Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS                                               \
65         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
67                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
68                           | X86_CR4_OSXSAVE \
69                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
70
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
72
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
75
76 /* EFER defaults:
77  * - enable syscall per default because its emulated by KVM
78  * - enable LME and LMA per default on 64 bit KVM
79  */
80 #ifdef CONFIG_X86_64
81 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
82 #else
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
91                                     struct kvm_cpuid_entry2 __user *entries);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 int ignore_msrs = 0;
97 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 static inline u32 bit(int bitno)
157 {
158         return 1 << (bitno & 31);
159 }
160
161 static void kvm_on_user_return(struct user_return_notifier *urn)
162 {
163         unsigned slot;
164         struct kvm_shared_msrs *locals
165                 = container_of(urn, struct kvm_shared_msrs, urn);
166         struct kvm_shared_msr_values *values;
167
168         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
169                 values = &locals->values[slot];
170                 if (values->host != values->curr) {
171                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
172                         values->curr = values->host;
173                 }
174         }
175         locals->registered = false;
176         user_return_notifier_unregister(urn);
177 }
178
179 static void shared_msr_update(unsigned slot, u32 msr)
180 {
181         struct kvm_shared_msrs *smsr;
182         u64 value;
183
184         smsr = &__get_cpu_var(shared_msrs);
185         /* only read, and nobody should modify it at this time,
186          * so don't need lock */
187         if (slot >= shared_msrs_global.nr) {
188                 printk(KERN_ERR "kvm: invalid MSR slot!");
189                 return;
190         }
191         rdmsrl_safe(msr, &value);
192         smsr->values[slot].host = value;
193         smsr->values[slot].curr = value;
194 }
195
196 void kvm_define_shared_msr(unsigned slot, u32 msr)
197 {
198         if (slot >= shared_msrs_global.nr)
199                 shared_msrs_global.nr = slot + 1;
200         shared_msrs_global.msrs[slot] = msr;
201         /* we need ensured the shared_msr_global have been updated */
202         smp_wmb();
203 }
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
205
206 static void kvm_shared_msr_cpu_online(void)
207 {
208         unsigned i;
209
210         for (i = 0; i < shared_msrs_global.nr; ++i)
211                 shared_msr_update(i, shared_msrs_global.msrs[i]);
212 }
213
214 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
215 {
216         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
217
218         if (((value ^ smsr->values[slot].curr) & mask) == 0)
219                 return;
220         smsr->values[slot].curr = value;
221         wrmsrl(shared_msrs_global.msrs[slot], value);
222         if (!smsr->registered) {
223                 smsr->urn.on_user_return = kvm_on_user_return;
224                 user_return_notifier_register(&smsr->urn);
225                 smsr->registered = true;
226         }
227 }
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
229
230 static void drop_user_return_notifiers(void *ignore)
231 {
232         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
233
234         if (smsr->registered)
235                 kvm_on_user_return(&smsr->urn);
236 }
237
238 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
239 {
240         if (irqchip_in_kernel(vcpu->kvm))
241                 return vcpu->arch.apic_base;
242         else
243                 return vcpu->arch.apic_base;
244 }
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
246
247 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
248 {
249         /* TODO: reserve bits check */
250         if (irqchip_in_kernel(vcpu->kvm))
251                 kvm_lapic_set_base(vcpu, data);
252         else
253                 vcpu->arch.apic_base = data;
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
256
257 #define EXCPT_BENIGN            0
258 #define EXCPT_CONTRIBUTORY      1
259 #define EXCPT_PF                2
260
261 static int exception_class(int vector)
262 {
263         switch (vector) {
264         case PF_VECTOR:
265                 return EXCPT_PF;
266         case DE_VECTOR:
267         case TS_VECTOR:
268         case NP_VECTOR:
269         case SS_VECTOR:
270         case GP_VECTOR:
271                 return EXCPT_CONTRIBUTORY;
272         default:
273                 break;
274         }
275         return EXCPT_BENIGN;
276 }
277
278 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
279                 unsigned nr, bool has_error, u32 error_code,
280                 bool reinject)
281 {
282         u32 prev_nr;
283         int class1, class2;
284
285         if (!vcpu->arch.exception.pending) {
286         queue:
287                 vcpu->arch.exception.pending = true;
288                 vcpu->arch.exception.has_error_code = has_error;
289                 vcpu->arch.exception.nr = nr;
290                 vcpu->arch.exception.error_code = error_code;
291                 vcpu->arch.exception.reinject = reinject;
292                 return;
293         }
294
295         /* to check exception */
296         prev_nr = vcpu->arch.exception.nr;
297         if (prev_nr == DF_VECTOR) {
298                 /* triple fault -> shutdown */
299                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
300                 return;
301         }
302         class1 = exception_class(prev_nr);
303         class2 = exception_class(nr);
304         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
305                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
306                 /* generate double fault per SDM Table 5-5 */
307                 vcpu->arch.exception.pending = true;
308                 vcpu->arch.exception.has_error_code = true;
309                 vcpu->arch.exception.nr = DF_VECTOR;
310                 vcpu->arch.exception.error_code = 0;
311         } else
312                 /* replace previous exception with a new one in a hope
313                    that instruction re-execution will regenerate lost
314                    exception */
315                 goto queue;
316 }
317
318 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
319 {
320         kvm_multiple_exception(vcpu, nr, false, 0, false);
321 }
322 EXPORT_SYMBOL_GPL(kvm_queue_exception);
323
324 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, true);
327 }
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
329
330 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
331                            u32 error_code)
332 {
333         ++vcpu->stat.pf_guest;
334         vcpu->arch.cr2 = addr;
335         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
339 {
340         vcpu->arch.nmi_pending = 1;
341 }
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
343
344 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
345 {
346         kvm_multiple_exception(vcpu, nr, true, error_code, false);
347 }
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
349
350 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352         kvm_multiple_exception(vcpu, nr, true, error_code, true);
353 }
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
355
356 /*
357  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
358  * a #GP and return false.
359  */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363                 return true;
364         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365         return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370  * Load the pae pdptrs.  Return true is they are all valid.
371  */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376         int i;
377         int ret;
378         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381                                   offset * sizeof(u64), sizeof(pdpte));
382         if (ret < 0) {
383                 ret = 0;
384                 goto out;
385         }
386         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387                 if (is_present_gpte(pdpte[i]) &&
388                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389                         ret = 0;
390                         goto out;
391                 }
392         }
393         ret = 1;
394
395         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396         __set_bit(VCPU_EXREG_PDPTR,
397                   (unsigned long *)&vcpu->arch.regs_avail);
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402         return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409         bool changed = true;
410         int r;
411
412         if (is_long_mode(vcpu) || !is_pae(vcpu))
413                 return false;
414
415         if (!test_bit(VCPU_EXREG_PDPTR,
416                       (unsigned long *)&vcpu->arch.regs_avail))
417                 return true;
418
419         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420         if (r < 0)
421                 goto out;
422         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425         return changed;
426 }
427
428 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430         unsigned long old_cr0 = kvm_read_cr0(vcpu);
431         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
432                                     X86_CR0_CD | X86_CR0_NW;
433
434         cr0 |= X86_CR0_ET;
435
436 #ifdef CONFIG_X86_64
437         if (cr0 & 0xffffffff00000000UL)
438                 return 1;
439 #endif
440
441         cr0 &= ~CR0_RESERVED_BITS;
442
443         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
444                 return 1;
445
446         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
447                 return 1;
448
449         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
450 #ifdef CONFIG_X86_64
451                 if ((vcpu->arch.efer & EFER_LME)) {
452                         int cs_db, cs_l;
453
454                         if (!is_pae(vcpu))
455                                 return 1;
456                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
457                         if (cs_l)
458                                 return 1;
459                 } else
460 #endif
461                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
462                         return 1;
463         }
464
465         kvm_x86_ops->set_cr0(vcpu, cr0);
466
467         if ((cr0 ^ old_cr0) & update_bits)
468                 kvm_mmu_reset_context(vcpu);
469         return 0;
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr0);
472
473 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
474 {
475         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
476 }
477 EXPORT_SYMBOL_GPL(kvm_lmsw);
478
479 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
480 {
481         u64 xcr0;
482
483         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
484         if (index != XCR_XFEATURE_ENABLED_MASK)
485                 return 1;
486         xcr0 = xcr;
487         if (kvm_x86_ops->get_cpl(vcpu) != 0)
488                 return 1;
489         if (!(xcr0 & XSTATE_FP))
490                 return 1;
491         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
492                 return 1;
493         if (xcr0 & ~host_xcr0)
494                 return 1;
495         vcpu->arch.xcr0 = xcr0;
496         vcpu->guest_xcr0_loaded = 0;
497         return 0;
498 }
499
500 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
501 {
502         if (__kvm_set_xcr(vcpu, index, xcr)) {
503                 kvm_inject_gp(vcpu, 0);
504                 return 1;
505         }
506         return 0;
507 }
508 EXPORT_SYMBOL_GPL(kvm_set_xcr);
509
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
511 {
512         struct kvm_cpuid_entry2 *best;
513
514         best = kvm_find_cpuid_entry(vcpu, 1, 0);
515         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
516 }
517
518 static void update_cpuid(struct kvm_vcpu *vcpu)
519 {
520         struct kvm_cpuid_entry2 *best;
521
522         best = kvm_find_cpuid_entry(vcpu, 1, 0);
523         if (!best)
524                 return;
525
526         /* Update OSXSAVE bit */
527         if (cpu_has_xsave && best->function == 0x1) {
528                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
529                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
530                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
531         }
532 }
533
534 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
535 {
536         unsigned long old_cr4 = kvm_read_cr4(vcpu);
537         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
538
539         if (cr4 & CR4_RESERVED_BITS)
540                 return 1;
541
542         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
543                 return 1;
544
545         if (is_long_mode(vcpu)) {
546                 if (!(cr4 & X86_CR4_PAE))
547                         return 1;
548         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
549                    && ((cr4 ^ old_cr4) & pdptr_bits)
550                    && !load_pdptrs(vcpu, vcpu->arch.cr3))
551                 return 1;
552
553         if (cr4 & X86_CR4_VMXE)
554                 return 1;
555
556         kvm_x86_ops->set_cr4(vcpu, cr4);
557
558         if ((cr4 ^ old_cr4) & pdptr_bits)
559                 kvm_mmu_reset_context(vcpu);
560
561         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
562                 update_cpuid(vcpu);
563
564         return 0;
565 }
566 EXPORT_SYMBOL_GPL(kvm_set_cr4);
567
568 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
569 {
570         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
571                 kvm_mmu_sync_roots(vcpu);
572                 kvm_mmu_flush_tlb(vcpu);
573                 return 0;
574         }
575
576         if (is_long_mode(vcpu)) {
577                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
578                         return 1;
579         } else {
580                 if (is_pae(vcpu)) {
581                         if (cr3 & CR3_PAE_RESERVED_BITS)
582                                 return 1;
583                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
584                                 return 1;
585                 }
586                 /*
587                  * We don't check reserved bits in nonpae mode, because
588                  * this isn't enforced, and VMware depends on this.
589                  */
590         }
591
592         /*
593          * Does the new cr3 value map to physical memory? (Note, we
594          * catch an invalid cr3 even in real-mode, because it would
595          * cause trouble later on when we turn on paging anyway.)
596          *
597          * A real CPU would silently accept an invalid cr3 and would
598          * attempt to use it - with largely undefined (and often hard
599          * to debug) behavior on the guest side.
600          */
601         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
602                 return 1;
603         vcpu->arch.cr3 = cr3;
604         vcpu->arch.mmu.new_cr3(vcpu);
605         return 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_set_cr3);
608
609 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 {
611         if (cr8 & CR8_RESERVED_BITS)
612                 return 1;
613         if (irqchip_in_kernel(vcpu->kvm))
614                 kvm_lapic_set_tpr(vcpu, cr8);
615         else
616                 vcpu->arch.cr8 = cr8;
617         return 0;
618 }
619
620 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
621 {
622         if (__kvm_set_cr8(vcpu, cr8))
623                 kvm_inject_gp(vcpu, 0);
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr8);
626
627 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
628 {
629         if (irqchip_in_kernel(vcpu->kvm))
630                 return kvm_lapic_get_cr8(vcpu);
631         else
632                 return vcpu->arch.cr8;
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_cr8);
635
636 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
637 {
638         switch (dr) {
639         case 0 ... 3:
640                 vcpu->arch.db[dr] = val;
641                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
642                         vcpu->arch.eff_db[dr] = val;
643                 break;
644         case 4:
645                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
646                         return 1; /* #UD */
647                 /* fall through */
648         case 6:
649                 if (val & 0xffffffff00000000ULL)
650                         return -1; /* #GP */
651                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
652                 break;
653         case 5:
654                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
655                         return 1; /* #UD */
656                 /* fall through */
657         default: /* 7 */
658                 if (val & 0xffffffff00000000ULL)
659                         return -1; /* #GP */
660                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
661                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
662                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
663                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
664                 }
665                 break;
666         }
667
668         return 0;
669 }
670
671 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
672 {
673         int res;
674
675         res = __kvm_set_dr(vcpu, dr, val);
676         if (res > 0)
677                 kvm_queue_exception(vcpu, UD_VECTOR);
678         else if (res < 0)
679                 kvm_inject_gp(vcpu, 0);
680
681         return res;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_dr);
684
685 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
686 {
687         switch (dr) {
688         case 0 ... 3:
689                 *val = vcpu->arch.db[dr];
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1;
694                 /* fall through */
695         case 6:
696                 *val = vcpu->arch.dr6;
697                 break;
698         case 5:
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700                         return 1;
701                 /* fall through */
702         default: /* 7 */
703                 *val = vcpu->arch.dr7;
704                 break;
705         }
706
707         return 0;
708 }
709
710 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
711 {
712         if (_kvm_get_dr(vcpu, dr, val)) {
713                 kvm_queue_exception(vcpu, UD_VECTOR);
714                 return 1;
715         }
716         return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_get_dr);
719
720 /*
721  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
723  *
724  * This list is modified at module load time to reflect the
725  * capabilities of the host cpu. This capabilities test skips MSRs that are
726  * kvm-specific. Those are put in the beginning of the list.
727  */
728
729 #define KVM_SAVE_MSRS_BEGIN     7
730 static u32 msrs_to_save[] = {
731         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
732         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
733         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
734         HV_X64_MSR_APIC_ASSIST_PAGE,
735         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
736         MSR_STAR,
737 #ifdef CONFIG_X86_64
738         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
739 #endif
740         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
741 };
742
743 static unsigned num_msrs_to_save;
744
745 static u32 emulated_msrs[] = {
746         MSR_IA32_MISC_ENABLE,
747         MSR_IA32_MCG_STATUS,
748         MSR_IA32_MCG_CTL,
749 };
750
751 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
752 {
753         u64 old_efer = vcpu->arch.efer;
754
755         if (efer & efer_reserved_bits)
756                 return 1;
757
758         if (is_paging(vcpu)
759             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
760                 return 1;
761
762         if (efer & EFER_FFXSR) {
763                 struct kvm_cpuid_entry2 *feat;
764
765                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
766                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
767                         return 1;
768         }
769
770         if (efer & EFER_SVME) {
771                 struct kvm_cpuid_entry2 *feat;
772
773                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
774                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
775                         return 1;
776         }
777
778         efer &= ~EFER_LMA;
779         efer |= vcpu->arch.efer & EFER_LMA;
780
781         kvm_x86_ops->set_efer(vcpu, efer);
782
783         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
784         kvm_mmu_reset_context(vcpu);
785
786         /* Update reserved bits */
787         if ((efer ^ old_efer) & EFER_NX)
788                 kvm_mmu_reset_context(vcpu);
789
790         return 0;
791 }
792
793 void kvm_enable_efer_bits(u64 mask)
794 {
795        efer_reserved_bits &= ~mask;
796 }
797 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
798
799
800 /*
801  * Writes msr value into into the appropriate "register".
802  * Returns 0 on success, non-0 otherwise.
803  * Assumes vcpu_load() was already called.
804  */
805 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
806 {
807         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
808 }
809
810 /*
811  * Adapt set_msr() to msr_io()'s calling convention
812  */
813 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
814 {
815         return kvm_set_msr(vcpu, index, *data);
816 }
817
818 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
819 {
820         int version;
821         int r;
822         struct pvclock_wall_clock wc;
823         struct timespec boot;
824
825         if (!wall_clock)
826                 return;
827
828         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
829         if (r)
830                 return;
831
832         if (version & 1)
833                 ++version;  /* first time write, random junk */
834
835         ++version;
836
837         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
838
839         /*
840          * The guest calculates current wall clock time by adding
841          * system time (updated by kvm_write_guest_time below) to the
842          * wall clock specified here.  guest system time equals host
843          * system time for us, thus we must fill in host boot time here.
844          */
845         getboottime(&boot);
846
847         wc.sec = boot.tv_sec;
848         wc.nsec = boot.tv_nsec;
849         wc.version = version;
850
851         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
852
853         version++;
854         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
855 }
856
857 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
858 {
859         uint32_t quotient, remainder;
860
861         /* Don't try to replace with do_div(), this one calculates
862          * "(dividend << 32) / divisor" */
863         __asm__ ( "divl %4"
864                   : "=a" (quotient), "=d" (remainder)
865                   : "0" (0), "1" (dividend), "r" (divisor) );
866         return quotient;
867 }
868
869 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
870 {
871         uint64_t nsecs = 1000000000LL;
872         int32_t  shift = 0;
873         uint64_t tps64;
874         uint32_t tps32;
875
876         tps64 = tsc_khz * 1000LL;
877         while (tps64 > nsecs*2) {
878                 tps64 >>= 1;
879                 shift--;
880         }
881
882         tps32 = (uint32_t)tps64;
883         while (tps32 <= (uint32_t)nsecs) {
884                 tps32 <<= 1;
885                 shift++;
886         }
887
888         hv_clock->tsc_shift = shift;
889         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
890
891         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
892                  __func__, tsc_khz, hv_clock->tsc_shift,
893                  hv_clock->tsc_to_system_mul);
894 }
895
896 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
897
898 static void kvm_write_guest_time(struct kvm_vcpu *v)
899 {
900         struct timespec ts;
901         unsigned long flags;
902         struct kvm_vcpu_arch *vcpu = &v->arch;
903         void *shared_kaddr;
904         unsigned long this_tsc_khz;
905
906         if ((!vcpu->time_page))
907                 return;
908
909         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
910         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
911                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
912                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
913         }
914         put_cpu_var(cpu_tsc_khz);
915
916         /* Keep irq disabled to prevent changes to the clock */
917         local_irq_save(flags);
918         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
919         ktime_get_ts(&ts);
920         monotonic_to_bootbased(&ts);
921         local_irq_restore(flags);
922
923         /* With all the info we got, fill in the values */
924
925         vcpu->hv_clock.system_time = ts.tv_nsec +
926                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
927
928         vcpu->hv_clock.flags = 0;
929
930         /*
931          * The interface expects us to write an even number signaling that the
932          * update is finished. Since the guest won't see the intermediate
933          * state, we just increase by 2 at the end.
934          */
935         vcpu->hv_clock.version += 2;
936
937         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
938
939         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
940                sizeof(vcpu->hv_clock));
941
942         kunmap_atomic(shared_kaddr, KM_USER0);
943
944         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
945 }
946
947 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
948 {
949         struct kvm_vcpu_arch *vcpu = &v->arch;
950
951         if (!vcpu->time_page)
952                 return 0;
953         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
954         return 1;
955 }
956
957 static bool msr_mtrr_valid(unsigned msr)
958 {
959         switch (msr) {
960         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
961         case MSR_MTRRfix64K_00000:
962         case MSR_MTRRfix16K_80000:
963         case MSR_MTRRfix16K_A0000:
964         case MSR_MTRRfix4K_C0000:
965         case MSR_MTRRfix4K_C8000:
966         case MSR_MTRRfix4K_D0000:
967         case MSR_MTRRfix4K_D8000:
968         case MSR_MTRRfix4K_E0000:
969         case MSR_MTRRfix4K_E8000:
970         case MSR_MTRRfix4K_F0000:
971         case MSR_MTRRfix4K_F8000:
972         case MSR_MTRRdefType:
973         case MSR_IA32_CR_PAT:
974                 return true;
975         case 0x2f8:
976                 return true;
977         }
978         return false;
979 }
980
981 static bool valid_pat_type(unsigned t)
982 {
983         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
984 }
985
986 static bool valid_mtrr_type(unsigned t)
987 {
988         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
989 }
990
991 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
992 {
993         int i;
994
995         if (!msr_mtrr_valid(msr))
996                 return false;
997
998         if (msr == MSR_IA32_CR_PAT) {
999                 for (i = 0; i < 8; i++)
1000                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1001                                 return false;
1002                 return true;
1003         } else if (msr == MSR_MTRRdefType) {
1004                 if (data & ~0xcff)
1005                         return false;
1006                 return valid_mtrr_type(data & 0xff);
1007         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1008                 for (i = 0; i < 8 ; i++)
1009                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1010                                 return false;
1011                 return true;
1012         }
1013
1014         /* variable MTRRs */
1015         return valid_mtrr_type(data & 0xff);
1016 }
1017
1018 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1019 {
1020         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1021
1022         if (!mtrr_valid(vcpu, msr, data))
1023                 return 1;
1024
1025         if (msr == MSR_MTRRdefType) {
1026                 vcpu->arch.mtrr_state.def_type = data;
1027                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1028         } else if (msr == MSR_MTRRfix64K_00000)
1029                 p[0] = data;
1030         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1031                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1032         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1033                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1034         else if (msr == MSR_IA32_CR_PAT)
1035                 vcpu->arch.pat = data;
1036         else {  /* Variable MTRRs */
1037                 int idx, is_mtrr_mask;
1038                 u64 *pt;
1039
1040                 idx = (msr - 0x200) / 2;
1041                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1042                 if (!is_mtrr_mask)
1043                         pt =
1044                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1045                 else
1046                         pt =
1047                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1048                 *pt = data;
1049         }
1050
1051         kvm_mmu_reset_context(vcpu);
1052         return 0;
1053 }
1054
1055 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1056 {
1057         u64 mcg_cap = vcpu->arch.mcg_cap;
1058         unsigned bank_num = mcg_cap & 0xff;
1059
1060         switch (msr) {
1061         case MSR_IA32_MCG_STATUS:
1062                 vcpu->arch.mcg_status = data;
1063                 break;
1064         case MSR_IA32_MCG_CTL:
1065                 if (!(mcg_cap & MCG_CTL_P))
1066                         return 1;
1067                 if (data != 0 && data != ~(u64)0)
1068                         return -1;
1069                 vcpu->arch.mcg_ctl = data;
1070                 break;
1071         default:
1072                 if (msr >= MSR_IA32_MC0_CTL &&
1073                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1074                         u32 offset = msr - MSR_IA32_MC0_CTL;
1075                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1076                          * some Linux kernels though clear bit 10 in bank 4 to
1077                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1078                          * this to avoid an uncatched #GP in the guest
1079                          */
1080                         if ((offset & 0x3) == 0 &&
1081                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1082                                 return -1;
1083                         vcpu->arch.mce_banks[offset] = data;
1084                         break;
1085                 }
1086                 return 1;
1087         }
1088         return 0;
1089 }
1090
1091 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1092 {
1093         struct kvm *kvm = vcpu->kvm;
1094         int lm = is_long_mode(vcpu);
1095         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1096                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1097         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1098                 : kvm->arch.xen_hvm_config.blob_size_32;
1099         u32 page_num = data & ~PAGE_MASK;
1100         u64 page_addr = data & PAGE_MASK;
1101         u8 *page;
1102         int r;
1103
1104         r = -E2BIG;
1105         if (page_num >= blob_size)
1106                 goto out;
1107         r = -ENOMEM;
1108         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1109         if (!page)
1110                 goto out;
1111         r = -EFAULT;
1112         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1113                 goto out_free;
1114         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1115                 goto out_free;
1116         r = 0;
1117 out_free:
1118         kfree(page);
1119 out:
1120         return r;
1121 }
1122
1123 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1124 {
1125         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1126 }
1127
1128 static bool kvm_hv_msr_partition_wide(u32 msr)
1129 {
1130         bool r = false;
1131         switch (msr) {
1132         case HV_X64_MSR_GUEST_OS_ID:
1133         case HV_X64_MSR_HYPERCALL:
1134                 r = true;
1135                 break;
1136         }
1137
1138         return r;
1139 }
1140
1141 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1142 {
1143         struct kvm *kvm = vcpu->kvm;
1144
1145         switch (msr) {
1146         case HV_X64_MSR_GUEST_OS_ID:
1147                 kvm->arch.hv_guest_os_id = data;
1148                 /* setting guest os id to zero disables hypercall page */
1149                 if (!kvm->arch.hv_guest_os_id)
1150                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1151                 break;
1152         case HV_X64_MSR_HYPERCALL: {
1153                 u64 gfn;
1154                 unsigned long addr;
1155                 u8 instructions[4];
1156
1157                 /* if guest os id is not set hypercall should remain disabled */
1158                 if (!kvm->arch.hv_guest_os_id)
1159                         break;
1160                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1161                         kvm->arch.hv_hypercall = data;
1162                         break;
1163                 }
1164                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1165                 addr = gfn_to_hva(kvm, gfn);
1166                 if (kvm_is_error_hva(addr))
1167                         return 1;
1168                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1169                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1170                 if (copy_to_user((void __user *)addr, instructions, 4))
1171                         return 1;
1172                 kvm->arch.hv_hypercall = data;
1173                 break;
1174         }
1175         default:
1176                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1177                           "data 0x%llx\n", msr, data);
1178                 return 1;
1179         }
1180         return 0;
1181 }
1182
1183 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1184 {
1185         switch (msr) {
1186         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1187                 unsigned long addr;
1188
1189                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1190                         vcpu->arch.hv_vapic = data;
1191                         break;
1192                 }
1193                 addr = gfn_to_hva(vcpu->kvm, data >>
1194                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1195                 if (kvm_is_error_hva(addr))
1196                         return 1;
1197                 if (clear_user((void __user *)addr, PAGE_SIZE))
1198                         return 1;
1199                 vcpu->arch.hv_vapic = data;
1200                 break;
1201         }
1202         case HV_X64_MSR_EOI:
1203                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1204         case HV_X64_MSR_ICR:
1205                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1206         case HV_X64_MSR_TPR:
1207                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1208         default:
1209                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1210                           "data 0x%llx\n", msr, data);
1211                 return 1;
1212         }
1213
1214         return 0;
1215 }
1216
1217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1218 {
1219         switch (msr) {
1220         case MSR_EFER:
1221                 return set_efer(vcpu, data);
1222         case MSR_K7_HWCR:
1223                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1224                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1225                 if (data != 0) {
1226                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1227                                 data);
1228                         return 1;
1229                 }
1230                 break;
1231         case MSR_FAM10H_MMIO_CONF_BASE:
1232                 if (data != 0) {
1233                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1234                                 "0x%llx\n", data);
1235                         return 1;
1236                 }
1237                 break;
1238         case MSR_AMD64_NB_CFG:
1239                 break;
1240         case MSR_IA32_DEBUGCTLMSR:
1241                 if (!data) {
1242                         /* We support the non-activated case already */
1243                         break;
1244                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1245                         /* Values other than LBR and BTF are vendor-specific,
1246                            thus reserved and should throw a #GP */
1247                         return 1;
1248                 }
1249                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1250                         __func__, data);
1251                 break;
1252         case MSR_IA32_UCODE_REV:
1253         case MSR_IA32_UCODE_WRITE:
1254         case MSR_VM_HSAVE_PA:
1255         case MSR_AMD64_PATCH_LOADER:
1256                 break;
1257         case 0x200 ... 0x2ff:
1258                 return set_msr_mtrr(vcpu, msr, data);
1259         case MSR_IA32_APICBASE:
1260                 kvm_set_apic_base(vcpu, data);
1261                 break;
1262         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1263                 return kvm_x2apic_msr_write(vcpu, msr, data);
1264         case MSR_IA32_MISC_ENABLE:
1265                 vcpu->arch.ia32_misc_enable_msr = data;
1266                 break;
1267         case MSR_KVM_WALL_CLOCK_NEW:
1268         case MSR_KVM_WALL_CLOCK:
1269                 vcpu->kvm->arch.wall_clock = data;
1270                 kvm_write_wall_clock(vcpu->kvm, data);
1271                 break;
1272         case MSR_KVM_SYSTEM_TIME_NEW:
1273         case MSR_KVM_SYSTEM_TIME: {
1274                 if (vcpu->arch.time_page) {
1275                         kvm_release_page_dirty(vcpu->arch.time_page);
1276                         vcpu->arch.time_page = NULL;
1277                 }
1278
1279                 vcpu->arch.time = data;
1280
1281                 /* we verify if the enable bit is set... */
1282                 if (!(data & 1))
1283                         break;
1284
1285                 /* ...but clean it before doing the actual write */
1286                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1287
1288                 vcpu->arch.time_page =
1289                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1290
1291                 if (is_error_page(vcpu->arch.time_page)) {
1292                         kvm_release_page_clean(vcpu->arch.time_page);
1293                         vcpu->arch.time_page = NULL;
1294                 }
1295
1296                 kvm_request_guest_time_update(vcpu);
1297                 break;
1298         }
1299         case MSR_IA32_MCG_CTL:
1300         case MSR_IA32_MCG_STATUS:
1301         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1302                 return set_msr_mce(vcpu, msr, data);
1303
1304         /* Performance counters are not protected by a CPUID bit,
1305          * so we should check all of them in the generic path for the sake of
1306          * cross vendor migration.
1307          * Writing a zero into the event select MSRs disables them,
1308          * which we perfectly emulate ;-). Any other value should be at least
1309          * reported, some guests depend on them.
1310          */
1311         case MSR_P6_EVNTSEL0:
1312         case MSR_P6_EVNTSEL1:
1313         case MSR_K7_EVNTSEL0:
1314         case MSR_K7_EVNTSEL1:
1315         case MSR_K7_EVNTSEL2:
1316         case MSR_K7_EVNTSEL3:
1317                 if (data != 0)
1318                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1319                                 "0x%x data 0x%llx\n", msr, data);
1320                 break;
1321         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1322          * so we ignore writes to make it happy.
1323          */
1324         case MSR_P6_PERFCTR0:
1325         case MSR_P6_PERFCTR1:
1326         case MSR_K7_PERFCTR0:
1327         case MSR_K7_PERFCTR1:
1328         case MSR_K7_PERFCTR2:
1329         case MSR_K7_PERFCTR3:
1330                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1331                         "0x%x data 0x%llx\n", msr, data);
1332                 break;
1333         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1334                 if (kvm_hv_msr_partition_wide(msr)) {
1335                         int r;
1336                         mutex_lock(&vcpu->kvm->lock);
1337                         r = set_msr_hyperv_pw(vcpu, msr, data);
1338                         mutex_unlock(&vcpu->kvm->lock);
1339                         return r;
1340                 } else
1341                         return set_msr_hyperv(vcpu, msr, data);
1342                 break;
1343         default:
1344                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1345                         return xen_hvm_config(vcpu, data);
1346                 if (!ignore_msrs) {
1347                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1348                                 msr, data);
1349                         return 1;
1350                 } else {
1351                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1352                                 msr, data);
1353                         break;
1354                 }
1355         }
1356         return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1359
1360
1361 /*
1362  * Reads an msr value (of 'msr_index') into 'pdata'.
1363  * Returns 0 on success, non-0 otherwise.
1364  * Assumes vcpu_load() was already called.
1365  */
1366 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1367 {
1368         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1369 }
1370
1371 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1372 {
1373         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1374
1375         if (!msr_mtrr_valid(msr))
1376                 return 1;
1377
1378         if (msr == MSR_MTRRdefType)
1379                 *pdata = vcpu->arch.mtrr_state.def_type +
1380                          (vcpu->arch.mtrr_state.enabled << 10);
1381         else if (msr == MSR_MTRRfix64K_00000)
1382                 *pdata = p[0];
1383         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1384                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1385         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1386                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1387         else if (msr == MSR_IA32_CR_PAT)
1388                 *pdata = vcpu->arch.pat;
1389         else {  /* Variable MTRRs */
1390                 int idx, is_mtrr_mask;
1391                 u64 *pt;
1392
1393                 idx = (msr - 0x200) / 2;
1394                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1395                 if (!is_mtrr_mask)
1396                         pt =
1397                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1398                 else
1399                         pt =
1400                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1401                 *pdata = *pt;
1402         }
1403
1404         return 0;
1405 }
1406
1407 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1408 {
1409         u64 data;
1410         u64 mcg_cap = vcpu->arch.mcg_cap;
1411         unsigned bank_num = mcg_cap & 0xff;
1412
1413         switch (msr) {
1414         case MSR_IA32_P5_MC_ADDR:
1415         case MSR_IA32_P5_MC_TYPE:
1416                 data = 0;
1417                 break;
1418         case MSR_IA32_MCG_CAP:
1419                 data = vcpu->arch.mcg_cap;
1420                 break;
1421         case MSR_IA32_MCG_CTL:
1422                 if (!(mcg_cap & MCG_CTL_P))
1423                         return 1;
1424                 data = vcpu->arch.mcg_ctl;
1425                 break;
1426         case MSR_IA32_MCG_STATUS:
1427                 data = vcpu->arch.mcg_status;
1428                 break;
1429         default:
1430                 if (msr >= MSR_IA32_MC0_CTL &&
1431                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1432                         u32 offset = msr - MSR_IA32_MC0_CTL;
1433                         data = vcpu->arch.mce_banks[offset];
1434                         break;
1435                 }
1436                 return 1;
1437         }
1438         *pdata = data;
1439         return 0;
1440 }
1441
1442 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1443 {
1444         u64 data = 0;
1445         struct kvm *kvm = vcpu->kvm;
1446
1447         switch (msr) {
1448         case HV_X64_MSR_GUEST_OS_ID:
1449                 data = kvm->arch.hv_guest_os_id;
1450                 break;
1451         case HV_X64_MSR_HYPERCALL:
1452                 data = kvm->arch.hv_hypercall;
1453                 break;
1454         default:
1455                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1456                 return 1;
1457         }
1458
1459         *pdata = data;
1460         return 0;
1461 }
1462
1463 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1464 {
1465         u64 data = 0;
1466
1467         switch (msr) {
1468         case HV_X64_MSR_VP_INDEX: {
1469                 int r;
1470                 struct kvm_vcpu *v;
1471                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1472                         if (v == vcpu)
1473                                 data = r;
1474                 break;
1475         }
1476         case HV_X64_MSR_EOI:
1477                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1478         case HV_X64_MSR_ICR:
1479                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1480         case HV_X64_MSR_TPR:
1481                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1482         default:
1483                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1484                 return 1;
1485         }
1486         *pdata = data;
1487         return 0;
1488 }
1489
1490 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1491 {
1492         u64 data;
1493
1494         switch (msr) {
1495         case MSR_IA32_PLATFORM_ID:
1496         case MSR_IA32_UCODE_REV:
1497         case MSR_IA32_EBL_CR_POWERON:
1498         case MSR_IA32_DEBUGCTLMSR:
1499         case MSR_IA32_LASTBRANCHFROMIP:
1500         case MSR_IA32_LASTBRANCHTOIP:
1501         case MSR_IA32_LASTINTFROMIP:
1502         case MSR_IA32_LASTINTTOIP:
1503         case MSR_K8_SYSCFG:
1504         case MSR_K7_HWCR:
1505         case MSR_VM_HSAVE_PA:
1506         case MSR_P6_PERFCTR0:
1507         case MSR_P6_PERFCTR1:
1508         case MSR_P6_EVNTSEL0:
1509         case MSR_P6_EVNTSEL1:
1510         case MSR_K7_EVNTSEL0:
1511         case MSR_K7_PERFCTR0:
1512         case MSR_K8_INT_PENDING_MSG:
1513         case MSR_AMD64_NB_CFG:
1514         case MSR_FAM10H_MMIO_CONF_BASE:
1515                 data = 0;
1516                 break;
1517         case MSR_MTRRcap:
1518                 data = 0x500 | KVM_NR_VAR_MTRR;
1519                 break;
1520         case 0x200 ... 0x2ff:
1521                 return get_msr_mtrr(vcpu, msr, pdata);
1522         case 0xcd: /* fsb frequency */
1523                 data = 3;
1524                 break;
1525         case MSR_IA32_APICBASE:
1526                 data = kvm_get_apic_base(vcpu);
1527                 break;
1528         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1529                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1530                 break;
1531         case MSR_IA32_MISC_ENABLE:
1532                 data = vcpu->arch.ia32_misc_enable_msr;
1533                 break;
1534         case MSR_IA32_PERF_STATUS:
1535                 /* TSC increment by tick */
1536                 data = 1000ULL;
1537                 /* CPU multiplier */
1538                 data |= (((uint64_t)4ULL) << 40);
1539                 break;
1540         case MSR_EFER:
1541                 data = vcpu->arch.efer;
1542                 break;
1543         case MSR_KVM_WALL_CLOCK:
1544         case MSR_KVM_WALL_CLOCK_NEW:
1545                 data = vcpu->kvm->arch.wall_clock;
1546                 break;
1547         case MSR_KVM_SYSTEM_TIME:
1548         case MSR_KVM_SYSTEM_TIME_NEW:
1549                 data = vcpu->arch.time;
1550                 break;
1551         case MSR_IA32_P5_MC_ADDR:
1552         case MSR_IA32_P5_MC_TYPE:
1553         case MSR_IA32_MCG_CAP:
1554         case MSR_IA32_MCG_CTL:
1555         case MSR_IA32_MCG_STATUS:
1556         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1557                 return get_msr_mce(vcpu, msr, pdata);
1558         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1559                 if (kvm_hv_msr_partition_wide(msr)) {
1560                         int r;
1561                         mutex_lock(&vcpu->kvm->lock);
1562                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1563                         mutex_unlock(&vcpu->kvm->lock);
1564                         return r;
1565                 } else
1566                         return get_msr_hyperv(vcpu, msr, pdata);
1567                 break;
1568         default:
1569                 if (!ignore_msrs) {
1570                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1571                         return 1;
1572                 } else {
1573                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1574                         data = 0;
1575                 }
1576                 break;
1577         }
1578         *pdata = data;
1579         return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1582
1583 /*
1584  * Read or write a bunch of msrs. All parameters are kernel addresses.
1585  *
1586  * @return number of msrs set successfully.
1587  */
1588 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1589                     struct kvm_msr_entry *entries,
1590                     int (*do_msr)(struct kvm_vcpu *vcpu,
1591                                   unsigned index, u64 *data))
1592 {
1593         int i, idx;
1594
1595         idx = srcu_read_lock(&vcpu->kvm->srcu);
1596         for (i = 0; i < msrs->nmsrs; ++i)
1597                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1598                         break;
1599         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1600
1601         return i;
1602 }
1603
1604 /*
1605  * Read or write a bunch of msrs. Parameters are user addresses.
1606  *
1607  * @return number of msrs set successfully.
1608  */
1609 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1610                   int (*do_msr)(struct kvm_vcpu *vcpu,
1611                                 unsigned index, u64 *data),
1612                   int writeback)
1613 {
1614         struct kvm_msrs msrs;
1615         struct kvm_msr_entry *entries;
1616         int r, n;
1617         unsigned size;
1618
1619         r = -EFAULT;
1620         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1621                 goto out;
1622
1623         r = -E2BIG;
1624         if (msrs.nmsrs >= MAX_IO_MSRS)
1625                 goto out;
1626
1627         r = -ENOMEM;
1628         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1629         entries = kmalloc(size, GFP_KERNEL);
1630         if (!entries)
1631                 goto out;
1632
1633         r = -EFAULT;
1634         if (copy_from_user(entries, user_msrs->entries, size))
1635                 goto out_free;
1636
1637         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1638         if (r < 0)
1639                 goto out_free;
1640
1641         r = -EFAULT;
1642         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1643                 goto out_free;
1644
1645         r = n;
1646
1647 out_free:
1648         kfree(entries);
1649 out:
1650         return r;
1651 }
1652
1653 int kvm_dev_ioctl_check_extension(long ext)
1654 {
1655         int r;
1656
1657         switch (ext) {
1658         case KVM_CAP_IRQCHIP:
1659         case KVM_CAP_HLT:
1660         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1661         case KVM_CAP_SET_TSS_ADDR:
1662         case KVM_CAP_EXT_CPUID:
1663         case KVM_CAP_CLOCKSOURCE:
1664         case KVM_CAP_PIT:
1665         case KVM_CAP_NOP_IO_DELAY:
1666         case KVM_CAP_MP_STATE:
1667         case KVM_CAP_SYNC_MMU:
1668         case KVM_CAP_REINJECT_CONTROL:
1669         case KVM_CAP_IRQ_INJECT_STATUS:
1670         case KVM_CAP_ASSIGN_DEV_IRQ:
1671         case KVM_CAP_IRQFD:
1672         case KVM_CAP_IOEVENTFD:
1673         case KVM_CAP_PIT2:
1674         case KVM_CAP_PIT_STATE2:
1675         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1676         case KVM_CAP_XEN_HVM:
1677         case KVM_CAP_ADJUST_CLOCK:
1678         case KVM_CAP_VCPU_EVENTS:
1679         case KVM_CAP_HYPERV:
1680         case KVM_CAP_HYPERV_VAPIC:
1681         case KVM_CAP_HYPERV_SPIN:
1682         case KVM_CAP_PCI_SEGMENT:
1683         case KVM_CAP_DEBUGREGS:
1684         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1685         case KVM_CAP_XSAVE:
1686                 r = 1;
1687                 break;
1688         case KVM_CAP_COALESCED_MMIO:
1689                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1690                 break;
1691         case KVM_CAP_VAPIC:
1692                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1693                 break;
1694         case KVM_CAP_NR_VCPUS:
1695                 r = KVM_MAX_VCPUS;
1696                 break;
1697         case KVM_CAP_NR_MEMSLOTS:
1698                 r = KVM_MEMORY_SLOTS;
1699                 break;
1700         case KVM_CAP_PV_MMU:    /* obsolete */
1701                 r = 0;
1702                 break;
1703         case KVM_CAP_IOMMU:
1704                 r = iommu_found();
1705                 break;
1706         case KVM_CAP_MCE:
1707                 r = KVM_MAX_MCE_BANKS;
1708                 break;
1709         case KVM_CAP_XCRS:
1710                 r = cpu_has_xsave;
1711                 break;
1712         default:
1713                 r = 0;
1714                 break;
1715         }
1716         return r;
1717
1718 }
1719
1720 long kvm_arch_dev_ioctl(struct file *filp,
1721                         unsigned int ioctl, unsigned long arg)
1722 {
1723         void __user *argp = (void __user *)arg;
1724         long r;
1725
1726         switch (ioctl) {
1727         case KVM_GET_MSR_INDEX_LIST: {
1728                 struct kvm_msr_list __user *user_msr_list = argp;
1729                 struct kvm_msr_list msr_list;
1730                 unsigned n;
1731
1732                 r = -EFAULT;
1733                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1734                         goto out;
1735                 n = msr_list.nmsrs;
1736                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1737                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1738                         goto out;
1739                 r = -E2BIG;
1740                 if (n < msr_list.nmsrs)
1741                         goto out;
1742                 r = -EFAULT;
1743                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1744                                  num_msrs_to_save * sizeof(u32)))
1745                         goto out;
1746                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1747                                  &emulated_msrs,
1748                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1749                         goto out;
1750                 r = 0;
1751                 break;
1752         }
1753         case KVM_GET_SUPPORTED_CPUID: {
1754                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1755                 struct kvm_cpuid2 cpuid;
1756
1757                 r = -EFAULT;
1758                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1759                         goto out;
1760                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1761                                                       cpuid_arg->entries);
1762                 if (r)
1763                         goto out;
1764
1765                 r = -EFAULT;
1766                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1767                         goto out;
1768                 r = 0;
1769                 break;
1770         }
1771         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1772                 u64 mce_cap;
1773
1774                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1775                 r = -EFAULT;
1776                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1777                         goto out;
1778                 r = 0;
1779                 break;
1780         }
1781         default:
1782                 r = -EINVAL;
1783         }
1784 out:
1785         return r;
1786 }
1787
1788 static void wbinvd_ipi(void *garbage)
1789 {
1790         wbinvd();
1791 }
1792
1793 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1794 {
1795         return vcpu->kvm->arch.iommu_domain &&
1796                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1797 }
1798
1799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1800 {
1801         /* Address WBINVD may be executed by guest */
1802         if (need_emulate_wbinvd(vcpu)) {
1803                 if (kvm_x86_ops->has_wbinvd_exit())
1804                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1805                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1806                         smp_call_function_single(vcpu->cpu,
1807                                         wbinvd_ipi, NULL, 1);
1808         }
1809
1810         kvm_x86_ops->vcpu_load(vcpu, cpu);
1811         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1812                 unsigned long khz = cpufreq_quick_get(cpu);
1813                 if (!khz)
1814                         khz = tsc_khz;
1815                 per_cpu(cpu_tsc_khz, cpu) = khz;
1816         }
1817         kvm_request_guest_time_update(vcpu);
1818 }
1819
1820 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1821 {
1822         kvm_x86_ops->vcpu_put(vcpu);
1823         kvm_put_guest_fpu(vcpu);
1824 }
1825
1826 static int is_efer_nx(void)
1827 {
1828         unsigned long long efer = 0;
1829
1830         rdmsrl_safe(MSR_EFER, &efer);
1831         return efer & EFER_NX;
1832 }
1833
1834 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1835 {
1836         int i;
1837         struct kvm_cpuid_entry2 *e, *entry;
1838
1839         entry = NULL;
1840         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1841                 e = &vcpu->arch.cpuid_entries[i];
1842                 if (e->function == 0x80000001) {
1843                         entry = e;
1844                         break;
1845                 }
1846         }
1847         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1848                 entry->edx &= ~(1 << 20);
1849                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1850         }
1851 }
1852
1853 /* when an old userspace process fills a new kernel module */
1854 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1855                                     struct kvm_cpuid *cpuid,
1856                                     struct kvm_cpuid_entry __user *entries)
1857 {
1858         int r, i;
1859         struct kvm_cpuid_entry *cpuid_entries;
1860
1861         r = -E2BIG;
1862         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1863                 goto out;
1864         r = -ENOMEM;
1865         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1866         if (!cpuid_entries)
1867                 goto out;
1868         r = -EFAULT;
1869         if (copy_from_user(cpuid_entries, entries,
1870                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1871                 goto out_free;
1872         for (i = 0; i < cpuid->nent; i++) {
1873                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1874                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1875                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1876                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1877                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1878                 vcpu->arch.cpuid_entries[i].index = 0;
1879                 vcpu->arch.cpuid_entries[i].flags = 0;
1880                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1881                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1882                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1883         }
1884         vcpu->arch.cpuid_nent = cpuid->nent;
1885         cpuid_fix_nx_cap(vcpu);
1886         r = 0;
1887         kvm_apic_set_version(vcpu);
1888         kvm_x86_ops->cpuid_update(vcpu);
1889         update_cpuid(vcpu);
1890
1891 out_free:
1892         vfree(cpuid_entries);
1893 out:
1894         return r;
1895 }
1896
1897 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1898                                      struct kvm_cpuid2 *cpuid,
1899                                      struct kvm_cpuid_entry2 __user *entries)
1900 {
1901         int r;
1902
1903         r = -E2BIG;
1904         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1905                 goto out;
1906         r = -EFAULT;
1907         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1908                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1909                 goto out;
1910         vcpu->arch.cpuid_nent = cpuid->nent;
1911         kvm_apic_set_version(vcpu);
1912         kvm_x86_ops->cpuid_update(vcpu);
1913         update_cpuid(vcpu);
1914         return 0;
1915
1916 out:
1917         return r;
1918 }
1919
1920 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1921                                      struct kvm_cpuid2 *cpuid,
1922                                      struct kvm_cpuid_entry2 __user *entries)
1923 {
1924         int r;
1925
1926         r = -E2BIG;
1927         if (cpuid->nent < vcpu->arch.cpuid_nent)
1928                 goto out;
1929         r = -EFAULT;
1930         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1931                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1932                 goto out;
1933         return 0;
1934
1935 out:
1936         cpuid->nent = vcpu->arch.cpuid_nent;
1937         return r;
1938 }
1939
1940 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1941                            u32 index)
1942 {
1943         entry->function = function;
1944         entry->index = index;
1945         cpuid_count(entry->function, entry->index,
1946                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1947         entry->flags = 0;
1948 }
1949
1950 #define F(x) bit(X86_FEATURE_##x)
1951
1952 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1953                          u32 index, int *nent, int maxnent)
1954 {
1955         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1956 #ifdef CONFIG_X86_64
1957         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1958                                 ? F(GBPAGES) : 0;
1959         unsigned f_lm = F(LM);
1960 #else
1961         unsigned f_gbpages = 0;
1962         unsigned f_lm = 0;
1963 #endif
1964         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1965
1966         /* cpuid 1.edx */
1967         const u32 kvm_supported_word0_x86_features =
1968                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1969                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1970                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1971                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1972                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1973                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1974                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1975                 0 /* HTT, TM, Reserved, PBE */;
1976         /* cpuid 0x80000001.edx */
1977         const u32 kvm_supported_word1_x86_features =
1978                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1979                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1980                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1981                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1982                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1983                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1984                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1985                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1986         /* cpuid 1.ecx */
1987         const u32 kvm_supported_word4_x86_features =
1988                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
1989                 0 /* DS-CPL, VMX, SMX, EST */ |
1990                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1991                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1992                 0 /* Reserved, DCA */ | F(XMM4_1) |
1993                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1994                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
1995                 F(F16C);
1996         /* cpuid 0x80000001.ecx */
1997         const u32 kvm_supported_word6_x86_features =
1998                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1999                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2000                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2001                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2002
2003         /* all calls to cpuid_count() should be made on the same cpu */
2004         get_cpu();
2005         do_cpuid_1_ent(entry, function, index);
2006         ++*nent;
2007
2008         switch (function) {
2009         case 0:
2010                 entry->eax = min(entry->eax, (u32)0xd);
2011                 break;
2012         case 1:
2013                 entry->edx &= kvm_supported_word0_x86_features;
2014                 entry->ecx &= kvm_supported_word4_x86_features;
2015                 /* we support x2apic emulation even if host does not support
2016                  * it since we emulate x2apic in software */
2017                 entry->ecx |= F(X2APIC);
2018                 break;
2019         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2020          * may return different values. This forces us to get_cpu() before
2021          * issuing the first command, and also to emulate this annoying behavior
2022          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2023         case 2: {
2024                 int t, times = entry->eax & 0xff;
2025
2026                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2027                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2028                 for (t = 1; t < times && *nent < maxnent; ++t) {
2029                         do_cpuid_1_ent(&entry[t], function, 0);
2030                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2031                         ++*nent;
2032                 }
2033                 break;
2034         }
2035         /* function 4 and 0xb have additional index. */
2036         case 4: {
2037                 int i, cache_type;
2038
2039                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2040                 /* read more entries until cache_type is zero */
2041                 for (i = 1; *nent < maxnent; ++i) {
2042                         cache_type = entry[i - 1].eax & 0x1f;
2043                         if (!cache_type)
2044                                 break;
2045                         do_cpuid_1_ent(&entry[i], function, i);
2046                         entry[i].flags |=
2047                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2048                         ++*nent;
2049                 }
2050                 break;
2051         }
2052         case 0xb: {
2053                 int i, level_type;
2054
2055                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2056                 /* read more entries until level_type is zero */
2057                 for (i = 1; *nent < maxnent; ++i) {
2058                         level_type = entry[i - 1].ecx & 0xff00;
2059                         if (!level_type)
2060                                 break;
2061                         do_cpuid_1_ent(&entry[i], function, i);
2062                         entry[i].flags |=
2063                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2064                         ++*nent;
2065                 }
2066                 break;
2067         }
2068         case 0xd: {
2069                 int i;
2070
2071                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2072                 for (i = 1; *nent < maxnent; ++i) {
2073                         if (entry[i - 1].eax == 0 && i != 2)
2074                                 break;
2075                         do_cpuid_1_ent(&entry[i], function, i);
2076                         entry[i].flags |=
2077                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2078                         ++*nent;
2079                 }
2080                 break;
2081         }
2082         case KVM_CPUID_SIGNATURE: {
2083                 char signature[12] = "KVMKVMKVM\0\0";
2084                 u32 *sigptr = (u32 *)signature;
2085                 entry->eax = 0;
2086                 entry->ebx = sigptr[0];
2087                 entry->ecx = sigptr[1];
2088                 entry->edx = sigptr[2];
2089                 break;
2090         }
2091         case KVM_CPUID_FEATURES:
2092                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2093                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2094                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2095                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2096                 entry->ebx = 0;
2097                 entry->ecx = 0;
2098                 entry->edx = 0;
2099                 break;
2100         case 0x80000000:
2101                 entry->eax = min(entry->eax, 0x8000001a);
2102                 break;
2103         case 0x80000001:
2104                 entry->edx &= kvm_supported_word1_x86_features;
2105                 entry->ecx &= kvm_supported_word6_x86_features;
2106                 break;
2107         }
2108
2109         kvm_x86_ops->set_supported_cpuid(function, entry);
2110
2111         put_cpu();
2112 }
2113
2114 #undef F
2115
2116 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2117                                      struct kvm_cpuid_entry2 __user *entries)
2118 {
2119         struct kvm_cpuid_entry2 *cpuid_entries;
2120         int limit, nent = 0, r = -E2BIG;
2121         u32 func;
2122
2123         if (cpuid->nent < 1)
2124                 goto out;
2125         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2126                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2127         r = -ENOMEM;
2128         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2129         if (!cpuid_entries)
2130                 goto out;
2131
2132         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2133         limit = cpuid_entries[0].eax;
2134         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2135                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2136                              &nent, cpuid->nent);
2137         r = -E2BIG;
2138         if (nent >= cpuid->nent)
2139                 goto out_free;
2140
2141         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2142         limit = cpuid_entries[nent - 1].eax;
2143         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2144                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2145                              &nent, cpuid->nent);
2146
2147
2148
2149         r = -E2BIG;
2150         if (nent >= cpuid->nent)
2151                 goto out_free;
2152
2153         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2154                      cpuid->nent);
2155
2156         r = -E2BIG;
2157         if (nent >= cpuid->nent)
2158                 goto out_free;
2159
2160         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2161                      cpuid->nent);
2162
2163         r = -E2BIG;
2164         if (nent >= cpuid->nent)
2165                 goto out_free;
2166
2167         r = -EFAULT;
2168         if (copy_to_user(entries, cpuid_entries,
2169                          nent * sizeof(struct kvm_cpuid_entry2)))
2170                 goto out_free;
2171         cpuid->nent = nent;
2172         r = 0;
2173
2174 out_free:
2175         vfree(cpuid_entries);
2176 out:
2177         return r;
2178 }
2179
2180 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2181                                     struct kvm_lapic_state *s)
2182 {
2183         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2184
2185         return 0;
2186 }
2187
2188 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2189                                     struct kvm_lapic_state *s)
2190 {
2191         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2192         kvm_apic_post_state_restore(vcpu);
2193         update_cr8_intercept(vcpu);
2194
2195         return 0;
2196 }
2197
2198 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2199                                     struct kvm_interrupt *irq)
2200 {
2201         if (irq->irq < 0 || irq->irq >= 256)
2202                 return -EINVAL;
2203         if (irqchip_in_kernel(vcpu->kvm))
2204                 return -ENXIO;
2205
2206         kvm_queue_interrupt(vcpu, irq->irq, false);
2207
2208         return 0;
2209 }
2210
2211 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2212 {
2213         kvm_inject_nmi(vcpu);
2214
2215         return 0;
2216 }
2217
2218 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2219                                            struct kvm_tpr_access_ctl *tac)
2220 {
2221         if (tac->flags)
2222                 return -EINVAL;
2223         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2224         return 0;
2225 }
2226
2227 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2228                                         u64 mcg_cap)
2229 {
2230         int r;
2231         unsigned bank_num = mcg_cap & 0xff, bank;
2232
2233         r = -EINVAL;
2234         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2235                 goto out;
2236         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2237                 goto out;
2238         r = 0;
2239         vcpu->arch.mcg_cap = mcg_cap;
2240         /* Init IA32_MCG_CTL to all 1s */
2241         if (mcg_cap & MCG_CTL_P)
2242                 vcpu->arch.mcg_ctl = ~(u64)0;
2243         /* Init IA32_MCi_CTL to all 1s */
2244         for (bank = 0; bank < bank_num; bank++)
2245                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2246 out:
2247         return r;
2248 }
2249
2250 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2251                                       struct kvm_x86_mce *mce)
2252 {
2253         u64 mcg_cap = vcpu->arch.mcg_cap;
2254         unsigned bank_num = mcg_cap & 0xff;
2255         u64 *banks = vcpu->arch.mce_banks;
2256
2257         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2258                 return -EINVAL;
2259         /*
2260          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2261          * reporting is disabled
2262          */
2263         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2264             vcpu->arch.mcg_ctl != ~(u64)0)
2265                 return 0;
2266         banks += 4 * mce->bank;
2267         /*
2268          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2269          * reporting is disabled for the bank
2270          */
2271         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2272                 return 0;
2273         if (mce->status & MCI_STATUS_UC) {
2274                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2275                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2276                         printk(KERN_DEBUG "kvm: set_mce: "
2277                                "injects mce exception while "
2278                                "previous one is in progress!\n");
2279                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2280                         return 0;
2281                 }
2282                 if (banks[1] & MCI_STATUS_VAL)
2283                         mce->status |= MCI_STATUS_OVER;
2284                 banks[2] = mce->addr;
2285                 banks[3] = mce->misc;
2286                 vcpu->arch.mcg_status = mce->mcg_status;
2287                 banks[1] = mce->status;
2288                 kvm_queue_exception(vcpu, MC_VECTOR);
2289         } else if (!(banks[1] & MCI_STATUS_VAL)
2290                    || !(banks[1] & MCI_STATUS_UC)) {
2291                 if (banks[1] & MCI_STATUS_VAL)
2292                         mce->status |= MCI_STATUS_OVER;
2293                 banks[2] = mce->addr;
2294                 banks[3] = mce->misc;
2295                 banks[1] = mce->status;
2296         } else
2297                 banks[1] |= MCI_STATUS_OVER;
2298         return 0;
2299 }
2300
2301 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2302                                                struct kvm_vcpu_events *events)
2303 {
2304         events->exception.injected =
2305                 vcpu->arch.exception.pending &&
2306                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2307         events->exception.nr = vcpu->arch.exception.nr;
2308         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2309         events->exception.error_code = vcpu->arch.exception.error_code;
2310
2311         events->interrupt.injected =
2312                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2313         events->interrupt.nr = vcpu->arch.interrupt.nr;
2314         events->interrupt.soft = 0;
2315         events->interrupt.shadow =
2316                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2317                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2318
2319         events->nmi.injected = vcpu->arch.nmi_injected;
2320         events->nmi.pending = vcpu->arch.nmi_pending;
2321         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2322
2323         events->sipi_vector = vcpu->arch.sipi_vector;
2324
2325         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2326                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2327                          | KVM_VCPUEVENT_VALID_SHADOW);
2328 }
2329
2330 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2331                                               struct kvm_vcpu_events *events)
2332 {
2333         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2334                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2335                               | KVM_VCPUEVENT_VALID_SHADOW))
2336                 return -EINVAL;
2337
2338         vcpu->arch.exception.pending = events->exception.injected;
2339         vcpu->arch.exception.nr = events->exception.nr;
2340         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2341         vcpu->arch.exception.error_code = events->exception.error_code;
2342
2343         vcpu->arch.interrupt.pending = events->interrupt.injected;
2344         vcpu->arch.interrupt.nr = events->interrupt.nr;
2345         vcpu->arch.interrupt.soft = events->interrupt.soft;
2346         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2347                 kvm_pic_clear_isr_ack(vcpu->kvm);
2348         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2349                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2350                                                   events->interrupt.shadow);
2351
2352         vcpu->arch.nmi_injected = events->nmi.injected;
2353         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2354                 vcpu->arch.nmi_pending = events->nmi.pending;
2355         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2356
2357         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2358                 vcpu->arch.sipi_vector = events->sipi_vector;
2359
2360         return 0;
2361 }
2362
2363 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2364                                              struct kvm_debugregs *dbgregs)
2365 {
2366         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2367         dbgregs->dr6 = vcpu->arch.dr6;
2368         dbgregs->dr7 = vcpu->arch.dr7;
2369         dbgregs->flags = 0;
2370 }
2371
2372 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2373                                             struct kvm_debugregs *dbgregs)
2374 {
2375         if (dbgregs->flags)
2376                 return -EINVAL;
2377
2378         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2379         vcpu->arch.dr6 = dbgregs->dr6;
2380         vcpu->arch.dr7 = dbgregs->dr7;
2381
2382         return 0;
2383 }
2384
2385 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2386                                          struct kvm_xsave *guest_xsave)
2387 {
2388         if (cpu_has_xsave)
2389                 memcpy(guest_xsave->region,
2390                         &vcpu->arch.guest_fpu.state->xsave,
2391                         xstate_size);
2392         else {
2393                 memcpy(guest_xsave->region,
2394                         &vcpu->arch.guest_fpu.state->fxsave,
2395                         sizeof(struct i387_fxsave_struct));
2396                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2397                         XSTATE_FPSSE;
2398         }
2399 }
2400
2401 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2402                                         struct kvm_xsave *guest_xsave)
2403 {
2404         u64 xstate_bv =
2405                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2406
2407         if (cpu_has_xsave)
2408                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2409                         guest_xsave->region, xstate_size);
2410         else {
2411                 if (xstate_bv & ~XSTATE_FPSSE)
2412                         return -EINVAL;
2413                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2414                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2415         }
2416         return 0;
2417 }
2418
2419 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2420                                         struct kvm_xcrs *guest_xcrs)
2421 {
2422         if (!cpu_has_xsave) {
2423                 guest_xcrs->nr_xcrs = 0;
2424                 return;
2425         }
2426
2427         guest_xcrs->nr_xcrs = 1;
2428         guest_xcrs->flags = 0;
2429         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2430         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2431 }
2432
2433 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2434                                        struct kvm_xcrs *guest_xcrs)
2435 {
2436         int i, r = 0;
2437
2438         if (!cpu_has_xsave)
2439                 return -EINVAL;
2440
2441         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2442                 return -EINVAL;
2443
2444         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2445                 /* Only support XCR0 currently */
2446                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2447                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2448                                 guest_xcrs->xcrs[0].value);
2449                         break;
2450                 }
2451         if (r)
2452                 r = -EINVAL;
2453         return r;
2454 }
2455
2456 long kvm_arch_vcpu_ioctl(struct file *filp,
2457                          unsigned int ioctl, unsigned long arg)
2458 {
2459         struct kvm_vcpu *vcpu = filp->private_data;
2460         void __user *argp = (void __user *)arg;
2461         int r;
2462         union {
2463                 struct kvm_lapic_state *lapic;
2464                 struct kvm_xsave *xsave;
2465                 struct kvm_xcrs *xcrs;
2466                 void *buffer;
2467         } u;
2468
2469         u.buffer = NULL;
2470         switch (ioctl) {
2471         case KVM_GET_LAPIC: {
2472                 r = -EINVAL;
2473                 if (!vcpu->arch.apic)
2474                         goto out;
2475                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2476
2477                 r = -ENOMEM;
2478                 if (!u.lapic)
2479                         goto out;
2480                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2481                 if (r)
2482                         goto out;
2483                 r = -EFAULT;
2484                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2485                         goto out;
2486                 r = 0;
2487                 break;
2488         }
2489         case KVM_SET_LAPIC: {
2490                 r = -EINVAL;
2491                 if (!vcpu->arch.apic)
2492                         goto out;
2493                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2494                 r = -ENOMEM;
2495                 if (!u.lapic)
2496                         goto out;
2497                 r = -EFAULT;
2498                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2499                         goto out;
2500                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2501                 if (r)
2502                         goto out;
2503                 r = 0;
2504                 break;
2505         }
2506         case KVM_INTERRUPT: {
2507                 struct kvm_interrupt irq;
2508
2509                 r = -EFAULT;
2510                 if (copy_from_user(&irq, argp, sizeof irq))
2511                         goto out;
2512                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2513                 if (r)
2514                         goto out;
2515                 r = 0;
2516                 break;
2517         }
2518         case KVM_NMI: {
2519                 r = kvm_vcpu_ioctl_nmi(vcpu);
2520                 if (r)
2521                         goto out;
2522                 r = 0;
2523                 break;
2524         }
2525         case KVM_SET_CPUID: {
2526                 struct kvm_cpuid __user *cpuid_arg = argp;
2527                 struct kvm_cpuid cpuid;
2528
2529                 r = -EFAULT;
2530                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2531                         goto out;
2532                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2533                 if (r)
2534                         goto out;
2535                 break;
2536         }
2537         case KVM_SET_CPUID2: {
2538                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2539                 struct kvm_cpuid2 cpuid;
2540
2541                 r = -EFAULT;
2542                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2543                         goto out;
2544                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2545                                               cpuid_arg->entries);
2546                 if (r)
2547                         goto out;
2548                 break;
2549         }
2550         case KVM_GET_CPUID2: {
2551                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2552                 struct kvm_cpuid2 cpuid;
2553
2554                 r = -EFAULT;
2555                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2556                         goto out;
2557                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2558                                               cpuid_arg->entries);
2559                 if (r)
2560                         goto out;
2561                 r = -EFAULT;
2562                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2563                         goto out;
2564                 r = 0;
2565                 break;
2566         }
2567         case KVM_GET_MSRS:
2568                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2569                 break;
2570         case KVM_SET_MSRS:
2571                 r = msr_io(vcpu, argp, do_set_msr, 0);
2572                 break;
2573         case KVM_TPR_ACCESS_REPORTING: {
2574                 struct kvm_tpr_access_ctl tac;
2575
2576                 r = -EFAULT;
2577                 if (copy_from_user(&tac, argp, sizeof tac))
2578                         goto out;
2579                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2580                 if (r)
2581                         goto out;
2582                 r = -EFAULT;
2583                 if (copy_to_user(argp, &tac, sizeof tac))
2584                         goto out;
2585                 r = 0;
2586                 break;
2587         };
2588         case KVM_SET_VAPIC_ADDR: {
2589                 struct kvm_vapic_addr va;
2590
2591                 r = -EINVAL;
2592                 if (!irqchip_in_kernel(vcpu->kvm))
2593                         goto out;
2594                 r = -EFAULT;
2595                 if (copy_from_user(&va, argp, sizeof va))
2596                         goto out;
2597                 r = 0;
2598                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2599                 break;
2600         }
2601         case KVM_X86_SETUP_MCE: {
2602                 u64 mcg_cap;
2603
2604                 r = -EFAULT;
2605                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2606                         goto out;
2607                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2608                 break;
2609         }
2610         case KVM_X86_SET_MCE: {
2611                 struct kvm_x86_mce mce;
2612
2613                 r = -EFAULT;
2614                 if (copy_from_user(&mce, argp, sizeof mce))
2615                         goto out;
2616                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2617                 break;
2618         }
2619         case KVM_GET_VCPU_EVENTS: {
2620                 struct kvm_vcpu_events events;
2621
2622                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2623
2624                 r = -EFAULT;
2625                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2626                         break;
2627                 r = 0;
2628                 break;
2629         }
2630         case KVM_SET_VCPU_EVENTS: {
2631                 struct kvm_vcpu_events events;
2632
2633                 r = -EFAULT;
2634                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2635                         break;
2636
2637                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2638                 break;
2639         }
2640         case KVM_GET_DEBUGREGS: {
2641                 struct kvm_debugregs dbgregs;
2642
2643                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2644
2645                 r = -EFAULT;
2646                 if (copy_to_user(argp, &dbgregs,
2647                                  sizeof(struct kvm_debugregs)))
2648                         break;
2649                 r = 0;
2650                 break;
2651         }
2652         case KVM_SET_DEBUGREGS: {
2653                 struct kvm_debugregs dbgregs;
2654
2655                 r = -EFAULT;
2656                 if (copy_from_user(&dbgregs, argp,
2657                                    sizeof(struct kvm_debugregs)))
2658                         break;
2659
2660                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2661                 break;
2662         }
2663         case KVM_GET_XSAVE: {
2664                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2665                 r = -ENOMEM;
2666                 if (!u.xsave)
2667                         break;
2668
2669                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2670
2671                 r = -EFAULT;
2672                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2673                         break;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_SET_XSAVE: {
2678                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2679                 r = -ENOMEM;
2680                 if (!u.xsave)
2681                         break;
2682
2683                 r = -EFAULT;
2684                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2685                         break;
2686
2687                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2688                 break;
2689         }
2690         case KVM_GET_XCRS: {
2691                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2692                 r = -ENOMEM;
2693                 if (!u.xcrs)
2694                         break;
2695
2696                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2697
2698                 r = -EFAULT;
2699                 if (copy_to_user(argp, u.xcrs,
2700                                  sizeof(struct kvm_xcrs)))
2701                         break;
2702                 r = 0;
2703                 break;
2704         }
2705         case KVM_SET_XCRS: {
2706                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2707                 r = -ENOMEM;
2708                 if (!u.xcrs)
2709                         break;
2710
2711                 r = -EFAULT;
2712                 if (copy_from_user(u.xcrs, argp,
2713                                    sizeof(struct kvm_xcrs)))
2714                         break;
2715
2716                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2717                 break;
2718         }
2719         default:
2720                 r = -EINVAL;
2721         }
2722 out:
2723         kfree(u.buffer);
2724         return r;
2725 }
2726
2727 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2728 {
2729         int ret;
2730
2731         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2732                 return -1;
2733         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2734         return ret;
2735 }
2736
2737 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2738                                               u64 ident_addr)
2739 {
2740         kvm->arch.ept_identity_map_addr = ident_addr;
2741         return 0;
2742 }
2743
2744 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2745                                           u32 kvm_nr_mmu_pages)
2746 {
2747         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2748                 return -EINVAL;
2749
2750         mutex_lock(&kvm->slots_lock);
2751         spin_lock(&kvm->mmu_lock);
2752
2753         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2754         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2755
2756         spin_unlock(&kvm->mmu_lock);
2757         mutex_unlock(&kvm->slots_lock);
2758         return 0;
2759 }
2760
2761 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2762 {
2763         return kvm->arch.n_alloc_mmu_pages;
2764 }
2765
2766 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2767 {
2768         int r;
2769
2770         r = 0;
2771         switch (chip->chip_id) {
2772         case KVM_IRQCHIP_PIC_MASTER:
2773                 memcpy(&chip->chip.pic,
2774                         &pic_irqchip(kvm)->pics[0],
2775                         sizeof(struct kvm_pic_state));
2776                 break;
2777         case KVM_IRQCHIP_PIC_SLAVE:
2778                 memcpy(&chip->chip.pic,
2779                         &pic_irqchip(kvm)->pics[1],
2780                         sizeof(struct kvm_pic_state));
2781                 break;
2782         case KVM_IRQCHIP_IOAPIC:
2783                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2784                 break;
2785         default:
2786                 r = -EINVAL;
2787                 break;
2788         }
2789         return r;
2790 }
2791
2792 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2793 {
2794         int r;
2795
2796         r = 0;
2797         switch (chip->chip_id) {
2798         case KVM_IRQCHIP_PIC_MASTER:
2799                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2800                 memcpy(&pic_irqchip(kvm)->pics[0],
2801                         &chip->chip.pic,
2802                         sizeof(struct kvm_pic_state));
2803                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2804                 break;
2805         case KVM_IRQCHIP_PIC_SLAVE:
2806                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2807                 memcpy(&pic_irqchip(kvm)->pics[1],
2808                         &chip->chip.pic,
2809                         sizeof(struct kvm_pic_state));
2810                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2811                 break;
2812         case KVM_IRQCHIP_IOAPIC:
2813                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2814                 break;
2815         default:
2816                 r = -EINVAL;
2817                 break;
2818         }
2819         kvm_pic_update_irq(pic_irqchip(kvm));
2820         return r;
2821 }
2822
2823 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2824 {
2825         int r = 0;
2826
2827         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2828         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2829         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2830         return r;
2831 }
2832
2833 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2834 {
2835         int r = 0;
2836
2837         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2838         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2839         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2840         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2841         return r;
2842 }
2843
2844 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2845 {
2846         int r = 0;
2847
2848         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2849         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2850                 sizeof(ps->channels));
2851         ps->flags = kvm->arch.vpit->pit_state.flags;
2852         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2853         return r;
2854 }
2855
2856 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2857 {
2858         int r = 0, start = 0;
2859         u32 prev_legacy, cur_legacy;
2860         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2861         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2862         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2863         if (!prev_legacy && cur_legacy)
2864                 start = 1;
2865         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2866                sizeof(kvm->arch.vpit->pit_state.channels));
2867         kvm->arch.vpit->pit_state.flags = ps->flags;
2868         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2869         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2870         return r;
2871 }
2872
2873 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2874                                  struct kvm_reinject_control *control)
2875 {
2876         if (!kvm->arch.vpit)
2877                 return -ENXIO;
2878         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2879         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2880         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2881         return 0;
2882 }
2883
2884 /*
2885  * Get (and clear) the dirty memory log for a memory slot.
2886  */
2887 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2888                                       struct kvm_dirty_log *log)
2889 {
2890         int r, i;
2891         struct kvm_memory_slot *memslot;
2892         unsigned long n;
2893         unsigned long is_dirty = 0;
2894
2895         mutex_lock(&kvm->slots_lock);
2896
2897         r = -EINVAL;
2898         if (log->slot >= KVM_MEMORY_SLOTS)
2899                 goto out;
2900
2901         memslot = &kvm->memslots->memslots[log->slot];
2902         r = -ENOENT;
2903         if (!memslot->dirty_bitmap)
2904                 goto out;
2905
2906         n = kvm_dirty_bitmap_bytes(memslot);
2907
2908         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2909                 is_dirty = memslot->dirty_bitmap[i];
2910
2911         /* If nothing is dirty, don't bother messing with page tables. */
2912         if (is_dirty) {
2913                 struct kvm_memslots *slots, *old_slots;
2914                 unsigned long *dirty_bitmap;
2915
2916                 spin_lock(&kvm->mmu_lock);
2917                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2918                 spin_unlock(&kvm->mmu_lock);
2919
2920                 r = -ENOMEM;
2921                 dirty_bitmap = vmalloc(n);
2922                 if (!dirty_bitmap)
2923                         goto out;
2924                 memset(dirty_bitmap, 0, n);
2925
2926                 r = -ENOMEM;
2927                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2928                 if (!slots) {
2929                         vfree(dirty_bitmap);
2930                         goto out;
2931                 }
2932                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2933                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2934
2935                 old_slots = kvm->memslots;
2936                 rcu_assign_pointer(kvm->memslots, slots);
2937                 synchronize_srcu_expedited(&kvm->srcu);
2938                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2939                 kfree(old_slots);
2940
2941                 r = -EFAULT;
2942                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2943                         vfree(dirty_bitmap);
2944                         goto out;
2945                 }
2946                 vfree(dirty_bitmap);
2947         } else {
2948                 r = -EFAULT;
2949                 if (clear_user(log->dirty_bitmap, n))
2950                         goto out;
2951         }
2952
2953         r = 0;
2954 out:
2955         mutex_unlock(&kvm->slots_lock);
2956         return r;
2957 }
2958
2959 long kvm_arch_vm_ioctl(struct file *filp,
2960                        unsigned int ioctl, unsigned long arg)
2961 {
2962         struct kvm *kvm = filp->private_data;
2963         void __user *argp = (void __user *)arg;
2964         int r = -ENOTTY;
2965         /*
2966          * This union makes it completely explicit to gcc-3.x
2967          * that these two variables' stack usage should be
2968          * combined, not added together.
2969          */
2970         union {
2971                 struct kvm_pit_state ps;
2972                 struct kvm_pit_state2 ps2;
2973                 struct kvm_pit_config pit_config;
2974         } u;
2975
2976         switch (ioctl) {
2977         case KVM_SET_TSS_ADDR:
2978                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2979                 if (r < 0)
2980                         goto out;
2981                 break;
2982         case KVM_SET_IDENTITY_MAP_ADDR: {
2983                 u64 ident_addr;
2984
2985                 r = -EFAULT;
2986                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2987                         goto out;
2988                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2989                 if (r < 0)
2990                         goto out;
2991                 break;
2992         }
2993         case KVM_SET_NR_MMU_PAGES:
2994                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2995                 if (r)
2996                         goto out;
2997                 break;
2998         case KVM_GET_NR_MMU_PAGES:
2999                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3000                 break;
3001         case KVM_CREATE_IRQCHIP: {
3002                 struct kvm_pic *vpic;
3003
3004                 mutex_lock(&kvm->lock);
3005                 r = -EEXIST;
3006                 if (kvm->arch.vpic)
3007                         goto create_irqchip_unlock;
3008                 r = -ENOMEM;
3009                 vpic = kvm_create_pic(kvm);
3010                 if (vpic) {
3011                         r = kvm_ioapic_init(kvm);
3012                         if (r) {
3013                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3014                                                           &vpic->dev);
3015                                 kfree(vpic);
3016                                 goto create_irqchip_unlock;
3017                         }
3018                 } else
3019                         goto create_irqchip_unlock;
3020                 smp_wmb();
3021                 kvm->arch.vpic = vpic;
3022                 smp_wmb();
3023                 r = kvm_setup_default_irq_routing(kvm);
3024                 if (r) {
3025                         mutex_lock(&kvm->irq_lock);
3026                         kvm_ioapic_destroy(kvm);
3027                         kvm_destroy_pic(kvm);
3028                         mutex_unlock(&kvm->irq_lock);
3029                 }
3030         create_irqchip_unlock:
3031                 mutex_unlock(&kvm->lock);
3032                 break;
3033         }
3034         case KVM_CREATE_PIT:
3035                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3036                 goto create_pit;
3037         case KVM_CREATE_PIT2:
3038                 r = -EFAULT;
3039                 if (copy_from_user(&u.pit_config, argp,
3040                                    sizeof(struct kvm_pit_config)))
3041                         goto out;
3042         create_pit:
3043                 mutex_lock(&kvm->slots_lock);
3044                 r = -EEXIST;
3045                 if (kvm->arch.vpit)
3046                         goto create_pit_unlock;
3047                 r = -ENOMEM;
3048                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3049                 if (kvm->arch.vpit)
3050                         r = 0;
3051         create_pit_unlock:
3052                 mutex_unlock(&kvm->slots_lock);
3053                 break;
3054         case KVM_IRQ_LINE_STATUS:
3055         case KVM_IRQ_LINE: {
3056                 struct kvm_irq_level irq_event;
3057
3058                 r = -EFAULT;
3059                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3060                         goto out;
3061                 r = -ENXIO;
3062                 if (irqchip_in_kernel(kvm)) {
3063                         __s32 status;
3064                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3065                                         irq_event.irq, irq_event.level);
3066                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3067                                 r = -EFAULT;
3068                                 irq_event.status = status;
3069                                 if (copy_to_user(argp, &irq_event,
3070                                                         sizeof irq_event))
3071                                         goto out;
3072                         }
3073                         r = 0;
3074                 }
3075                 break;
3076         }
3077         case KVM_GET_IRQCHIP: {
3078                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3079                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3080
3081                 r = -ENOMEM;
3082                 if (!chip)
3083                         goto out;
3084                 r = -EFAULT;
3085                 if (copy_from_user(chip, argp, sizeof *chip))
3086                         goto get_irqchip_out;
3087                 r = -ENXIO;
3088                 if (!irqchip_in_kernel(kvm))
3089                         goto get_irqchip_out;
3090                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3091                 if (r)
3092                         goto get_irqchip_out;
3093                 r = -EFAULT;
3094                 if (copy_to_user(argp, chip, sizeof *chip))
3095                         goto get_irqchip_out;
3096                 r = 0;
3097         get_irqchip_out:
3098                 kfree(chip);
3099                 if (r)
3100                         goto out;
3101                 break;
3102         }
3103         case KVM_SET_IRQCHIP: {
3104                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3105                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3106
3107                 r = -ENOMEM;
3108                 if (!chip)
3109                         goto out;
3110                 r = -EFAULT;
3111                 if (copy_from_user(chip, argp, sizeof *chip))
3112                         goto set_irqchip_out;
3113                 r = -ENXIO;
3114                 if (!irqchip_in_kernel(kvm))
3115                         goto set_irqchip_out;
3116                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3117                 if (r)
3118                         goto set_irqchip_out;
3119                 r = 0;
3120         set_irqchip_out:
3121                 kfree(chip);
3122                 if (r)
3123                         goto out;
3124                 break;
3125         }
3126         case KVM_GET_PIT: {
3127                 r = -EFAULT;
3128                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3129                         goto out;
3130                 r = -ENXIO;
3131                 if (!kvm->arch.vpit)
3132                         goto out;
3133                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3134                 if (r)
3135                         goto out;
3136                 r = -EFAULT;
3137                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3138                         goto out;
3139                 r = 0;
3140                 break;
3141         }
3142         case KVM_SET_PIT: {
3143                 r = -EFAULT;
3144                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3145                         goto out;
3146                 r = -ENXIO;
3147                 if (!kvm->arch.vpit)
3148                         goto out;
3149                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3150                 if (r)
3151                         goto out;
3152                 r = 0;
3153                 break;
3154         }
3155         case KVM_GET_PIT2: {
3156                 r = -ENXIO;
3157                 if (!kvm->arch.vpit)
3158                         goto out;
3159                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3160                 if (r)
3161                         goto out;
3162                 r = -EFAULT;
3163                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3164                         goto out;
3165                 r = 0;
3166                 break;
3167         }
3168         case KVM_SET_PIT2: {
3169                 r = -EFAULT;
3170                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3171                         goto out;
3172                 r = -ENXIO;
3173                 if (!kvm->arch.vpit)
3174                         goto out;
3175                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3176                 if (r)
3177                         goto out;
3178                 r = 0;
3179                 break;
3180         }
3181         case KVM_REINJECT_CONTROL: {
3182                 struct kvm_reinject_control control;
3183                 r =  -EFAULT;
3184                 if (copy_from_user(&control, argp, sizeof(control)))
3185                         goto out;
3186                 r = kvm_vm_ioctl_reinject(kvm, &control);
3187                 if (r)
3188                         goto out;
3189                 r = 0;
3190                 break;
3191         }
3192         case KVM_XEN_HVM_CONFIG: {
3193                 r = -EFAULT;
3194                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3195                                    sizeof(struct kvm_xen_hvm_config)))
3196                         goto out;
3197                 r = -EINVAL;
3198                 if (kvm->arch.xen_hvm_config.flags)
3199                         goto out;
3200                 r = 0;
3201                 break;
3202         }
3203         case KVM_SET_CLOCK: {
3204                 struct timespec now;
3205                 struct kvm_clock_data user_ns;
3206                 u64 now_ns;
3207                 s64 delta;
3208
3209                 r = -EFAULT;
3210                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3211                         goto out;
3212
3213                 r = -EINVAL;
3214                 if (user_ns.flags)
3215                         goto out;
3216
3217                 r = 0;
3218                 ktime_get_ts(&now);
3219                 now_ns = timespec_to_ns(&now);
3220                 delta = user_ns.clock - now_ns;
3221                 kvm->arch.kvmclock_offset = delta;
3222                 break;
3223         }
3224         case KVM_GET_CLOCK: {
3225                 struct timespec now;
3226                 struct kvm_clock_data user_ns;
3227                 u64 now_ns;
3228
3229                 ktime_get_ts(&now);
3230                 now_ns = timespec_to_ns(&now);
3231                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3232                 user_ns.flags = 0;
3233
3234                 r = -EFAULT;
3235                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3236                         goto out;
3237                 r = 0;
3238                 break;
3239         }
3240
3241         default:
3242                 ;
3243         }
3244 out:
3245         return r;
3246 }
3247
3248 static void kvm_init_msr_list(void)
3249 {
3250         u32 dummy[2];
3251         unsigned i, j;
3252
3253         /* skip the first msrs in the list. KVM-specific */
3254         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3255                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3256                         continue;
3257                 if (j < i)
3258                         msrs_to_save[j] = msrs_to_save[i];
3259                 j++;
3260         }
3261         num_msrs_to_save = j;
3262 }
3263
3264 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3265                            const void *v)
3266 {
3267         if (vcpu->arch.apic &&
3268             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3269                 return 0;
3270
3271         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3272 }
3273
3274 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3275 {
3276         if (vcpu->arch.apic &&
3277             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3278                 return 0;
3279
3280         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3281 }
3282
3283 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3284                         struct kvm_segment *var, int seg)
3285 {
3286         kvm_x86_ops->set_segment(vcpu, var, seg);
3287 }
3288
3289 void kvm_get_segment(struct kvm_vcpu *vcpu,
3290                      struct kvm_segment *var, int seg)
3291 {
3292         kvm_x86_ops->get_segment(vcpu, var, seg);
3293 }
3294
3295 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3296 {
3297         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3298         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3299 }
3300
3301  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3302 {
3303         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3304         access |= PFERR_FETCH_MASK;
3305         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3306 }
3307
3308 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3309 {
3310         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3311         access |= PFERR_WRITE_MASK;
3312         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3313 }
3314
3315 /* uses this to access any guest's mapped memory without checking CPL */
3316 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3317 {
3318         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3319 }
3320
3321 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3322                                       struct kvm_vcpu *vcpu, u32 access,
3323                                       u32 *error)
3324 {
3325         void *data = val;
3326         int r = X86EMUL_CONTINUE;
3327
3328         while (bytes) {
3329                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3330                 unsigned offset = addr & (PAGE_SIZE-1);
3331                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3332                 int ret;
3333
3334                 if (gpa == UNMAPPED_GVA) {
3335                         r = X86EMUL_PROPAGATE_FAULT;
3336                         goto out;
3337                 }
3338                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3339                 if (ret < 0) {
3340                         r = X86EMUL_IO_NEEDED;
3341                         goto out;
3342                 }
3343
3344                 bytes -= toread;
3345                 data += toread;
3346                 addr += toread;
3347         }
3348 out:
3349         return r;
3350 }
3351
3352 /* used for instruction fetching */
3353 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3354                                 struct kvm_vcpu *vcpu, u32 *error)
3355 {
3356         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3357         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3358                                           access | PFERR_FETCH_MASK, error);
3359 }
3360
3361 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3362                                struct kvm_vcpu *vcpu, u32 *error)
3363 {
3364         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3365         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3366                                           error);
3367 }
3368
3369 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3370                                struct kvm_vcpu *vcpu, u32 *error)
3371 {
3372         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3373 }
3374
3375 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3376                                        unsigned int bytes,
3377                                        struct kvm_vcpu *vcpu,
3378                                        u32 *error)
3379 {
3380         void *data = val;
3381         int r = X86EMUL_CONTINUE;
3382
3383         while (bytes) {
3384                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3385                                                        PFERR_WRITE_MASK, error);
3386                 unsigned offset = addr & (PAGE_SIZE-1);
3387                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3388                 int ret;
3389
3390                 if (gpa == UNMAPPED_GVA) {
3391                         r = X86EMUL_PROPAGATE_FAULT;
3392                         goto out;
3393                 }
3394                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3395                 if (ret < 0) {
3396                         r = X86EMUL_IO_NEEDED;
3397                         goto out;
3398                 }
3399
3400                 bytes -= towrite;
3401                 data += towrite;
3402                 addr += towrite;
3403         }
3404 out:
3405         return r;
3406 }
3407
3408 static int emulator_read_emulated(unsigned long addr,
3409                                   void *val,
3410                                   unsigned int bytes,
3411                                   unsigned int *error_code,
3412                                   struct kvm_vcpu *vcpu)
3413 {
3414         gpa_t                 gpa;
3415
3416         if (vcpu->mmio_read_completed) {
3417                 memcpy(val, vcpu->mmio_data, bytes);
3418                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3419                                vcpu->mmio_phys_addr, *(u64 *)val);
3420                 vcpu->mmio_read_completed = 0;
3421                 return X86EMUL_CONTINUE;
3422         }
3423
3424         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3425
3426         if (gpa == UNMAPPED_GVA)
3427                 return X86EMUL_PROPAGATE_FAULT;
3428
3429         /* For APIC access vmexit */
3430         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3431                 goto mmio;
3432
3433         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3434                                 == X86EMUL_CONTINUE)
3435                 return X86EMUL_CONTINUE;
3436
3437 mmio:
3438         /*
3439          * Is this MMIO handled locally?
3440          */
3441         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3442                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3443                 return X86EMUL_CONTINUE;
3444         }
3445
3446         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3447
3448         vcpu->mmio_needed = 1;
3449         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3450         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3451         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3452         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3453
3454         return X86EMUL_IO_NEEDED;
3455 }
3456
3457 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3458                           const void *val, int bytes)
3459 {
3460         int ret;
3461
3462         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3463         if (ret < 0)
3464                 return 0;
3465         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3466         return 1;
3467 }
3468
3469 static int emulator_write_emulated_onepage(unsigned long addr,
3470                                            const void *val,
3471                                            unsigned int bytes,
3472                                            unsigned int *error_code,
3473                                            struct kvm_vcpu *vcpu)
3474 {
3475         gpa_t                 gpa;
3476
3477         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3478
3479         if (gpa == UNMAPPED_GVA)
3480                 return X86EMUL_PROPAGATE_FAULT;
3481
3482         /* For APIC access vmexit */
3483         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3484                 goto mmio;
3485
3486         if (emulator_write_phys(vcpu, gpa, val, bytes))
3487                 return X86EMUL_CONTINUE;
3488
3489 mmio:
3490         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3491         /*
3492          * Is this MMIO handled locally?
3493          */
3494         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3495                 return X86EMUL_CONTINUE;
3496
3497         vcpu->mmio_needed = 1;
3498         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3499         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3500         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3501         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3502         memcpy(vcpu->run->mmio.data, val, bytes);
3503
3504         return X86EMUL_CONTINUE;
3505 }
3506
3507 int emulator_write_emulated(unsigned long addr,
3508                             const void *val,
3509                             unsigned int bytes,
3510                             unsigned int *error_code,
3511                             struct kvm_vcpu *vcpu)
3512 {
3513         /* Crossing a page boundary? */
3514         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3515                 int rc, now;
3516
3517                 now = -addr & ~PAGE_MASK;
3518                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3519                                                      vcpu);
3520                 if (rc != X86EMUL_CONTINUE)
3521                         return rc;
3522                 addr += now;
3523                 val += now;
3524                 bytes -= now;
3525         }
3526         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3527                                                vcpu);
3528 }
3529
3530 #define CMPXCHG_TYPE(t, ptr, old, new) \
3531         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3532
3533 #ifdef CONFIG_X86_64
3534 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3535 #else
3536 #  define CMPXCHG64(ptr, old, new) \
3537         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3538 #endif
3539
3540 static int emulator_cmpxchg_emulated(unsigned long addr,
3541                                      const void *old,
3542                                      const void *new,
3543                                      unsigned int bytes,
3544                                      unsigned int *error_code,
3545                                      struct kvm_vcpu *vcpu)
3546 {
3547         gpa_t gpa;
3548         struct page *page;
3549         char *kaddr;
3550         bool exchanged;
3551
3552         /* guests cmpxchg8b have to be emulated atomically */
3553         if (bytes > 8 || (bytes & (bytes - 1)))
3554                 goto emul_write;
3555
3556         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3557
3558         if (gpa == UNMAPPED_GVA ||
3559             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3560                 goto emul_write;
3561
3562         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3563                 goto emul_write;
3564
3565         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3566         if (is_error_page(page)) {
3567                 kvm_release_page_clean(page);
3568                 goto emul_write;
3569         }
3570
3571         kaddr = kmap_atomic(page, KM_USER0);
3572         kaddr += offset_in_page(gpa);
3573         switch (bytes) {
3574         case 1:
3575                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3576                 break;
3577         case 2:
3578                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3579                 break;
3580         case 4:
3581                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3582                 break;
3583         case 8:
3584                 exchanged = CMPXCHG64(kaddr, old, new);
3585                 break;
3586         default:
3587                 BUG();
3588         }
3589         kunmap_atomic(kaddr, KM_USER0);
3590         kvm_release_page_dirty(page);
3591
3592         if (!exchanged)
3593                 return X86EMUL_CMPXCHG_FAILED;
3594
3595         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3596
3597         return X86EMUL_CONTINUE;
3598
3599 emul_write:
3600         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3601
3602         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3603 }
3604
3605 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3606 {
3607         /* TODO: String I/O for in kernel device */
3608         int r;
3609
3610         if (vcpu->arch.pio.in)
3611                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3612                                     vcpu->arch.pio.size, pd);
3613         else
3614                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3615                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3616                                      pd);
3617         return r;
3618 }
3619
3620
3621 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3622                              unsigned int count, struct kvm_vcpu *vcpu)
3623 {
3624         if (vcpu->arch.pio.count)
3625                 goto data_avail;
3626
3627         trace_kvm_pio(1, port, size, 1);
3628
3629         vcpu->arch.pio.port = port;
3630         vcpu->arch.pio.in = 1;
3631         vcpu->arch.pio.count  = count;
3632         vcpu->arch.pio.size = size;
3633
3634         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3635         data_avail:
3636                 memcpy(val, vcpu->arch.pio_data, size * count);
3637                 vcpu->arch.pio.count = 0;
3638                 return 1;
3639         }
3640
3641         vcpu->run->exit_reason = KVM_EXIT_IO;
3642         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3643         vcpu->run->io.size = size;
3644         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3645         vcpu->run->io.count = count;
3646         vcpu->run->io.port = port;
3647
3648         return 0;
3649 }
3650
3651 static int emulator_pio_out_emulated(int size, unsigned short port,
3652                               const void *val, unsigned int count,
3653                               struct kvm_vcpu *vcpu)
3654 {
3655         trace_kvm_pio(0, port, size, 1);
3656
3657         vcpu->arch.pio.port = port;
3658         vcpu->arch.pio.in = 0;
3659         vcpu->arch.pio.count = count;
3660         vcpu->arch.pio.size = size;
3661
3662         memcpy(vcpu->arch.pio_data, val, size * count);
3663
3664         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3665                 vcpu->arch.pio.count = 0;
3666                 return 1;
3667         }
3668
3669         vcpu->run->exit_reason = KVM_EXIT_IO;
3670         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3671         vcpu->run->io.size = size;
3672         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3673         vcpu->run->io.count = count;
3674         vcpu->run->io.port = port;
3675
3676         return 0;
3677 }
3678
3679 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3680 {
3681         return kvm_x86_ops->get_segment_base(vcpu, seg);
3682 }
3683
3684 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3685 {
3686         kvm_mmu_invlpg(vcpu, address);
3687         return X86EMUL_CONTINUE;
3688 }
3689
3690 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3691 {
3692         if (!need_emulate_wbinvd(vcpu))
3693                 return X86EMUL_CONTINUE;
3694
3695         if (kvm_x86_ops->has_wbinvd_exit()) {
3696                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3697                                 wbinvd_ipi, NULL, 1);
3698                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3699         }
3700         wbinvd();
3701         return X86EMUL_CONTINUE;
3702 }
3703 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3704
3705 int emulate_clts(struct kvm_vcpu *vcpu)
3706 {
3707         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3708         kvm_x86_ops->fpu_activate(vcpu);
3709         return X86EMUL_CONTINUE;
3710 }
3711
3712 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3713 {
3714         return _kvm_get_dr(vcpu, dr, dest);
3715 }
3716
3717 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3718 {
3719
3720         return __kvm_set_dr(vcpu, dr, value);
3721 }
3722
3723 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3724 {
3725         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3726 }
3727
3728 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3729 {
3730         unsigned long value;
3731
3732         switch (cr) {
3733         case 0:
3734                 value = kvm_read_cr0(vcpu);
3735                 break;
3736         case 2:
3737                 value = vcpu->arch.cr2;
3738                 break;
3739         case 3:
3740                 value = vcpu->arch.cr3;
3741                 break;
3742         case 4:
3743                 value = kvm_read_cr4(vcpu);
3744                 break;
3745         case 8:
3746                 value = kvm_get_cr8(vcpu);
3747                 break;
3748         default:
3749                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3750                 return 0;
3751         }
3752
3753         return value;
3754 }
3755
3756 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3757 {
3758         int res = 0;
3759
3760         switch (cr) {
3761         case 0:
3762                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3763                 break;
3764         case 2:
3765                 vcpu->arch.cr2 = val;
3766                 break;
3767         case 3:
3768                 res = kvm_set_cr3(vcpu, val);
3769                 break;
3770         case 4:
3771                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3772                 break;
3773         case 8:
3774                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3775                 break;
3776         default:
3777                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3778                 res = -1;
3779         }
3780
3781         return res;
3782 }
3783
3784 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3785 {
3786         return kvm_x86_ops->get_cpl(vcpu);
3787 }
3788
3789 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3790 {
3791         kvm_x86_ops->get_gdt(vcpu, dt);
3792 }
3793
3794 static unsigned long emulator_get_cached_segment_base(int seg,
3795                                                       struct kvm_vcpu *vcpu)
3796 {
3797         return get_segment_base(vcpu, seg);
3798 }
3799
3800 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3801                                            struct kvm_vcpu *vcpu)
3802 {
3803         struct kvm_segment var;
3804
3805         kvm_get_segment(vcpu, &var, seg);
3806
3807         if (var.unusable)
3808                 return false;
3809
3810         if (var.g)
3811                 var.limit >>= 12;
3812         set_desc_limit(desc, var.limit);
3813         set_desc_base(desc, (unsigned long)var.base);
3814         desc->type = var.type;
3815         desc->s = var.s;
3816         desc->dpl = var.dpl;
3817         desc->p = var.present;
3818         desc->avl = var.avl;
3819         desc->l = var.l;
3820         desc->d = var.db;
3821         desc->g = var.g;
3822
3823         return true;
3824 }
3825
3826 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3827                                            struct kvm_vcpu *vcpu)
3828 {
3829         struct kvm_segment var;
3830
3831         /* needed to preserve selector */
3832         kvm_get_segment(vcpu, &var, seg);
3833
3834         var.base = get_desc_base(desc);
3835         var.limit = get_desc_limit(desc);
3836         if (desc->g)
3837                 var.limit = (var.limit << 12) | 0xfff;
3838         var.type = desc->type;
3839         var.present = desc->p;
3840         var.dpl = desc->dpl;
3841         var.db = desc->d;
3842         var.s = desc->s;
3843         var.l = desc->l;
3844         var.g = desc->g;
3845         var.avl = desc->avl;
3846         var.present = desc->p;
3847         var.unusable = !var.present;
3848         var.padding = 0;
3849
3850         kvm_set_segment(vcpu, &var, seg);
3851         return;
3852 }
3853
3854 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3855 {
3856         struct kvm_segment kvm_seg;
3857
3858         kvm_get_segment(vcpu, &kvm_seg, seg);
3859         return kvm_seg.selector;
3860 }
3861
3862 static void emulator_set_segment_selector(u16 sel, int seg,
3863                                           struct kvm_vcpu *vcpu)
3864 {
3865         struct kvm_segment kvm_seg;
3866
3867         kvm_get_segment(vcpu, &kvm_seg, seg);
3868         kvm_seg.selector = sel;
3869         kvm_set_segment(vcpu, &kvm_seg, seg);
3870 }
3871
3872 static struct x86_emulate_ops emulate_ops = {
3873         .read_std            = kvm_read_guest_virt_system,
3874         .write_std           = kvm_write_guest_virt_system,
3875         .fetch               = kvm_fetch_guest_virt,
3876         .read_emulated       = emulator_read_emulated,
3877         .write_emulated      = emulator_write_emulated,
3878         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3879         .pio_in_emulated     = emulator_pio_in_emulated,
3880         .pio_out_emulated    = emulator_pio_out_emulated,
3881         .get_cached_descriptor = emulator_get_cached_descriptor,
3882         .set_cached_descriptor = emulator_set_cached_descriptor,
3883         .get_segment_selector = emulator_get_segment_selector,
3884         .set_segment_selector = emulator_set_segment_selector,
3885         .get_cached_segment_base = emulator_get_cached_segment_base,
3886         .get_gdt             = emulator_get_gdt,
3887         .get_cr              = emulator_get_cr,
3888         .set_cr              = emulator_set_cr,
3889         .cpl                 = emulator_get_cpl,
3890         .get_dr              = emulator_get_dr,
3891         .set_dr              = emulator_set_dr,
3892         .set_msr             = kvm_set_msr,
3893         .get_msr             = kvm_get_msr,
3894 };
3895
3896 static void cache_all_regs(struct kvm_vcpu *vcpu)
3897 {
3898         kvm_register_read(vcpu, VCPU_REGS_RAX);
3899         kvm_register_read(vcpu, VCPU_REGS_RSP);
3900         kvm_register_read(vcpu, VCPU_REGS_RIP);
3901         vcpu->arch.regs_dirty = ~0;
3902 }
3903
3904 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
3905 {
3906         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
3907         /*
3908          * an sti; sti; sequence only disable interrupts for the first
3909          * instruction. So, if the last instruction, be it emulated or
3910          * not, left the system with the INT_STI flag enabled, it
3911          * means that the last instruction is an sti. We should not
3912          * leave the flag on in this case. The same goes for mov ss
3913          */
3914         if (!(int_shadow & mask))
3915                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
3916 }
3917
3918 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
3919 {
3920         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
3921         if (ctxt->exception == PF_VECTOR)
3922                 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
3923         else if (ctxt->error_code_valid)
3924                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
3925         else
3926                 kvm_queue_exception(vcpu, ctxt->exception);
3927 }
3928
3929 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
3930 {
3931         ++vcpu->stat.insn_emulation_fail;
3932         trace_kvm_emulate_insn_failed(vcpu);
3933         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3934         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3935         vcpu->run->internal.ndata = 0;
3936         kvm_queue_exception(vcpu, UD_VECTOR);
3937         return EMULATE_FAIL;
3938 }
3939
3940 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
3941 {
3942         gpa_t gpa;
3943
3944         if (tdp_enabled)
3945                 return false;
3946
3947         /*
3948          * if emulation was due to access to shadowed page table
3949          * and it failed try to unshadow page and re-entetr the
3950          * guest to let CPU execute the instruction.
3951          */
3952         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
3953                 return true;
3954
3955         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
3956
3957         if (gpa == UNMAPPED_GVA)
3958                 return true; /* let cpu generate fault */
3959
3960         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
3961                 return true;
3962
3963         return false;
3964 }
3965
3966 int emulate_instruction(struct kvm_vcpu *vcpu,
3967                         unsigned long cr2,
3968                         u16 error_code,
3969                         int emulation_type)
3970 {
3971         int r;
3972         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
3973
3974         kvm_clear_exception_queue(vcpu);
3975         vcpu->arch.mmio_fault_cr2 = cr2;
3976         /*
3977          * TODO: fix emulate.c to use guest_read/write_register
3978          * instead of direct ->regs accesses, can save hundred cycles
3979          * on Intel for instructions that don't read/change RSP, for
3980          * for example.
3981          */
3982         cache_all_regs(vcpu);
3983
3984         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3985                 int cs_db, cs_l;
3986                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3987
3988                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3989                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3990                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3991                 vcpu->arch.emulate_ctxt.mode =
3992                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3993                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3994                         ? X86EMUL_MODE_VM86 : cs_l
3995                         ? X86EMUL_MODE_PROT64 : cs_db
3996                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3997                 memset(c, 0, sizeof(struct decode_cache));
3998                 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3999                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4000                 vcpu->arch.emulate_ctxt.exception = -1;
4001
4002                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4003                 trace_kvm_emulate_insn_start(vcpu);
4004
4005                 /* Only allow emulation of specific instructions on #UD
4006                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4007                 if (emulation_type & EMULTYPE_TRAP_UD) {
4008                         if (!c->twobyte)
4009                                 return EMULATE_FAIL;
4010                         switch (c->b) {
4011                         case 0x01: /* VMMCALL */
4012                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4013                                         return EMULATE_FAIL;
4014                                 break;
4015                         case 0x34: /* sysenter */
4016                         case 0x35: /* sysexit */
4017                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4018                                         return EMULATE_FAIL;
4019                                 break;
4020                         case 0x05: /* syscall */
4021                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4022                                         return EMULATE_FAIL;
4023                                 break;
4024                         default:
4025                                 return EMULATE_FAIL;
4026                         }
4027
4028                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4029                                 return EMULATE_FAIL;
4030                 }
4031
4032                 ++vcpu->stat.insn_emulation;
4033                 if (r)  {
4034                         if (reexecute_instruction(vcpu, cr2))
4035                                 return EMULATE_DONE;
4036                         if (emulation_type & EMULTYPE_SKIP)
4037                                 return EMULATE_FAIL;
4038                         return handle_emulation_failure(vcpu);
4039                 }
4040         }
4041
4042         if (emulation_type & EMULTYPE_SKIP) {
4043                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4044                 return EMULATE_DONE;
4045         }
4046
4047         /* this is needed for vmware backdor interface to work since it
4048            changes registers values  during IO operation */
4049         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4050
4051 restart:
4052         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4053
4054         if (r) { /* emulation failed */
4055                 if (reexecute_instruction(vcpu, cr2))
4056                         return EMULATE_DONE;
4057
4058                 return handle_emulation_failure(vcpu);
4059         }
4060
4061         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4062         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4063         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4064         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4065
4066         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4067                 inject_emulated_exception(vcpu);
4068                 return EMULATE_DONE;
4069         }
4070
4071         if (vcpu->arch.pio.count) {
4072                 if (!vcpu->arch.pio.in)
4073                         vcpu->arch.pio.count = 0;
4074                 return EMULATE_DO_MMIO;
4075         }
4076
4077         if (vcpu->mmio_needed) {
4078                 if (vcpu->mmio_is_write)
4079                         vcpu->mmio_needed = 0;
4080                 return EMULATE_DO_MMIO;
4081         }
4082
4083         if (vcpu->arch.emulate_ctxt.restart)
4084                 goto restart;
4085
4086         return EMULATE_DONE;
4087 }
4088 EXPORT_SYMBOL_GPL(emulate_instruction);
4089
4090 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4091 {
4092         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4093         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4094         /* do not return to emulator after return from userspace */
4095         vcpu->arch.pio.count = 0;
4096         return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4099
4100 static void bounce_off(void *info)
4101 {
4102         /* nothing */
4103 }
4104
4105 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4106                                      void *data)
4107 {
4108         struct cpufreq_freqs *freq = data;
4109         struct kvm *kvm;
4110         struct kvm_vcpu *vcpu;
4111         int i, send_ipi = 0;
4112
4113         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4114                 return 0;
4115         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4116                 return 0;
4117         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4118
4119         spin_lock(&kvm_lock);
4120         list_for_each_entry(kvm, &vm_list, vm_list) {
4121                 kvm_for_each_vcpu(i, vcpu, kvm) {
4122                         if (vcpu->cpu != freq->cpu)
4123                                 continue;
4124                         if (!kvm_request_guest_time_update(vcpu))
4125                                 continue;
4126                         if (vcpu->cpu != smp_processor_id())
4127                                 send_ipi++;
4128                 }
4129         }
4130         spin_unlock(&kvm_lock);
4131
4132         if (freq->old < freq->new && send_ipi) {
4133                 /*
4134                  * We upscale the frequency.  Must make the guest
4135                  * doesn't see old kvmclock values while running with
4136                  * the new frequency, otherwise we risk the guest sees
4137                  * time go backwards.
4138                  *
4139                  * In case we update the frequency for another cpu
4140                  * (which might be in guest context) send an interrupt
4141                  * to kick the cpu out of guest context.  Next time
4142                  * guest context is entered kvmclock will be updated,
4143                  * so the guest will not see stale values.
4144                  */
4145                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4146         }
4147         return 0;
4148 }
4149
4150 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4151         .notifier_call  = kvmclock_cpufreq_notifier
4152 };
4153
4154 static void kvm_timer_init(void)
4155 {
4156         int cpu;
4157
4158         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4159                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4160                                           CPUFREQ_TRANSITION_NOTIFIER);
4161                 for_each_online_cpu(cpu) {
4162                         unsigned long khz = cpufreq_get(cpu);
4163                         if (!khz)
4164                                 khz = tsc_khz;
4165                         per_cpu(cpu_tsc_khz, cpu) = khz;
4166                 }
4167         } else {
4168                 for_each_possible_cpu(cpu)
4169                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4170         }
4171 }
4172
4173 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4174
4175 static int kvm_is_in_guest(void)
4176 {
4177         return percpu_read(current_vcpu) != NULL;
4178 }
4179
4180 static int kvm_is_user_mode(void)
4181 {
4182         int user_mode = 3;
4183
4184         if (percpu_read(current_vcpu))
4185                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4186
4187         return user_mode != 0;
4188 }
4189
4190 static unsigned long kvm_get_guest_ip(void)
4191 {
4192         unsigned long ip = 0;
4193
4194         if (percpu_read(current_vcpu))
4195                 ip = kvm_rip_read(percpu_read(current_vcpu));
4196
4197         return ip;
4198 }
4199
4200 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4201         .is_in_guest            = kvm_is_in_guest,
4202         .is_user_mode           = kvm_is_user_mode,
4203         .get_guest_ip           = kvm_get_guest_ip,
4204 };
4205
4206 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4207 {
4208         percpu_write(current_vcpu, vcpu);
4209 }
4210 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4211
4212 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4213 {
4214         percpu_write(current_vcpu, NULL);
4215 }
4216 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4217
4218 int kvm_arch_init(void *opaque)
4219 {
4220         int r;
4221         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4222
4223         if (kvm_x86_ops) {
4224                 printk(KERN_ERR "kvm: already loaded the other module\n");
4225                 r = -EEXIST;
4226                 goto out;
4227         }
4228
4229         if (!ops->cpu_has_kvm_support()) {
4230                 printk(KERN_ERR "kvm: no hardware support\n");
4231                 r = -EOPNOTSUPP;
4232                 goto out;
4233         }
4234         if (ops->disabled_by_bios()) {
4235                 printk(KERN_ERR "kvm: disabled by bios\n");
4236                 r = -EOPNOTSUPP;
4237                 goto out;
4238         }
4239
4240         r = kvm_mmu_module_init();
4241         if (r)
4242                 goto out;
4243
4244         kvm_init_msr_list();
4245
4246         kvm_x86_ops = ops;
4247         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4248         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4249         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4250                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4251
4252         kvm_timer_init();
4253
4254         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4255
4256         if (cpu_has_xsave)
4257                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4258
4259         return 0;
4260
4261 out:
4262         return r;
4263 }
4264
4265 void kvm_arch_exit(void)
4266 {
4267         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4268
4269         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4270                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4271                                             CPUFREQ_TRANSITION_NOTIFIER);
4272         kvm_x86_ops = NULL;
4273         kvm_mmu_module_exit();
4274 }
4275
4276 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4277 {
4278         ++vcpu->stat.halt_exits;
4279         if (irqchip_in_kernel(vcpu->kvm)) {
4280                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4281                 return 1;
4282         } else {
4283                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4284                 return 0;
4285         }
4286 }
4287 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4288
4289 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4290                            unsigned long a1)
4291 {
4292         if (is_long_mode(vcpu))
4293                 return a0;
4294         else
4295                 return a0 | ((gpa_t)a1 << 32);
4296 }
4297
4298 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4299 {
4300         u64 param, ingpa, outgpa, ret;
4301         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4302         bool fast, longmode;
4303         int cs_db, cs_l;
4304
4305         /*
4306          * hypercall generates UD from non zero cpl and real mode
4307          * per HYPER-V spec
4308          */
4309         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4310                 kvm_queue_exception(vcpu, UD_VECTOR);
4311                 return 0;
4312         }
4313
4314         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4315         longmode = is_long_mode(vcpu) && cs_l == 1;
4316
4317         if (!longmode) {
4318                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4319                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4320                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4321                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4322                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4323                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4324         }
4325 #ifdef CONFIG_X86_64
4326         else {
4327                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4328                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4329                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4330         }
4331 #endif
4332
4333         code = param & 0xffff;
4334         fast = (param >> 16) & 0x1;
4335         rep_cnt = (param >> 32) & 0xfff;
4336         rep_idx = (param >> 48) & 0xfff;
4337
4338         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4339
4340         switch (code) {
4341         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4342                 kvm_vcpu_on_spin(vcpu);
4343                 break;
4344         default:
4345                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4346                 break;
4347         }
4348
4349         ret = res | (((u64)rep_done & 0xfff) << 32);
4350         if (longmode) {
4351                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4352         } else {
4353                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4354                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4355         }
4356
4357         return 1;
4358 }
4359
4360 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4361 {
4362         unsigned long nr, a0, a1, a2, a3, ret;
4363         int r = 1;
4364
4365         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4366                 return kvm_hv_hypercall(vcpu);
4367
4368         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4369         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4370         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4371         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4372         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4373
4374         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4375
4376         if (!is_long_mode(vcpu)) {
4377                 nr &= 0xFFFFFFFF;
4378                 a0 &= 0xFFFFFFFF;
4379                 a1 &= 0xFFFFFFFF;
4380                 a2 &= 0xFFFFFFFF;
4381                 a3 &= 0xFFFFFFFF;
4382         }
4383
4384         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4385                 ret = -KVM_EPERM;
4386                 goto out;
4387         }
4388
4389         switch (nr) {
4390         case KVM_HC_VAPIC_POLL_IRQ:
4391                 ret = 0;
4392                 break;
4393         case KVM_HC_MMU_OP:
4394                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4395                 break;
4396         default:
4397                 ret = -KVM_ENOSYS;
4398                 break;
4399         }
4400 out:
4401         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4402         ++vcpu->stat.hypercalls;
4403         return r;
4404 }
4405 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4406
4407 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4408 {
4409         char instruction[3];
4410         unsigned long rip = kvm_rip_read(vcpu);
4411
4412         /*
4413          * Blow out the MMU to ensure that no other VCPU has an active mapping
4414          * to ensure that the updated hypercall appears atomically across all
4415          * VCPUs.
4416          */
4417         kvm_mmu_zap_all(vcpu->kvm);
4418
4419         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4420
4421         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4422 }
4423
4424 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4425 {
4426         struct desc_ptr dt = { limit, base };
4427
4428         kvm_x86_ops->set_gdt(vcpu, &dt);
4429 }
4430
4431 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4432 {
4433         struct desc_ptr dt = { limit, base };
4434
4435         kvm_x86_ops->set_idt(vcpu, &dt);
4436 }
4437
4438 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4439 {
4440         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4441         int j, nent = vcpu->arch.cpuid_nent;
4442
4443         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4444         /* when no next entry is found, the current entry[i] is reselected */
4445         for (j = i + 1; ; j = (j + 1) % nent) {
4446                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4447                 if (ej->function == e->function) {
4448                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4449                         return j;
4450                 }
4451         }
4452         return 0; /* silence gcc, even though control never reaches here */
4453 }
4454
4455 /* find an entry with matching function, matching index (if needed), and that
4456  * should be read next (if it's stateful) */
4457 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4458         u32 function, u32 index)
4459 {
4460         if (e->function != function)
4461                 return 0;
4462         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4463                 return 0;
4464         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4465             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4466                 return 0;
4467         return 1;
4468 }
4469
4470 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4471                                               u32 function, u32 index)
4472 {
4473         int i;
4474         struct kvm_cpuid_entry2 *best = NULL;
4475
4476         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4477                 struct kvm_cpuid_entry2 *e;
4478
4479                 e = &vcpu->arch.cpuid_entries[i];
4480                 if (is_matching_cpuid_entry(e, function, index)) {
4481                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4482                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4483                         best = e;
4484                         break;
4485                 }
4486                 /*
4487                  * Both basic or both extended?
4488                  */
4489                 if (((e->function ^ function) & 0x80000000) == 0)
4490                         if (!best || e->function > best->function)
4491                                 best = e;
4492         }
4493         return best;
4494 }
4495 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4496
4497 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4498 {
4499         struct kvm_cpuid_entry2 *best;
4500
4501         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4502         if (!best || best->eax < 0x80000008)
4503                 goto not_found;
4504         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4505         if (best)
4506                 return best->eax & 0xff;
4507 not_found:
4508         return 36;
4509 }
4510
4511 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4512 {
4513         u32 function, index;
4514         struct kvm_cpuid_entry2 *best;
4515
4516         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4517         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4518         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4519         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4520         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4521         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4522         best = kvm_find_cpuid_entry(vcpu, function, index);
4523         if (best) {
4524                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4525                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4526                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4527                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4528         }
4529         kvm_x86_ops->skip_emulated_instruction(vcpu);
4530         trace_kvm_cpuid(function,
4531                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4532                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4533                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4534                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4535 }
4536 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4537
4538 /*
4539  * Check if userspace requested an interrupt window, and that the
4540  * interrupt window is open.
4541  *
4542  * No need to exit to userspace if we already have an interrupt queued.
4543  */
4544 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4545 {
4546         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4547                 vcpu->run->request_interrupt_window &&
4548                 kvm_arch_interrupt_allowed(vcpu));
4549 }
4550
4551 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4552 {
4553         struct kvm_run *kvm_run = vcpu->run;
4554
4555         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4556         kvm_run->cr8 = kvm_get_cr8(vcpu);
4557         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4558         if (irqchip_in_kernel(vcpu->kvm))
4559                 kvm_run->ready_for_interrupt_injection = 1;
4560         else
4561                 kvm_run->ready_for_interrupt_injection =
4562                         kvm_arch_interrupt_allowed(vcpu) &&
4563                         !kvm_cpu_has_interrupt(vcpu) &&
4564                         !kvm_event_needs_reinjection(vcpu);
4565 }
4566
4567 static void vapic_enter(struct kvm_vcpu *vcpu)
4568 {
4569         struct kvm_lapic *apic = vcpu->arch.apic;
4570         struct page *page;
4571
4572         if (!apic || !apic->vapic_addr)
4573                 return;
4574
4575         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4576
4577         vcpu->arch.apic->vapic_page = page;
4578 }
4579
4580 static void vapic_exit(struct kvm_vcpu *vcpu)
4581 {
4582         struct kvm_lapic *apic = vcpu->arch.apic;
4583         int idx;
4584
4585         if (!apic || !apic->vapic_addr)
4586                 return;
4587
4588         idx = srcu_read_lock(&vcpu->kvm->srcu);
4589         kvm_release_page_dirty(apic->vapic_page);
4590         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4591         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4592 }
4593
4594 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4595 {
4596         int max_irr, tpr;
4597
4598         if (!kvm_x86_ops->update_cr8_intercept)
4599                 return;
4600
4601         if (!vcpu->arch.apic)
4602                 return;
4603
4604         if (!vcpu->arch.apic->vapic_addr)
4605                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4606         else
4607                 max_irr = -1;
4608
4609         if (max_irr != -1)
4610                 max_irr >>= 4;
4611
4612         tpr = kvm_lapic_get_cr8(vcpu);
4613
4614         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4615 }
4616
4617 static void inject_pending_event(struct kvm_vcpu *vcpu)
4618 {
4619         /* try to reinject previous events if any */
4620         if (vcpu->arch.exception.pending) {
4621                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4622                                         vcpu->arch.exception.has_error_code,
4623                                         vcpu->arch.exception.error_code);
4624                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4625                                           vcpu->arch.exception.has_error_code,
4626                                           vcpu->arch.exception.error_code,
4627                                           vcpu->arch.exception.reinject);
4628                 return;
4629         }
4630
4631         if (vcpu->arch.nmi_injected) {
4632                 kvm_x86_ops->set_nmi(vcpu);
4633                 return;
4634         }
4635
4636         if (vcpu->arch.interrupt.pending) {
4637                 kvm_x86_ops->set_irq(vcpu);
4638                 return;
4639         }
4640
4641         /* try to inject new event if pending */
4642         if (vcpu->arch.nmi_pending) {
4643                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4644                         vcpu->arch.nmi_pending = false;
4645                         vcpu->arch.nmi_injected = true;
4646                         kvm_x86_ops->set_nmi(vcpu);
4647                 }
4648         } else if (kvm_cpu_has_interrupt(vcpu)) {
4649                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4650                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4651                                             false);
4652                         kvm_x86_ops->set_irq(vcpu);
4653                 }
4654         }
4655 }
4656
4657 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4658 {
4659         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4660                         !vcpu->guest_xcr0_loaded) {
4661                 /* kvm_set_xcr() also depends on this */
4662                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4663                 vcpu->guest_xcr0_loaded = 1;
4664         }
4665 }
4666
4667 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4668 {
4669         if (vcpu->guest_xcr0_loaded) {
4670                 if (vcpu->arch.xcr0 != host_xcr0)
4671                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4672                 vcpu->guest_xcr0_loaded = 0;
4673         }
4674 }
4675
4676 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4677 {
4678         int r;
4679         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4680                 vcpu->run->request_interrupt_window;
4681
4682         if (vcpu->requests) {
4683                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4684                         kvm_mmu_unload(vcpu);
4685                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4686                         __kvm_migrate_timers(vcpu);
4687                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
4688                         kvm_write_guest_time(vcpu);
4689                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4690                         kvm_mmu_sync_roots(vcpu);
4691                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4692                         kvm_x86_ops->tlb_flush(vcpu);
4693                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4694                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4695                         r = 0;
4696                         goto out;
4697                 }
4698                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4699                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4700                         r = 0;
4701                         goto out;
4702                 }
4703                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4704                         vcpu->fpu_active = 0;
4705                         kvm_x86_ops->fpu_deactivate(vcpu);
4706                 }
4707         }
4708
4709         r = kvm_mmu_reload(vcpu);
4710         if (unlikely(r))
4711                 goto out;
4712
4713         preempt_disable();
4714
4715         kvm_x86_ops->prepare_guest_switch(vcpu);
4716         if (vcpu->fpu_active)
4717                 kvm_load_guest_fpu(vcpu);
4718         kvm_load_guest_xcr0(vcpu);
4719
4720         atomic_set(&vcpu->guest_mode, 1);
4721         smp_wmb();
4722
4723         local_irq_disable();
4724
4725         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4726             || need_resched() || signal_pending(current)) {
4727                 atomic_set(&vcpu->guest_mode, 0);
4728                 smp_wmb();
4729                 local_irq_enable();
4730                 preempt_enable();
4731                 r = 1;
4732                 goto out;
4733         }
4734
4735         inject_pending_event(vcpu);
4736
4737         /* enable NMI/IRQ window open exits if needed */
4738         if (vcpu->arch.nmi_pending)
4739                 kvm_x86_ops->enable_nmi_window(vcpu);
4740         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4741                 kvm_x86_ops->enable_irq_window(vcpu);
4742
4743         if (kvm_lapic_enabled(vcpu)) {
4744                 update_cr8_intercept(vcpu);
4745                 kvm_lapic_sync_to_vapic(vcpu);
4746         }
4747
4748         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4749
4750         kvm_guest_enter();
4751
4752         if (unlikely(vcpu->arch.switch_db_regs)) {
4753                 set_debugreg(0, 7);
4754                 set_debugreg(vcpu->arch.eff_db[0], 0);
4755                 set_debugreg(vcpu->arch.eff_db[1], 1);
4756                 set_debugreg(vcpu->arch.eff_db[2], 2);
4757                 set_debugreg(vcpu->arch.eff_db[3], 3);
4758         }
4759
4760         trace_kvm_entry(vcpu->vcpu_id);
4761         kvm_x86_ops->run(vcpu);
4762
4763         /*
4764          * If the guest has used debug registers, at least dr7
4765          * will be disabled while returning to the host.
4766          * If we don't have active breakpoints in the host, we don't
4767          * care about the messed up debug address registers. But if
4768          * we have some of them active, restore the old state.
4769          */
4770         if (hw_breakpoint_active())
4771                 hw_breakpoint_restore();
4772
4773         atomic_set(&vcpu->guest_mode, 0);
4774         smp_wmb();
4775         local_irq_enable();
4776
4777         ++vcpu->stat.exits;
4778
4779         /*
4780          * We must have an instruction between local_irq_enable() and
4781          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4782          * the interrupt shadow.  The stat.exits increment will do nicely.
4783          * But we need to prevent reordering, hence this barrier():
4784          */
4785         barrier();
4786
4787         kvm_guest_exit();
4788
4789         preempt_enable();
4790
4791         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4792
4793         /*
4794          * Profile KVM exit RIPs:
4795          */
4796         if (unlikely(prof_on == KVM_PROFILING)) {
4797                 unsigned long rip = kvm_rip_read(vcpu);
4798                 profile_hit(KVM_PROFILING, (void *)rip);
4799         }
4800
4801
4802         kvm_lapic_sync_from_vapic(vcpu);
4803
4804         r = kvm_x86_ops->handle_exit(vcpu);
4805 out:
4806         return r;
4807 }
4808
4809
4810 static int __vcpu_run(struct kvm_vcpu *vcpu)
4811 {
4812         int r;
4813         struct kvm *kvm = vcpu->kvm;
4814
4815         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4816                 pr_debug("vcpu %d received sipi with vector # %x\n",
4817                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4818                 kvm_lapic_reset(vcpu);
4819                 r = kvm_arch_vcpu_reset(vcpu);
4820                 if (r)
4821                         return r;
4822                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4823         }
4824
4825         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4826         vapic_enter(vcpu);
4827
4828         r = 1;
4829         while (r > 0) {
4830                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4831                         r = vcpu_enter_guest(vcpu);
4832                 else {
4833                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4834                         kvm_vcpu_block(vcpu);
4835                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4836                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
4837                         {
4838                                 switch(vcpu->arch.mp_state) {
4839                                 case KVM_MP_STATE_HALTED:
4840                                         vcpu->arch.mp_state =
4841                                                 KVM_MP_STATE_RUNNABLE;
4842                                 case KVM_MP_STATE_RUNNABLE:
4843                                         break;
4844                                 case KVM_MP_STATE_SIPI_RECEIVED:
4845                                 default:
4846                                         r = -EINTR;
4847                                         break;
4848                                 }
4849                         }
4850                 }
4851
4852                 if (r <= 0)
4853                         break;
4854
4855                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4856                 if (kvm_cpu_has_pending_timer(vcpu))
4857                         kvm_inject_pending_timer_irqs(vcpu);
4858
4859                 if (dm_request_for_irq_injection(vcpu)) {
4860                         r = -EINTR;
4861                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4862                         ++vcpu->stat.request_irq_exits;
4863                 }
4864                 if (signal_pending(current)) {
4865                         r = -EINTR;
4866                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4867                         ++vcpu->stat.signal_exits;
4868                 }
4869                 if (need_resched()) {
4870                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4871                         kvm_resched(vcpu);
4872                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4873                 }
4874         }
4875
4876         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4877
4878         vapic_exit(vcpu);
4879
4880         return r;
4881 }
4882
4883 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4884 {
4885         int r;
4886         sigset_t sigsaved;
4887
4888         if (vcpu->sigset_active)
4889                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4890
4891         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4892                 kvm_vcpu_block(vcpu);
4893                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4894                 r = -EAGAIN;
4895                 goto out;
4896         }
4897
4898         /* re-sync apic's tpr */
4899         if (!irqchip_in_kernel(vcpu->kvm))
4900                 kvm_set_cr8(vcpu, kvm_run->cr8);
4901
4902         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4903             vcpu->arch.emulate_ctxt.restart) {
4904                 if (vcpu->mmio_needed) {
4905                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4906                         vcpu->mmio_read_completed = 1;
4907                         vcpu->mmio_needed = 0;
4908                 }
4909                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4910                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4911                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4912                 if (r != EMULATE_DONE) {
4913                         r = 0;
4914                         goto out;
4915                 }
4916         }
4917         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4918                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4919                                      kvm_run->hypercall.ret);
4920
4921         r = __vcpu_run(vcpu);
4922
4923 out:
4924         post_kvm_run_save(vcpu);
4925         if (vcpu->sigset_active)
4926                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4927
4928         return r;
4929 }
4930
4931 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4932 {
4933         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4934         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4935         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4936         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4937         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4938         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4939         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4940         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4941 #ifdef CONFIG_X86_64
4942         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4943         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4944         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4945         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4946         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4947         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4948         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4949         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4950 #endif
4951
4952         regs->rip = kvm_rip_read(vcpu);
4953         regs->rflags = kvm_get_rflags(vcpu);
4954
4955         return 0;
4956 }
4957
4958 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4959 {
4960         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4961         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4962         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4963         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4964         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4965         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4966         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4967         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4968 #ifdef CONFIG_X86_64
4969         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4970         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4971         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4972         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4973         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4974         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4975         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4976         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4977 #endif
4978
4979         kvm_rip_write(vcpu, regs->rip);
4980         kvm_set_rflags(vcpu, regs->rflags);
4981
4982         vcpu->arch.exception.pending = false;
4983
4984         return 0;
4985 }
4986
4987 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4988 {
4989         struct kvm_segment cs;
4990
4991         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4992         *db = cs.db;
4993         *l = cs.l;
4994 }
4995 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4996
4997 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4998                                   struct kvm_sregs *sregs)
4999 {
5000         struct desc_ptr dt;
5001
5002         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5003         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5004         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5005         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5006         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5007         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5008
5009         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5010         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5011
5012         kvm_x86_ops->get_idt(vcpu, &dt);
5013         sregs->idt.limit = dt.size;
5014         sregs->idt.base = dt.address;
5015         kvm_x86_ops->get_gdt(vcpu, &dt);
5016         sregs->gdt.limit = dt.size;
5017         sregs->gdt.base = dt.address;
5018
5019         sregs->cr0 = kvm_read_cr0(vcpu);
5020         sregs->cr2 = vcpu->arch.cr2;
5021         sregs->cr3 = vcpu->arch.cr3;
5022         sregs->cr4 = kvm_read_cr4(vcpu);
5023         sregs->cr8 = kvm_get_cr8(vcpu);
5024         sregs->efer = vcpu->arch.efer;
5025         sregs->apic_base = kvm_get_apic_base(vcpu);
5026
5027         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5028
5029         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5030                 set_bit(vcpu->arch.interrupt.nr,
5031                         (unsigned long *)sregs->interrupt_bitmap);
5032
5033         return 0;
5034 }
5035
5036 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5037                                     struct kvm_mp_state *mp_state)
5038 {
5039         mp_state->mp_state = vcpu->arch.mp_state;
5040         return 0;
5041 }
5042
5043 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5044                                     struct kvm_mp_state *mp_state)
5045 {
5046         vcpu->arch.mp_state = mp_state->mp_state;
5047         return 0;
5048 }
5049
5050 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5051                     bool has_error_code, u32 error_code)
5052 {
5053         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5054         int cs_db, cs_l, ret;
5055         cache_all_regs(vcpu);
5056
5057         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5058
5059         vcpu->arch.emulate_ctxt.vcpu = vcpu;
5060         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
5061         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
5062         vcpu->arch.emulate_ctxt.mode =
5063                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5064                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
5065                 ? X86EMUL_MODE_VM86 : cs_l
5066                 ? X86EMUL_MODE_PROT64 : cs_db
5067                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
5068         memset(c, 0, sizeof(struct decode_cache));
5069         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
5070
5071         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
5072                                    tss_selector, reason, has_error_code,
5073                                    error_code);
5074
5075         if (ret)
5076                 return EMULATE_FAIL;
5077
5078         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5079         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5080         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5081         return EMULATE_DONE;
5082 }
5083 EXPORT_SYMBOL_GPL(kvm_task_switch);
5084
5085 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5086                                   struct kvm_sregs *sregs)
5087 {
5088         int mmu_reset_needed = 0;
5089         int pending_vec, max_bits;
5090         struct desc_ptr dt;
5091
5092         dt.size = sregs->idt.limit;
5093         dt.address = sregs->idt.base;
5094         kvm_x86_ops->set_idt(vcpu, &dt);
5095         dt.size = sregs->gdt.limit;
5096         dt.address = sregs->gdt.base;
5097         kvm_x86_ops->set_gdt(vcpu, &dt);
5098
5099         vcpu->arch.cr2 = sregs->cr2;
5100         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5101         vcpu->arch.cr3 = sregs->cr3;
5102
5103         kvm_set_cr8(vcpu, sregs->cr8);
5104
5105         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5106         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5107         kvm_set_apic_base(vcpu, sregs->apic_base);
5108
5109         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5110         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5111         vcpu->arch.cr0 = sregs->cr0;
5112
5113         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5114         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5115         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5116                 load_pdptrs(vcpu, vcpu->arch.cr3);
5117                 mmu_reset_needed = 1;
5118         }
5119
5120         if (mmu_reset_needed)
5121                 kvm_mmu_reset_context(vcpu);
5122
5123         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5124         pending_vec = find_first_bit(
5125                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5126         if (pending_vec < max_bits) {
5127                 kvm_queue_interrupt(vcpu, pending_vec, false);
5128                 pr_debug("Set back pending irq %d\n", pending_vec);
5129                 if (irqchip_in_kernel(vcpu->kvm))
5130                         kvm_pic_clear_isr_ack(vcpu->kvm);
5131         }
5132
5133         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5134         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5135         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5136         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5137         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5138         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5139
5140         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5141         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5142
5143         update_cr8_intercept(vcpu);
5144
5145         /* Older userspace won't unhalt the vcpu on reset. */
5146         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5147             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5148             !is_protmode(vcpu))
5149                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5150
5151         return 0;
5152 }
5153
5154 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5155                                         struct kvm_guest_debug *dbg)
5156 {
5157         unsigned long rflags;
5158         int i, r;
5159
5160         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5161                 r = -EBUSY;
5162                 if (vcpu->arch.exception.pending)
5163                         goto out;
5164                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5165                         kvm_queue_exception(vcpu, DB_VECTOR);
5166                 else
5167                         kvm_queue_exception(vcpu, BP_VECTOR);
5168         }
5169
5170         /*
5171          * Read rflags as long as potentially injected trace flags are still
5172          * filtered out.
5173          */
5174         rflags = kvm_get_rflags(vcpu);
5175
5176         vcpu->guest_debug = dbg->control;
5177         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5178                 vcpu->guest_debug = 0;
5179
5180         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5181                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5182                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5183                 vcpu->arch.switch_db_regs =
5184                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5185         } else {
5186                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5187                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5188                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5189         }
5190
5191         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5192                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5193                         get_segment_base(vcpu, VCPU_SREG_CS);
5194
5195         /*
5196          * Trigger an rflags update that will inject or remove the trace
5197          * flags.
5198          */
5199         kvm_set_rflags(vcpu, rflags);
5200
5201         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5202
5203         r = 0;
5204
5205 out:
5206
5207         return r;
5208 }
5209
5210 /*
5211  * Translate a guest virtual address to a guest physical address.
5212  */
5213 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5214                                     struct kvm_translation *tr)
5215 {
5216         unsigned long vaddr = tr->linear_address;
5217         gpa_t gpa;
5218         int idx;
5219
5220         idx = srcu_read_lock(&vcpu->kvm->srcu);
5221         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5222         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5223         tr->physical_address = gpa;
5224         tr->valid = gpa != UNMAPPED_GVA;
5225         tr->writeable = 1;
5226         tr->usermode = 0;
5227
5228         return 0;
5229 }
5230
5231 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5232 {
5233         struct i387_fxsave_struct *fxsave =
5234                         &vcpu->arch.guest_fpu.state->fxsave;
5235
5236         memcpy(fpu->fpr, fxsave->st_space, 128);
5237         fpu->fcw = fxsave->cwd;
5238         fpu->fsw = fxsave->swd;
5239         fpu->ftwx = fxsave->twd;
5240         fpu->last_opcode = fxsave->fop;
5241         fpu->last_ip = fxsave->rip;
5242         fpu->last_dp = fxsave->rdp;
5243         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5244
5245         return 0;
5246 }
5247
5248 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5249 {
5250         struct i387_fxsave_struct *fxsave =
5251                         &vcpu->arch.guest_fpu.state->fxsave;
5252
5253         memcpy(fxsave->st_space, fpu->fpr, 128);
5254         fxsave->cwd = fpu->fcw;
5255         fxsave->swd = fpu->fsw;
5256         fxsave->twd = fpu->ftwx;
5257         fxsave->fop = fpu->last_opcode;
5258         fxsave->rip = fpu->last_ip;
5259         fxsave->rdp = fpu->last_dp;
5260         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5261
5262         return 0;
5263 }
5264
5265 int fx_init(struct kvm_vcpu *vcpu)
5266 {
5267         int err;
5268
5269         err = fpu_alloc(&vcpu->arch.guest_fpu);
5270         if (err)
5271                 return err;
5272
5273         fpu_finit(&vcpu->arch.guest_fpu);
5274
5275         /*
5276          * Ensure guest xcr0 is valid for loading
5277          */
5278         vcpu->arch.xcr0 = XSTATE_FP;
5279
5280         vcpu->arch.cr0 |= X86_CR0_ET;
5281
5282         return 0;
5283 }
5284 EXPORT_SYMBOL_GPL(fx_init);
5285
5286 static void fx_free(struct kvm_vcpu *vcpu)
5287 {
5288         fpu_free(&vcpu->arch.guest_fpu);
5289 }
5290
5291 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5292 {
5293         if (vcpu->guest_fpu_loaded)
5294                 return;
5295
5296         /*
5297          * Restore all possible states in the guest,
5298          * and assume host would use all available bits.
5299          * Guest xcr0 would be loaded later.
5300          */
5301         kvm_put_guest_xcr0(vcpu);
5302         vcpu->guest_fpu_loaded = 1;
5303         unlazy_fpu(current);
5304         fpu_restore_checking(&vcpu->arch.guest_fpu);
5305         trace_kvm_fpu(1);
5306 }
5307
5308 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5309 {
5310         kvm_put_guest_xcr0(vcpu);
5311
5312         if (!vcpu->guest_fpu_loaded)
5313                 return;
5314
5315         vcpu->guest_fpu_loaded = 0;
5316         fpu_save_init(&vcpu->arch.guest_fpu);
5317         ++vcpu->stat.fpu_reload;
5318         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5319         trace_kvm_fpu(0);
5320 }
5321
5322 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5323 {
5324         if (vcpu->arch.time_page) {
5325                 kvm_release_page_dirty(vcpu->arch.time_page);
5326                 vcpu->arch.time_page = NULL;
5327         }
5328
5329         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5330         fx_free(vcpu);
5331         kvm_x86_ops->vcpu_free(vcpu);
5332 }
5333
5334 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5335                                                 unsigned int id)
5336 {
5337         return kvm_x86_ops->vcpu_create(kvm, id);
5338 }
5339
5340 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5341 {
5342         int r;
5343
5344         vcpu->arch.mtrr_state.have_fixed = 1;
5345         vcpu_load(vcpu);
5346         r = kvm_arch_vcpu_reset(vcpu);
5347         if (r == 0)
5348                 r = kvm_mmu_setup(vcpu);
5349         vcpu_put(vcpu);
5350         if (r < 0)
5351                 goto free_vcpu;
5352
5353         return 0;
5354 free_vcpu:
5355         kvm_x86_ops->vcpu_free(vcpu);
5356         return r;
5357 }
5358
5359 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5360 {
5361         vcpu_load(vcpu);
5362         kvm_mmu_unload(vcpu);
5363         vcpu_put(vcpu);
5364
5365         fx_free(vcpu);
5366         kvm_x86_ops->vcpu_free(vcpu);
5367 }
5368
5369 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5370 {
5371         vcpu->arch.nmi_pending = false;
5372         vcpu->arch.nmi_injected = false;
5373
5374         vcpu->arch.switch_db_regs = 0;
5375         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5376         vcpu->arch.dr6 = DR6_FIXED_1;
5377         vcpu->arch.dr7 = DR7_FIXED_1;
5378
5379         return kvm_x86_ops->vcpu_reset(vcpu);
5380 }
5381
5382 int kvm_arch_hardware_enable(void *garbage)
5383 {
5384         /*
5385          * Since this may be called from a hotplug notifcation,
5386          * we can't get the CPU frequency directly.
5387          */
5388         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5389                 int cpu = raw_smp_processor_id();
5390                 per_cpu(cpu_tsc_khz, cpu) = 0;
5391         }
5392
5393         kvm_shared_msr_cpu_online();
5394
5395         return kvm_x86_ops->hardware_enable(garbage);
5396 }
5397
5398 void kvm_arch_hardware_disable(void *garbage)
5399 {
5400         kvm_x86_ops->hardware_disable(garbage);
5401         drop_user_return_notifiers(garbage);
5402 }
5403
5404 int kvm_arch_hardware_setup(void)
5405 {
5406         return kvm_x86_ops->hardware_setup();
5407 }
5408
5409 void kvm_arch_hardware_unsetup(void)
5410 {
5411         kvm_x86_ops->hardware_unsetup();
5412 }
5413
5414 void kvm_arch_check_processor_compat(void *rtn)
5415 {
5416         kvm_x86_ops->check_processor_compatibility(rtn);
5417 }
5418
5419 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5420 {
5421         struct page *page;
5422         struct kvm *kvm;
5423         int r;
5424
5425         BUG_ON(vcpu->kvm == NULL);
5426         kvm = vcpu->kvm;
5427
5428         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5429         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5430                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5431         else
5432                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5433
5434         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5435         if (!page) {
5436                 r = -ENOMEM;
5437                 goto fail;
5438         }
5439         vcpu->arch.pio_data = page_address(page);
5440
5441         r = kvm_mmu_create(vcpu);
5442         if (r < 0)
5443                 goto fail_free_pio_data;
5444
5445         if (irqchip_in_kernel(kvm)) {
5446                 r = kvm_create_lapic(vcpu);
5447                 if (r < 0)
5448                         goto fail_mmu_destroy;
5449         }
5450
5451         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5452                                        GFP_KERNEL);
5453         if (!vcpu->arch.mce_banks) {
5454                 r = -ENOMEM;
5455                 goto fail_free_lapic;
5456         }
5457         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5458
5459         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5460                 goto fail_free_mce_banks;
5461
5462         return 0;
5463 fail_free_mce_banks:
5464         kfree(vcpu->arch.mce_banks);
5465 fail_free_lapic:
5466         kvm_free_lapic(vcpu);
5467 fail_mmu_destroy:
5468         kvm_mmu_destroy(vcpu);
5469 fail_free_pio_data:
5470         free_page((unsigned long)vcpu->arch.pio_data);
5471 fail:
5472         return r;
5473 }
5474
5475 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5476 {
5477         int idx;
5478
5479         kfree(vcpu->arch.mce_banks);
5480         kvm_free_lapic(vcpu);
5481         idx = srcu_read_lock(&vcpu->kvm->srcu);
5482         kvm_mmu_destroy(vcpu);
5483         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5484         free_page((unsigned long)vcpu->arch.pio_data);
5485 }
5486
5487 struct  kvm *kvm_arch_create_vm(void)
5488 {
5489         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5490
5491         if (!kvm)
5492                 return ERR_PTR(-ENOMEM);
5493
5494         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5495         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5496
5497         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5498         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5499
5500         rdtscll(kvm->arch.vm_init_tsc);
5501
5502         return kvm;
5503 }
5504
5505 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5506 {
5507         vcpu_load(vcpu);
5508         kvm_mmu_unload(vcpu);
5509         vcpu_put(vcpu);
5510 }
5511
5512 static void kvm_free_vcpus(struct kvm *kvm)
5513 {
5514         unsigned int i;
5515         struct kvm_vcpu *vcpu;
5516
5517         /*
5518          * Unpin any mmu pages first.
5519          */
5520         kvm_for_each_vcpu(i, vcpu, kvm)
5521                 kvm_unload_vcpu_mmu(vcpu);
5522         kvm_for_each_vcpu(i, vcpu, kvm)
5523                 kvm_arch_vcpu_free(vcpu);
5524
5525         mutex_lock(&kvm->lock);
5526         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5527                 kvm->vcpus[i] = NULL;
5528
5529         atomic_set(&kvm->online_vcpus, 0);
5530         mutex_unlock(&kvm->lock);
5531 }
5532
5533 void kvm_arch_sync_events(struct kvm *kvm)
5534 {
5535         kvm_free_all_assigned_devices(kvm);
5536         kvm_free_pit(kvm);
5537 }
5538
5539 void kvm_arch_destroy_vm(struct kvm *kvm)
5540 {
5541         kvm_iommu_unmap_guest(kvm);
5542         kfree(kvm->arch.vpic);
5543         kfree(kvm->arch.vioapic);
5544         kvm_free_vcpus(kvm);
5545         kvm_free_physmem(kvm);
5546         if (kvm->arch.apic_access_page)
5547                 put_page(kvm->arch.apic_access_page);
5548         if (kvm->arch.ept_identity_pagetable)
5549                 put_page(kvm->arch.ept_identity_pagetable);
5550         cleanup_srcu_struct(&kvm->srcu);
5551         kfree(kvm);
5552 }
5553
5554 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5555                                 struct kvm_memory_slot *memslot,
5556                                 struct kvm_memory_slot old,
5557                                 struct kvm_userspace_memory_region *mem,
5558                                 int user_alloc)
5559 {
5560         int npages = memslot->npages;
5561         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5562
5563         /* Prevent internal slot pages from being moved by fork()/COW. */
5564         if (memslot->id >= KVM_MEMORY_SLOTS)
5565                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5566
5567         /*To keep backward compatibility with older userspace,
5568          *x86 needs to hanlde !user_alloc case.
5569          */
5570         if (!user_alloc) {
5571                 if (npages && !old.rmap) {
5572                         unsigned long userspace_addr;
5573
5574                         down_write(&current->mm->mmap_sem);
5575                         userspace_addr = do_mmap(NULL, 0,
5576                                                  npages * PAGE_SIZE,
5577                                                  PROT_READ | PROT_WRITE,
5578                                                  map_flags,
5579                                                  0);
5580                         up_write(&current->mm->mmap_sem);
5581
5582                         if (IS_ERR((void *)userspace_addr))
5583                                 return PTR_ERR((void *)userspace_addr);
5584
5585                         memslot->userspace_addr = userspace_addr;
5586                 }
5587         }
5588
5589
5590         return 0;
5591 }
5592
5593 void kvm_arch_commit_memory_region(struct kvm *kvm,
5594                                 struct kvm_userspace_memory_region *mem,
5595                                 struct kvm_memory_slot old,
5596                                 int user_alloc)
5597 {
5598
5599         int npages = mem->memory_size >> PAGE_SHIFT;
5600
5601         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5602                 int ret;
5603
5604                 down_write(&current->mm->mmap_sem);
5605                 ret = do_munmap(current->mm, old.userspace_addr,
5606                                 old.npages * PAGE_SIZE);
5607                 up_write(&current->mm->mmap_sem);
5608                 if (ret < 0)
5609                         printk(KERN_WARNING
5610                                "kvm_vm_ioctl_set_memory_region: "
5611                                "failed to munmap memory\n");
5612         }
5613
5614         spin_lock(&kvm->mmu_lock);
5615         if (!kvm->arch.n_requested_mmu_pages) {
5616                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5617                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5618         }
5619
5620         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5621         spin_unlock(&kvm->mmu_lock);
5622 }
5623
5624 void kvm_arch_flush_shadow(struct kvm *kvm)
5625 {
5626         kvm_mmu_zap_all(kvm);
5627         kvm_reload_remote_mmus(kvm);
5628 }
5629
5630 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5631 {
5632         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5633                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5634                 || vcpu->arch.nmi_pending ||
5635                 (kvm_arch_interrupt_allowed(vcpu) &&
5636                  kvm_cpu_has_interrupt(vcpu));
5637 }
5638
5639 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5640 {
5641         int me;
5642         int cpu = vcpu->cpu;
5643
5644         if (waitqueue_active(&vcpu->wq)) {
5645                 wake_up_interruptible(&vcpu->wq);
5646                 ++vcpu->stat.halt_wakeup;
5647         }
5648
5649         me = get_cpu();
5650         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5651                 if (atomic_xchg(&vcpu->guest_mode, 0))
5652                         smp_send_reschedule(cpu);
5653         put_cpu();
5654 }
5655
5656 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5657 {
5658         return kvm_x86_ops->interrupt_allowed(vcpu);
5659 }
5660
5661 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5662 {
5663         unsigned long current_rip = kvm_rip_read(vcpu) +
5664                 get_segment_base(vcpu, VCPU_SREG_CS);
5665
5666         return current_rip == linear_rip;
5667 }
5668 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5669
5670 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5671 {
5672         unsigned long rflags;
5673
5674         rflags = kvm_x86_ops->get_rflags(vcpu);
5675         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5676                 rflags &= ~X86_EFLAGS_TF;
5677         return rflags;
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5680
5681 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5682 {
5683         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5684             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5685                 rflags |= X86_EFLAGS_TF;
5686         kvm_x86_ops->set_rflags(vcpu, rflags);
5687 }
5688 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5689
5690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);