
4130 }
4131
4132 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4133 {
4134         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4135         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4136 }
4137
4138 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4139                           void *val, int bytes)
4140 {
4141         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4142         return X86EMUL_IO_NEEDED;
4143 }
4144
4145 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4146                            void *val, int bytes)
4147 {
4148         memcpy(vcpu->mmio_data, val, bytes);
4149         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4150         return X86EMUL_CONTINUE;
4151 }
4152
4153 static struct read_write_emulator_ops read_emultor = {
4154         .read_write_prepare = read_prepare,
4155         .read_write_emulate = read_emulate,
4156         .read_write_mmio = vcpu_mmio_read,
4157         .read_write_exit_mmio = read_exit_mmio,
4158 };
4159
4160 static struct read_write_emulator_ops write_emultor = {
4161         .read_write_emulate = write_emulate,
4162         .read_write_mmio = write_mmio,
4163         .read_write_exit_mmio = write_exit_mmio,
4164         .write = true,
4165 };
4166
4167 static int emulator_read_write_onepage(unsigned long addr, void *val,
4168                                        unsigned int bytes,
4169                                        struct x86_exception *exception,
4170                                        struct kvm_vcpu *vcpu,
4171                                        struct read_write_emulator_ops *ops)
4172 {
4173         gpa_t gpa;
4174         int handled, ret;
4175         bool write = ops->write;
4176
4177         if (ops->read_write_prepare &&
4178                   ops->read_write_prepare(vcpu, val, bytes))
4179                 return X86EMUL_CONTINUE;
4180
4181         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4182
4183         if (ret < 0)
4184                 return X86EMUL_PROPAGATE_FAULT;
4185
4186         /* For APIC access vmexit */
4187         if (ret)
4188                 goto mmio;
4189
4190         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4191                 return X86EMUL_CONTINUE;
4192
4193 mmio:
4194         /*
4195          * Is this MMIO handled locally?
4196          */
4197         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4198         if (handled == bytes)
4199                 return X86EMUL_CONTINUE;
4200
4201         gpa += handled;
4202         bytes -= handled;
4203         val += handled;
4204
4205         vcpu->mmio_needed = 1;
4206         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4207         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4208         vcpu->mmio_size = bytes;
4209         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4210         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
4211         vcpu->mmio_index = 0;
4212
4213         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4214 }
4215
4216 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4217                         void *val, unsigned int bytes,
4218                         struct x86_exception *exception,
4219                         struct read_write_emulator_ops *ops)
4220 {
4221         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4222
4223         /* Crossing a page boundary? */
4224         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4225                 int rc, now;
4226
4227                 now = -addr & ~PAGE_MASK;
4228                 rc = emulator_read_write_onepage(addr, val, now, exception,
4229                                                  vcpu, ops);
4230
4231                 if (rc != X86EMUL_CONTINUE)
4232                         return rc;
4233                 addr += now;
4234                 val += now;
4235                 bytes -= now;
4236         }
4237
4238         return emulator_read_write_onepage(addr, val, bytes, exception,
4239                                            vcpu, ops);
4240 }
4241
4242 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4243                                   unsigned long addr,
4244                                   void *val,
4245                                   unsigned int bytes,
4246                                   struct x86_exception *exception)
4247 {
4248         return emulator_read_write(ctxt, addr, val, bytes,
4249                                    exception, &read_emultor);
4250 }
4251
4252 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4253                             unsigned long addr,
4254                             const void *val,
4255                             unsigned int bytes,
4256                             struct x86_exception *exception)
4257 {
4258         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4259                                    exception, &write_emultor);
4260 }
4261
4262 #define CMPXCHG_TYPE(t, ptr, old, new) \
4263         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4264
4265 #ifdef CONFIG_X86_64
4266 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4267 #else
4268 #  define CMPXCHG64(ptr, old, new) \
4269         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4270 #endif
4271
4272 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4273                                      unsigned long addr,
4274                                      const void *old,
4275                                      const void *new,
4276                                      unsigned int bytes,
4277                                      struct x86_exception *exception)
4278 {
4279         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4280         gpa_t gpa;
4281         struct page *page;
4282         char *kaddr;
4283         bool exchanged;
4284
4285         /* guests cmpxchg8b have to be emulated atomically */
4286         if (bytes > 8 || (bytes & (bytes - 1)))
4287                 goto emul_write;
4288
4289         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4290
4291         if (gpa == UNMAPPED_GVA ||
4292             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4293                 goto emul_write;
4294
4295         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4296                 goto emul_write;
4297
4298         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4299         if (is_error_page(page)) {
4300                 kvm_release_page_clean(page);
4301                 goto emul_write;
4302         }
4303
4304         kaddr = kmap_atomic(page, KM_USER0);
4305         kaddr += offset_in_page(gpa);
4306         switch (bytes) {
4307         case 1:
4308                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4309                 break;
4310         case 2:
4311                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4312                 break;
4313         case 4:
4314                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4315                 break;
4316         case 8:
4317                 exchanged = CMPXCHG64(kaddr, old, new);
4318                 break;
4319         default:
4320                 BUG();
4321         }
4322         kunmap_atomic(kaddr, KM_USER0);
4323         kvm_release_page_dirty(page);
4324
4325         if (!exchanged)
4326                 return X86EMUL_CMPXCHG_FAILED;
4327
4328         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4329
4330         return X86EMUL_CONTINUE;
4331
4332 emul_write:
4333         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4334
4335         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4336 }
4337
4338 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4339 {
4340         /* TODO: String I/O for in kernel device */
4341         int r;
4342
4343         if (vcpu->arch.pio.in)
4344                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4345                                     vcpu->arch.pio.size, pd);
4346         else
4347                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4348                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4349                                      pd);
4350         return r;
4351 }
4352
4353
4354 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4355                                     int size, unsigned short port, void *val,
4356                                     unsigned int count)
4357 {
4358         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4359
4360         if (vcpu->arch.pio.count)
4361                 goto data_avail;
4362
4363         trace_kvm_pio(0, port, size, count);
4364
4365         vcpu->arch.pio.port = port;
4366         vcpu->arch.pio.in = 1;
4367         vcpu->arch.pio.count  = count;
4368         vcpu->arch.pio.size = size;
4369
4370         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4371         data_avail:
4372                 memcpy(val, vcpu->arch.pio_data, size * count);
4373                 vcpu->arch.pio.count = 0;
4374                 return 1;
4375         }
4376
4377         vcpu->run->exit_reason = KVM_EXIT_IO;
4378         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4379         vcpu->run->io.size = size;
4380         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4381         vcpu->run->io.count = count;
4382         vcpu->run->io.port = port;
4383
4384         return 0;
4385 }
4386
4387 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4388                                      int size, unsigned short port,
4389                                      const void *val, unsigned int count)
4390 {
4391         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4392
4393         trace_kvm_pio(1, port, size, count);
4394
4395         vcpu->arch.pio.port = port;
4396         vcpu->arch.pio.in = 0;
4397         vcpu->arch.pio.count = count;
4398         vcpu->arch.pio.size = size;
4399
4400         memcpy(vcpu->arch.pio_data, val, size * count);
4401
4402         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4403                 vcpu->arch.pio.count = 0;
4404                 return 1;
4405         }
4406
4407         vcpu->run->exit_reason = KVM_EXIT_IO;
4408         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4409         vcpu->run->io.size = size;
4410         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4411         vcpu->run->io.count = count;
4412         vcpu->run->io.port = port;
4413
4414         return 0;
4415 }
4416
4417 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4418 {
4419         return kvm_x86_ops->get_segment_base(vcpu, seg);
4420 }
4421
4422 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4423 {
4424         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4425 }
4426
4427 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4428 {
4429         if (!need_emulate_wbinvd(vcpu))
4430                 return X86EMUL_CONTINUE;
4431
4432         if (kvm_x86_ops->has_wbinvd_exit()) {
4433                 int cpu = get_cpu();
4434
4435                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4436                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4437                                 wbinvd_ipi, NULL, 1);
4438                 put_cpu();
4439                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4440         } else
4441                 wbinvd();
4442         return X86EMUL_CONTINUE;
4443 }
4444 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4445
4446 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4447 {
4448         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4449 }
4450
4451 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4452 {
4453         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4454 }
4455
4456 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4457 {
4458
4459         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4460 }
4461
4462 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4463 {
4464         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4465 }
4466
4467 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4468 {
4469         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4470         unsigned long value;
4471
4472         switch (cr) {
4473         case 0:
4474                 value = kvm_read_cr0(vcpu);
4475                 break;
4476         case 2:
4477                 value = vcpu->arch.cr2;
4478                 break;
4479         case 3:
4480                 value = kvm_read_cr3(vcpu);
4481                 break;
4482         case 4:
4483                 value = kvm_read_cr4(vcpu);
4484                 break;
4485         case 8:
4486                 value = kvm_get_cr8(vcpu);
4487                 break;
4488         default:
4489                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4490                 return 0;
4491         }
4492
4493         return value;
4494 }
4495
4496 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4497 {
4498         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4499         int res = 0;
4500
4501         switch (cr) {
4502         case 0:
4503                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4504                 break;
4505         case 2:
4506                 vcpu->arch.cr2 = val;
4507                 break;
4508         case 3:
4509                 res = kvm_set_cr3(vcpu, val);
4510                 break;
4511         case 4:
4512                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4513                 break;
4514         case 8:
4515                 res = kvm_set_cr8(vcpu, val);
4516                 break;
4517         default:
4518                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4519                 res = -1;
4520         }
4521
4522         return res;
4523 }
4524
4525 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4526 {
4527         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4528 }
4529
4530 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4531 {
4532         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4533 }
4534
4535 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4536 {
4537         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4538 }
4539
4540 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4541 {
4542         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4543 }
4544
4545 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4546 {
4547         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4548 }
4549
4550 static unsigned long emulator_get_cached_segment_base(
4551         struct x86_emulate_ctxt *ctxt, int seg)
4552 {
4553         return get_segment_base(emul_to_vcpu(ctxt), seg);
4554 }
4555
4556 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4557                                  struct desc_struct *desc, u32 *base3,
4558                                  int seg)
4559 {
4560         struct kvm_segment var;
4561
4562         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4563         *selector = var.selector;
4564
4565         if (var.unusable)
4566                 return false;
4567
4568         if (var.g)
4569                 var.limit >>= 12;
4570         set_desc_limit(desc, var.limit);
4571         set_desc_base(desc, (unsigned long)var.base);
4572 #ifdef CONFIG_X86_64
4573         if (base3)
4574                 *base3 = var.base >> 32;
4575 #endif
4576         desc->type = var.type;
4577         desc->s = var.s;
4578         desc->dpl = var.dpl;
4579         desc->p = var.present;
4580         desc->avl = var.avl;
4581         desc->l = var.l;
4582         desc->d = var.db;
4583         desc->g = var.g;
4584
4585         return true;
4586 }
4587
4588 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4589                                  struct desc_struct *desc, u32 base3,
4590                                  int seg)
4591 {
4592         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4593         struct kvm_segment var;
4594
4595         var.selector = selector;
4596         var.base = get_desc_base(desc);
4597 #ifdef CONFIG_X86_64
4598         var.base |= ((u64)base3) << 32;
4599 #endif
4600         var.limit = get_desc_limit(desc);
4601         if (desc->g)
4602                 var.limit = (var.limit << 12) | 0xfff;
4603         var.type = desc->type;
4604         var.present = desc->p;
4605         var.dpl = desc->dpl;
4606         var.db = desc->d;
4607         var.s = desc->s;
4608         var.l = desc->l;
4609         var.g = desc->g;
4610         var.avl = desc->avl;
4611         var.present = desc->p;
4612         var.unusable = !var.present;
4613         var.padding = 0;
4614
4615         kvm_set_segment(vcpu, &var, seg);
4616         return;
4617 }
4618
4619 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4620                             u32 msr_index, u64 *pdata)
4621 {
4622         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4623 }
4624
4625 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4626                             u32 msr_index, u64 data)
4627 {
4628         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4629 }
4630
4631 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4632 {
4633         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4634 }
4635
4636 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4637 {
4638         preempt_disable();
4639         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4640         /*
4641          * CR0.TS may reference the host fpu state, not the guest fpu state,
4642          * so it may be clear at this point.
4643          */
4644         clts();
4645 }
4646
4647 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4648 {
4649         preempt_enable();
4650 }
4651
4652 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4653                               struct x86_instruction_info *info,
4654                               enum x86_intercept_stage stage)
4655 {
4656         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4657 }
4658
4659 static struct x86_emulate_ops emulate_ops = {
4660         .read_std            = kvm_read_guest_virt_system,
4661         .write_std           = kvm_write_guest_virt_system,
4662         .fetch               = kvm_fetch_guest_virt,
4663         .read_emulated       = emulator_read_emulated,
4664         .write_emulated      = emulator_write_emulated,
4665         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4666         .invlpg              = emulator_invlpg,
4667         .pio_in_emulated     = emulator_pio_in_emulated,
4668         .pio_out_emulated    = emulator_pio_out_emulated,
4669         .get_segment         = emulator_get_segment,
4670         .set_segment         = emulator_set_segment,
4671         .get_cached_segment_base = emulator_get_cached_segment_base,
4672         .get_gdt             = emulator_get_gdt,
4673         .get_idt             = emulator_get_idt,
4674         .set_gdt             = emulator_set_gdt,
4675         .set_idt             = emulator_set_idt,
4676         .get_cr              = emulator_get_cr,
4677         .set_cr              = emulator_set_cr,
4678         .cpl                 = emulator_get_cpl,
4679         .get_dr              = emulator_get_dr,
4680         .set_dr              = emulator_set_dr,
4681         .set_msr             = emulator_set_msr,
4682         .get_msr             = emulator_get_msr,
4683         .halt                = emulator_halt,
4684         .wbinvd              = emulator_wbinvd,
4685         .fix_hypercall       = emulator_fix_hypercall,
4686         .get_fpu             = emulator_get_fpu,
4687         .put_fpu             = emulator_put_fpu,
4688         .intercept           = emulator_intercept,
4689 };
4690
4691 static void cache_all_regs(struct kvm_vcpu *vcpu)
4692 {
4693         kvm_register_read(vcpu, VCPU_REGS_RAX);
4694         kvm_register_read(vcpu, VCPU_REGS_RSP);
4695         kvm_register_read(vcpu, VCPU_REGS_RIP);
4696         vcpu->arch.regs_dirty = ~0;
4697 }
4698
4699 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4700 {
4701         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4702         /*
4703          * an sti; sti; sequence only disable interrupts for the first
4704          * instruction. So, if the last instruction, be it emulated or
4705          * not, left the system with the INT_STI flag enabled, it
4706          * means that the last instruction is an sti. We should not
4707          * leave the flag on in this case. The same goes for mov ss
4708          */
4709         if (!(int_shadow & mask))
4710                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4711 }
4712
4713 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4714 {
4715         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4716         if (ctxt->exception.vector == PF_VECTOR)
4717                 kvm_propagate_fault(vcpu, &ctxt->exception);
4718         else if (ctxt->exception.error_code_valid)
4719                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4720                                       ctxt->exception.error_code);
4721         else
4722                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4723 }
4724
4725 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4726                               const unsigned long *regs)
4727 {
4728         memset(&ctxt->twobyte, 0,
4729                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4730         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4731
4732         ctxt->fetch.start = 0;
4733         ctxt->fetch.end = 0;
4734         ctxt->io_read.pos = 0;
4735         ctxt->io_read.end = 0;
4736         ctxt->mem_read.pos = 0;
4737         ctxt->mem_read.end = 0;
4738 }
4739
4740 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4741 {
4742         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4743         int cs_db, cs_l;
4744
4745         /*
4746          * TODO: fix emulate.c to use guest_read/write_register
4747          * instead of direct ->regs accesses, can save hundred cycles
4748          * on Intel for instructions that don't read/change RSP, for
4749          * for example.
4750          */
4751         cache_all_regs(vcpu);
4752
4753         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4754
4755         ctxt->eflags = kvm_get_rflags(vcpu);
4756         ctxt->eip = kvm_rip_read(vcpu);
4757         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4758                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4759                      cs_l                               ? X86EMUL_MODE_PROT64 :
4760                      cs_db                              ? X86EMUL_MODE_PROT32 :
4761                                                           X86EMUL_MODE_PROT16;
4762         ctxt->guest_mode = is_guest_mode(vcpu);
4763
4764         init_decode_cache(ctxt, vcpu->arch.regs);
4765         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4766 }
4767
4768 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4769 {
4770         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4771         int ret;
4772
4773         init_emulate_ctxt(vcpu);
4774
4775         ctxt->op_bytes = 2;
4776         ctxt->ad_bytes = 2;
4777         ctxt->_eip = ctxt->eip + inc_eip;
4778         ret = emulate_int_real(ctxt, irq);
4779
4780         if (ret != X86EMUL_CONTINUE)
4781                 return EMULATE_FAIL;
4782
4783         ctxt->eip = ctxt->_eip;
4784         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4785         kvm_rip_write(vcpu, ctxt->eip);
4786         kvm_set_rflags(vcpu, ctxt->eflags);
4787
4788         if (irq == NMI_VECTOR)
4789                 vcpu->arch.nmi_pending = 0;
4790         else
4791                 vcpu->arch.interrupt.pending = false;
4792
4793         return EMULATE_DONE;
4794 }
4795 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4796
4797 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4798 {
4799         int r = EMULATE_DONE;
4800
4801         ++vcpu->stat.insn_emulation_fail;
4802         trace_kvm_emulate_insn_failed(vcpu);
4803         if (!is_guest_mode(vcpu)) {
4804                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4805                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4806                 vcpu->run->internal.ndata = 0;
4807                 r = EMULATE_FAIL;
4808         }
4809         kvm_queue_exception(vcpu, UD_VECTOR);
4810
4811         return r;
4812 }
4813
4814 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4815 {
4816         gpa_t gpa;
4817
4818         if (tdp_enabled)
4819                 return false;
4820
4821         /*
4822          * if emulation was due to access to shadowed page table
4823          * and it failed try to unshadow page and re-entetr the
4824          * guest to let CPU execute the instruction.
4825          */
4826         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4827                 return true;
4828
4829         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4830
4831         if (gpa == UNMAPPED_GVA)
4832                 return true; /* let cpu generate fault */
4833
4834         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4835                 return true;
4836
4837         return false;
4838 }
4839
4840 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4841                             unsigned long cr2,
4842                             int emulation_type,
4843                             void *insn,
4844                             int insn_len)
4845 {
4846         int r;
4847         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4848         bool writeback = true;
4849
4850         kvm_clear_exception_queue(vcpu);
4851
4852         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4853                 init_emulate_ctxt(vcpu);
4854                 ctxt->interruptibility = 0;
4855                 ctxt->have_exception = false;
4856                 ctxt->perm_ok = false;
4857
4858                 ctxt->only_vendor_specific_insn
4859                         = emulation_type & EMULTYPE_TRAP_UD;
4860
4861                 r = x86_decode_insn(ctxt, insn, insn_len);
4862
4863                 trace_kvm_emulate_insn_start(vcpu);
4864                 ++vcpu->stat.insn_emulation;
4865                 if (r != EMULATION_OK)  {
4866                         if (emulation_type & EMULTYPE_TRAP_UD)
4867                                 return EMULATE_FAIL;
4868                         if (reexecute_instruction(vcpu, cr2))
4869                                 return EMULATE_DONE;
4870                         if (emulation_type & EMULTYPE_SKIP)
4871                                 return EMULATE_FAIL;
4872                         return handle_emulation_failure(vcpu);
4873                 }
4874         }
4875
4876         if (emulation_type & EMULTYPE_SKIP) {
4877                 kvm_rip_write(vcpu, ctxt->_eip);
4878                 return EMULATE_DONE;
4879         }
4880
4881         /* this is needed for vmware backdoor interface to work since it
4882            changes registers values  during IO operation */
4883         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4884                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4885                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4886         }
4887
4888 restart:
4889         r = x86_emulate_insn(ctxt);
4890
4891         if (r == EMULATION_INTERCEPTED)
4892                 return EMULATE_DONE;
4893
4894         if (r == EMULATION_FAILED) {
4895                 if (reexecute_instruction(vcpu, cr2))
4896                         return EMULATE_DONE;
4897
4898                 return handle_emulation_failure(vcpu);
4899         }
4900
4901         if (ctxt->have_exception) {
4902                 inject_emulated_exception(vcpu);
4903                 r = EMULATE_DONE;
4904         } else if (vcpu->arch.pio.count) {
4905                 if (!vcpu->arch.pio.in)
4906                         vcpu->arch.pio.count = 0;
4907                 else
4908                         writeback = false;
4909                 r = EMULATE_DO_MMIO;
4910         } else if (vcpu->mmio_needed) {
4911                 if (!vcpu->mmio_is_write)
4912                         writeback = false;
4913                 r = EMULATE_DO_MMIO;
4914         } else if (r == EMULATION_RESTART)
4915                 goto restart;
4916         else
4917                 r = EMULATE_DONE;
4918
4919         if (writeback) {
4920                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4921                 kvm_set_rflags(vcpu, ctxt->eflags);
4922                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4923                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4924                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4925                 kvm_rip_write(vcpu, ctxt->eip);
4926         } else
4927                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4928
4929         return r;
4930 }
4931 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4932
4933 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4934 {
4935         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4936         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4937                                             size, port, &val, 1);
4938         /* do not return to emulator after return from userspace */
4939         vcpu->arch.pio.count = 0;
4940         return ret;
4941 }
4942 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4943
4944 static void tsc_bad(void *info)
4945 {
4946         __this_cpu_write(cpu_tsc_khz, 0);
4947 }
4948
4949 static void tsc_khz_changed(void *data)
4950 {
4951         struct cpufreq_freqs *freq = data;
4952         unsigned long khz = 0;
4953
4954         if (data)
4955                 khz = freq->new;
4956         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4957                 khz = cpufreq_quick_get(raw_smp_processor_id());
4958         if (!khz)
4959                 khz = tsc_khz;
4960         __this_cpu_write(cpu_tsc_khz, khz);
4961 }
4962
4963 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4964                                      void *data)
4965 {
4966         struct cpufreq_freqs *freq = data;
4967         struct kvm *kvm;
4968         struct kvm_vcpu *vcpu;
4969         int i, send_ipi = 0;
4970
4971         /*
4972          * We allow guests to temporarily run on slowing clocks,
4973          * provided we notify them after, or to run on accelerating
4974          * clocks, provided we notify them before.  Thus time never
4975          * goes backwards.
4976          *
4977          * However, we have a problem.  We can't atomically update
4978          * the frequency of a given CPU from this function; it is
4979          * merely a notifier, which can be called from any CPU.
4980          * Changing the TSC frequency at arbitrary points in time
4981          * requires a recomputation of local variables related to
4982          * the TSC for each VCPU.  We must flag these local variables
4983          * to be updated and be sure the update takes place with the
4984          * new frequency before any guests proceed.
4985          *
4986          * Unfortunately, the combination of hotplug CPU and frequency
4987          * change creates an intractable locking scenario; the order
4988          * of when these callouts happen is undefined with respect to
4989          * CPU hotplug, and they can race with each other.  As such,
4990          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4991          * undefined; you can actually have a CPU frequency change take
4992          * place in between the computation of X and the setting of the
4993          * variable.  To protect against this problem, all updates of
4994          * the per_cpu tsc_khz variable are done in an interrupt
4995          * protected IPI, and all callers wishing to update the value
4996          * must wait for a synchronous IPI to complete (which is trivial
4997          * if the caller is on the CPU already).  This establishes the
4998          * necessary total order on variable updates.
4999          *
5000          * Note that because a guest time update may take place
5001          * anytime after the setting of the VCPU's request bit, the
5002          * correct TSC value must be set before the request.  However,
5003          * to ensure the update actually makes it to any guest which
5004          * starts running in hardware virtualization between the set
5005          * and the acquisition of the spinlock, we must also ping the
5006          * CPU after setting the request bit.
5007          *
5008          */
5009
5010         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5011                 return 0;
5012         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5013                 return 0;
5014
5015         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5016
5017         raw_spin_lock(&kvm_lock);
5018         list_for_each_entry(kvm, &vm_list, vm_list) {
5019                 kvm_for_each_vcpu(i, vcpu, kvm) {
5020                         if (vcpu->cpu != freq->cpu)
5021                                 continue;
5022                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5023                         if (vcpu->cpu != smp_processor_id())
5024                                 send_ipi = 1;
5025                 }
5026         }
5027         raw_spin_unlock(&kvm_lock);
5028
5029         if (freq->old < freq->new && send_ipi) {
5030                 /*
5031                  * We upscale the frequency.  Must make the guest
5032                  * doesn't see old kvmclock values while running with
5033                  * the new frequency, otherwise we risk the guest sees
5034                  * time go backwards.
5035                  *
5036                  * In case we update the frequency for another cpu
5037                  * (which might be in guest context) send an interrupt
5038                  * to kick the cpu out of guest context.  Next time
5039                  * guest context is entered kvmclock will be updated,
5040                  * so the guest will not see stale values.
5041                  */
5042                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5043         }
5044         return 0;
5045 }
5046
5047 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5048         .notifier_call  = kvmclock_cpufreq_notifier
5049 };
5050
5051 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5052                                         unsigned long action, void *hcpu)
5053 {
5054         unsigned int cpu = (unsigned long)hcpu;
5055
5056         switch (action) {
5057                 case CPU_ONLINE:
5058                 case CPU_DOWN_FAILED:
5059                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5060                         break;
5061                 case CPU_DOWN_PREPARE:
5062                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5063                         break;
5064         }
5065         return NOTIFY_OK;
5066 }
5067
5068 static struct notifier_block kvmclock_cpu_notifier_block = {
5069         .notifier_call  = kvmclock_cpu_notifier,
5070         .priority = -INT_MAX
5071 };
5072
5073 static void kvm_timer_init(void)
5074 {
5075         int cpu;
5076
5077         max_tsc_khz = tsc_khz;
5078         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5079         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5080 #ifdef CONFIG_CPU_FREQ
5081                 struct cpufreq_policy policy;
5082                 memset(&policy, 0, sizeof(policy));
5083                 cpu = get_cpu();
5084                 cpufreq_get_policy(&policy, cpu);
5085                 if (policy.cpuinfo.max_freq)
5086                         max_tsc_khz = policy.cpuinfo.max_freq;
5087                 put_cpu();
5088 #endif
5089                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5090                                           CPUFREQ_TRANSITION_NOTIFIER);
5091         }
5092         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5093         for_each_online_cpu(cpu)
5094                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5095 }
5096
5097 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5098
5099 static int kvm_is_in_guest(void)
5100 {
5101         return percpu_read(current_vcpu) != NULL;
5102 }
5103
5104 static int kvm_is_user_mode(void)
5105 {
5106         int user_mode = 3;
5107
5108         if (percpu_read(current_vcpu))
5109                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5110
5111         return user_mode != 0;
5112 }
5113
5114 static unsigned long kvm_get_guest_ip(void)
5115 {
5116         unsigned long ip = 0;
5117
5118         if (percpu_read(current_vcpu))
5119                 ip = kvm_rip_read(percpu_read(current_vcpu));
5120
5121         return ip;
5122 }
5123
5124 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5125         .is_in_guest            = kvm_is_in_guest,
5126         .is_user_mode           = kvm_is_user_mode,
5127         .get_guest_ip           = kvm_get_guest_ip,
5128 };
5129
5130 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5131 {
5132         percpu_write(current_vcpu, vcpu);
5133 }
5134 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5135
5136 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5137 {
5138         percpu_write(current_vcpu, NULL);
5139 }
5140 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5141
5142 static void kvm_set_mmio_spte_mask(void)
5143 {
5144         u64 mask;
5145         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5146
5147         /*
5148          * Set the reserved bits and the present bit of an paging-structure
5149          * entry to generate page fault with PFER.RSV = 1.
5150          */
5151         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5152         mask |= 1ull;
5153
5154 #ifdef CONFIG_X86_64
5155         /*
5156          * If reserved bit is not supported, clear the present bit to disable
5157          * mmio page fault.
5158          */
5159         if (maxphyaddr == 52)
5160                 mask &= ~1ull;
5161 #endif
5162
5163         kvm_mmu_set_mmio_spte_mask(mask);
5164 }
5165
5166 int kvm_arch_init(void *opaque)
5167 {
5168         int r;
5169         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5170
5171         if (kvm_x86_ops) {
5172                 printk(KERN_ERR "kvm: already loaded the other module\n");
5173                 r = -EEXIST;
5174                 goto out;
5175         }
5176
5177         if (!ops->cpu_has_kvm_support()) {
5178                 printk(KERN_ERR "kvm: no hardware support\n");
5179                 r = -EOPNOTSUPP;
5180                 goto out;
5181         }
5182         if (ops->disabled_by_bios()) {
5183                 printk(KERN_ERR "kvm: disabled by bios\n");
5184                 r = -EOPNOTSUPP;
5185                 goto out;
5186         }
5187
5188         r = kvm_mmu_module_init();
5189         if (r)
5190                 goto out;
5191
5192         kvm_set_mmio_spte_mask();
5193         kvm_init_msr_list();
5194
5195         kvm_x86_ops = ops;
5196         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5197                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5198
5199         kvm_timer_init();
5200
5201         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5202
5203         if (cpu_has_xsave)
5204                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5205
5206         return 0;
5207
5208 out:
5209         return r;
5210 }
5211
5212 void kvm_arch_exit(void)
5213 {
5214         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5215
5216         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5217                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5218                                             CPUFREQ_TRANSITION_NOTIFIER);
5219         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5220         kvm_x86_ops = NULL;
5221         kvm_mmu_module_exit();
5222 }
5223
5224 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5225 {
5226         ++vcpu->stat.halt_exits;
5227         if (irqchip_in_kernel(vcpu->kvm)) {
5228                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5229                 return 1;
5230         } else {
5231                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5232                 return 0;
5233         }
5234 }
5235 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5236
5237 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5238                            unsigned long a1)
5239 {
5240         if (is_long_mode(vcpu))
5241                 return a0;
5242         else
5243                 return a0 | ((gpa_t)a1 << 32);
5244 }
5245
5246 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5247 {
5248         u64 param, ingpa, outgpa, ret;
5249         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5250         bool fast, longmode;
5251         int cs_db, cs_l;
5252
5253         /*
5254          * hypercall generates UD from non zero cpl and real mode
5255          * per HYPER-V spec
5256          */
5257         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5258                 kvm_queue_exception(vcpu, UD_VECTOR);
5259                 return 0;
5260         }
5261
5262         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5263         longmode = is_long_mode(vcpu) && cs_l == 1;
5264
5265         if (!longmode) {
5266                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5267                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5268                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5269                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5270                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5271                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5272         }
5273 #ifdef CONFIG_X86_64
5274         else {
5275                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5276                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5277                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5278         }
5279 #endif
5280
5281         code = param & 0xffff;
5282         fast = (param >> 16) & 0x1;
5283         rep_cnt = (param >> 32) & 0xfff;
5284         rep_idx = (param >> 48) & 0xfff;
5285
5286         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5287
5288         switch (code) {
5289         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5290                 kvm_vcpu_on_spin(vcpu);
5291                 break;
5292         default:
5293                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5294                 break;
5295         }
5296
5297         ret = res | (((u64)rep_done & 0xfff) << 32);
5298         if (longmode) {
5299                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5300         } else {
5301                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5302                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5303         }
5304
5305         return 1;
5306 }
5307
5308 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5309 {
5310         unsigned long nr, a0, a1, a2, a3, ret;
5311         int r = 1;
5312
5313         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5314                 return kvm_hv_hypercall(vcpu);
5315
5316         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5317         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5318         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5319         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5320         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5321
5322         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5323
5324         if (!is_long_mode(vcpu)) {
5325                 nr &= 0xFFFFFFFF;
5326                 a0 &= 0xFFFFFFFF;
5327                 a1 &= 0xFFFFFFFF;
5328                 a2 &= 0xFFFFFFFF;
5329                 a3 &= 0xFFFFFFFF;
5330         }
5331
5332         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5333                 ret = -KVM_EPERM;
5334                 goto out;
5335         }
5336
5337         switch (nr) {
5338         case KVM_HC_VAPIC_POLL_IRQ:
5339                 ret = 0;
5340                 break;
5341         case KVM_HC_MMU_OP:
5342                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5343                 break;
5344         default:
5345                 ret = -KVM_ENOSYS;
5346                 break;
5347         }
5348 out:
5349         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5350         ++vcpu->stat.hypercalls;
5351         return r;
5352 }
5353 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5354
5355 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5356 {
5357         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5358         char instruction[3];
5359         unsigned long rip = kvm_rip_read(vcpu);
5360
5361         /*
5362          * Blow out the MMU to ensure that no other VCPU has an active mapping
5363          * to ensure that the updated hypercall appears atomically across all
5364          * VCPUs.
5365          */
5366         kvm_mmu_zap_all(vcpu->kvm);
5367
5368         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5369
5370         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5371 }
5372
5373 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5374 {
5375         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5376         int j, nent = vcpu->arch.cpuid_nent;
5377
5378         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5379         /* when no next entry is found, the current entry[i] is reselected */
5380         for (j = i + 1; ; j = (j + 1) % nent) {
5381                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5382                 if (ej->function == e->function) {
5383                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5384                         return j;
5385                 }
5386         }
5387         return 0; /* silence gcc, even though control never reaches here */
5388 }
5389
5390 /* find an entry with matching function, matching index (if needed), and that
5391  * should be read next (if it's stateful) */
5392 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5393         u32 function, u32 index)
5394 {
5395         if (e->function != function)
5396                 return 0;
5397         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5398                 return 0;
5399         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5400             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5401                 return 0;
5402         return 1;
5403 }
5404
5405 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5406                                               u32 function, u32 index)
5407 {
5408         int i;
5409         struct kvm_cpuid_entry2 *best = NULL;
5410
5411         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5412                 struct kvm_cpuid_entry2 *e;
5413
5414                 e = &vcpu->arch.cpuid_entries[i];
5415                 if (is_matching_cpuid_entry(e, function, index)) {
5416                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5417                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5418                         best = e;
5419                         break;
5420                 }
5421         }
5422         return best;
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5425
5426 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5427 {
5428         struct kvm_cpuid_entry2 *best;
5429
5430         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5431         if (!best || best->eax < 0x80000008)
5432                 goto not_found;
5433         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5434         if (best)
5435                 return best->eax & 0xff;
5436 not_found:
5437         return 36;
5438 }
5439
5440 /*
5441  * If no match is found, check whether we exceed the vCPU's limit
5442  * and return the content of the highest valid _standard_ leaf instead.
5443  * This is to satisfy the CPUID specification.
5444  */
5445 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5446                                                   u32 function, u32 index)
5447 {
5448         struct kvm_cpuid_entry2 *maxlevel;
5449
5450         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5451         if (!maxlevel || maxlevel->eax >= function)
5452                 return NULL;
5453         if (function & 0x80000000) {
5454                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5455                 if (!maxlevel)
5456                         return NULL;
5457         }
5458         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5459 }
5460
5461 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5462 {
5463         u32 function, index;
5464         struct kvm_cpuid_entry2 *best;
5465
5466         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5467         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5468         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5469         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5470         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5471         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5472         best = kvm_find_cpuid_entry(vcpu, function, index);
5473
5474         if (!best)
5475                 best = check_cpuid_limit(vcpu, function, index);
5476
5477         if (best) {
5478                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5479                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5480                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5481                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5482         }
5483         kvm_x86_ops->skip_emulated_instruction(vcpu);
5484         trace_kvm_cpuid(function,
5485                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5486                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5487                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5488                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5489 }
5490 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5491
5492 /*
5493  * Check if userspace requested an interrupt window, and that the
5494  * interrupt window is open.
5495  *
5496  * No need to exit to userspace if we already have an interrupt queued.
5497  */
5498 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5499 {
5500         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5501                 vcpu->run->request_interrupt_window &&
5502                 kvm_arch_interrupt_allowed(vcpu));
5503 }
5504
5505 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5506 {
5507         struct kvm_run *kvm_run = vcpu->run;
5508
5509         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5510         kvm_run->cr8 = kvm_get_cr8(vcpu);
5511         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5512         if (irqchip_in_kernel(vcpu->kvm))
5513                 kvm_run->ready_for_interrupt_injection = 1;
5514         else
5515                 kvm_run->ready_for_interrupt_injection =
5516                         kvm_arch_interrupt_allowed(vcpu) &&
5517                         !kvm_cpu_has_interrupt(vcpu) &&
5518                         !kvm_event_needs_reinjection(vcpu);
5519 }
5520
5521 static void vapic_enter(struct kvm_vcpu *vcpu)
5522 {
5523         struct kvm_lapic *apic = vcpu->arch.apic;
5524         struct page *page;
5525
5526         if (!apic || !apic->vapic_addr)
5527                 return;
5528
5529         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5530
5531         vcpu->arch.apic->vapic_page = page;
5532 }
5533
5534 static void vapic_exit(struct kvm_vcpu *vcpu)
5535 {
5536         struct kvm_lapic *apic = vcpu->arch.apic;
5537         int idx;
5538
5539         if (!apic || !apic->vapic_addr)
5540                 return;
5541
5542         idx = srcu_read_lock(&vcpu->kvm->srcu);
5543         kvm_release_page_dirty(apic->vapic_page);
5544         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5545         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5546 }
5547
5548 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5549 {
5550         int max_irr, tpr;
5551
5552         if (!kvm_x86_ops->update_cr8_intercept)
5553                 return;
5554
5555         if (!vcpu->arch.apic)
5556                 return;
5557
5558         if (!vcpu->arch.apic->vapic_addr)
5559                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5560         else
5561                 max_irr = -1;
5562
5563         if (max_irr != -1)
5564                 max_irr >>= 4;
5565
5566         tpr = kvm_lapic_get_cr8(vcpu);
5567
5568         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5569 }
5570
5571 static void inject_pending_event(struct kvm_vcpu *vcpu)
5572 {
5573         /* try to reinject previous events if any */
5574         if (vcpu->arch.exception.pending) {
5575                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5576                                         vcpu->arch.exception.has_error_code,
5577                                         vcpu->arch.exception.error_code);
5578                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5579                                           vcpu->arch.exception.has_error_code,
5580                                           vcpu->arch.exception.error_code,
5581                                           vcpu->arch.exception.reinject);
5582                 return;
5583         }
5584
5585         if (vcpu->arch.nmi_injected) {
5586                 kvm_x86_ops->set_nmi(vcpu);
5587                 return;
5588         }
5589
5590         if (vcpu->arch.interrupt.pending) {
5591                 kvm_x86_ops->set_irq(vcpu);
5592                 return;
5593         }
5594
5595         /* try to inject new event if pending */
5596         if (vcpu->arch.nmi_pending) {
5597                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5598                         --vcpu->arch.nmi_pending;
5599                         vcpu->arch.nmi_injected = true;
5600                         kvm_x86_ops->set_nmi(vcpu);
5601                 }
5602         } else if (kvm_cpu_has_interrupt(vcpu)) {
5603                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5604                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5605                                             false);
5606                         kvm_x86_ops->set_irq(vcpu);
5607                 }
5608         }
5609 }
5610
5611 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5612 {
5613         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5614                         !vcpu->guest_xcr0_loaded) {
5615                 /* kvm_set_xcr() also depends on this */
5616                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5617                 vcpu->guest_xcr0_loaded = 1;
5618         }
5619 }
5620
5621 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5622 {
5623         if (vcpu->guest_xcr0_loaded) {
5624                 if (vcpu->arch.xcr0 != host_xcr0)
5625                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5626                 vcpu->guest_xcr0_loaded = 0;
5627         }
5628 }
5629
5630 static void process_nmi(struct kvm_vcpu *vcpu)
5631 {
5632         unsigned limit = 2;
5633
5634         /*
5635          * x86 is limited to one NMI running, and one NMI pending after it.
5636          * If an NMI is already in progress, limit further NMIs to just one.
5637          * Otherwise, allow two (and we'll inject the first one immediately).
5638          */
5639         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5640                 limit = 1;
5641
5642         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5643         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5644         kvm_make_request(KVM_REQ_EVENT, vcpu);
5645 }
5646
5647 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5648 {
5649         int r;
5650         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5651                 vcpu->run->request_interrupt_window;
5652
5653         if (vcpu->requests) {
5654                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5655                         kvm_mmu_unload(vcpu);
5656                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5657                         __kvm_migrate_timers(vcpu);
5658                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5659                         r = kvm_guest_time_update(vcpu);
5660                         if (unlikely(r))
5661                                 goto out;
5662                 }
5663                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5664                         kvm_mmu_sync_roots(vcpu);
5665                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5666                         kvm_x86_ops->tlb_flush(vcpu);
5667                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5668                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5669                         r = 0;
5670                         goto out;
5671                 }
5672                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5673                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5674                         r = 0;
5675                         goto out;
5676                 }
5677                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5678                         vcpu->fpu_active = 0;
5679                         kvm_x86_ops->fpu_deactivate(vcpu);
5680                 }
5681                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5682                         /* Page is swapped out. Do synthetic halt */
5683                         vcpu->arch.apf.halted = true;
5684                         r = 1;
5685                         goto out;
5686                 }
5687                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5688                         record_steal_time(vcpu);
5689                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5690                         process_nmi(vcpu);
5691
5692         }
5693
5694         r = kvm_mmu_reload(vcpu);
5695         if (unlikely(r))
5696                 goto out;
5697
5698         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5699                 inject_pending_event(vcpu);
5700
5701                 /* enable NMI/IRQ window open exits if needed */
5702                 if (vcpu->arch.nmi_pending)
5703                         kvm_x86_ops->enable_nmi_window(vcpu);
5704                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5705                         kvm_x86_ops->enable_irq_window(vcpu);
5706
5707                 if (kvm_lapic_enabled(vcpu)) {
5708                         update_cr8_intercept(vcpu);
5709                         kvm_lapic_sync_to_vapic(vcpu);
5710                 }
5711         }
5712
5713         preempt_disable();
5714
5715         kvm_x86_ops->prepare_guest_switch(vcpu);
5716         if (vcpu->fpu_active)
5717                 kvm_load_guest_fpu(vcpu);
5718         kvm_load_guest_xcr0(vcpu);
5719
5720         vcpu->mode = IN_GUEST_MODE;
5721
5722         /* We should set ->mode before check ->requests,
5723          * see the comment in make_all_cpus_request.
5724          */
5725         smp_mb();
5726
5727         local_irq_disable();
5728
5729         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5730             || need_resched() || signal_pending(current)) {
5731                 vcpu->mode = OUTSIDE_GUEST_MODE;
5732                 smp_wmb();
5733                 local_irq_enable();
5734                 preempt_enable();
5735                 kvm_x86_ops->cancel_injection(vcpu);
5736                 r = 1;
5737                 goto out;
5738         }
5739
5740         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5741
5742         kvm_guest_enter();
5743
5744         if (unlikely(vcpu->arch.switch_db_regs)) {
5745                 set_debugreg(0, 7);
5746                 set_debugreg(vcpu->arch.eff_db[0], 0);
5747                 set_debugreg(vcpu->arch.eff_db[1], 1);
5748                 set_debugreg(vcpu->arch.eff_db[2], 2);
5749                 set_debugreg(vcpu->arch.eff_db[3], 3);
5750         }
5751
5752         trace_kvm_entry(vcpu->vcpu_id);
5753         kvm_x86_ops->run(vcpu);
5754
5755         /*
5756          * If the guest has used debug registers, at least dr7
5757          * will be disabled while returning to the host.
5758          * If we don't have active breakpoints in the host, we don't
5759          * care about the messed up debug address registers. But if
5760          * we have some of them active, restore the old state.
5761          */
5762         if (hw_breakpoint_active())
5763                 hw_breakpoint_restore();
5764
5765         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5766
5767         vcpu->mode = OUTSIDE_GUEST_MODE;
5768         smp_wmb();
5769         local_irq_enable();
5770
5771         ++vcpu->stat.exits;
5772
5773         /*
5774          * We must have an instruction between local_irq_enable() and
5775          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5776          * the interrupt shadow.  The stat.exits increment will do nicely.
5777          * But we need to prevent reordering, hence this barrier():
5778          */
5779         barrier();
5780
5781         kvm_guest_exit();
5782
5783         preempt_enable();
5784
5785         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5786
5787         /*
5788          * Profile KVM exit RIPs:
5789          */
5790         if (unlikely(prof_on == KVM_PROFILING)) {
5791                 unsigned long rip = kvm_rip_read(vcpu);
5792                 profile_hit(KVM_PROFILING, (void *)rip);
5793         }
5794
5795
5796         kvm_lapic_sync_from_vapic(vcpu);
5797
5798         r = kvm_x86_ops->handle_exit(vcpu);
5799 out:
5800         return r;
5801 }
5802
5803
5804 static int __vcpu_run(struct kvm_vcpu *vcpu)
5805 {
5806         int r;
5807         struct kvm *kvm = vcpu->kvm;
5808
5809         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5810                 pr_debug("vcpu %d received sipi with vector # %x\n",
5811                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5812                 kvm_lapic_reset(vcpu);
5813                 r = kvm_arch_vcpu_reset(vcpu);
5814                 if (r)
5815                         return r;
5816                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5817         }
5818
5819         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5820         vapic_enter(vcpu);
5821
5822         r = 1;
5823         while (r > 0) {
5824                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5825                     !vcpu->arch.apf.halted)
5826                         r = vcpu_enter_guest(vcpu);
5827                 else {
5828                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5829                         kvm_vcpu_block(vcpu);
5830                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5831                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5832                         {
5833                                 switch(vcpu->arch.mp_state) {
5834                                 case KVM_MP_STATE_HALTED:
5835                                         vcpu->arch.mp_state =
5836                                                 KVM_MP_STATE_RUNNABLE;
5837                                 case KVM_MP_STATE_RUNNABLE:
5838                                         vcpu->arch.apf.halted = false;
5839                                         break;
5840                                 case KVM_MP_STATE_SIPI_RECEIVED:
5841                                 default:
5842                                         r = -EINTR;
5843                                         break;
5844                                 }
5845                         }
5846                 }
5847
5848                 if (r <= 0)
5849                         break;
5850
5851                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5852                 if (kvm_cpu_has_pending_timer(vcpu))
5853                         kvm_inject_pending_timer_irqs(vcpu);
5854
5855                 if (dm_request_for_irq_injection(vcpu)) {
5856                         r = -EINTR;
5857                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5858                         ++vcpu->stat.request_irq_exits;
5859                 }
5860
5861                 kvm_check_async_pf_completion(vcpu);
5862
5863                 if (signal_pending(current)) {
5864                         r = -EINTR;
5865                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5866                         ++vcpu->stat.signal_exits;
5867                 }
5868                 if (need_resched()) {
5869                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5870                         kvm_resched(vcpu);
5871                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5872                 }
5873         }
5874
5875         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5876
5877         vapic_exit(vcpu);
5878
5879         return r;
5880 }
5881
5882 static int complete_mmio(struct kvm_vcpu *vcpu)
5883 {
5884         struct kvm_run *run = vcpu->run;
5885         int r;
5886
5887         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5888                 return 1;
5889
5890         if (vcpu->mmio_needed) {
5891                 vcpu->mmio_needed = 0;
5892                 if (!vcpu->mmio_is_write)
5893                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5894                                run->mmio.data, 8);
5895                 vcpu->mmio_index += 8;
5896                 if (vcpu->mmio_index < vcpu->mmio_size) {
5897                         run->exit_reason = KVM_EXIT_MMIO;
5898                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5899                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5900                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5901                         run->mmio.is_write = vcpu->mmio_is_write;
5902                         vcpu->mmio_needed = 1;
5903                         return 0;
5904                 }
5905                 if (vcpu->mmio_is_write)
5906                         return 1;
5907                 vcpu->mmio_read_completed = 1;
5908         }
5909         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5910         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5911         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5912         if (r != EMULATE_DONE)
5913                 return 0;
5914         return 1;
5915 }
5916
5917 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5918 {
5919         int r;
5920         sigset_t sigsaved;
5921
5922         if (!tsk_used_math(current) && init_fpu(current))
5923                 return -ENOMEM;
5924
5925         if (vcpu->sigset_active)
5926                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5927
5928         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5929                 kvm_vcpu_block(vcpu);
5930                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5931                 r = -EAGAIN;
5932                 goto out;
5933         }
5934
5935         /* re-sync apic's tpr */
5936         if (!irqchip_in_kernel(vcpu->kvm)) {
5937                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5938                         r = -EINVAL;
5939                         goto out;
5940                 }
5941         }
5942
5943         r = complete_mmio(vcpu);
5944         if (r <= 0)
5945                 goto out;
5946
5947         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5948                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5949                                      kvm_run->hypercall.ret);
5950
5951         r = __vcpu_run(vcpu);
5952
5953 out:
5954         post_kvm_run_save(vcpu);
5955         if (vcpu->sigset_active)
5956                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5957
5958         return r;
5959 }
5960
5961 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5962 {
5963         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5964                 /*
5965                  * We are here if userspace calls get_regs() in the middle of
5966                  * instruction emulation. Registers state needs to be copied
5967                  * back from emulation context to vcpu. Usrapace shouldn't do
5968                  * that usually, but some bad designed PV devices (vmware
5969                  * backdoor interface) need this to work
5970                  */
5971                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5972                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5973                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5974         }
5975         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5976         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5977         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5978         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5979         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5980         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5981         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5982         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5983 #ifdef CONFIG_X86_64
5984         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5985         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5986         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5987         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5988         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5989         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5990         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5991         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5992 #endif
5993
5994         regs->rip = kvm_rip_read(vcpu);
5995         regs->rflags = kvm_get_rflags(vcpu);
5996
5997         return 0;
5998 }
5999
6000 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6001 {
6002         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6003         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6004
6005         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6006         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6007         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6008         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6009         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6010         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6011         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6012         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6013 #ifdef CONFIG_X86_64
6014         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6015         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6016         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6017         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6018         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6019         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6020         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6021         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6022 #endif
6023
6024         kvm_rip_write(vcpu, regs->rip);
6025         kvm_set_rflags(vcpu, regs->rflags);
6026
6027         vcpu->arch.exception.pending = false;
6028
6029         kvm_make_request(KVM_REQ_EVENT, vcpu);
6030
6031         return 0;
6032 }
6033
6034 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6035 {
6036         struct kvm_segment cs;
6037
6038         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6039         *db = cs.db;
6040         *l = cs.l;
6041 }
6042 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6043
6044 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6045                                   struct kvm_sregs *sregs)
6046 {
6047         struct desc_ptr dt;
6048
6049         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6050         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6051         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6052         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6053         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6054         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6055
6056         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6057         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6058
6059         kvm_x86_ops->get_idt(vcpu, &dt);
6060         sregs->idt.limit = dt.size;
6061         sregs->idt.base = dt.address;
6062         kvm_x86_ops->get_gdt(vcpu, &dt);
6063         sregs->gdt.limit = dt.size;
6064         sregs->gdt.base = dt.address;
6065
6066         sregs->cr0 = kvm_read_cr0(vcpu);
6067         sregs->cr2 = vcpu->arch.cr2;
6068         sregs->cr3 = kvm_read_cr3(vcpu);
6069         sregs->cr4 = kvm_read_cr4(vcpu);
6070         sregs->cr8 = kvm_get_cr8(vcpu);
6071         sregs->efer = vcpu->arch.efer;
6072         sregs->apic_base = kvm_get_apic_base(vcpu);
6073
6074         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6075
6076         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6077                 set_bit(vcpu->arch.interrupt.nr,
6078                         (unsigned long *)sregs->interrupt_bitmap);
6079
6080         return 0;
6081 }
6082
6083 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6084                                     struct kvm_mp_state *mp_state)
6085 {
6086         mp_state->mp_state = vcpu->arch.mp_state;
6087         return 0;
6088 }
6089
6090 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6091                                     struct kvm_mp_state *mp_state)
6092 {
6093         vcpu->arch.mp_state = mp_state->mp_state;
6094         kvm_make_request(KVM_REQ_EVENT, vcpu);
6095         return 0;
6096 }
6097
6098 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6099                     bool has_error_code, u32 error_code)
6100 {
6101         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6102         int ret;
6103
6104         init_emulate_ctxt(vcpu);
6105
6106         ret = emulator_task_switch(ctxt, tss_selector, reason,
6107                                    has_error_code, error_code);
6108
6109         if (ret)
6110                 return EMULATE_FAIL;
6111
6112         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6113         kvm_rip_write(vcpu, ctxt->eip);
6114         kvm_set_rflags(vcpu, ctxt->eflags);
6115         kvm_make_request(KVM_REQ_EVENT, vcpu);
6116         return EMULATE_DONE;
6117 }
6118 EXPORT_SYMBOL_GPL(kvm_task_switch);
6119
6120 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6121                                   struct kvm_sregs *sregs)
6122 {
6123         int mmu_reset_needed = 0;
6124         int pending_vec, max_bits, idx;
6125         struct desc_ptr dt;
6126
6127         dt.size = sregs->idt.limit;
6128         dt.address = sregs->idt.base;
6129         kvm_x86_ops->set_idt(vcpu, &dt);
6130         dt.size = sregs->gdt.limit;
6131         dt.address = sregs->gdt.base;
6132         kvm_x86_ops->set_gdt(vcpu, &dt);
6133
6134         vcpu->arch.cr2 = sregs->cr2;
6135         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6136         vcpu->arch.cr3 = sregs->cr3;
6137         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6138
6139         kvm_set_cr8(vcpu, sregs->cr8);
6140
6141         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6142         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6143         kvm_set_apic_base(vcpu, sregs->apic_base);
6144
6145         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6146         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6147         vcpu->arch.cr0 = sregs->cr0;
6148
6149         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6150         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6151         if (sregs->cr4 & X86_CR4_OSXSAVE)
6152                 update_cpuid(vcpu);
6153
6154         idx = srcu_read_lock(&vcpu->kvm->srcu);
6155         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6156                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6157                 mmu_reset_needed = 1;
6158         }
6159         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6160
6161         if (mmu_reset_needed)
6162                 kvm_mmu_reset_context(vcpu);
6163
6164         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6165         pending_vec = find_first_bit(
6166                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6167         if (pending_vec < max_bits) {
6168                 kvm_queue_interrupt(vcpu, pending_vec, false);
6169                 pr_debug("Set back pending irq %d\n", pending_vec);
6170         }
6171
6172         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6173         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6174         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6175         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6176         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6177         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6178
6179         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6180         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6181
6182         update_cr8_intercept(vcpu);
6183
6184         /* Older userspace won't unhalt the vcpu on reset. */
6185         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6186             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6187             !is_protmode(vcpu))
6188                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6189
6190         kvm_make_request(KVM_REQ_EVENT, vcpu);
6191
6192         return 0;
6193 }
6194
6195 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6196                                         struct kvm_guest_debug *dbg)
6197 {
6198         unsigned long rflags;
6199         int i, r;
6200
6201         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6202                 r = -EBUSY;
6203                 if (vcpu->arch.exception.pending)
6204                         goto out;
6205                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6206                         kvm_queue_exception(vcpu, DB_VECTOR);
6207                 else
6208                         kvm_queue_exception(vcpu, BP_VECTOR);
6209         }
6210
6211         /*
6212          * Read rflags as long as potentially injected trace flags are still
6213          * filtered out.
6214          */
6215         rflags = kvm_get_rflags(vcpu);
6216
6217         vcpu->guest_debug = dbg->control;
6218         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6219                 vcpu->guest_debug = 0;
6220
6221         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6222                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6223                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6224                 vcpu->arch.switch_db_regs =
6225                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6226         } else {
6227                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6228                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6229                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6230         }
6231
6232         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6233                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6234                         get_segment_base(vcpu, VCPU_SREG_CS);
6235
6236         /*
6237          * Trigger an rflags update that will inject or remove the trace
6238          * flags.
6239          */
6240         kvm_set_rflags(vcpu, rflags);
6241
6242         kvm_x86_ops->set_guest_debug(vcpu, dbg);
6243
6244         r = 0;
6245
6246 out:
6247
6248         return r;
6249 }
6250
6251 /*
6252  * Translate a guest virtual address to a guest physical address.
6253  */
6254 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6255                                     struct kvm_translation *tr)
6256 {
6257         unsigned long vaddr = tr->linear_address;
6258         gpa_t gpa;
6259         int idx;
6260
6261         idx = srcu_read_lock(&vcpu->kvm->srcu);
6262         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6263         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6264         tr->physical_address = gpa;
6265         tr->valid = gpa != UNMAPPED_GVA;
6266         tr->writeable = 1;
6267         tr->usermode = 0;
6268
6269         return 0;
6270 }
6271
6272 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6273 {
6274         struct i387_fxsave_struct *fxsave =
6275                         &vcpu->arch.guest_fpu.state->fxsave;
6276
6277         memcpy(fpu->fpr, fxsave->st_space, 128);
6278         fpu->fcw = fxsave->cwd;
6279         fpu->fsw = fxsave->swd;
6280         fpu->ftwx = fxsave->twd;
6281         fpu->last_opcode = fxsave->fop;
6282         fpu->last_ip = fxsave->rip;
6283         fpu->last_dp = fxsave->rdp;
6284         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6285
6286         return 0;
6287 }
6288
6289 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6290 {
6291         struct i387_fxsave_struct *fxsave =
6292                         &vcpu->arch.guest_fpu.state->fxsave;
6293
6294         memcpy(fxsave->st_space, fpu->fpr, 128);
6295         fxsave->cwd = fpu->fcw;
6296         fxsave->swd = fpu->fsw;
6297         fxsave->twd = fpu->ftwx;
6298         fxsave->fop = fpu->last_opcode;
6299         fxsave->rip = fpu->last_ip;
6300         fxsave->rdp = fpu->last_dp;
6301         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6302
6303         return 0;
6304 }
6305
6306 int fx_init(struct kvm_vcpu *vcpu)
6307 {
6308         int err;
6309
6310         err = fpu_alloc(&vcpu->arch.guest_fpu);
6311         if (err)
6312                 return err;
6313
6314         fpu_finit(&vcpu->arch.guest_fpu);
6315
6316         /*
6317          * Ensure guest xcr0 is valid for loading
6318          */
6319         vcpu->arch.xcr0 = XSTATE_FP;
6320
6321         vcpu->arch.cr0 |= X86_CR0_ET;
6322
6323         return 0;
6324 }
6325 EXPORT_SYMBOL_GPL(fx_init);
6326
6327 static void fx_free(struct kvm_vcpu *vcpu)
6328 {
6329         fpu_free(&vcpu->arch.guest_fpu);
6330 }
6331
6332 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6333 {
6334         if (vcpu->guest_fpu_loaded)
6335                 return;
6336
6337         /*
6338          * Restore all possible states in the guest,
6339          * and assume host would use all available bits.
6340          * Guest xcr0 would be loaded later.
6341          */
6342         kvm_put_guest_xcr0(vcpu);
6343         vcpu->guest_fpu_loaded = 1;
6344         unlazy_fpu(current);
6345         fpu_restore_checking(&vcpu->arch.guest_fpu);
6346         trace_kvm_fpu(1);
6347 }
6348
6349 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6350 {
6351         kvm_put_guest_xcr0(vcpu);
6352
6353         if (!vcpu->guest_fpu_loaded)
6354                 return;
6355
6356         vcpu->guest_fpu_loaded = 0;
6357         fpu_save_init(&vcpu->arch.guest_fpu);
6358         ++vcpu->stat.fpu_reload;
6359         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6360         trace_kvm_fpu(0);
6361 }
6362
6363 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6364 {
6365         kvmclock_reset(vcpu);
6366
6367         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6368         fx_free(vcpu);
6369         kvm_x86_ops->vcpu_free(vcpu);
6370 }
6371
6372 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6373                                                 unsigned int id)
6374 {
6375         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6376                 printk_once(KERN_WARNING
6377                 "kvm: SMP vm created on host with unstable TSC; "
6378                 "guest TSC will not be reliable\n");
6379         return kvm_x86_ops->vcpu_create(kvm, id);
6380 }
6381
6382 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6383 {
6384         int r;
6385
6386         vcpu->arch.mtrr_state.have_fixed = 1;
6387         vcpu_load(vcpu);
6388         r = kvm_arch_vcpu_reset(vcpu);
6389         if (r == 0)
6390                 r = kvm_mmu_setup(vcpu);
6391         vcpu_put(vcpu);
6392
6393         return r;
6394 }
6395
6396 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6397 {
6398         vcpu->arch.apf.msr_val = 0;
6399
6400         vcpu_load(vcpu);
6401         kvm_mmu_unload(vcpu);
6402         vcpu_put(vcpu);
6403
6404         fx_free(vcpu);
6405         kvm_x86_ops->vcpu_free(vcpu);
6406 }
6407
6408 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6409 {
6410         atomic_set(&vcpu->arch.nmi_queued, 0);
6411         vcpu->arch.nmi_pending = 0;
6412         vcpu->arch.nmi_injected = false;
6413
6414         vcpu->arch.switch_db_regs = 0;
6415         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6416         vcpu->arch.dr6 = DR6_FIXED_1;
6417         vcpu->arch.dr7 = DR7_FIXED_1;
6418
6419         kvm_make_request(KVM_REQ_EVENT, vcpu);
6420         vcpu->arch.apf.msr_val = 0;
6421         vcpu->arch.st.msr_val = 0;
6422
6423         kvmclock_reset(vcpu);
6424
6425         kvm_clear_async_pf_completion_queue(vcpu);
6426         kvm_async_pf_hash_reset(vcpu);
6427         vcpu->arch.apf.halted = false;
6428
6429         return kvm_x86_ops->vcpu_reset(vcpu);
6430 }
6431
6432 int kvm_arch_hardware_enable(void *garbage)
6433 {
6434         struct kvm *kvm;
6435         struct kvm_vcpu *vcpu;
6436         int i;
6437
6438         kvm_shared_msr_cpu_online();
6439         list_for_each_entry(kvm, &vm_list, vm_list)
6440                 kvm_for_each_vcpu(i, vcpu, kvm)
6441                         if (vcpu->cpu == smp_processor_id())
6442                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6443         return kvm_x86_ops->hardware_enable(garbage);
6444 }
6445
6446 void kvm_arch_hardware_disable(void *garbage)
6447 {
6448         kvm_x86_ops->hardware_disable(garbage);
6449         drop_user_return_notifiers(garbage);
6450 }
6451
6452 int kvm_arch_hardware_setup(void)
6453 {
6454         return kvm_x86_ops->hardware_setup();
6455 }
6456
6457 void kvm_arch_hardware_unsetup(void)
6458 {
6459         kvm_x86_ops->hardware_unsetup();
6460 }
6461
6462 void kvm_arch_check_processor_compat(void *rtn)
6463 {
6464         kvm_x86_ops->check_processor_compatibility(rtn);
6465 }
6466
6467 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6468 {
6469         struct page *page;
6470         struct kvm *kvm;
6471         int r;
6472
6473         BUG_ON(vcpu->kvm == NULL);
6474         kvm = vcpu->kvm;
6475
6476         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6477         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6478         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6479         vcpu->arch.mmu.translate_gpa = translate_gpa;
6480         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6481         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6482                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6483         else
6484                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6485
6486         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6487         if (!page) {
6488                 r = -ENOMEM;
6489                 goto fail;
6490         }
6491         vcpu->arch.pio_data = page_address(page);
6492
6493         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6494
6495         r = kvm_mmu_create(vcpu);
6496         if (r < 0)
6497                 goto fail_free_pio_data;
6498
6499         if (irqchip_in_kernel(kvm)) {
6500                 r = kvm_create_lapic(vcpu);
6501                 if (r < 0)
6502                         goto fail_mmu_destroy;
6503         }
6504
6505         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6506                                        GFP_KERNEL);
6507         if (!vcpu->arch.mce_banks) {
6508                 r = -ENOMEM;
6509                 goto fail_free_lapic;
6510         }
6511         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6512
6513         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6514                 goto fail_free_mce_banks;
6515
6516         kvm_async_pf_hash_reset(vcpu);
6517
6518         return 0;
6519 fail_free_mce_banks:
6520         kfree(vcpu->arch.mce_banks);
6521 fail_free_lapic:
6522         kvm_free_lapic(vcpu);
6523 fail_mmu_destroy:
6524         kvm_mmu_destroy(vcpu);
6525 fail_free_pio_data:
6526         free_page((unsigned long)vcpu->arch.pio_data);
6527 fail:
6528         return r;
6529 }
6530
6531 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6532 {
6533         int idx;
6534
6535         kfree(vcpu->arch.mce_banks);
6536         kvm_free_lapic(vcpu);
6537         idx = srcu_read_lock(&vcpu->kvm->srcu);
6538         kvm_mmu_destroy(vcpu);
6539         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6540         free_page((unsigned long)vcpu->arch.pio_data);
6541 }
6542
6543 int kvm_arch_init_vm(struct kvm *kvm)
6544 {
6545         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6546         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6547
6548         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6549         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6550
6551         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6552
6553         return 0;
6554 }
6555
6556 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6557 {
6558         vcpu_load(vcpu);
6559         kvm_mmu_unload(vcpu);
6560         vcpu_put(vcpu);
6561 }
6562
6563 static void kvm_free_vcpus(struct kvm *kvm)
6564 {
6565         unsigned int i;
6566         struct kvm_vcpu *vcpu;
6567
6568         /*
6569          * Unpin any mmu pages first.
6570          */
6571         kvm_for_each_vcpu(i, vcpu, kvm) {
6572                 kvm_clear_async_pf_completion_queue(vcpu);
6573                 kvm_unload_vcpu_mmu(vcpu);
6574         }
6575         kvm_for_each_vcpu(i, vcpu, kvm)
6576                 kvm_arch_vcpu_free(vcpu);
6577
6578         mutex_lock(&kvm->lock);
6579         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6580                 kvm->vcpus[i] = NULL;
6581
6582         atomic_set(&kvm->online_vcpus, 0);
6583         mutex_unlock(&kvm->lock);
6584 }
6585
6586 void kvm_arch_sync_events(struct kvm *kvm)
6587 {
6588         kvm_free_all_assigned_devices(kvm);
6589         kvm_free_pit(kvm);
6590 }
6591
6592 void kvm_arch_destroy_vm(struct kvm *kvm)
6593 {
6594         kvm_iommu_unmap_guest(kvm);
6595         kfree(kvm->arch.vpic);
6596         kfree(kvm->arch.vioapic);
6597         kvm_free_vcpus(kvm);
6598         if (kvm->arch.apic_access_page)
6599                 put_page(kvm->arch.apic_access_page);
6600         if (kvm->arch.ept_identity_pagetable)
6601                 put_page(kvm->arch.ept_identity_pagetable);
6602 }
6603
6604 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6605                                 struct kvm_memory_slot *memslot,
6606                                 struct kvm_memory_slot old,
6607                                 struct kvm_userspace_memory_region *mem,
6608                                 int user_alloc)
6609 {
6610         int npages = memslot->npages;
6611         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6612
6613         /* Prevent internal slot pages from being moved by fork()/COW. */
6614         if (memslot->id >= KVM_MEMORY_SLOTS)
6615                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6616
6617         /*To keep backward compatibility with older userspace,
6618          *x86 needs to hanlde !user_alloc case.
6619          */
6620         if (!user_alloc) {
6621                 if (npages && !old.rmap) {
6622                         unsigned long userspace_addr;
6623
6624                         down_write(&current->mm->mmap_sem);
6625                         userspace_addr = do_mmap(NULL, 0,
6626                                                  npages * PAGE_SIZE,
6627                                                  PROT_READ | PROT_WRITE,
6628                                                  map_flags,
6629                                                  0);
6630                         up_write(&current->mm->mmap_sem);
6631
6632                         if (IS_ERR((void *)userspace_addr))
6633                                 return PTR_ERR((void *)userspace_addr);
6634
6635                         memslot->userspace_addr = userspace_addr;
6636                 }
6637         }
6638
6639
6640         return 0;
6641 }
6642
6643 void kvm_arch_commit_memory_region(struct kvm *kvm,
6644                                 struct kvm_userspace_memory_region *mem,
6645                                 struct kvm_memory_slot old,
6646                                 int user_alloc)
6647 {
6648
6649         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6650
6651         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6652                 int ret;
6653
6654                 down_write(&current->mm->mmap_sem);
6655                 ret = do_munmap(current->mm, old.userspace_addr,
6656                                 old.npages * PAGE_SIZE);
6657                 up_write(&current->mm->mmap_sem);
6658                 if (ret < 0)
6659                         printk(KERN_WARNING
6660                                "kvm_vm_ioctl_set_memory_region: "
6661                                "failed to munmap memory\n");
6662         }
6663
6664         if (!kvm->arch.n_requested_mmu_pages)
6665                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6666
6667         spin_lock(&kvm->mmu_lock);
6668         if (nr_mmu_pages)
6669                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6670         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6671         spin_unlock(&kvm->mmu_lock);
6672 }
6673
6674 void kvm_arch_flush_shadow(struct kvm *kvm)
6675 {
6676         kvm_mmu_zap_all(kvm);
6677         kvm_reload_remote_mmus(kvm);
6678 }
6679
6680 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6681 {
6682         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6683                 !vcpu->arch.apf.halted)
6684                 || !list_empty_careful(&vcpu->async_pf.done)
6685                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6686                 || atomic_read(&vcpu->arch.nmi_queued) ||
6687                 (kvm_arch_interrupt_allowed(vcpu) &&
6688                  kvm_cpu_has_interrupt(vcpu));
6689 }
6690
6691 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6692 {
6693         int me;
6694         int cpu = vcpu->cpu;
6695
6696         if (waitqueue_active(&vcpu->wq)) {
6697                 wake_up_interruptible(&vcpu->wq);
6698                 ++vcpu->stat.halt_wakeup;
6699         }
6700
6701         me = get_cpu();
6702         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6703                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6704                         smp_send_reschedule(cpu);
6705         put_cpu();
6706 }
6707
6708 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6709 {
6710         return kvm_x86_ops->interrupt_allowed(vcpu);
6711 }
6712
6713 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6714 {
6715         unsigned long current_rip = kvm_rip_read(vcpu) +
6716                 get_segment_base(vcpu, VCPU_SREG_CS);
6717
6718         return current_rip == linear_rip;
6719 }
6720 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6721
6722 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6723 {
6724         unsigned long rflags;
6725
6726         rflags = kvm_x86_ops->get_rflags(vcpu);
6727         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6728                 rflags &= ~X86_EFLAGS_TF;
6729         return rflags;
6730 }
6731 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6732
6733 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6734 {
6735         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6736             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6737                 rflags |= X86_EFLAGS_TF;
6738         kvm_x86_ops->set_rflags(vcpu, rflags);
6739         kvm_make_request(KVM_REQ_EVENT, vcpu);
6740 }
6741 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6742
6743 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6744 {
6745         int r;
6746
6747         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6748               is_error_page(work->page))
6749                 return;
6750
6751         r = kvm_mmu_reload(vcpu);
6752         if (unlikely(r))
6753                 return;
6754
6755         if (!vcpu->arch.mmu.direct_map &&
6756               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6757                 return;
6758
6759         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6760 }
6761
6762 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6763 {
6764         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6765 }
6766
6767 static inline u32 kvm_async_pf_next_probe(u32 key)
6768 {
6769         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6770 }
6771
6772 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6773 {
6774         u32 key = kvm_async_pf_hash_fn(gfn);
6775
6776         while (vcpu->arch.apf.gfns[key] != ~0)
6777                 key = kvm_async_pf_next_probe(key);
6778
6779         vcpu->arch.apf.gfns[key] = gfn;
6780 }
6781
6782 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6783 {
6784         int i;
6785         u32 key = kvm_async_pf_hash_fn(gfn);
6786
6787         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6788                      (vcpu->arch.apf.gfns[key] != gfn &&
6789                       vcpu->arch.apf.gfns[key] != ~0); i++)
6790                 key = kvm_async_pf_next_probe(key);
6791
6792         return key;
6793 }
6794
6795 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6796 {
6797         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6798 }
6799
6800 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6801 {
6802         u32 i, j, k;
6803
6804         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6805         while (true) {
6806                 vcpu->arch.apf.gfns[i] = ~0;
6807                 do {
6808                         j = kvm_async_pf_next_probe(j);
6809                         if (vcpu->arch.apf.gfns[j] == ~0)
6810                                 return;
6811                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6812                         /*
6813                          * k lies cyclically in ]i,j]
6814                          * |    i.k.j |
6815                          * |....j i.k.| or  |.k..j i...|
6816                          */
6817                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6818                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6819                 i = j;
6820         }
6821 }
6822
6823 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6824 {
6825
6826         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6827                                       sizeof(val));
6828 }
6829
6830 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6831                                      struct kvm_async_pf *work)
6832 {
6833         struct x86_exception fault;
6834
6835         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6836         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6837
6838         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6839             (vcpu->arch.apf.send_user_only &&
6840              kvm_x86_ops->get_cpl(vcpu) == 0))
6841                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6842         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6843                 fault.vector = PF_VECTOR;
6844                 fault.error_code_valid = true;
6845                 fault.error_code = 0;
6846                 fault.nested_page_fault = false;
6847                 fault.address = work->arch.token;
6848                 kvm_inject_page_fault(vcpu, &fault);
6849         }
6850 }
6851
6852 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6853                                  struct kvm_async_pf *work)
6854 {
6855         struct x86_exception fault;
6856
6857         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6858         if (is_error_page(work->page))
6859                 work->arch.token = ~0; /* broadcast wakeup */
6860         else
6861                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6862
6863         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6864             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6865                 fault.vector = PF_VECTOR;
6866                 fault.error_code_valid = true;
6867                 fault.error_code = 0;
6868                 fault.nested_page_fault = false;
6869                 fault.address = work->arch.token;
6870                 kvm_inject_page_fault(vcpu, &fault);
6871         }
6872         vcpu->arch.apf.halted = false;
6873 }
6874
6875 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6876 {
6877         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6878                 return true;
6879         else
6880                 return !kvm_event_needs_reinjection(vcpu) &&
6881                         kvm_x86_ops->interrupt_allowed(vcpu);
6882 }
6883
6884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);