KVM: Add kvm_inject_realmode_interrupt() wrapper
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
60
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS                                               \
63         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS                                               \
67         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
69                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
70                           | X86_CR4_OSXSAVE \
71                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
72
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
74
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
87
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
90
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93                                     struct kvm_cpuid_entry2 __user *entries);
94
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
97
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
100
101 #define KVM_NR_SHARED_MSRS 16
102
103 struct kvm_shared_msrs_global {
104         int nr;
105         u32 msrs[KVM_NR_SHARED_MSRS];
106 };
107
108 struct kvm_shared_msrs {
109         struct user_return_notifier urn;
110         bool registered;
111         struct kvm_shared_msr_values {
112                 u64 host;
113                 u64 curr;
114         } values[KVM_NR_SHARED_MSRS];
115 };
116
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
119
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121         { "pf_fixed", VCPU_STAT(pf_fixed) },
122         { "pf_guest", VCPU_STAT(pf_guest) },
123         { "tlb_flush", VCPU_STAT(tlb_flush) },
124         { "invlpg", VCPU_STAT(invlpg) },
125         { "exits", VCPU_STAT(exits) },
126         { "io_exits", VCPU_STAT(io_exits) },
127         { "mmio_exits", VCPU_STAT(mmio_exits) },
128         { "signal_exits", VCPU_STAT(signal_exits) },
129         { "irq_window", VCPU_STAT(irq_window_exits) },
130         { "nmi_window", VCPU_STAT(nmi_window_exits) },
131         { "halt_exits", VCPU_STAT(halt_exits) },
132         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133         { "hypercalls", VCPU_STAT(hypercalls) },
134         { "request_irq", VCPU_STAT(request_irq_exits) },
135         { "irq_exits", VCPU_STAT(irq_exits) },
136         { "host_state_reload", VCPU_STAT(host_state_reload) },
137         { "efer_reload", VCPU_STAT(efer_reload) },
138         { "fpu_reload", VCPU_STAT(fpu_reload) },
139         { "insn_emulation", VCPU_STAT(insn_emulation) },
140         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141         { "irq_injections", VCPU_STAT(irq_injections) },
142         { "nmi_injections", VCPU_STAT(nmi_injections) },
143         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147         { "mmu_flooded", VM_STAT(mmu_flooded) },
148         { "mmu_recycled", VM_STAT(mmu_recycled) },
149         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150         { "mmu_unsync", VM_STAT(mmu_unsync) },
151         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152         { "largepages", VM_STAT(lpages) },
153         { NULL }
154 };
155
156 u64 __read_mostly host_xcr0;
157
158 static inline u32 bit(int bitno)
159 {
160         return 1 << (bitno & 31);
161 }
162
163 static void kvm_on_user_return(struct user_return_notifier *urn)
164 {
165         unsigned slot;
166         struct kvm_shared_msrs *locals
167                 = container_of(urn, struct kvm_shared_msrs, urn);
168         struct kvm_shared_msr_values *values;
169
170         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171                 values = &locals->values[slot];
172                 if (values->host != values->curr) {
173                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
174                         values->curr = values->host;
175                 }
176         }
177         locals->registered = false;
178         user_return_notifier_unregister(urn);
179 }
180
181 static void shared_msr_update(unsigned slot, u32 msr)
182 {
183         struct kvm_shared_msrs *smsr;
184         u64 value;
185
186         smsr = &__get_cpu_var(shared_msrs);
187         /* only read, and nobody should modify it at this time,
188          * so don't need lock */
189         if (slot >= shared_msrs_global.nr) {
190                 printk(KERN_ERR "kvm: invalid MSR slot!");
191                 return;
192         }
193         rdmsrl_safe(msr, &value);
194         smsr->values[slot].host = value;
195         smsr->values[slot].curr = value;
196 }
197
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
199 {
200         if (slot >= shared_msrs_global.nr)
201                 shared_msrs_global.nr = slot + 1;
202         shared_msrs_global.msrs[slot] = msr;
203         /* we need ensured the shared_msr_global have been updated */
204         smp_wmb();
205 }
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
207
208 static void kvm_shared_msr_cpu_online(void)
209 {
210         unsigned i;
211
212         for (i = 0; i < shared_msrs_global.nr; ++i)
213                 shared_msr_update(i, shared_msrs_global.msrs[i]);
214 }
215
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
217 {
218         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219
220         if (((value ^ smsr->values[slot].curr) & mask) == 0)
221                 return;
222         smsr->values[slot].curr = value;
223         wrmsrl(shared_msrs_global.msrs[slot], value);
224         if (!smsr->registered) {
225                 smsr->urn.on_user_return = kvm_on_user_return;
226                 user_return_notifier_register(&smsr->urn);
227                 smsr->registered = true;
228         }
229 }
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
231
232 static void drop_user_return_notifiers(void *ignore)
233 {
234         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
235
236         if (smsr->registered)
237                 kvm_on_user_return(&smsr->urn);
238 }
239
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
241 {
242         if (irqchip_in_kernel(vcpu->kvm))
243                 return vcpu->arch.apic_base;
244         else
245                 return vcpu->arch.apic_base;
246 }
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
248
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
250 {
251         /* TODO: reserve bits check */
252         if (irqchip_in_kernel(vcpu->kvm))
253                 kvm_lapic_set_base(vcpu, data);
254         else
255                 vcpu->arch.apic_base = data;
256 }
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
258
259 #define EXCPT_BENIGN            0
260 #define EXCPT_CONTRIBUTORY      1
261 #define EXCPT_PF                2
262
263 static int exception_class(int vector)
264 {
265         switch (vector) {
266         case PF_VECTOR:
267                 return EXCPT_PF;
268         case DE_VECTOR:
269         case TS_VECTOR:
270         case NP_VECTOR:
271         case SS_VECTOR:
272         case GP_VECTOR:
273                 return EXCPT_CONTRIBUTORY;
274         default:
275                 break;
276         }
277         return EXCPT_BENIGN;
278 }
279
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281                 unsigned nr, bool has_error, u32 error_code,
282                 bool reinject)
283 {
284         u32 prev_nr;
285         int class1, class2;
286
287         kvm_make_request(KVM_REQ_EVENT, vcpu);
288
289         if (!vcpu->arch.exception.pending) {
290         queue:
291                 vcpu->arch.exception.pending = true;
292                 vcpu->arch.exception.has_error_code = has_error;
293                 vcpu->arch.exception.nr = nr;
294                 vcpu->arch.exception.error_code = error_code;
295                 vcpu->arch.exception.reinject = reinject;
296                 return;
297         }
298
299         /* to check exception */
300         prev_nr = vcpu->arch.exception.nr;
301         if (prev_nr == DF_VECTOR) {
302                 /* triple fault -> shutdown */
303                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
304                 return;
305         }
306         class1 = exception_class(prev_nr);
307         class2 = exception_class(nr);
308         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
309                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
310                 /* generate double fault per SDM Table 5-5 */
311                 vcpu->arch.exception.pending = true;
312                 vcpu->arch.exception.has_error_code = true;
313                 vcpu->arch.exception.nr = DF_VECTOR;
314                 vcpu->arch.exception.error_code = 0;
315         } else
316                 /* replace previous exception with a new one in a hope
317                    that instruction re-execution will regenerate lost
318                    exception */
319                 goto queue;
320 }
321
322 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
323 {
324         kvm_multiple_exception(vcpu, nr, false, 0, false);
325 }
326 EXPORT_SYMBOL_GPL(kvm_queue_exception);
327
328 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, true);
331 }
332 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
333
334 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
335 {
336         unsigned error_code = vcpu->arch.fault.error_code;
337
338         ++vcpu->stat.pf_guest;
339         vcpu->arch.cr2 = vcpu->arch.fault.address;
340         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
341 }
342
343 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
344 {
345         if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
346                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
347         else
348                 vcpu->arch.mmu.inject_page_fault(vcpu);
349
350         vcpu->arch.fault.nested = false;
351 }
352
353 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
354 {
355         kvm_make_request(KVM_REQ_EVENT, vcpu);
356         vcpu->arch.nmi_pending = 1;
357 }
358 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
359
360 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
361 {
362         kvm_multiple_exception(vcpu, nr, true, error_code, false);
363 }
364 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
365
366 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
367 {
368         kvm_multiple_exception(vcpu, nr, true, error_code, true);
369 }
370 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
371
372 /*
373  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
374  * a #GP and return false.
375  */
376 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
377 {
378         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
379                 return true;
380         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
381         return false;
382 }
383 EXPORT_SYMBOL_GPL(kvm_require_cpl);
384
385 /*
386  * This function will be used to read from the physical memory of the currently
387  * running guest. The difference to kvm_read_guest_page is that this function
388  * can read from guest physical or from the guest's guest physical memory.
389  */
390 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
391                             gfn_t ngfn, void *data, int offset, int len,
392                             u32 access)
393 {
394         gfn_t real_gfn;
395         gpa_t ngpa;
396
397         ngpa     = gfn_to_gpa(ngfn);
398         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
399         if (real_gfn == UNMAPPED_GVA)
400                 return -EFAULT;
401
402         real_gfn = gpa_to_gfn(real_gfn);
403
404         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
405 }
406 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
407
408 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
409                                void *data, int offset, int len, u32 access)
410 {
411         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
412                                        data, offset, len, access);
413 }
414
415 /*
416  * Load the pae pdptrs.  Return true is they are all valid.
417  */
418 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
419 {
420         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
421         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
422         int i;
423         int ret;
424         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
425
426         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
427                                       offset * sizeof(u64), sizeof(pdpte),
428                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
429         if (ret < 0) {
430                 ret = 0;
431                 goto out;
432         }
433         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
434                 if (is_present_gpte(pdpte[i]) &&
435                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
436                         ret = 0;
437                         goto out;
438                 }
439         }
440         ret = 1;
441
442         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
443         __set_bit(VCPU_EXREG_PDPTR,
444                   (unsigned long *)&vcpu->arch.regs_avail);
445         __set_bit(VCPU_EXREG_PDPTR,
446                   (unsigned long *)&vcpu->arch.regs_dirty);
447 out:
448
449         return ret;
450 }
451 EXPORT_SYMBOL_GPL(load_pdptrs);
452
453 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
454 {
455         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
456         bool changed = true;
457         int offset;
458         gfn_t gfn;
459         int r;
460
461         if (is_long_mode(vcpu) || !is_pae(vcpu))
462                 return false;
463
464         if (!test_bit(VCPU_EXREG_PDPTR,
465                       (unsigned long *)&vcpu->arch.regs_avail))
466                 return true;
467
468         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
469         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
470         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
471                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
472         if (r < 0)
473                 goto out;
474         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
475 out:
476
477         return changed;
478 }
479
480 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
481 {
482         unsigned long old_cr0 = kvm_read_cr0(vcpu);
483         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
484                                     X86_CR0_CD | X86_CR0_NW;
485
486         cr0 |= X86_CR0_ET;
487
488 #ifdef CONFIG_X86_64
489         if (cr0 & 0xffffffff00000000UL)
490                 return 1;
491 #endif
492
493         cr0 &= ~CR0_RESERVED_BITS;
494
495         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
496                 return 1;
497
498         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
499                 return 1;
500
501         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
502 #ifdef CONFIG_X86_64
503                 if ((vcpu->arch.efer & EFER_LME)) {
504                         int cs_db, cs_l;
505
506                         if (!is_pae(vcpu))
507                                 return 1;
508                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
509                         if (cs_l)
510                                 return 1;
511                 } else
512 #endif
513                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
514                                                  vcpu->arch.cr3))
515                         return 1;
516         }
517
518         kvm_x86_ops->set_cr0(vcpu, cr0);
519
520         if ((cr0 ^ old_cr0) & update_bits)
521                 kvm_mmu_reset_context(vcpu);
522         return 0;
523 }
524 EXPORT_SYMBOL_GPL(kvm_set_cr0);
525
526 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
527 {
528         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
529 }
530 EXPORT_SYMBOL_GPL(kvm_lmsw);
531
532 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
533 {
534         u64 xcr0;
535
536         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
537         if (index != XCR_XFEATURE_ENABLED_MASK)
538                 return 1;
539         xcr0 = xcr;
540         if (kvm_x86_ops->get_cpl(vcpu) != 0)
541                 return 1;
542         if (!(xcr0 & XSTATE_FP))
543                 return 1;
544         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
545                 return 1;
546         if (xcr0 & ~host_xcr0)
547                 return 1;
548         vcpu->arch.xcr0 = xcr0;
549         vcpu->guest_xcr0_loaded = 0;
550         return 0;
551 }
552
553 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         if (__kvm_set_xcr(vcpu, index, xcr)) {
556                 kvm_inject_gp(vcpu, 0);
557                 return 1;
558         }
559         return 0;
560 }
561 EXPORT_SYMBOL_GPL(kvm_set_xcr);
562
563 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
564 {
565         struct kvm_cpuid_entry2 *best;
566
567         best = kvm_find_cpuid_entry(vcpu, 1, 0);
568         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
569 }
570
571 static void update_cpuid(struct kvm_vcpu *vcpu)
572 {
573         struct kvm_cpuid_entry2 *best;
574
575         best = kvm_find_cpuid_entry(vcpu, 1, 0);
576         if (!best)
577                 return;
578
579         /* Update OSXSAVE bit */
580         if (cpu_has_xsave && best->function == 0x1) {
581                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
582                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
583                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
584         }
585 }
586
587 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
588 {
589         unsigned long old_cr4 = kvm_read_cr4(vcpu);
590         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
591
592         if (cr4 & CR4_RESERVED_BITS)
593                 return 1;
594
595         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
596                 return 1;
597
598         if (is_long_mode(vcpu)) {
599                 if (!(cr4 & X86_CR4_PAE))
600                         return 1;
601         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
602                    && ((cr4 ^ old_cr4) & pdptr_bits)
603                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
604                 return 1;
605
606         if (cr4 & X86_CR4_VMXE)
607                 return 1;
608
609         kvm_x86_ops->set_cr4(vcpu, cr4);
610
611         if ((cr4 ^ old_cr4) & pdptr_bits)
612                 kvm_mmu_reset_context(vcpu);
613
614         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
615                 update_cpuid(vcpu);
616
617         return 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_set_cr4);
620
621 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
622 {
623         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
624                 kvm_mmu_sync_roots(vcpu);
625                 kvm_mmu_flush_tlb(vcpu);
626                 return 0;
627         }
628
629         if (is_long_mode(vcpu)) {
630                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
631                         return 1;
632         } else {
633                 if (is_pae(vcpu)) {
634                         if (cr3 & CR3_PAE_RESERVED_BITS)
635                                 return 1;
636                         if (is_paging(vcpu) &&
637                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
638                                 return 1;
639                 }
640                 /*
641                  * We don't check reserved bits in nonpae mode, because
642                  * this isn't enforced, and VMware depends on this.
643                  */
644         }
645
646         /*
647          * Does the new cr3 value map to physical memory? (Note, we
648          * catch an invalid cr3 even in real-mode, because it would
649          * cause trouble later on when we turn on paging anyway.)
650          *
651          * A real CPU would silently accept an invalid cr3 and would
652          * attempt to use it - with largely undefined (and often hard
653          * to debug) behavior on the guest side.
654          */
655         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
656                 return 1;
657         vcpu->arch.cr3 = cr3;
658         vcpu->arch.mmu.new_cr3(vcpu);
659         return 0;
660 }
661 EXPORT_SYMBOL_GPL(kvm_set_cr3);
662
663 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
664 {
665         if (cr8 & CR8_RESERVED_BITS)
666                 return 1;
667         if (irqchip_in_kernel(vcpu->kvm))
668                 kvm_lapic_set_tpr(vcpu, cr8);
669         else
670                 vcpu->arch.cr8 = cr8;
671         return 0;
672 }
673
674 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676         if (__kvm_set_cr8(vcpu, cr8))
677                 kvm_inject_gp(vcpu, 0);
678 }
679 EXPORT_SYMBOL_GPL(kvm_set_cr8);
680
681 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
682 {
683         if (irqchip_in_kernel(vcpu->kvm))
684                 return kvm_lapic_get_cr8(vcpu);
685         else
686                 return vcpu->arch.cr8;
687 }
688 EXPORT_SYMBOL_GPL(kvm_get_cr8);
689
690 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
691 {
692         switch (dr) {
693         case 0 ... 3:
694                 vcpu->arch.db[dr] = val;
695                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
696                         vcpu->arch.eff_db[dr] = val;
697                 break;
698         case 4:
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700                         return 1; /* #UD */
701                 /* fall through */
702         case 6:
703                 if (val & 0xffffffff00000000ULL)
704                         return -1; /* #GP */
705                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
706                 break;
707         case 5:
708                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
709                         return 1; /* #UD */
710                 /* fall through */
711         default: /* 7 */
712                 if (val & 0xffffffff00000000ULL)
713                         return -1; /* #GP */
714                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
715                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
716                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
717                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
718                 }
719                 break;
720         }
721
722         return 0;
723 }
724
725 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
726 {
727         int res;
728
729         res = __kvm_set_dr(vcpu, dr, val);
730         if (res > 0)
731                 kvm_queue_exception(vcpu, UD_VECTOR);
732         else if (res < 0)
733                 kvm_inject_gp(vcpu, 0);
734
735         return res;
736 }
737 EXPORT_SYMBOL_GPL(kvm_set_dr);
738
739 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
740 {
741         switch (dr) {
742         case 0 ... 3:
743                 *val = vcpu->arch.db[dr];
744                 break;
745         case 4:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         case 6:
750                 *val = vcpu->arch.dr6;
751                 break;
752         case 5:
753                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754                         return 1;
755                 /* fall through */
756         default: /* 7 */
757                 *val = vcpu->arch.dr7;
758                 break;
759         }
760
761         return 0;
762 }
763
764 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
765 {
766         if (_kvm_get_dr(vcpu, dr, val)) {
767                 kvm_queue_exception(vcpu, UD_VECTOR);
768                 return 1;
769         }
770         return 0;
771 }
772 EXPORT_SYMBOL_GPL(kvm_get_dr);
773
774 /*
775  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
776  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
777  *
778  * This list is modified at module load time to reflect the
779  * capabilities of the host cpu. This capabilities test skips MSRs that are
780  * kvm-specific. Those are put in the beginning of the list.
781  */
782
783 #define KVM_SAVE_MSRS_BEGIN     7
784 static u32 msrs_to_save[] = {
785         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
786         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
787         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
788         HV_X64_MSR_APIC_ASSIST_PAGE,
789         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
790         MSR_STAR,
791 #ifdef CONFIG_X86_64
792         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
793 #endif
794         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
795 };
796
797 static unsigned num_msrs_to_save;
798
799 static u32 emulated_msrs[] = {
800         MSR_IA32_MISC_ENABLE,
801         MSR_IA32_MCG_STATUS,
802         MSR_IA32_MCG_CTL,
803 };
804
805 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
806 {
807         u64 old_efer = vcpu->arch.efer;
808
809         if (efer & efer_reserved_bits)
810                 return 1;
811
812         if (is_paging(vcpu)
813             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
814                 return 1;
815
816         if (efer & EFER_FFXSR) {
817                 struct kvm_cpuid_entry2 *feat;
818
819                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
820                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
821                         return 1;
822         }
823
824         if (efer & EFER_SVME) {
825                 struct kvm_cpuid_entry2 *feat;
826
827                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
828                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
829                         return 1;
830         }
831
832         efer &= ~EFER_LMA;
833         efer |= vcpu->arch.efer & EFER_LMA;
834
835         kvm_x86_ops->set_efer(vcpu, efer);
836
837         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
838         kvm_mmu_reset_context(vcpu);
839
840         /* Update reserved bits */
841         if ((efer ^ old_efer) & EFER_NX)
842                 kvm_mmu_reset_context(vcpu);
843
844         return 0;
845 }
846
847 void kvm_enable_efer_bits(u64 mask)
848 {
849        efer_reserved_bits &= ~mask;
850 }
851 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
852
853
854 /*
855  * Writes msr value into into the appropriate "register".
856  * Returns 0 on success, non-0 otherwise.
857  * Assumes vcpu_load() was already called.
858  */
859 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
860 {
861         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
862 }
863
864 /*
865  * Adapt set_msr() to msr_io()'s calling convention
866  */
867 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
868 {
869         return kvm_set_msr(vcpu, index, *data);
870 }
871
872 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
873 {
874         int version;
875         int r;
876         struct pvclock_wall_clock wc;
877         struct timespec boot;
878
879         if (!wall_clock)
880                 return;
881
882         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
883         if (r)
884                 return;
885
886         if (version & 1)
887                 ++version;  /* first time write, random junk */
888
889         ++version;
890
891         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
892
893         /*
894          * The guest calculates current wall clock time by adding
895          * system time (updated by kvm_write_guest_time below) to the
896          * wall clock specified here.  guest system time equals host
897          * system time for us, thus we must fill in host boot time here.
898          */
899         getboottime(&boot);
900
901         wc.sec = boot.tv_sec;
902         wc.nsec = boot.tv_nsec;
903         wc.version = version;
904
905         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
906
907         version++;
908         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
909 }
910
911 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
912 {
913         uint32_t quotient, remainder;
914
915         /* Don't try to replace with do_div(), this one calculates
916          * "(dividend << 32) / divisor" */
917         __asm__ ( "divl %4"
918                   : "=a" (quotient), "=d" (remainder)
919                   : "0" (0), "1" (dividend), "r" (divisor) );
920         return quotient;
921 }
922
923 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
924 {
925         uint64_t nsecs = 1000000000LL;
926         int32_t  shift = 0;
927         uint64_t tps64;
928         uint32_t tps32;
929
930         tps64 = tsc_khz * 1000LL;
931         while (tps64 > nsecs*2) {
932                 tps64 >>= 1;
933                 shift--;
934         }
935
936         tps32 = (uint32_t)tps64;
937         while (tps32 <= (uint32_t)nsecs) {
938                 tps32 <<= 1;
939                 shift++;
940         }
941
942         hv_clock->tsc_shift = shift;
943         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
944
945         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
946                  __func__, tsc_khz, hv_clock->tsc_shift,
947                  hv_clock->tsc_to_system_mul);
948 }
949
950 static inline u64 get_kernel_ns(void)
951 {
952         struct timespec ts;
953
954         WARN_ON(preemptible());
955         ktime_get_ts(&ts);
956         monotonic_to_bootbased(&ts);
957         return timespec_to_ns(&ts);
958 }
959
960 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
961
962 static inline int kvm_tsc_changes_freq(void)
963 {
964         int cpu = get_cpu();
965         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
966                   cpufreq_quick_get(cpu) != 0;
967         put_cpu();
968         return ret;
969 }
970
971 static inline u64 nsec_to_cycles(u64 nsec)
972 {
973         u64 ret;
974
975         WARN_ON(preemptible());
976         if (kvm_tsc_changes_freq())
977                 printk_once(KERN_WARNING
978                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
979         ret = nsec * __get_cpu_var(cpu_tsc_khz);
980         do_div(ret, USEC_PER_SEC);
981         return ret;
982 }
983
984 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
985 {
986         struct kvm *kvm = vcpu->kvm;
987         u64 offset, ns, elapsed;
988         unsigned long flags;
989         s64 sdiff;
990
991         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
992         offset = data - native_read_tsc();
993         ns = get_kernel_ns();
994         elapsed = ns - kvm->arch.last_tsc_nsec;
995         sdiff = data - kvm->arch.last_tsc_write;
996         if (sdiff < 0)
997                 sdiff = -sdiff;
998
999         /*
1000          * Special case: close write to TSC within 5 seconds of
1001          * another CPU is interpreted as an attempt to synchronize
1002          * The 5 seconds is to accomodate host load / swapping as
1003          * well as any reset of TSC during the boot process.
1004          *
1005          * In that case, for a reliable TSC, we can match TSC offsets,
1006          * or make a best guest using elapsed value.
1007          */
1008         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1009             elapsed < 5ULL * NSEC_PER_SEC) {
1010                 if (!check_tsc_unstable()) {
1011                         offset = kvm->arch.last_tsc_offset;
1012                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1013                 } else {
1014                         u64 delta = nsec_to_cycles(elapsed);
1015                         offset += delta;
1016                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1017                 }
1018                 ns = kvm->arch.last_tsc_nsec;
1019         }
1020         kvm->arch.last_tsc_nsec = ns;
1021         kvm->arch.last_tsc_write = data;
1022         kvm->arch.last_tsc_offset = offset;
1023         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1024         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1025
1026         /* Reset of TSC must disable overshoot protection below */
1027         vcpu->arch.hv_clock.tsc_timestamp = 0;
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1030
1031 static int kvm_write_guest_time(struct kvm_vcpu *v)
1032 {
1033         unsigned long flags;
1034         struct kvm_vcpu_arch *vcpu = &v->arch;
1035         void *shared_kaddr;
1036         unsigned long this_tsc_khz;
1037         s64 kernel_ns, max_kernel_ns;
1038         u64 tsc_timestamp;
1039
1040         if ((!vcpu->time_page))
1041                 return 0;
1042
1043         /* Keep irq disabled to prevent changes to the clock */
1044         local_irq_save(flags);
1045         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1046         kernel_ns = get_kernel_ns();
1047         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1048         local_irq_restore(flags);
1049
1050         if (unlikely(this_tsc_khz == 0)) {
1051                 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1052                 return 1;
1053         }
1054
1055         /*
1056          * Time as measured by the TSC may go backwards when resetting the base
1057          * tsc_timestamp.  The reason for this is that the TSC resolution is
1058          * higher than the resolution of the other clock scales.  Thus, many
1059          * possible measurments of the TSC correspond to one measurement of any
1060          * other clock, and so a spread of values is possible.  This is not a
1061          * problem for the computation of the nanosecond clock; with TSC rates
1062          * around 1GHZ, there can only be a few cycles which correspond to one
1063          * nanosecond value, and any path through this code will inevitably
1064          * take longer than that.  However, with the kernel_ns value itself,
1065          * the precision may be much lower, down to HZ granularity.  If the
1066          * first sampling of TSC against kernel_ns ends in the low part of the
1067          * range, and the second in the high end of the range, we can get:
1068          *
1069          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1070          *
1071          * As the sampling errors potentially range in the thousands of cycles,
1072          * it is possible such a time value has already been observed by the
1073          * guest.  To protect against this, we must compute the system time as
1074          * observed by the guest and ensure the new system time is greater.
1075          */
1076         max_kernel_ns = 0;
1077         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1078                 max_kernel_ns = vcpu->last_guest_tsc -
1079                                 vcpu->hv_clock.tsc_timestamp;
1080                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1081                                     vcpu->hv_clock.tsc_to_system_mul,
1082                                     vcpu->hv_clock.tsc_shift);
1083                 max_kernel_ns += vcpu->last_kernel_ns;
1084         }
1085
1086         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1087                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1088                 vcpu->hw_tsc_khz = this_tsc_khz;
1089         }
1090
1091         if (max_kernel_ns > kernel_ns)
1092                 kernel_ns = max_kernel_ns;
1093
1094         /* With all the info we got, fill in the values */
1095         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1096         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1097         vcpu->last_kernel_ns = kernel_ns;
1098         vcpu->last_guest_tsc = tsc_timestamp;
1099         vcpu->hv_clock.flags = 0;
1100
1101         /*
1102          * The interface expects us to write an even number signaling that the
1103          * update is finished. Since the guest won't see the intermediate
1104          * state, we just increase by 2 at the end.
1105          */
1106         vcpu->hv_clock.version += 2;
1107
1108         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1109
1110         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1111                sizeof(vcpu->hv_clock));
1112
1113         kunmap_atomic(shared_kaddr, KM_USER0);
1114
1115         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1116         return 0;
1117 }
1118
1119 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1120 {
1121         struct kvm_vcpu_arch *vcpu = &v->arch;
1122
1123         if (!vcpu->time_page)
1124                 return 0;
1125         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1126         return 1;
1127 }
1128
1129 static bool msr_mtrr_valid(unsigned msr)
1130 {
1131         switch (msr) {
1132         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1133         case MSR_MTRRfix64K_00000:
1134         case MSR_MTRRfix16K_80000:
1135         case MSR_MTRRfix16K_A0000:
1136         case MSR_MTRRfix4K_C0000:
1137         case MSR_MTRRfix4K_C8000:
1138         case MSR_MTRRfix4K_D0000:
1139         case MSR_MTRRfix4K_D8000:
1140         case MSR_MTRRfix4K_E0000:
1141         case MSR_MTRRfix4K_E8000:
1142         case MSR_MTRRfix4K_F0000:
1143         case MSR_MTRRfix4K_F8000:
1144         case MSR_MTRRdefType:
1145         case MSR_IA32_CR_PAT:
1146                 return true;
1147         case 0x2f8:
1148                 return true;
1149         }
1150         return false;
1151 }
1152
1153 static bool valid_pat_type(unsigned t)
1154 {
1155         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1156 }
1157
1158 static bool valid_mtrr_type(unsigned t)
1159 {
1160         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1161 }
1162
1163 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1164 {
1165         int i;
1166
1167         if (!msr_mtrr_valid(msr))
1168                 return false;
1169
1170         if (msr == MSR_IA32_CR_PAT) {
1171                 for (i = 0; i < 8; i++)
1172                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1173                                 return false;
1174                 return true;
1175         } else if (msr == MSR_MTRRdefType) {
1176                 if (data & ~0xcff)
1177                         return false;
1178                 return valid_mtrr_type(data & 0xff);
1179         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1180                 for (i = 0; i < 8 ; i++)
1181                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1182                                 return false;
1183                 return true;
1184         }
1185
1186         /* variable MTRRs */
1187         return valid_mtrr_type(data & 0xff);
1188 }
1189
1190 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1191 {
1192         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1193
1194         if (!mtrr_valid(vcpu, msr, data))
1195                 return 1;
1196
1197         if (msr == MSR_MTRRdefType) {
1198                 vcpu->arch.mtrr_state.def_type = data;
1199                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1200         } else if (msr == MSR_MTRRfix64K_00000)
1201                 p[0] = data;
1202         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1203                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1204         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1205                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1206         else if (msr == MSR_IA32_CR_PAT)
1207                 vcpu->arch.pat = data;
1208         else {  /* Variable MTRRs */
1209                 int idx, is_mtrr_mask;
1210                 u64 *pt;
1211
1212                 idx = (msr - 0x200) / 2;
1213                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1214                 if (!is_mtrr_mask)
1215                         pt =
1216                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1217                 else
1218                         pt =
1219                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1220                 *pt = data;
1221         }
1222
1223         kvm_mmu_reset_context(vcpu);
1224         return 0;
1225 }
1226
1227 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1228 {
1229         u64 mcg_cap = vcpu->arch.mcg_cap;
1230         unsigned bank_num = mcg_cap & 0xff;
1231
1232         switch (msr) {
1233         case MSR_IA32_MCG_STATUS:
1234                 vcpu->arch.mcg_status = data;
1235                 break;
1236         case MSR_IA32_MCG_CTL:
1237                 if (!(mcg_cap & MCG_CTL_P))
1238                         return 1;
1239                 if (data != 0 && data != ~(u64)0)
1240                         return -1;
1241                 vcpu->arch.mcg_ctl = data;
1242                 break;
1243         default:
1244                 if (msr >= MSR_IA32_MC0_CTL &&
1245                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1246                         u32 offset = msr - MSR_IA32_MC0_CTL;
1247                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1248                          * some Linux kernels though clear bit 10 in bank 4 to
1249                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1250                          * this to avoid an uncatched #GP in the guest
1251                          */
1252                         if ((offset & 0x3) == 0 &&
1253                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1254                                 return -1;
1255                         vcpu->arch.mce_banks[offset] = data;
1256                         break;
1257                 }
1258                 return 1;
1259         }
1260         return 0;
1261 }
1262
1263 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1264 {
1265         struct kvm *kvm = vcpu->kvm;
1266         int lm = is_long_mode(vcpu);
1267         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1268                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1269         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1270                 : kvm->arch.xen_hvm_config.blob_size_32;
1271         u32 page_num = data & ~PAGE_MASK;
1272         u64 page_addr = data & PAGE_MASK;
1273         u8 *page;
1274         int r;
1275
1276         r = -E2BIG;
1277         if (page_num >= blob_size)
1278                 goto out;
1279         r = -ENOMEM;
1280         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1281         if (!page)
1282                 goto out;
1283         r = -EFAULT;
1284         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1285                 goto out_free;
1286         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1287                 goto out_free;
1288         r = 0;
1289 out_free:
1290         kfree(page);
1291 out:
1292         return r;
1293 }
1294
1295 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1296 {
1297         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1298 }
1299
1300 static bool kvm_hv_msr_partition_wide(u32 msr)
1301 {
1302         bool r = false;
1303         switch (msr) {
1304         case HV_X64_MSR_GUEST_OS_ID:
1305         case HV_X64_MSR_HYPERCALL:
1306                 r = true;
1307                 break;
1308         }
1309
1310         return r;
1311 }
1312
1313 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1314 {
1315         struct kvm *kvm = vcpu->kvm;
1316
1317         switch (msr) {
1318         case HV_X64_MSR_GUEST_OS_ID:
1319                 kvm->arch.hv_guest_os_id = data;
1320                 /* setting guest os id to zero disables hypercall page */
1321                 if (!kvm->arch.hv_guest_os_id)
1322                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1323                 break;
1324         case HV_X64_MSR_HYPERCALL: {
1325                 u64 gfn;
1326                 unsigned long addr;
1327                 u8 instructions[4];
1328
1329                 /* if guest os id is not set hypercall should remain disabled */
1330                 if (!kvm->arch.hv_guest_os_id)
1331                         break;
1332                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1333                         kvm->arch.hv_hypercall = data;
1334                         break;
1335                 }
1336                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1337                 addr = gfn_to_hva(kvm, gfn);
1338                 if (kvm_is_error_hva(addr))
1339                         return 1;
1340                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1341                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1342                 if (copy_to_user((void __user *)addr, instructions, 4))
1343                         return 1;
1344                 kvm->arch.hv_hypercall = data;
1345                 break;
1346         }
1347         default:
1348                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1349                           "data 0x%llx\n", msr, data);
1350                 return 1;
1351         }
1352         return 0;
1353 }
1354
1355 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1356 {
1357         switch (msr) {
1358         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1359                 unsigned long addr;
1360
1361                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1362                         vcpu->arch.hv_vapic = data;
1363                         break;
1364                 }
1365                 addr = gfn_to_hva(vcpu->kvm, data >>
1366                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1367                 if (kvm_is_error_hva(addr))
1368                         return 1;
1369                 if (clear_user((void __user *)addr, PAGE_SIZE))
1370                         return 1;
1371                 vcpu->arch.hv_vapic = data;
1372                 break;
1373         }
1374         case HV_X64_MSR_EOI:
1375                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1376         case HV_X64_MSR_ICR:
1377                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1378         case HV_X64_MSR_TPR:
1379                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1380         default:
1381                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1382                           "data 0x%llx\n", msr, data);
1383                 return 1;
1384         }
1385
1386         return 0;
1387 }
1388
1389 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1390 {
1391         switch (msr) {
1392         case MSR_EFER:
1393                 return set_efer(vcpu, data);
1394         case MSR_K7_HWCR:
1395                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1396                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1397                 if (data != 0) {
1398                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1399                                 data);
1400                         return 1;
1401                 }
1402                 break;
1403         case MSR_FAM10H_MMIO_CONF_BASE:
1404                 if (data != 0) {
1405                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1406                                 "0x%llx\n", data);
1407                         return 1;
1408                 }
1409                 break;
1410         case MSR_AMD64_NB_CFG:
1411                 break;
1412         case MSR_IA32_DEBUGCTLMSR:
1413                 if (!data) {
1414                         /* We support the non-activated case already */
1415                         break;
1416                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1417                         /* Values other than LBR and BTF are vendor-specific,
1418                            thus reserved and should throw a #GP */
1419                         return 1;
1420                 }
1421                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1422                         __func__, data);
1423                 break;
1424         case MSR_IA32_UCODE_REV:
1425         case MSR_IA32_UCODE_WRITE:
1426         case MSR_VM_HSAVE_PA:
1427         case MSR_AMD64_PATCH_LOADER:
1428                 break;
1429         case 0x200 ... 0x2ff:
1430                 return set_msr_mtrr(vcpu, msr, data);
1431         case MSR_IA32_APICBASE:
1432                 kvm_set_apic_base(vcpu, data);
1433                 break;
1434         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1435                 return kvm_x2apic_msr_write(vcpu, msr, data);
1436         case MSR_IA32_MISC_ENABLE:
1437                 vcpu->arch.ia32_misc_enable_msr = data;
1438                 break;
1439         case MSR_KVM_WALL_CLOCK_NEW:
1440         case MSR_KVM_WALL_CLOCK:
1441                 vcpu->kvm->arch.wall_clock = data;
1442                 kvm_write_wall_clock(vcpu->kvm, data);
1443                 break;
1444         case MSR_KVM_SYSTEM_TIME_NEW:
1445         case MSR_KVM_SYSTEM_TIME: {
1446                 if (vcpu->arch.time_page) {
1447                         kvm_release_page_dirty(vcpu->arch.time_page);
1448                         vcpu->arch.time_page = NULL;
1449                 }
1450
1451                 vcpu->arch.time = data;
1452
1453                 /* we verify if the enable bit is set... */
1454                 if (!(data & 1))
1455                         break;
1456
1457                 /* ...but clean it before doing the actual write */
1458                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1459
1460                 vcpu->arch.time_page =
1461                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1462
1463                 if (is_error_page(vcpu->arch.time_page)) {
1464                         kvm_release_page_clean(vcpu->arch.time_page);
1465                         vcpu->arch.time_page = NULL;
1466                 }
1467
1468                 kvm_request_guest_time_update(vcpu);
1469                 break;
1470         }
1471         case MSR_IA32_MCG_CTL:
1472         case MSR_IA32_MCG_STATUS:
1473         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1474                 return set_msr_mce(vcpu, msr, data);
1475
1476         /* Performance counters are not protected by a CPUID bit,
1477          * so we should check all of them in the generic path for the sake of
1478          * cross vendor migration.
1479          * Writing a zero into the event select MSRs disables them,
1480          * which we perfectly emulate ;-). Any other value should be at least
1481          * reported, some guests depend on them.
1482          */
1483         case MSR_P6_EVNTSEL0:
1484         case MSR_P6_EVNTSEL1:
1485         case MSR_K7_EVNTSEL0:
1486         case MSR_K7_EVNTSEL1:
1487         case MSR_K7_EVNTSEL2:
1488         case MSR_K7_EVNTSEL3:
1489                 if (data != 0)
1490                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1491                                 "0x%x data 0x%llx\n", msr, data);
1492                 break;
1493         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1494          * so we ignore writes to make it happy.
1495          */
1496         case MSR_P6_PERFCTR0:
1497         case MSR_P6_PERFCTR1:
1498         case MSR_K7_PERFCTR0:
1499         case MSR_K7_PERFCTR1:
1500         case MSR_K7_PERFCTR2:
1501         case MSR_K7_PERFCTR3:
1502                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1503                         "0x%x data 0x%llx\n", msr, data);
1504                 break;
1505         case MSR_K7_CLK_CTL:
1506                 /*
1507                  * Ignore all writes to this no longer documented MSR.
1508                  * Writes are only relevant for old K7 processors,
1509                  * all pre-dating SVM, but a recommended workaround from
1510                  * AMD for these chips. It is possible to speicify the
1511                  * affected processor models on the command line, hence
1512                  * the need to ignore the workaround.
1513                  */
1514                 break;
1515         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1516                 if (kvm_hv_msr_partition_wide(msr)) {
1517                         int r;
1518                         mutex_lock(&vcpu->kvm->lock);
1519                         r = set_msr_hyperv_pw(vcpu, msr, data);
1520                         mutex_unlock(&vcpu->kvm->lock);
1521                         return r;
1522                 } else
1523                         return set_msr_hyperv(vcpu, msr, data);
1524                 break;
1525         default:
1526                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1527                         return xen_hvm_config(vcpu, data);
1528                 if (!ignore_msrs) {
1529                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1530                                 msr, data);
1531                         return 1;
1532                 } else {
1533                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1534                                 msr, data);
1535                         break;
1536                 }
1537         }
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1541
1542
1543 /*
1544  * Reads an msr value (of 'msr_index') into 'pdata'.
1545  * Returns 0 on success, non-0 otherwise.
1546  * Assumes vcpu_load() was already called.
1547  */
1548 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1549 {
1550         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1551 }
1552
1553 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1554 {
1555         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1556
1557         if (!msr_mtrr_valid(msr))
1558                 return 1;
1559
1560         if (msr == MSR_MTRRdefType)
1561                 *pdata = vcpu->arch.mtrr_state.def_type +
1562                          (vcpu->arch.mtrr_state.enabled << 10);
1563         else if (msr == MSR_MTRRfix64K_00000)
1564                 *pdata = p[0];
1565         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1566                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1567         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1568                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1569         else if (msr == MSR_IA32_CR_PAT)
1570                 *pdata = vcpu->arch.pat;
1571         else {  /* Variable MTRRs */
1572                 int idx, is_mtrr_mask;
1573                 u64 *pt;
1574
1575                 idx = (msr - 0x200) / 2;
1576                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1577                 if (!is_mtrr_mask)
1578                         pt =
1579                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1580                 else
1581                         pt =
1582                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1583                 *pdata = *pt;
1584         }
1585
1586         return 0;
1587 }
1588
1589 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1590 {
1591         u64 data;
1592         u64 mcg_cap = vcpu->arch.mcg_cap;
1593         unsigned bank_num = mcg_cap & 0xff;
1594
1595         switch (msr) {
1596         case MSR_IA32_P5_MC_ADDR:
1597         case MSR_IA32_P5_MC_TYPE:
1598                 data = 0;
1599                 break;
1600         case MSR_IA32_MCG_CAP:
1601                 data = vcpu->arch.mcg_cap;
1602                 break;
1603         case MSR_IA32_MCG_CTL:
1604                 if (!(mcg_cap & MCG_CTL_P))
1605                         return 1;
1606                 data = vcpu->arch.mcg_ctl;
1607                 break;
1608         case MSR_IA32_MCG_STATUS:
1609                 data = vcpu->arch.mcg_status;
1610                 break;
1611         default:
1612                 if (msr >= MSR_IA32_MC0_CTL &&
1613                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1614                         u32 offset = msr - MSR_IA32_MC0_CTL;
1615                         data = vcpu->arch.mce_banks[offset];
1616                         break;
1617                 }
1618                 return 1;
1619         }
1620         *pdata = data;
1621         return 0;
1622 }
1623
1624 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1625 {
1626         u64 data = 0;
1627         struct kvm *kvm = vcpu->kvm;
1628
1629         switch (msr) {
1630         case HV_X64_MSR_GUEST_OS_ID:
1631                 data = kvm->arch.hv_guest_os_id;
1632                 break;
1633         case HV_X64_MSR_HYPERCALL:
1634                 data = kvm->arch.hv_hypercall;
1635                 break;
1636         default:
1637                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1638                 return 1;
1639         }
1640
1641         *pdata = data;
1642         return 0;
1643 }
1644
1645 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1646 {
1647         u64 data = 0;
1648
1649         switch (msr) {
1650         case HV_X64_MSR_VP_INDEX: {
1651                 int r;
1652                 struct kvm_vcpu *v;
1653                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1654                         if (v == vcpu)
1655                                 data = r;
1656                 break;
1657         }
1658         case HV_X64_MSR_EOI:
1659                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1660         case HV_X64_MSR_ICR:
1661                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1662         case HV_X64_MSR_TPR:
1663                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1664         default:
1665                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1666                 return 1;
1667         }
1668         *pdata = data;
1669         return 0;
1670 }
1671
1672 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1673 {
1674         u64 data;
1675
1676         switch (msr) {
1677         case MSR_IA32_PLATFORM_ID:
1678         case MSR_IA32_UCODE_REV:
1679         case MSR_IA32_EBL_CR_POWERON:
1680         case MSR_IA32_DEBUGCTLMSR:
1681         case MSR_IA32_LASTBRANCHFROMIP:
1682         case MSR_IA32_LASTBRANCHTOIP:
1683         case MSR_IA32_LASTINTFROMIP:
1684         case MSR_IA32_LASTINTTOIP:
1685         case MSR_K8_SYSCFG:
1686         case MSR_K7_HWCR:
1687         case MSR_VM_HSAVE_PA:
1688         case MSR_P6_PERFCTR0:
1689         case MSR_P6_PERFCTR1:
1690         case MSR_P6_EVNTSEL0:
1691         case MSR_P6_EVNTSEL1:
1692         case MSR_K7_EVNTSEL0:
1693         case MSR_K7_PERFCTR0:
1694         case MSR_K8_INT_PENDING_MSG:
1695         case MSR_AMD64_NB_CFG:
1696         case MSR_FAM10H_MMIO_CONF_BASE:
1697                 data = 0;
1698                 break;
1699         case MSR_MTRRcap:
1700                 data = 0x500 | KVM_NR_VAR_MTRR;
1701                 break;
1702         case 0x200 ... 0x2ff:
1703                 return get_msr_mtrr(vcpu, msr, pdata);
1704         case 0xcd: /* fsb frequency */
1705                 data = 3;
1706                 break;
1707                 /*
1708                  * MSR_EBC_FREQUENCY_ID
1709                  * Conservative value valid for even the basic CPU models.
1710                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1711                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1712                  * and 266MHz for model 3, or 4. Set Core Clock
1713                  * Frequency to System Bus Frequency Ratio to 1 (bits
1714                  * 31:24) even though these are only valid for CPU
1715                  * models > 2, however guests may end up dividing or
1716                  * multiplying by zero otherwise.
1717                  */
1718         case MSR_EBC_FREQUENCY_ID:
1719                 data = 1 << 24;
1720                 break;
1721         case MSR_IA32_APICBASE:
1722                 data = kvm_get_apic_base(vcpu);
1723                 break;
1724         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1725                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1726                 break;
1727         case MSR_IA32_MISC_ENABLE:
1728                 data = vcpu->arch.ia32_misc_enable_msr;
1729                 break;
1730         case MSR_IA32_PERF_STATUS:
1731                 /* TSC increment by tick */
1732                 data = 1000ULL;
1733                 /* CPU multiplier */
1734                 data |= (((uint64_t)4ULL) << 40);
1735                 break;
1736         case MSR_EFER:
1737                 data = vcpu->arch.efer;
1738                 break;
1739         case MSR_KVM_WALL_CLOCK:
1740         case MSR_KVM_WALL_CLOCK_NEW:
1741                 data = vcpu->kvm->arch.wall_clock;
1742                 break;
1743         case MSR_KVM_SYSTEM_TIME:
1744         case MSR_KVM_SYSTEM_TIME_NEW:
1745                 data = vcpu->arch.time;
1746                 break;
1747         case MSR_IA32_P5_MC_ADDR:
1748         case MSR_IA32_P5_MC_TYPE:
1749         case MSR_IA32_MCG_CAP:
1750         case MSR_IA32_MCG_CTL:
1751         case MSR_IA32_MCG_STATUS:
1752         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1753                 return get_msr_mce(vcpu, msr, pdata);
1754         case MSR_K7_CLK_CTL:
1755                 /*
1756                  * Provide expected ramp-up count for K7. All other
1757                  * are set to zero, indicating minimum divisors for
1758                  * every field.
1759                  *
1760                  * This prevents guest kernels on AMD host with CPU
1761                  * type 6, model 8 and higher from exploding due to
1762                  * the rdmsr failing.
1763                  */
1764                 data = 0x20000000;
1765                 break;
1766         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1767                 if (kvm_hv_msr_partition_wide(msr)) {
1768                         int r;
1769                         mutex_lock(&vcpu->kvm->lock);
1770                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1771                         mutex_unlock(&vcpu->kvm->lock);
1772                         return r;
1773                 } else
1774                         return get_msr_hyperv(vcpu, msr, pdata);
1775                 break;
1776         default:
1777                 if (!ignore_msrs) {
1778                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1779                         return 1;
1780                 } else {
1781                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1782                         data = 0;
1783                 }
1784                 break;
1785         }
1786         *pdata = data;
1787         return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1790
1791 /*
1792  * Read or write a bunch of msrs. All parameters are kernel addresses.
1793  *
1794  * @return number of msrs set successfully.
1795  */
1796 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1797                     struct kvm_msr_entry *entries,
1798                     int (*do_msr)(struct kvm_vcpu *vcpu,
1799                                   unsigned index, u64 *data))
1800 {
1801         int i, idx;
1802
1803         idx = srcu_read_lock(&vcpu->kvm->srcu);
1804         for (i = 0; i < msrs->nmsrs; ++i)
1805                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1806                         break;
1807         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1808
1809         return i;
1810 }
1811
1812 /*
1813  * Read or write a bunch of msrs. Parameters are user addresses.
1814  *
1815  * @return number of msrs set successfully.
1816  */
1817 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1818                   int (*do_msr)(struct kvm_vcpu *vcpu,
1819                                 unsigned index, u64 *data),
1820                   int writeback)
1821 {
1822         struct kvm_msrs msrs;
1823         struct kvm_msr_entry *entries;
1824         int r, n;
1825         unsigned size;
1826
1827         r = -EFAULT;
1828         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1829                 goto out;
1830
1831         r = -E2BIG;
1832         if (msrs.nmsrs >= MAX_IO_MSRS)
1833                 goto out;
1834
1835         r = -ENOMEM;
1836         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1837         entries = kmalloc(size, GFP_KERNEL);
1838         if (!entries)
1839                 goto out;
1840
1841         r = -EFAULT;
1842         if (copy_from_user(entries, user_msrs->entries, size))
1843                 goto out_free;
1844
1845         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1846         if (r < 0)
1847                 goto out_free;
1848
1849         r = -EFAULT;
1850         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1851                 goto out_free;
1852
1853         r = n;
1854
1855 out_free:
1856         kfree(entries);
1857 out:
1858         return r;
1859 }
1860
1861 int kvm_dev_ioctl_check_extension(long ext)
1862 {
1863         int r;
1864
1865         switch (ext) {
1866         case KVM_CAP_IRQCHIP:
1867         case KVM_CAP_HLT:
1868         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1869         case KVM_CAP_SET_TSS_ADDR:
1870         case KVM_CAP_EXT_CPUID:
1871         case KVM_CAP_CLOCKSOURCE:
1872         case KVM_CAP_PIT:
1873         case KVM_CAP_NOP_IO_DELAY:
1874         case KVM_CAP_MP_STATE:
1875         case KVM_CAP_SYNC_MMU:
1876         case KVM_CAP_REINJECT_CONTROL:
1877         case KVM_CAP_IRQ_INJECT_STATUS:
1878         case KVM_CAP_ASSIGN_DEV_IRQ:
1879         case KVM_CAP_IRQFD:
1880         case KVM_CAP_IOEVENTFD:
1881         case KVM_CAP_PIT2:
1882         case KVM_CAP_PIT_STATE2:
1883         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1884         case KVM_CAP_XEN_HVM:
1885         case KVM_CAP_ADJUST_CLOCK:
1886         case KVM_CAP_VCPU_EVENTS:
1887         case KVM_CAP_HYPERV:
1888         case KVM_CAP_HYPERV_VAPIC:
1889         case KVM_CAP_HYPERV_SPIN:
1890         case KVM_CAP_PCI_SEGMENT:
1891         case KVM_CAP_DEBUGREGS:
1892         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1893         case KVM_CAP_XSAVE:
1894                 r = 1;
1895                 break;
1896         case KVM_CAP_COALESCED_MMIO:
1897                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1898                 break;
1899         case KVM_CAP_VAPIC:
1900                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1901                 break;
1902         case KVM_CAP_NR_VCPUS:
1903                 r = KVM_MAX_VCPUS;
1904                 break;
1905         case KVM_CAP_NR_MEMSLOTS:
1906                 r = KVM_MEMORY_SLOTS;
1907                 break;
1908         case KVM_CAP_PV_MMU:    /* obsolete */
1909                 r = 0;
1910                 break;
1911         case KVM_CAP_IOMMU:
1912                 r = iommu_found();
1913                 break;
1914         case KVM_CAP_MCE:
1915                 r = KVM_MAX_MCE_BANKS;
1916                 break;
1917         case KVM_CAP_XCRS:
1918                 r = cpu_has_xsave;
1919                 break;
1920         default:
1921                 r = 0;
1922                 break;
1923         }
1924         return r;
1925
1926 }
1927
1928 long kvm_arch_dev_ioctl(struct file *filp,
1929                         unsigned int ioctl, unsigned long arg)
1930 {
1931         void __user *argp = (void __user *)arg;
1932         long r;
1933
1934         switch (ioctl) {
1935         case KVM_GET_MSR_INDEX_LIST: {
1936                 struct kvm_msr_list __user *user_msr_list = argp;
1937                 struct kvm_msr_list msr_list;
1938                 unsigned n;
1939
1940                 r = -EFAULT;
1941                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1942                         goto out;
1943                 n = msr_list.nmsrs;
1944                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1945                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1946                         goto out;
1947                 r = -E2BIG;
1948                 if (n < msr_list.nmsrs)
1949                         goto out;
1950                 r = -EFAULT;
1951                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1952                                  num_msrs_to_save * sizeof(u32)))
1953                         goto out;
1954                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1955                                  &emulated_msrs,
1956                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1957                         goto out;
1958                 r = 0;
1959                 break;
1960         }
1961         case KVM_GET_SUPPORTED_CPUID: {
1962                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1963                 struct kvm_cpuid2 cpuid;
1964
1965                 r = -EFAULT;
1966                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1967                         goto out;
1968                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1969                                                       cpuid_arg->entries);
1970                 if (r)
1971                         goto out;
1972
1973                 r = -EFAULT;
1974                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1975                         goto out;
1976                 r = 0;
1977                 break;
1978         }
1979         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1980                 u64 mce_cap;
1981
1982                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1983                 r = -EFAULT;
1984                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1985                         goto out;
1986                 r = 0;
1987                 break;
1988         }
1989         default:
1990                 r = -EINVAL;
1991         }
1992 out:
1993         return r;
1994 }
1995
1996 static void wbinvd_ipi(void *garbage)
1997 {
1998         wbinvd();
1999 }
2000
2001 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2002 {
2003         return vcpu->kvm->arch.iommu_domain &&
2004                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2005 }
2006
2007 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2008 {
2009         /* Address WBINVD may be executed by guest */
2010         if (need_emulate_wbinvd(vcpu)) {
2011                 if (kvm_x86_ops->has_wbinvd_exit())
2012                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2013                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2014                         smp_call_function_single(vcpu->cpu,
2015                                         wbinvd_ipi, NULL, 1);
2016         }
2017
2018         kvm_x86_ops->vcpu_load(vcpu, cpu);
2019         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2020                 /* Make sure TSC doesn't go backwards */
2021                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2022                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2023                 if (tsc_delta < 0)
2024                         mark_tsc_unstable("KVM discovered backwards TSC");
2025                 if (check_tsc_unstable())
2026                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2027                 kvm_migrate_timers(vcpu);
2028                 vcpu->cpu = cpu;
2029         }
2030 }
2031
2032 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2033 {
2034         kvm_x86_ops->vcpu_put(vcpu);
2035         kvm_put_guest_fpu(vcpu);
2036         vcpu->arch.last_host_tsc = native_read_tsc();
2037 }
2038
2039 static int is_efer_nx(void)
2040 {
2041         unsigned long long efer = 0;
2042
2043         rdmsrl_safe(MSR_EFER, &efer);
2044         return efer & EFER_NX;
2045 }
2046
2047 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2048 {
2049         int i;
2050         struct kvm_cpuid_entry2 *e, *entry;
2051
2052         entry = NULL;
2053         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2054                 e = &vcpu->arch.cpuid_entries[i];
2055                 if (e->function == 0x80000001) {
2056                         entry = e;
2057                         break;
2058                 }
2059         }
2060         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2061                 entry->edx &= ~(1 << 20);
2062                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2063         }
2064 }
2065
2066 /* when an old userspace process fills a new kernel module */
2067 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2068                                     struct kvm_cpuid *cpuid,
2069                                     struct kvm_cpuid_entry __user *entries)
2070 {
2071         int r, i;
2072         struct kvm_cpuid_entry *cpuid_entries;
2073
2074         r = -E2BIG;
2075         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2076                 goto out;
2077         r = -ENOMEM;
2078         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2079         if (!cpuid_entries)
2080                 goto out;
2081         r = -EFAULT;
2082         if (copy_from_user(cpuid_entries, entries,
2083                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2084                 goto out_free;
2085         for (i = 0; i < cpuid->nent; i++) {
2086                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2087                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2088                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2089                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2090                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2091                 vcpu->arch.cpuid_entries[i].index = 0;
2092                 vcpu->arch.cpuid_entries[i].flags = 0;
2093                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2094                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2095                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2096         }
2097         vcpu->arch.cpuid_nent = cpuid->nent;
2098         cpuid_fix_nx_cap(vcpu);
2099         r = 0;
2100         kvm_apic_set_version(vcpu);
2101         kvm_x86_ops->cpuid_update(vcpu);
2102         update_cpuid(vcpu);
2103
2104 out_free:
2105         vfree(cpuid_entries);
2106 out:
2107         return r;
2108 }
2109
2110 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2111                                      struct kvm_cpuid2 *cpuid,
2112                                      struct kvm_cpuid_entry2 __user *entries)
2113 {
2114         int r;
2115
2116         r = -E2BIG;
2117         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2118                 goto out;
2119         r = -EFAULT;
2120         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2121                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2122                 goto out;
2123         vcpu->arch.cpuid_nent = cpuid->nent;
2124         kvm_apic_set_version(vcpu);
2125         kvm_x86_ops->cpuid_update(vcpu);
2126         update_cpuid(vcpu);
2127         return 0;
2128
2129 out:
2130         return r;
2131 }
2132
2133 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2134                                      struct kvm_cpuid2 *cpuid,
2135                                      struct kvm_cpuid_entry2 __user *entries)
2136 {
2137         int r;
2138
2139         r = -E2BIG;
2140         if (cpuid->nent < vcpu->arch.cpuid_nent)
2141                 goto out;
2142         r = -EFAULT;
2143         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2144                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2145                 goto out;
2146         return 0;
2147
2148 out:
2149         cpuid->nent = vcpu->arch.cpuid_nent;
2150         return r;
2151 }
2152
2153 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2154                            u32 index)
2155 {
2156         entry->function = function;
2157         entry->index = index;
2158         cpuid_count(entry->function, entry->index,
2159                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2160         entry->flags = 0;
2161 }
2162
2163 #define F(x) bit(X86_FEATURE_##x)
2164
2165 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2166                          u32 index, int *nent, int maxnent)
2167 {
2168         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2169 #ifdef CONFIG_X86_64
2170         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2171                                 ? F(GBPAGES) : 0;
2172         unsigned f_lm = F(LM);
2173 #else
2174         unsigned f_gbpages = 0;
2175         unsigned f_lm = 0;
2176 #endif
2177         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2178
2179         /* cpuid 1.edx */
2180         const u32 kvm_supported_word0_x86_features =
2181                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2182                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2183                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2184                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2185                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2186                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2187                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2188                 0 /* HTT, TM, Reserved, PBE */;
2189         /* cpuid 0x80000001.edx */
2190         const u32 kvm_supported_word1_x86_features =
2191                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2192                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2193                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2194                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2195                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2196                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2197                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2198                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2199         /* cpuid 1.ecx */
2200         const u32 kvm_supported_word4_x86_features =
2201                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2202                 0 /* DS-CPL, VMX, SMX, EST */ |
2203                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2204                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2205                 0 /* Reserved, DCA */ | F(XMM4_1) |
2206                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2207                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2208         /* cpuid 0x80000001.ecx */
2209         const u32 kvm_supported_word6_x86_features =
2210                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2211                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2212                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2213                 0 /* SKINIT */ | 0 /* WDT */;
2214
2215         /* all calls to cpuid_count() should be made on the same cpu */
2216         get_cpu();
2217         do_cpuid_1_ent(entry, function, index);
2218         ++*nent;
2219
2220         switch (function) {
2221         case 0:
2222                 entry->eax = min(entry->eax, (u32)0xd);
2223                 break;
2224         case 1:
2225                 entry->edx &= kvm_supported_word0_x86_features;
2226                 entry->ecx &= kvm_supported_word4_x86_features;
2227                 /* we support x2apic emulation even if host does not support
2228                  * it since we emulate x2apic in software */
2229                 entry->ecx |= F(X2APIC);
2230                 break;
2231         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2232          * may return different values. This forces us to get_cpu() before
2233          * issuing the first command, and also to emulate this annoying behavior
2234          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2235         case 2: {
2236                 int t, times = entry->eax & 0xff;
2237
2238                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2239                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2240                 for (t = 1; t < times && *nent < maxnent; ++t) {
2241                         do_cpuid_1_ent(&entry[t], function, 0);
2242                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2243                         ++*nent;
2244                 }
2245                 break;
2246         }
2247         /* function 4 and 0xb have additional index. */
2248         case 4: {
2249                 int i, cache_type;
2250
2251                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2252                 /* read more entries until cache_type is zero */
2253                 for (i = 1; *nent < maxnent; ++i) {
2254                         cache_type = entry[i - 1].eax & 0x1f;
2255                         if (!cache_type)
2256                                 break;
2257                         do_cpuid_1_ent(&entry[i], function, i);
2258                         entry[i].flags |=
2259                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2260                         ++*nent;
2261                 }
2262                 break;
2263         }
2264         case 0xb: {
2265                 int i, level_type;
2266
2267                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2268                 /* read more entries until level_type is zero */
2269                 for (i = 1; *nent < maxnent; ++i) {
2270                         level_type = entry[i - 1].ecx & 0xff00;
2271                         if (!level_type)
2272                                 break;
2273                         do_cpuid_1_ent(&entry[i], function, i);
2274                         entry[i].flags |=
2275                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2276                         ++*nent;
2277                 }
2278                 break;
2279         }
2280         case 0xd: {
2281                 int i;
2282
2283                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2284                 for (i = 1; *nent < maxnent; ++i) {
2285                         if (entry[i - 1].eax == 0 && i != 2)
2286                                 break;
2287                         do_cpuid_1_ent(&entry[i], function, i);
2288                         entry[i].flags |=
2289                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2290                         ++*nent;
2291                 }
2292                 break;
2293         }
2294         case KVM_CPUID_SIGNATURE: {
2295                 char signature[12] = "KVMKVMKVM\0\0";
2296                 u32 *sigptr = (u32 *)signature;
2297                 entry->eax = 0;
2298                 entry->ebx = sigptr[0];
2299                 entry->ecx = sigptr[1];
2300                 entry->edx = sigptr[2];
2301                 break;
2302         }
2303         case KVM_CPUID_FEATURES:
2304                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2305                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2306                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2307                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2308                 entry->ebx = 0;
2309                 entry->ecx = 0;
2310                 entry->edx = 0;
2311                 break;
2312         case 0x80000000:
2313                 entry->eax = min(entry->eax, 0x8000001a);
2314                 break;
2315         case 0x80000001:
2316                 entry->edx &= kvm_supported_word1_x86_features;
2317                 entry->ecx &= kvm_supported_word6_x86_features;
2318                 break;
2319         }
2320
2321         kvm_x86_ops->set_supported_cpuid(function, entry);
2322
2323         put_cpu();
2324 }
2325
2326 #undef F
2327
2328 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2329                                      struct kvm_cpuid_entry2 __user *entries)
2330 {
2331         struct kvm_cpuid_entry2 *cpuid_entries;
2332         int limit, nent = 0, r = -E2BIG;
2333         u32 func;
2334
2335         if (cpuid->nent < 1)
2336                 goto out;
2337         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2338                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2339         r = -ENOMEM;
2340         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2341         if (!cpuid_entries)
2342                 goto out;
2343
2344         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2345         limit = cpuid_entries[0].eax;
2346         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2347                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2348                              &nent, cpuid->nent);
2349         r = -E2BIG;
2350         if (nent >= cpuid->nent)
2351                 goto out_free;
2352
2353         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2354         limit = cpuid_entries[nent - 1].eax;
2355         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2356                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2357                              &nent, cpuid->nent);
2358
2359
2360
2361         r = -E2BIG;
2362         if (nent >= cpuid->nent)
2363                 goto out_free;
2364
2365         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2366                      cpuid->nent);
2367
2368         r = -E2BIG;
2369         if (nent >= cpuid->nent)
2370                 goto out_free;
2371
2372         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2373                      cpuid->nent);
2374
2375         r = -E2BIG;
2376         if (nent >= cpuid->nent)
2377                 goto out_free;
2378
2379         r = -EFAULT;
2380         if (copy_to_user(entries, cpuid_entries,
2381                          nent * sizeof(struct kvm_cpuid_entry2)))
2382                 goto out_free;
2383         cpuid->nent = nent;
2384         r = 0;
2385
2386 out_free:
2387         vfree(cpuid_entries);
2388 out:
2389         return r;
2390 }
2391
2392 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2393                                     struct kvm_lapic_state *s)
2394 {
2395         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2396
2397         return 0;
2398 }
2399
2400 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2401                                     struct kvm_lapic_state *s)
2402 {
2403         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2404         kvm_apic_post_state_restore(vcpu);
2405         update_cr8_intercept(vcpu);
2406
2407         return 0;
2408 }
2409
2410 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2411                                     struct kvm_interrupt *irq)
2412 {
2413         if (irq->irq < 0 || irq->irq >= 256)
2414                 return -EINVAL;
2415         if (irqchip_in_kernel(vcpu->kvm))
2416                 return -ENXIO;
2417
2418         kvm_queue_interrupt(vcpu, irq->irq, false);
2419         kvm_make_request(KVM_REQ_EVENT, vcpu);
2420
2421         return 0;
2422 }
2423
2424 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2425 {
2426         kvm_inject_nmi(vcpu);
2427
2428         return 0;
2429 }
2430
2431 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2432                                            struct kvm_tpr_access_ctl *tac)
2433 {
2434         if (tac->flags)
2435                 return -EINVAL;
2436         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2437         return 0;
2438 }
2439
2440 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2441                                         u64 mcg_cap)
2442 {
2443         int r;
2444         unsigned bank_num = mcg_cap & 0xff, bank;
2445
2446         r = -EINVAL;
2447         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2448                 goto out;
2449         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2450                 goto out;
2451         r = 0;
2452         vcpu->arch.mcg_cap = mcg_cap;
2453         /* Init IA32_MCG_CTL to all 1s */
2454         if (mcg_cap & MCG_CTL_P)
2455                 vcpu->arch.mcg_ctl = ~(u64)0;
2456         /* Init IA32_MCi_CTL to all 1s */
2457         for (bank = 0; bank < bank_num; bank++)
2458                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2459 out:
2460         return r;
2461 }
2462
2463 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2464                                       struct kvm_x86_mce *mce)
2465 {
2466         u64 mcg_cap = vcpu->arch.mcg_cap;
2467         unsigned bank_num = mcg_cap & 0xff;
2468         u64 *banks = vcpu->arch.mce_banks;
2469
2470         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2471                 return -EINVAL;
2472         /*
2473          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2474          * reporting is disabled
2475          */
2476         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2477             vcpu->arch.mcg_ctl != ~(u64)0)
2478                 return 0;
2479         banks += 4 * mce->bank;
2480         /*
2481          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2482          * reporting is disabled for the bank
2483          */
2484         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2485                 return 0;
2486         if (mce->status & MCI_STATUS_UC) {
2487                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2488                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2489                         printk(KERN_DEBUG "kvm: set_mce: "
2490                                "injects mce exception while "
2491                                "previous one is in progress!\n");
2492                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2493                         return 0;
2494                 }
2495                 if (banks[1] & MCI_STATUS_VAL)
2496                         mce->status |= MCI_STATUS_OVER;
2497                 banks[2] = mce->addr;
2498                 banks[3] = mce->misc;
2499                 vcpu->arch.mcg_status = mce->mcg_status;
2500                 banks[1] = mce->status;
2501                 kvm_queue_exception(vcpu, MC_VECTOR);
2502         } else if (!(banks[1] & MCI_STATUS_VAL)
2503                    || !(banks[1] & MCI_STATUS_UC)) {
2504                 if (banks[1] & MCI_STATUS_VAL)
2505                         mce->status |= MCI_STATUS_OVER;
2506                 banks[2] = mce->addr;
2507                 banks[3] = mce->misc;
2508                 banks[1] = mce->status;
2509         } else
2510                 banks[1] |= MCI_STATUS_OVER;
2511         return 0;
2512 }
2513
2514 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2515                                                struct kvm_vcpu_events *events)
2516 {
2517         events->exception.injected =
2518                 vcpu->arch.exception.pending &&
2519                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2520         events->exception.nr = vcpu->arch.exception.nr;
2521         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2522         events->exception.error_code = vcpu->arch.exception.error_code;
2523
2524         events->interrupt.injected =
2525                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2526         events->interrupt.nr = vcpu->arch.interrupt.nr;
2527         events->interrupt.soft = 0;
2528         events->interrupt.shadow =
2529                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2530                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2531
2532         events->nmi.injected = vcpu->arch.nmi_injected;
2533         events->nmi.pending = vcpu->arch.nmi_pending;
2534         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2535
2536         events->sipi_vector = vcpu->arch.sipi_vector;
2537
2538         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2539                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2540                          | KVM_VCPUEVENT_VALID_SHADOW);
2541 }
2542
2543 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2544                                               struct kvm_vcpu_events *events)
2545 {
2546         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2547                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2548                               | KVM_VCPUEVENT_VALID_SHADOW))
2549                 return -EINVAL;
2550
2551         vcpu->arch.exception.pending = events->exception.injected;
2552         vcpu->arch.exception.nr = events->exception.nr;
2553         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2554         vcpu->arch.exception.error_code = events->exception.error_code;
2555
2556         vcpu->arch.interrupt.pending = events->interrupt.injected;
2557         vcpu->arch.interrupt.nr = events->interrupt.nr;
2558         vcpu->arch.interrupt.soft = events->interrupt.soft;
2559         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2560                 kvm_pic_clear_isr_ack(vcpu->kvm);
2561         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2562                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2563                                                   events->interrupt.shadow);
2564
2565         vcpu->arch.nmi_injected = events->nmi.injected;
2566         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2567                 vcpu->arch.nmi_pending = events->nmi.pending;
2568         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2569
2570         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2571                 vcpu->arch.sipi_vector = events->sipi_vector;
2572
2573         kvm_make_request(KVM_REQ_EVENT, vcpu);
2574
2575         return 0;
2576 }
2577
2578 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2579                                              struct kvm_debugregs *dbgregs)
2580 {
2581         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2582         dbgregs->dr6 = vcpu->arch.dr6;
2583         dbgregs->dr7 = vcpu->arch.dr7;
2584         dbgregs->flags = 0;
2585 }
2586
2587 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2588                                             struct kvm_debugregs *dbgregs)
2589 {
2590         if (dbgregs->flags)
2591                 return -EINVAL;
2592
2593         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2594         vcpu->arch.dr6 = dbgregs->dr6;
2595         vcpu->arch.dr7 = dbgregs->dr7;
2596
2597         return 0;
2598 }
2599
2600 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2601                                          struct kvm_xsave *guest_xsave)
2602 {
2603         if (cpu_has_xsave)
2604                 memcpy(guest_xsave->region,
2605                         &vcpu->arch.guest_fpu.state->xsave,
2606                         xstate_size);
2607         else {
2608                 memcpy(guest_xsave->region,
2609                         &vcpu->arch.guest_fpu.state->fxsave,
2610                         sizeof(struct i387_fxsave_struct));
2611                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2612                         XSTATE_FPSSE;
2613         }
2614 }
2615
2616 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2617                                         struct kvm_xsave *guest_xsave)
2618 {
2619         u64 xstate_bv =
2620                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2621
2622         if (cpu_has_xsave)
2623                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2624                         guest_xsave->region, xstate_size);
2625         else {
2626                 if (xstate_bv & ~XSTATE_FPSSE)
2627                         return -EINVAL;
2628                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2629                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2630         }
2631         return 0;
2632 }
2633
2634 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2635                                         struct kvm_xcrs *guest_xcrs)
2636 {
2637         if (!cpu_has_xsave) {
2638                 guest_xcrs->nr_xcrs = 0;
2639                 return;
2640         }
2641
2642         guest_xcrs->nr_xcrs = 1;
2643         guest_xcrs->flags = 0;
2644         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2645         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2646 }
2647
2648 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2649                                        struct kvm_xcrs *guest_xcrs)
2650 {
2651         int i, r = 0;
2652
2653         if (!cpu_has_xsave)
2654                 return -EINVAL;
2655
2656         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2657                 return -EINVAL;
2658
2659         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2660                 /* Only support XCR0 currently */
2661                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2662                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2663                                 guest_xcrs->xcrs[0].value);
2664                         break;
2665                 }
2666         if (r)
2667                 r = -EINVAL;
2668         return r;
2669 }
2670
2671 long kvm_arch_vcpu_ioctl(struct file *filp,
2672                          unsigned int ioctl, unsigned long arg)
2673 {
2674         struct kvm_vcpu *vcpu = filp->private_data;
2675         void __user *argp = (void __user *)arg;
2676         int r;
2677         union {
2678                 struct kvm_lapic_state *lapic;
2679                 struct kvm_xsave *xsave;
2680                 struct kvm_xcrs *xcrs;
2681                 void *buffer;
2682         } u;
2683
2684         u.buffer = NULL;
2685         switch (ioctl) {
2686         case KVM_GET_LAPIC: {
2687                 r = -EINVAL;
2688                 if (!vcpu->arch.apic)
2689                         goto out;
2690                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2691
2692                 r = -ENOMEM;
2693                 if (!u.lapic)
2694                         goto out;
2695                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2696                 if (r)
2697                         goto out;
2698                 r = -EFAULT;
2699                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2700                         goto out;
2701                 r = 0;
2702                 break;
2703         }
2704         case KVM_SET_LAPIC: {
2705                 r = -EINVAL;
2706                 if (!vcpu->arch.apic)
2707                         goto out;
2708                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2709                 r = -ENOMEM;
2710                 if (!u.lapic)
2711                         goto out;
2712                 r = -EFAULT;
2713                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2714                         goto out;
2715                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2716                 if (r)
2717                         goto out;
2718                 r = 0;
2719                 break;
2720         }
2721         case KVM_INTERRUPT: {
2722                 struct kvm_interrupt irq;
2723
2724                 r = -EFAULT;
2725                 if (copy_from_user(&irq, argp, sizeof irq))
2726                         goto out;
2727                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2728                 if (r)
2729                         goto out;
2730                 r = 0;
2731                 break;
2732         }
2733         case KVM_NMI: {
2734                 r = kvm_vcpu_ioctl_nmi(vcpu);
2735                 if (r)
2736                         goto out;
2737                 r = 0;
2738                 break;
2739         }
2740         case KVM_SET_CPUID: {
2741                 struct kvm_cpuid __user *cpuid_arg = argp;
2742                 struct kvm_cpuid cpuid;
2743
2744                 r = -EFAULT;
2745                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2746                         goto out;
2747                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2748                 if (r)
2749                         goto out;
2750                 break;
2751         }
2752         case KVM_SET_CPUID2: {
2753                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2754                 struct kvm_cpuid2 cpuid;
2755
2756                 r = -EFAULT;
2757                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2758                         goto out;
2759                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2760                                               cpuid_arg->entries);
2761                 if (r)
2762                         goto out;
2763                 break;
2764         }
2765         case KVM_GET_CPUID2: {
2766                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2767                 struct kvm_cpuid2 cpuid;
2768
2769                 r = -EFAULT;
2770                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2771                         goto out;
2772                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2773                                               cpuid_arg->entries);
2774                 if (r)
2775                         goto out;
2776                 r = -EFAULT;
2777                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2778                         goto out;
2779                 r = 0;
2780                 break;
2781         }
2782         case KVM_GET_MSRS:
2783                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2784                 break;
2785         case KVM_SET_MSRS:
2786                 r = msr_io(vcpu, argp, do_set_msr, 0);
2787                 break;
2788         case KVM_TPR_ACCESS_REPORTING: {
2789                 struct kvm_tpr_access_ctl tac;
2790
2791                 r = -EFAULT;
2792                 if (copy_from_user(&tac, argp, sizeof tac))
2793                         goto out;
2794                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2795                 if (r)
2796                         goto out;
2797                 r = -EFAULT;
2798                 if (copy_to_user(argp, &tac, sizeof tac))
2799                         goto out;
2800                 r = 0;
2801                 break;
2802         };
2803         case KVM_SET_VAPIC_ADDR: {
2804                 struct kvm_vapic_addr va;
2805
2806                 r = -EINVAL;
2807                 if (!irqchip_in_kernel(vcpu->kvm))
2808                         goto out;
2809                 r = -EFAULT;
2810                 if (copy_from_user(&va, argp, sizeof va))
2811                         goto out;
2812                 r = 0;
2813                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2814                 break;
2815         }
2816         case KVM_X86_SETUP_MCE: {
2817                 u64 mcg_cap;
2818
2819                 r = -EFAULT;
2820                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2821                         goto out;
2822                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2823                 break;
2824         }
2825         case KVM_X86_SET_MCE: {
2826                 struct kvm_x86_mce mce;
2827
2828                 r = -EFAULT;
2829                 if (copy_from_user(&mce, argp, sizeof mce))
2830                         goto out;
2831                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2832                 break;
2833         }
2834         case KVM_GET_VCPU_EVENTS: {
2835                 struct kvm_vcpu_events events;
2836
2837                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2838
2839                 r = -EFAULT;
2840                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2841                         break;
2842                 r = 0;
2843                 break;
2844         }
2845         case KVM_SET_VCPU_EVENTS: {
2846                 struct kvm_vcpu_events events;
2847
2848                 r = -EFAULT;
2849                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2850                         break;
2851
2852                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2853                 break;
2854         }
2855         case KVM_GET_DEBUGREGS: {
2856                 struct kvm_debugregs dbgregs;
2857
2858                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2859
2860                 r = -EFAULT;
2861                 if (copy_to_user(argp, &dbgregs,
2862                                  sizeof(struct kvm_debugregs)))
2863                         break;
2864                 r = 0;
2865                 break;
2866         }
2867         case KVM_SET_DEBUGREGS: {
2868                 struct kvm_debugregs dbgregs;
2869
2870                 r = -EFAULT;
2871                 if (copy_from_user(&dbgregs, argp,
2872                                    sizeof(struct kvm_debugregs)))
2873                         break;
2874
2875                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2876                 break;
2877         }
2878         case KVM_GET_XSAVE: {
2879                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2880                 r = -ENOMEM;
2881                 if (!u.xsave)
2882                         break;
2883
2884                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2885
2886                 r = -EFAULT;
2887                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2888                         break;
2889                 r = 0;
2890                 break;
2891         }
2892         case KVM_SET_XSAVE: {
2893                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2894                 r = -ENOMEM;
2895                 if (!u.xsave)
2896                         break;
2897
2898                 r = -EFAULT;
2899                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2900                         break;
2901
2902                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2903                 break;
2904         }
2905         case KVM_GET_XCRS: {
2906                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2907                 r = -ENOMEM;
2908                 if (!u.xcrs)
2909                         break;
2910
2911                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2912
2913                 r = -EFAULT;
2914                 if (copy_to_user(argp, u.xcrs,
2915                                  sizeof(struct kvm_xcrs)))
2916                         break;
2917                 r = 0;
2918                 break;
2919         }
2920         case KVM_SET_XCRS: {
2921                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2922                 r = -ENOMEM;
2923                 if (!u.xcrs)
2924                         break;
2925
2926                 r = -EFAULT;
2927                 if (copy_from_user(u.xcrs, argp,
2928                                    sizeof(struct kvm_xcrs)))
2929                         break;
2930
2931                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2932                 break;
2933         }
2934         default:
2935                 r = -EINVAL;
2936         }
2937 out:
2938         kfree(u.buffer);
2939         return r;
2940 }
2941
2942 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2943 {
2944         int ret;
2945
2946         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2947                 return -1;
2948         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2949         return ret;
2950 }
2951
2952 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2953                                               u64 ident_addr)
2954 {
2955         kvm->arch.ept_identity_map_addr = ident_addr;
2956         return 0;
2957 }
2958
2959 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2960                                           u32 kvm_nr_mmu_pages)
2961 {
2962         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2963                 return -EINVAL;
2964
2965         mutex_lock(&kvm->slots_lock);
2966         spin_lock(&kvm->mmu_lock);
2967
2968         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2969         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2970
2971         spin_unlock(&kvm->mmu_lock);
2972         mutex_unlock(&kvm->slots_lock);
2973         return 0;
2974 }
2975
2976 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2977 {
2978         return kvm->arch.n_max_mmu_pages;
2979 }
2980
2981 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2982 {
2983         int r;
2984
2985         r = 0;
2986         switch (chip->chip_id) {
2987         case KVM_IRQCHIP_PIC_MASTER:
2988                 memcpy(&chip->chip.pic,
2989                         &pic_irqchip(kvm)->pics[0],
2990                         sizeof(struct kvm_pic_state));
2991                 break;
2992         case KVM_IRQCHIP_PIC_SLAVE:
2993                 memcpy(&chip->chip.pic,
2994                         &pic_irqchip(kvm)->pics[1],
2995                         sizeof(struct kvm_pic_state));
2996                 break;
2997         case KVM_IRQCHIP_IOAPIC:
2998                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2999                 break;
3000         default:
3001                 r = -EINVAL;
3002                 break;
3003         }
3004         return r;
3005 }
3006
3007 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3008 {
3009         int r;
3010
3011         r = 0;
3012         switch (chip->chip_id) {
3013         case KVM_IRQCHIP_PIC_MASTER:
3014                 spin_lock(&pic_irqchip(kvm)->lock);
3015                 memcpy(&pic_irqchip(kvm)->pics[0],
3016                         &chip->chip.pic,
3017                         sizeof(struct kvm_pic_state));
3018                 spin_unlock(&pic_irqchip(kvm)->lock);
3019                 break;
3020         case KVM_IRQCHIP_PIC_SLAVE:
3021                 spin_lock(&pic_irqchip(kvm)->lock);
3022                 memcpy(&pic_irqchip(kvm)->pics[1],
3023                         &chip->chip.pic,
3024                         sizeof(struct kvm_pic_state));
3025                 spin_unlock(&pic_irqchip(kvm)->lock);
3026                 break;
3027         case KVM_IRQCHIP_IOAPIC:
3028                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3029                 break;
3030         default:
3031                 r = -EINVAL;
3032                 break;
3033         }
3034         kvm_pic_update_irq(pic_irqchip(kvm));
3035         return r;
3036 }
3037
3038 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3039 {
3040         int r = 0;
3041
3042         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3043         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3044         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3045         return r;
3046 }
3047
3048 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3049 {
3050         int r = 0;
3051
3052         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3053         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3054         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3055         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3056         return r;
3057 }
3058
3059 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3060 {
3061         int r = 0;
3062
3063         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3064         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3065                 sizeof(ps->channels));
3066         ps->flags = kvm->arch.vpit->pit_state.flags;
3067         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3068         return r;
3069 }
3070
3071 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3072 {
3073         int r = 0, start = 0;
3074         u32 prev_legacy, cur_legacy;
3075         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3076         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3077         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3078         if (!prev_legacy && cur_legacy)
3079                 start = 1;
3080         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3081                sizeof(kvm->arch.vpit->pit_state.channels));
3082         kvm->arch.vpit->pit_state.flags = ps->flags;
3083         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3084         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3085         return r;
3086 }
3087
3088 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3089                                  struct kvm_reinject_control *control)
3090 {
3091         if (!kvm->arch.vpit)
3092                 return -ENXIO;
3093         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3094         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3095         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3096         return 0;
3097 }
3098
3099 /*
3100  * Get (and clear) the dirty memory log for a memory slot.
3101  */
3102 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3103                                       struct kvm_dirty_log *log)
3104 {
3105         int r, i;
3106         struct kvm_memory_slot *memslot;
3107         unsigned long n;
3108         unsigned long is_dirty = 0;
3109
3110         mutex_lock(&kvm->slots_lock);
3111
3112         r = -EINVAL;
3113         if (log->slot >= KVM_MEMORY_SLOTS)
3114                 goto out;
3115
3116         memslot = &kvm->memslots->memslots[log->slot];
3117         r = -ENOENT;
3118         if (!memslot->dirty_bitmap)
3119                 goto out;
3120
3121         n = kvm_dirty_bitmap_bytes(memslot);
3122
3123         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3124                 is_dirty = memslot->dirty_bitmap[i];
3125
3126         /* If nothing is dirty, don't bother messing with page tables. */
3127         if (is_dirty) {
3128                 struct kvm_memslots *slots, *old_slots;
3129                 unsigned long *dirty_bitmap;
3130
3131                 spin_lock(&kvm->mmu_lock);
3132                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3133                 spin_unlock(&kvm->mmu_lock);
3134
3135                 r = -ENOMEM;
3136                 dirty_bitmap = vmalloc(n);
3137                 if (!dirty_bitmap)
3138                         goto out;
3139                 memset(dirty_bitmap, 0, n);
3140
3141                 r = -ENOMEM;
3142                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3143                 if (!slots) {
3144                         vfree(dirty_bitmap);
3145                         goto out;
3146                 }
3147                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3148                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3149
3150                 old_slots = kvm->memslots;
3151                 rcu_assign_pointer(kvm->memslots, slots);
3152                 synchronize_srcu_expedited(&kvm->srcu);
3153                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3154                 kfree(old_slots);
3155
3156                 r = -EFAULT;
3157                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3158                         vfree(dirty_bitmap);
3159                         goto out;
3160                 }
3161                 vfree(dirty_bitmap);
3162         } else {
3163                 r = -EFAULT;
3164                 if (clear_user(log->dirty_bitmap, n))
3165                         goto out;
3166         }
3167
3168         r = 0;
3169 out:
3170         mutex_unlock(&kvm->slots_lock);
3171         return r;
3172 }
3173
3174 long kvm_arch_vm_ioctl(struct file *filp,
3175                        unsigned int ioctl, unsigned long arg)
3176 {
3177         struct kvm *kvm = filp->private_data;
3178         void __user *argp = (void __user *)arg;
3179         int r = -ENOTTY;
3180         /*
3181          * This union makes it completely explicit to gcc-3.x
3182          * that these two variables' stack usage should be
3183          * combined, not added together.
3184          */
3185         union {
3186                 struct kvm_pit_state ps;
3187                 struct kvm_pit_state2 ps2;
3188                 struct kvm_pit_config pit_config;
3189         } u;
3190
3191         switch (ioctl) {
3192         case KVM_SET_TSS_ADDR:
3193                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3194                 if (r < 0)
3195                         goto out;
3196                 break;
3197         case KVM_SET_IDENTITY_MAP_ADDR: {
3198                 u64 ident_addr;
3199
3200                 r = -EFAULT;
3201                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3202                         goto out;
3203                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3204                 if (r < 0)
3205                         goto out;
3206                 break;
3207         }
3208         case KVM_SET_NR_MMU_PAGES:
3209                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3210                 if (r)
3211                         goto out;
3212                 break;
3213         case KVM_GET_NR_MMU_PAGES:
3214                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3215                 break;
3216         case KVM_CREATE_IRQCHIP: {
3217                 struct kvm_pic *vpic;
3218
3219                 mutex_lock(&kvm->lock);
3220                 r = -EEXIST;
3221                 if (kvm->arch.vpic)
3222                         goto create_irqchip_unlock;
3223                 r = -ENOMEM;
3224                 vpic = kvm_create_pic(kvm);
3225                 if (vpic) {
3226                         r = kvm_ioapic_init(kvm);
3227                         if (r) {
3228                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3229                                                           &vpic->dev);
3230                                 kfree(vpic);
3231                                 goto create_irqchip_unlock;
3232                         }
3233                 } else
3234                         goto create_irqchip_unlock;
3235                 smp_wmb();
3236                 kvm->arch.vpic = vpic;
3237                 smp_wmb();
3238                 r = kvm_setup_default_irq_routing(kvm);
3239                 if (r) {
3240                         mutex_lock(&kvm->irq_lock);
3241                         kvm_ioapic_destroy(kvm);
3242                         kvm_destroy_pic(kvm);
3243                         mutex_unlock(&kvm->irq_lock);
3244                 }
3245         create_irqchip_unlock:
3246                 mutex_unlock(&kvm->lock);
3247                 break;
3248         }
3249         case KVM_CREATE_PIT:
3250                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3251                 goto create_pit;
3252         case KVM_CREATE_PIT2:
3253                 r = -EFAULT;
3254                 if (copy_from_user(&u.pit_config, argp,
3255                                    sizeof(struct kvm_pit_config)))
3256                         goto out;
3257         create_pit:
3258                 mutex_lock(&kvm->slots_lock);
3259                 r = -EEXIST;
3260                 if (kvm->arch.vpit)
3261                         goto create_pit_unlock;
3262                 r = -ENOMEM;
3263                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3264                 if (kvm->arch.vpit)
3265                         r = 0;
3266         create_pit_unlock:
3267                 mutex_unlock(&kvm->slots_lock);
3268                 break;
3269         case KVM_IRQ_LINE_STATUS:
3270         case KVM_IRQ_LINE: {
3271                 struct kvm_irq_level irq_event;
3272
3273                 r = -EFAULT;
3274                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3275                         goto out;
3276                 r = -ENXIO;
3277                 if (irqchip_in_kernel(kvm)) {
3278                         __s32 status;
3279                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3280                                         irq_event.irq, irq_event.level);
3281                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3282                                 r = -EFAULT;
3283                                 irq_event.status = status;
3284                                 if (copy_to_user(argp, &irq_event,
3285                                                         sizeof irq_event))
3286                                         goto out;
3287                         }
3288                         r = 0;
3289                 }
3290                 break;
3291         }
3292         case KVM_GET_IRQCHIP: {
3293                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3294                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3295
3296                 r = -ENOMEM;
3297                 if (!chip)
3298                         goto out;
3299                 r = -EFAULT;
3300                 if (copy_from_user(chip, argp, sizeof *chip))
3301                         goto get_irqchip_out;
3302                 r = -ENXIO;
3303                 if (!irqchip_in_kernel(kvm))
3304                         goto get_irqchip_out;
3305                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3306                 if (r)
3307                         goto get_irqchip_out;
3308                 r = -EFAULT;
3309                 if (copy_to_user(argp, chip, sizeof *chip))
3310                         goto get_irqchip_out;
3311                 r = 0;
3312         get_irqchip_out:
3313                 kfree(chip);
3314                 if (r)
3315                         goto out;
3316                 break;
3317         }
3318         case KVM_SET_IRQCHIP: {
3319                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3320                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3321
3322                 r = -ENOMEM;
3323                 if (!chip)
3324                         goto out;
3325                 r = -EFAULT;
3326                 if (copy_from_user(chip, argp, sizeof *chip))
3327                         goto set_irqchip_out;
3328                 r = -ENXIO;
3329                 if (!irqchip_in_kernel(kvm))
3330                         goto set_irqchip_out;
3331                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3332                 if (r)
3333                         goto set_irqchip_out;
3334                 r = 0;
3335         set_irqchip_out:
3336                 kfree(chip);
3337                 if (r)
3338                         goto out;
3339                 break;
3340         }
3341         case KVM_GET_PIT: {
3342                 r = -EFAULT;
3343                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3344                         goto out;
3345                 r = -ENXIO;
3346                 if (!kvm->arch.vpit)
3347                         goto out;
3348                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3349                 if (r)
3350                         goto out;
3351                 r = -EFAULT;
3352                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3353                         goto out;
3354                 r = 0;
3355                 break;
3356         }
3357         case KVM_SET_PIT: {
3358                 r = -EFAULT;
3359                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3360                         goto out;
3361                 r = -ENXIO;
3362                 if (!kvm->arch.vpit)
3363                         goto out;
3364                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3365                 if (r)
3366                         goto out;
3367                 r = 0;
3368                 break;
3369         }
3370         case KVM_GET_PIT2: {
3371                 r = -ENXIO;
3372                 if (!kvm->arch.vpit)
3373                         goto out;
3374                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3375                 if (r)
3376                         goto out;
3377                 r = -EFAULT;
3378                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3379                         goto out;
3380                 r = 0;
3381                 break;
3382         }
3383         case KVM_SET_PIT2: {
3384                 r = -EFAULT;
3385                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3386                         goto out;
3387                 r = -ENXIO;
3388                 if (!kvm->arch.vpit)
3389                         goto out;
3390                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3391                 if (r)
3392                         goto out;
3393                 r = 0;
3394                 break;
3395         }
3396         case KVM_REINJECT_CONTROL: {
3397                 struct kvm_reinject_control control;
3398                 r =  -EFAULT;
3399                 if (copy_from_user(&control, argp, sizeof(control)))
3400                         goto out;
3401                 r = kvm_vm_ioctl_reinject(kvm, &control);
3402                 if (r)
3403                         goto out;
3404                 r = 0;
3405                 break;
3406         }
3407         case KVM_XEN_HVM_CONFIG: {
3408                 r = -EFAULT;
3409                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3410                                    sizeof(struct kvm_xen_hvm_config)))
3411                         goto out;
3412                 r = -EINVAL;
3413                 if (kvm->arch.xen_hvm_config.flags)
3414                         goto out;
3415                 r = 0;
3416                 break;
3417         }
3418         case KVM_SET_CLOCK: {
3419                 struct kvm_clock_data user_ns;
3420                 u64 now_ns;
3421                 s64 delta;
3422
3423                 r = -EFAULT;
3424                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3425                         goto out;
3426
3427                 r = -EINVAL;
3428                 if (user_ns.flags)
3429                         goto out;
3430
3431                 r = 0;
3432                 now_ns = get_kernel_ns();
3433                 delta = user_ns.clock - now_ns;
3434                 kvm->arch.kvmclock_offset = delta;
3435                 break;
3436         }
3437         case KVM_GET_CLOCK: {
3438                 struct kvm_clock_data user_ns;
3439                 u64 now_ns;
3440
3441                 now_ns = get_kernel_ns();
3442                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3443                 user_ns.flags = 0;
3444
3445                 r = -EFAULT;
3446                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3447                         goto out;
3448                 r = 0;
3449                 break;
3450         }
3451
3452         default:
3453                 ;
3454         }
3455 out:
3456         return r;
3457 }
3458
3459 static void kvm_init_msr_list(void)
3460 {
3461         u32 dummy[2];
3462         unsigned i, j;
3463
3464         /* skip the first msrs in the list. KVM-specific */
3465         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3466                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3467                         continue;
3468                 if (j < i)
3469                         msrs_to_save[j] = msrs_to_save[i];
3470                 j++;
3471         }
3472         num_msrs_to_save = j;
3473 }
3474
3475 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3476                            const void *v)
3477 {
3478         if (vcpu->arch.apic &&
3479             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3480                 return 0;
3481
3482         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3483 }
3484
3485 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3486 {
3487         if (vcpu->arch.apic &&
3488             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3489                 return 0;
3490
3491         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3492 }
3493
3494 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3495                         struct kvm_segment *var, int seg)
3496 {
3497         kvm_x86_ops->set_segment(vcpu, var, seg);
3498 }
3499
3500 void kvm_get_segment(struct kvm_vcpu *vcpu,
3501                      struct kvm_segment *var, int seg)
3502 {
3503         kvm_x86_ops->get_segment(vcpu, var, seg);
3504 }
3505
3506 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3507 {
3508         return gpa;
3509 }
3510
3511 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3512 {
3513         gpa_t t_gpa;
3514         u32 error;
3515
3516         BUG_ON(!mmu_is_nested(vcpu));
3517
3518         /* NPT walks are always user-walks */
3519         access |= PFERR_USER_MASK;
3520         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3521         if (t_gpa == UNMAPPED_GVA)
3522                 vcpu->arch.fault.nested = true;
3523
3524         return t_gpa;
3525 }
3526
3527 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3528 {
3529         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3530         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3531 }
3532
3533  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3534 {
3535         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3536         access |= PFERR_FETCH_MASK;
3537         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3538 }
3539
3540 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3541 {
3542         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3543         access |= PFERR_WRITE_MASK;
3544         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3545 }
3546
3547 /* uses this to access any guest's mapped memory without checking CPL */
3548 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3549 {
3550         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3551 }
3552
3553 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3554                                       struct kvm_vcpu *vcpu, u32 access,
3555                                       u32 *error)
3556 {
3557         void *data = val;
3558         int r = X86EMUL_CONTINUE;
3559
3560         while (bytes) {
3561                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3562                                                             error);
3563                 unsigned offset = addr & (PAGE_SIZE-1);
3564                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3565                 int ret;
3566
3567                 if (gpa == UNMAPPED_GVA) {
3568                         r = X86EMUL_PROPAGATE_FAULT;
3569                         goto out;
3570                 }
3571                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3572                 if (ret < 0) {
3573                         r = X86EMUL_IO_NEEDED;
3574                         goto out;
3575                 }
3576
3577                 bytes -= toread;
3578                 data += toread;
3579                 addr += toread;
3580         }
3581 out:
3582         return r;
3583 }
3584
3585 /* used for instruction fetching */
3586 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3587                                 struct kvm_vcpu *vcpu, u32 *error)
3588 {
3589         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3590         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3591                                           access | PFERR_FETCH_MASK, error);
3592 }
3593
3594 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3595                                struct kvm_vcpu *vcpu, u32 *error)
3596 {
3597         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3598         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3599                                           error);
3600 }
3601
3602 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3603                                struct kvm_vcpu *vcpu, u32 *error)
3604 {
3605         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3606 }
3607
3608 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3609                                        unsigned int bytes,
3610                                        struct kvm_vcpu *vcpu,
3611                                        u32 *error)
3612 {
3613         void *data = val;
3614         int r = X86EMUL_CONTINUE;
3615
3616         while (bytes) {
3617                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3618                                                              PFERR_WRITE_MASK,
3619                                                              error);
3620                 unsigned offset = addr & (PAGE_SIZE-1);
3621                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3622                 int ret;
3623
3624                 if (gpa == UNMAPPED_GVA) {
3625                         r = X86EMUL_PROPAGATE_FAULT;
3626                         goto out;
3627                 }
3628                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3629                 if (ret < 0) {
3630                         r = X86EMUL_IO_NEEDED;
3631                         goto out;
3632                 }
3633
3634                 bytes -= towrite;
3635                 data += towrite;
3636                 addr += towrite;
3637         }
3638 out:
3639         return r;
3640 }
3641
3642 static int emulator_read_emulated(unsigned long addr,
3643                                   void *val,
3644                                   unsigned int bytes,
3645                                   unsigned int *error_code,
3646                                   struct kvm_vcpu *vcpu)
3647 {
3648         gpa_t                 gpa;
3649
3650         if (vcpu->mmio_read_completed) {
3651                 memcpy(val, vcpu->mmio_data, bytes);
3652                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3653                                vcpu->mmio_phys_addr, *(u64 *)val);
3654                 vcpu->mmio_read_completed = 0;
3655                 return X86EMUL_CONTINUE;
3656         }
3657
3658         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3659
3660         if (gpa == UNMAPPED_GVA)
3661                 return X86EMUL_PROPAGATE_FAULT;
3662
3663         /* For APIC access vmexit */
3664         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3665                 goto mmio;
3666
3667         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3668                                 == X86EMUL_CONTINUE)
3669                 return X86EMUL_CONTINUE;
3670
3671 mmio:
3672         /*
3673          * Is this MMIO handled locally?
3674          */
3675         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3676                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3677                 return X86EMUL_CONTINUE;
3678         }
3679
3680         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3681
3682         vcpu->mmio_needed = 1;
3683         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3684         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3685         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3686         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3687
3688         return X86EMUL_IO_NEEDED;
3689 }
3690
3691 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3692                           const void *val, int bytes)
3693 {
3694         int ret;
3695
3696         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3697         if (ret < 0)
3698                 return 0;
3699         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3700         return 1;
3701 }
3702
3703 static int emulator_write_emulated_onepage(unsigned long addr,
3704                                            const void *val,
3705                                            unsigned int bytes,
3706                                            unsigned int *error_code,
3707                                            struct kvm_vcpu *vcpu)
3708 {
3709         gpa_t                 gpa;
3710
3711         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3712
3713         if (gpa == UNMAPPED_GVA)
3714                 return X86EMUL_PROPAGATE_FAULT;
3715
3716         /* For APIC access vmexit */
3717         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3718                 goto mmio;
3719
3720         if (emulator_write_phys(vcpu, gpa, val, bytes))
3721                 return X86EMUL_CONTINUE;
3722
3723 mmio:
3724         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3725         /*
3726          * Is this MMIO handled locally?
3727          */
3728         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3729                 return X86EMUL_CONTINUE;
3730
3731         vcpu->mmio_needed = 1;
3732         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3733         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3734         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3735         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3736         memcpy(vcpu->run->mmio.data, val, bytes);
3737
3738         return X86EMUL_CONTINUE;
3739 }
3740
3741 int emulator_write_emulated(unsigned long addr,
3742                             const void *val,
3743                             unsigned int bytes,
3744                             unsigned int *error_code,
3745                             struct kvm_vcpu *vcpu)
3746 {
3747         /* Crossing a page boundary? */
3748         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3749                 int rc, now;
3750
3751                 now = -addr & ~PAGE_MASK;
3752                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3753                                                      vcpu);
3754                 if (rc != X86EMUL_CONTINUE)
3755                         return rc;
3756                 addr += now;
3757                 val += now;
3758                 bytes -= now;
3759         }
3760         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3761                                                vcpu);
3762 }
3763
3764 #define CMPXCHG_TYPE(t, ptr, old, new) \
3765         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3766
3767 #ifdef CONFIG_X86_64
3768 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3769 #else
3770 #  define CMPXCHG64(ptr, old, new) \
3771         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3772 #endif
3773
3774 static int emulator_cmpxchg_emulated(unsigned long addr,
3775                                      const void *old,
3776                                      const void *new,
3777                                      unsigned int bytes,
3778                                      unsigned int *error_code,
3779                                      struct kvm_vcpu *vcpu)
3780 {
3781         gpa_t gpa;
3782         struct page *page;
3783         char *kaddr;
3784         bool exchanged;
3785
3786         /* guests cmpxchg8b have to be emulated atomically */
3787         if (bytes > 8 || (bytes & (bytes - 1)))
3788                 goto emul_write;
3789
3790         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3791
3792         if (gpa == UNMAPPED_GVA ||
3793             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3794                 goto emul_write;
3795
3796         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3797                 goto emul_write;
3798
3799         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3800         if (is_error_page(page)) {
3801                 kvm_release_page_clean(page);
3802                 goto emul_write;
3803         }
3804
3805         kaddr = kmap_atomic(page, KM_USER0);
3806         kaddr += offset_in_page(gpa);
3807         switch (bytes) {
3808         case 1:
3809                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3810                 break;
3811         case 2:
3812                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3813                 break;
3814         case 4:
3815                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3816                 break;
3817         case 8:
3818                 exchanged = CMPXCHG64(kaddr, old, new);
3819                 break;
3820         default:
3821                 BUG();
3822         }
3823         kunmap_atomic(kaddr, KM_USER0);
3824         kvm_release_page_dirty(page);
3825
3826         if (!exchanged)
3827                 return X86EMUL_CMPXCHG_FAILED;
3828
3829         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3830
3831         return X86EMUL_CONTINUE;
3832
3833 emul_write:
3834         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3835
3836         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3837 }
3838
3839 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3840 {
3841         /* TODO: String I/O for in kernel device */
3842         int r;
3843
3844         if (vcpu->arch.pio.in)
3845                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3846                                     vcpu->arch.pio.size, pd);
3847         else
3848                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3849                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3850                                      pd);
3851         return r;
3852 }
3853
3854
3855 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3856                              unsigned int count, struct kvm_vcpu *vcpu)
3857 {
3858         if (vcpu->arch.pio.count)
3859                 goto data_avail;
3860
3861         trace_kvm_pio(0, port, size, 1);
3862
3863         vcpu->arch.pio.port = port;
3864         vcpu->arch.pio.in = 1;
3865         vcpu->arch.pio.count  = count;
3866         vcpu->arch.pio.size = size;
3867
3868         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3869         data_avail:
3870                 memcpy(val, vcpu->arch.pio_data, size * count);
3871                 vcpu->arch.pio.count = 0;
3872                 return 1;
3873         }
3874
3875         vcpu->run->exit_reason = KVM_EXIT_IO;
3876         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3877         vcpu->run->io.size = size;
3878         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3879         vcpu->run->io.count = count;
3880         vcpu->run->io.port = port;
3881
3882         return 0;
3883 }
3884
3885 static int emulator_pio_out_emulated(int size, unsigned short port,
3886                               const void *val, unsigned int count,
3887                               struct kvm_vcpu *vcpu)
3888 {
3889         trace_kvm_pio(1, port, size, 1);
3890
3891         vcpu->arch.pio.port = port;
3892         vcpu->arch.pio.in = 0;
3893         vcpu->arch.pio.count = count;
3894         vcpu->arch.pio.size = size;
3895
3896         memcpy(vcpu->arch.pio_data, val, size * count);
3897
3898         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3899                 vcpu->arch.pio.count = 0;
3900                 return 1;
3901         }
3902
3903         vcpu->run->exit_reason = KVM_EXIT_IO;
3904         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3905         vcpu->run->io.size = size;
3906         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3907         vcpu->run->io.count = count;
3908         vcpu->run->io.port = port;
3909
3910         return 0;
3911 }
3912
3913 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3914 {
3915         return kvm_x86_ops->get_segment_base(vcpu, seg);
3916 }
3917
3918 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3919 {
3920         kvm_mmu_invlpg(vcpu, address);
3921         return X86EMUL_CONTINUE;
3922 }
3923
3924 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3925 {
3926         if (!need_emulate_wbinvd(vcpu))
3927                 return X86EMUL_CONTINUE;
3928
3929         if (kvm_x86_ops->has_wbinvd_exit()) {
3930                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3931                                 wbinvd_ipi, NULL, 1);
3932                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3933         }
3934         wbinvd();
3935         return X86EMUL_CONTINUE;
3936 }
3937 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3938
3939 int emulate_clts(struct kvm_vcpu *vcpu)
3940 {
3941         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3942         kvm_x86_ops->fpu_activate(vcpu);
3943         return X86EMUL_CONTINUE;
3944 }
3945
3946 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3947 {
3948         return _kvm_get_dr(vcpu, dr, dest);
3949 }
3950
3951 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3952 {
3953
3954         return __kvm_set_dr(vcpu, dr, value);
3955 }
3956
3957 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3958 {
3959         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3960 }
3961
3962 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3963 {
3964         unsigned long value;
3965
3966         switch (cr) {
3967         case 0:
3968                 value = kvm_read_cr0(vcpu);
3969                 break;
3970         case 2:
3971                 value = vcpu->arch.cr2;
3972                 break;
3973         case 3:
3974                 value = vcpu->arch.cr3;
3975                 break;
3976         case 4:
3977                 value = kvm_read_cr4(vcpu);
3978                 break;
3979         case 8:
3980                 value = kvm_get_cr8(vcpu);
3981                 break;
3982         default:
3983                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3984                 return 0;
3985         }
3986
3987         return value;
3988 }
3989
3990 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3991 {
3992         int res = 0;
3993
3994         switch (cr) {
3995         case 0:
3996                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3997                 break;
3998         case 2:
3999                 vcpu->arch.cr2 = val;
4000                 break;
4001         case 3:
4002                 res = kvm_set_cr3(vcpu, val);
4003                 break;
4004         case 4:
4005                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4006                 break;
4007         case 8:
4008                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4009                 break;
4010         default:
4011                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4012                 res = -1;
4013         }
4014
4015         return res;
4016 }
4017
4018 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4019 {
4020         return kvm_x86_ops->get_cpl(vcpu);
4021 }
4022
4023 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4024 {
4025         kvm_x86_ops->get_gdt(vcpu, dt);
4026 }
4027
4028 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4029 {
4030         kvm_x86_ops->get_idt(vcpu, dt);
4031 }
4032
4033 static unsigned long emulator_get_cached_segment_base(int seg,
4034                                                       struct kvm_vcpu *vcpu)
4035 {
4036         return get_segment_base(vcpu, seg);
4037 }
4038
4039 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4040                                            struct kvm_vcpu *vcpu)
4041 {
4042         struct kvm_segment var;
4043
4044         kvm_get_segment(vcpu, &var, seg);
4045
4046         if (var.unusable)
4047                 return false;
4048
4049         if (var.g)
4050                 var.limit >>= 12;
4051         set_desc_limit(desc, var.limit);
4052         set_desc_base(desc, (unsigned long)var.base);
4053         desc->type = var.type;
4054         desc->s = var.s;
4055         desc->dpl = var.dpl;
4056         desc->p = var.present;
4057         desc->avl = var.avl;
4058         desc->l = var.l;
4059         desc->d = var.db;
4060         desc->g = var.g;
4061
4062         return true;
4063 }
4064
4065 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4066                                            struct kvm_vcpu *vcpu)
4067 {
4068         struct kvm_segment var;
4069
4070         /* needed to preserve selector */
4071         kvm_get_segment(vcpu, &var, seg);
4072
4073         var.base = get_desc_base(desc);
4074         var.limit = get_desc_limit(desc);
4075         if (desc->g)
4076                 var.limit = (var.limit << 12) | 0xfff;
4077         var.type = desc->type;
4078         var.present = desc->p;
4079         var.dpl = desc->dpl;
4080         var.db = desc->d;
4081         var.s = desc->s;
4082         var.l = desc->l;
4083         var.g = desc->g;
4084         var.avl = desc->avl;
4085         var.present = desc->p;
4086         var.unusable = !var.present;
4087         var.padding = 0;
4088
4089         kvm_set_segment(vcpu, &var, seg);
4090         return;
4091 }
4092
4093 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4094 {
4095         struct kvm_segment kvm_seg;
4096
4097         kvm_get_segment(vcpu, &kvm_seg, seg);
4098         return kvm_seg.selector;
4099 }
4100
4101 static void emulator_set_segment_selector(u16 sel, int seg,
4102                                           struct kvm_vcpu *vcpu)
4103 {
4104         struct kvm_segment kvm_seg;
4105
4106         kvm_get_segment(vcpu, &kvm_seg, seg);
4107         kvm_seg.selector = sel;
4108         kvm_set_segment(vcpu, &kvm_seg, seg);
4109 }
4110
4111 static struct x86_emulate_ops emulate_ops = {
4112         .read_std            = kvm_read_guest_virt_system,
4113         .write_std           = kvm_write_guest_virt_system,
4114         .fetch               = kvm_fetch_guest_virt,
4115         .read_emulated       = emulator_read_emulated,
4116         .write_emulated      = emulator_write_emulated,
4117         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4118         .pio_in_emulated     = emulator_pio_in_emulated,
4119         .pio_out_emulated    = emulator_pio_out_emulated,
4120         .get_cached_descriptor = emulator_get_cached_descriptor,
4121         .set_cached_descriptor = emulator_set_cached_descriptor,
4122         .get_segment_selector = emulator_get_segment_selector,
4123         .set_segment_selector = emulator_set_segment_selector,
4124         .get_cached_segment_base = emulator_get_cached_segment_base,
4125         .get_gdt             = emulator_get_gdt,
4126         .get_idt             = emulator_get_idt,
4127         .get_cr              = emulator_get_cr,
4128         .set_cr              = emulator_set_cr,
4129         .cpl                 = emulator_get_cpl,
4130         .get_dr              = emulator_get_dr,
4131         .set_dr              = emulator_set_dr,
4132         .set_msr             = kvm_set_msr,
4133         .get_msr             = kvm_get_msr,
4134 };
4135
4136 static void cache_all_regs(struct kvm_vcpu *vcpu)
4137 {
4138         kvm_register_read(vcpu, VCPU_REGS_RAX);
4139         kvm_register_read(vcpu, VCPU_REGS_RSP);
4140         kvm_register_read(vcpu, VCPU_REGS_RIP);
4141         vcpu->arch.regs_dirty = ~0;
4142 }
4143
4144 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4145 {
4146         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4147         /*
4148          * an sti; sti; sequence only disable interrupts for the first
4149          * instruction. So, if the last instruction, be it emulated or
4150          * not, left the system with the INT_STI flag enabled, it
4151          * means that the last instruction is an sti. We should not
4152          * leave the flag on in this case. The same goes for mov ss
4153          */
4154         if (!(int_shadow & mask))
4155                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4156 }
4157
4158 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4159 {
4160         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4161         if (ctxt->exception == PF_VECTOR)
4162                 kvm_propagate_fault(vcpu);
4163         else if (ctxt->error_code_valid)
4164                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4165         else
4166                 kvm_queue_exception(vcpu, ctxt->exception);
4167 }
4168
4169 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4170 {
4171         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4172         int cs_db, cs_l;
4173
4174         cache_all_regs(vcpu);
4175
4176         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4177
4178         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4179         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4180         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4181         vcpu->arch.emulate_ctxt.mode =
4182                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4183                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4184                 ? X86EMUL_MODE_VM86 : cs_l
4185                 ? X86EMUL_MODE_PROT64 : cs_db
4186                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4187         memset(c, 0, sizeof(struct decode_cache));
4188         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4189 }
4190
4191 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4192 {
4193         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4194         int ret;
4195
4196         init_emulate_ctxt(vcpu);
4197
4198         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4199         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4200         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4201         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4202
4203         if (ret != X86EMUL_CONTINUE)
4204                 return EMULATE_FAIL;
4205
4206         vcpu->arch.emulate_ctxt.eip = c->eip;
4207         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4208         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4209         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4210
4211         if (irq == NMI_VECTOR)
4212                 vcpu->arch.nmi_pending = false;
4213         else
4214                 vcpu->arch.interrupt.pending = false;
4215
4216         return EMULATE_DONE;
4217 }
4218 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4219
4220 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4221 {
4222         ++vcpu->stat.insn_emulation_fail;
4223         trace_kvm_emulate_insn_failed(vcpu);
4224         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4225         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4226         vcpu->run->internal.ndata = 0;
4227         kvm_queue_exception(vcpu, UD_VECTOR);
4228         return EMULATE_FAIL;
4229 }
4230
4231 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4232 {
4233         gpa_t gpa;
4234
4235         if (tdp_enabled)
4236                 return false;
4237
4238         /*
4239          * if emulation was due to access to shadowed page table
4240          * and it failed try to unshadow page and re-entetr the
4241          * guest to let CPU execute the instruction.
4242          */
4243         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4244                 return true;
4245
4246         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4247
4248         if (gpa == UNMAPPED_GVA)
4249                 return true; /* let cpu generate fault */
4250
4251         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4252                 return true;
4253
4254         return false;
4255 }
4256
4257 int emulate_instruction(struct kvm_vcpu *vcpu,
4258                         unsigned long cr2,
4259                         u16 error_code,
4260                         int emulation_type)
4261 {
4262         int r;
4263         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4264
4265         kvm_clear_exception_queue(vcpu);
4266         vcpu->arch.mmio_fault_cr2 = cr2;
4267         /*
4268          * TODO: fix emulate.c to use guest_read/write_register
4269          * instead of direct ->regs accesses, can save hundred cycles
4270          * on Intel for instructions that don't read/change RSP, for
4271          * for example.
4272          */
4273         cache_all_regs(vcpu);
4274
4275         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4276                 init_emulate_ctxt(vcpu);
4277                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4278                 vcpu->arch.emulate_ctxt.exception = -1;
4279                 vcpu->arch.emulate_ctxt.perm_ok = false;
4280
4281                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4282                 if (r == X86EMUL_PROPAGATE_FAULT)
4283                         goto done;
4284
4285                 trace_kvm_emulate_insn_start(vcpu);
4286
4287                 /* Only allow emulation of specific instructions on #UD
4288                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4289                 if (emulation_type & EMULTYPE_TRAP_UD) {
4290                         if (!c->twobyte)
4291                                 return EMULATE_FAIL;
4292                         switch (c->b) {
4293                         case 0x01: /* VMMCALL */
4294                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4295                                         return EMULATE_FAIL;
4296                                 break;
4297                         case 0x34: /* sysenter */
4298                         case 0x35: /* sysexit */
4299                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4300                                         return EMULATE_FAIL;
4301                                 break;
4302                         case 0x05: /* syscall */
4303                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4304                                         return EMULATE_FAIL;
4305                                 break;
4306                         default:
4307                                 return EMULATE_FAIL;
4308                         }
4309
4310                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4311                                 return EMULATE_FAIL;
4312                 }
4313
4314                 ++vcpu->stat.insn_emulation;
4315                 if (r)  {
4316                         if (reexecute_instruction(vcpu, cr2))
4317                                 return EMULATE_DONE;
4318                         if (emulation_type & EMULTYPE_SKIP)
4319                                 return EMULATE_FAIL;
4320                         return handle_emulation_failure(vcpu);
4321                 }
4322         }
4323
4324         if (emulation_type & EMULTYPE_SKIP) {
4325                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4326                 return EMULATE_DONE;
4327         }
4328
4329         /* this is needed for vmware backdor interface to work since it
4330            changes registers values  during IO operation */
4331         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4332
4333 restart:
4334         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4335
4336         if (r == EMULATION_FAILED) {
4337                 if (reexecute_instruction(vcpu, cr2))
4338                         return EMULATE_DONE;
4339
4340                 return handle_emulation_failure(vcpu);
4341         }
4342
4343 done:
4344         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4345                 inject_emulated_exception(vcpu);
4346                 r = EMULATE_DONE;
4347         } else if (vcpu->arch.pio.count) {
4348                 if (!vcpu->arch.pio.in)
4349                         vcpu->arch.pio.count = 0;
4350                 r = EMULATE_DO_MMIO;
4351         } else if (vcpu->mmio_needed) {
4352                 if (vcpu->mmio_is_write)
4353                         vcpu->mmio_needed = 0;
4354                 r = EMULATE_DO_MMIO;
4355         } else if (r == EMULATION_RESTART)
4356                 goto restart;
4357         else
4358                 r = EMULATE_DONE;
4359
4360         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4361         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4362         kvm_make_request(KVM_REQ_EVENT, vcpu);
4363         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4364         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4365
4366         return r;
4367 }
4368 EXPORT_SYMBOL_GPL(emulate_instruction);
4369
4370 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4371 {
4372         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4373         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4374         /* do not return to emulator after return from userspace */
4375         vcpu->arch.pio.count = 0;
4376         return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4379
4380 static void tsc_bad(void *info)
4381 {
4382         __get_cpu_var(cpu_tsc_khz) = 0;
4383 }
4384
4385 static void tsc_khz_changed(void *data)
4386 {
4387         struct cpufreq_freqs *freq = data;
4388         unsigned long khz = 0;
4389
4390         if (data)
4391                 khz = freq->new;
4392         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4393                 khz = cpufreq_quick_get(raw_smp_processor_id());
4394         if (!khz)
4395                 khz = tsc_khz;
4396         __get_cpu_var(cpu_tsc_khz) = khz;
4397 }
4398
4399 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4400                                      void *data)
4401 {
4402         struct cpufreq_freqs *freq = data;
4403         struct kvm *kvm;
4404         struct kvm_vcpu *vcpu;
4405         int i, send_ipi = 0;
4406
4407         /*
4408          * We allow guests to temporarily run on slowing clocks,
4409          * provided we notify them after, or to run on accelerating
4410          * clocks, provided we notify them before.  Thus time never
4411          * goes backwards.
4412          *
4413          * However, we have a problem.  We can't atomically update
4414          * the frequency of a given CPU from this function; it is
4415          * merely a notifier, which can be called from any CPU.
4416          * Changing the TSC frequency at arbitrary points in time
4417          * requires a recomputation of local variables related to
4418          * the TSC for each VCPU.  We must flag these local variables
4419          * to be updated and be sure the update takes place with the
4420          * new frequency before any guests proceed.
4421          *
4422          * Unfortunately, the combination of hotplug CPU and frequency
4423          * change creates an intractable locking scenario; the order
4424          * of when these callouts happen is undefined with respect to
4425          * CPU hotplug, and they can race with each other.  As such,
4426          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4427          * undefined; you can actually have a CPU frequency change take
4428          * place in between the computation of X and the setting of the
4429          * variable.  To protect against this problem, all updates of
4430          * the per_cpu tsc_khz variable are done in an interrupt
4431          * protected IPI, and all callers wishing to update the value
4432          * must wait for a synchronous IPI to complete (which is trivial
4433          * if the caller is on the CPU already).  This establishes the
4434          * necessary total order on variable updates.
4435          *
4436          * Note that because a guest time update may take place
4437          * anytime after the setting of the VCPU's request bit, the
4438          * correct TSC value must be set before the request.  However,
4439          * to ensure the update actually makes it to any guest which
4440          * starts running in hardware virtualization between the set
4441          * and the acquisition of the spinlock, we must also ping the
4442          * CPU after setting the request bit.
4443          *
4444          */
4445
4446         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4447                 return 0;
4448         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4449                 return 0;
4450
4451         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4452
4453         spin_lock(&kvm_lock);
4454         list_for_each_entry(kvm, &vm_list, vm_list) {
4455                 kvm_for_each_vcpu(i, vcpu, kvm) {
4456                         if (vcpu->cpu != freq->cpu)
4457                                 continue;
4458                         if (!kvm_request_guest_time_update(vcpu))
4459                                 continue;
4460                         if (vcpu->cpu != smp_processor_id())
4461                                 send_ipi = 1;
4462                 }
4463         }
4464         spin_unlock(&kvm_lock);
4465
4466         if (freq->old < freq->new && send_ipi) {
4467                 /*
4468                  * We upscale the frequency.  Must make the guest
4469                  * doesn't see old kvmclock values while running with
4470                  * the new frequency, otherwise we risk the guest sees
4471                  * time go backwards.
4472                  *
4473                  * In case we update the frequency for another cpu
4474                  * (which might be in guest context) send an interrupt
4475                  * to kick the cpu out of guest context.  Next time
4476                  * guest context is entered kvmclock will be updated,
4477                  * so the guest will not see stale values.
4478                  */
4479                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4480         }
4481         return 0;
4482 }
4483
4484 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4485         .notifier_call  = kvmclock_cpufreq_notifier
4486 };
4487
4488 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4489                                         unsigned long action, void *hcpu)
4490 {
4491         unsigned int cpu = (unsigned long)hcpu;
4492
4493         switch (action) {
4494                 case CPU_ONLINE:
4495                 case CPU_DOWN_FAILED:
4496                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4497                         break;
4498                 case CPU_DOWN_PREPARE:
4499                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4500                         break;
4501         }
4502         return NOTIFY_OK;
4503 }
4504
4505 static struct notifier_block kvmclock_cpu_notifier_block = {
4506         .notifier_call  = kvmclock_cpu_notifier,
4507         .priority = -INT_MAX
4508 };
4509
4510 static void kvm_timer_init(void)
4511 {
4512         int cpu;
4513
4514         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4515         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4516                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4517                                           CPUFREQ_TRANSITION_NOTIFIER);
4518         }
4519         for_each_online_cpu(cpu)
4520                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4521 }
4522
4523 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4524
4525 static int kvm_is_in_guest(void)
4526 {
4527         return percpu_read(current_vcpu) != NULL;
4528 }
4529
4530 static int kvm_is_user_mode(void)
4531 {
4532         int user_mode = 3;
4533
4534         if (percpu_read(current_vcpu))
4535                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4536
4537         return user_mode != 0;
4538 }
4539
4540 static unsigned long kvm_get_guest_ip(void)
4541 {
4542         unsigned long ip = 0;
4543
4544         if (percpu_read(current_vcpu))
4545                 ip = kvm_rip_read(percpu_read(current_vcpu));
4546
4547         return ip;
4548 }
4549
4550 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4551         .is_in_guest            = kvm_is_in_guest,
4552         .is_user_mode           = kvm_is_user_mode,
4553         .get_guest_ip           = kvm_get_guest_ip,
4554 };
4555
4556 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4557 {
4558         percpu_write(current_vcpu, vcpu);
4559 }
4560 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4561
4562 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4563 {
4564         percpu_write(current_vcpu, NULL);
4565 }
4566 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4567
4568 int kvm_arch_init(void *opaque)
4569 {
4570         int r;
4571         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4572
4573         if (kvm_x86_ops) {
4574                 printk(KERN_ERR "kvm: already loaded the other module\n");
4575                 r = -EEXIST;
4576                 goto out;
4577         }
4578
4579         if (!ops->cpu_has_kvm_support()) {
4580                 printk(KERN_ERR "kvm: no hardware support\n");
4581                 r = -EOPNOTSUPP;
4582                 goto out;
4583         }
4584         if (ops->disabled_by_bios()) {
4585                 printk(KERN_ERR "kvm: disabled by bios\n");
4586                 r = -EOPNOTSUPP;
4587                 goto out;
4588         }
4589
4590         r = kvm_mmu_module_init();
4591         if (r)
4592                 goto out;
4593
4594         kvm_init_msr_list();
4595
4596         kvm_x86_ops = ops;
4597         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4598         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4599         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4600                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4601
4602         kvm_timer_init();
4603
4604         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4605
4606         if (cpu_has_xsave)
4607                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4608
4609         return 0;
4610
4611 out:
4612         return r;
4613 }
4614
4615 void kvm_arch_exit(void)
4616 {
4617         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4618
4619         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4620                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4621                                             CPUFREQ_TRANSITION_NOTIFIER);
4622         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4623         kvm_x86_ops = NULL;
4624         kvm_mmu_module_exit();
4625 }
4626
4627 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4628 {
4629         ++vcpu->stat.halt_exits;
4630         if (irqchip_in_kernel(vcpu->kvm)) {
4631                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4632                 return 1;
4633         } else {
4634                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4635                 return 0;
4636         }
4637 }
4638 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4639
4640 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4641                            unsigned long a1)
4642 {
4643         if (is_long_mode(vcpu))
4644                 return a0;
4645         else
4646                 return a0 | ((gpa_t)a1 << 32);
4647 }
4648
4649 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4650 {
4651         u64 param, ingpa, outgpa, ret;
4652         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4653         bool fast, longmode;
4654         int cs_db, cs_l;
4655
4656         /*
4657          * hypercall generates UD from non zero cpl and real mode
4658          * per HYPER-V spec
4659          */
4660         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4661                 kvm_queue_exception(vcpu, UD_VECTOR);
4662                 return 0;
4663         }
4664
4665         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4666         longmode = is_long_mode(vcpu) && cs_l == 1;
4667
4668         if (!longmode) {
4669                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4670                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4671                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4672                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4673                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4674                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4675         }
4676 #ifdef CONFIG_X86_64
4677         else {
4678                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4679                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4680                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4681         }
4682 #endif
4683
4684         code = param & 0xffff;
4685         fast = (param >> 16) & 0x1;
4686         rep_cnt = (param >> 32) & 0xfff;
4687         rep_idx = (param >> 48) & 0xfff;
4688
4689         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4690
4691         switch (code) {
4692         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4693                 kvm_vcpu_on_spin(vcpu);
4694                 break;
4695         default:
4696                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4697                 break;
4698         }
4699
4700         ret = res | (((u64)rep_done & 0xfff) << 32);
4701         if (longmode) {
4702                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4703         } else {
4704                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4705                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4706         }
4707
4708         return 1;
4709 }
4710
4711 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4712 {
4713         unsigned long nr, a0, a1, a2, a3, ret;
4714         int r = 1;
4715
4716         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4717                 return kvm_hv_hypercall(vcpu);
4718
4719         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4720         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4721         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4722         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4723         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4724
4725         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4726
4727         if (!is_long_mode(vcpu)) {
4728                 nr &= 0xFFFFFFFF;
4729                 a0 &= 0xFFFFFFFF;
4730                 a1 &= 0xFFFFFFFF;
4731                 a2 &= 0xFFFFFFFF;
4732                 a3 &= 0xFFFFFFFF;
4733         }
4734
4735         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4736                 ret = -KVM_EPERM;
4737                 goto out;
4738         }
4739
4740         switch (nr) {
4741         case KVM_HC_VAPIC_POLL_IRQ:
4742                 ret = 0;
4743                 break;
4744         case KVM_HC_MMU_OP:
4745                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4746                 break;
4747         default:
4748                 ret = -KVM_ENOSYS;
4749                 break;
4750         }
4751 out:
4752         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4753         ++vcpu->stat.hypercalls;
4754         return r;
4755 }
4756 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4757
4758 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4759 {
4760         char instruction[3];
4761         unsigned long rip = kvm_rip_read(vcpu);
4762
4763         /*
4764          * Blow out the MMU to ensure that no other VCPU has an active mapping
4765          * to ensure that the updated hypercall appears atomically across all
4766          * VCPUs.
4767          */
4768         kvm_mmu_zap_all(vcpu->kvm);
4769
4770         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4771
4772         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4773 }
4774
4775 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4776 {
4777         struct desc_ptr dt = { limit, base };
4778
4779         kvm_x86_ops->set_gdt(vcpu, &dt);
4780 }
4781
4782 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4783 {
4784         struct desc_ptr dt = { limit, base };
4785
4786         kvm_x86_ops->set_idt(vcpu, &dt);
4787 }
4788
4789 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4790 {
4791         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4792         int j, nent = vcpu->arch.cpuid_nent;
4793
4794         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4795         /* when no next entry is found, the current entry[i] is reselected */
4796         for (j = i + 1; ; j = (j + 1) % nent) {
4797                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4798                 if (ej->function == e->function) {
4799                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4800                         return j;
4801                 }
4802         }
4803         return 0; /* silence gcc, even though control never reaches here */
4804 }
4805
4806 /* find an entry with matching function, matching index (if needed), and that
4807  * should be read next (if it's stateful) */
4808 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4809         u32 function, u32 index)
4810 {
4811         if (e->function != function)
4812                 return 0;
4813         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4814                 return 0;
4815         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4816             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4817                 return 0;
4818         return 1;
4819 }
4820
4821 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4822                                               u32 function, u32 index)
4823 {
4824         int i;
4825         struct kvm_cpuid_entry2 *best = NULL;
4826
4827         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4828                 struct kvm_cpuid_entry2 *e;
4829
4830                 e = &vcpu->arch.cpuid_entries[i];
4831                 if (is_matching_cpuid_entry(e, function, index)) {
4832                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4833                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4834                         best = e;
4835                         break;
4836                 }
4837                 /*
4838                  * Both basic or both extended?
4839                  */
4840                 if (((e->function ^ function) & 0x80000000) == 0)
4841                         if (!best || e->function > best->function)
4842                                 best = e;
4843         }
4844         return best;
4845 }
4846 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4847
4848 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4849 {
4850         struct kvm_cpuid_entry2 *best;
4851
4852         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4853         if (!best || best->eax < 0x80000008)
4854                 goto not_found;
4855         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4856         if (best)
4857                 return best->eax & 0xff;
4858 not_found:
4859         return 36;
4860 }
4861
4862 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4863 {
4864         u32 function, index;
4865         struct kvm_cpuid_entry2 *best;
4866
4867         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4868         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4869         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4870         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4871         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4872         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4873         best = kvm_find_cpuid_entry(vcpu, function, index);
4874         if (best) {
4875                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4876                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4877                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4878                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4879         }
4880         kvm_x86_ops->skip_emulated_instruction(vcpu);
4881         trace_kvm_cpuid(function,
4882                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4883                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4884                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4885                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4886 }
4887 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4888
4889 /*
4890  * Check if userspace requested an interrupt window, and that the
4891  * interrupt window is open.
4892  *
4893  * No need to exit to userspace if we already have an interrupt queued.
4894  */
4895 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4896 {
4897         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4898                 vcpu->run->request_interrupt_window &&
4899                 kvm_arch_interrupt_allowed(vcpu));
4900 }
4901
4902 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4903 {
4904         struct kvm_run *kvm_run = vcpu->run;
4905
4906         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4907         kvm_run->cr8 = kvm_get_cr8(vcpu);
4908         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4909         if (irqchip_in_kernel(vcpu->kvm))
4910                 kvm_run->ready_for_interrupt_injection = 1;
4911         else
4912                 kvm_run->ready_for_interrupt_injection =
4913                         kvm_arch_interrupt_allowed(vcpu) &&
4914                         !kvm_cpu_has_interrupt(vcpu) &&
4915                         !kvm_event_needs_reinjection(vcpu);
4916 }
4917
4918 static void vapic_enter(struct kvm_vcpu *vcpu)
4919 {
4920         struct kvm_lapic *apic = vcpu->arch.apic;
4921         struct page *page;
4922
4923         if (!apic || !apic->vapic_addr)
4924                 return;
4925
4926         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4927
4928         vcpu->arch.apic->vapic_page = page;
4929 }
4930
4931 static void vapic_exit(struct kvm_vcpu *vcpu)
4932 {
4933         struct kvm_lapic *apic = vcpu->arch.apic;
4934         int idx;
4935
4936         if (!apic || !apic->vapic_addr)
4937                 return;
4938
4939         idx = srcu_read_lock(&vcpu->kvm->srcu);
4940         kvm_release_page_dirty(apic->vapic_page);
4941         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4942         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4943 }
4944
4945 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4946 {
4947         int max_irr, tpr;
4948
4949         if (!kvm_x86_ops->update_cr8_intercept)
4950                 return;
4951
4952         if (!vcpu->arch.apic)
4953                 return;
4954
4955         if (!vcpu->arch.apic->vapic_addr)
4956                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4957         else
4958                 max_irr = -1;
4959
4960         if (max_irr != -1)
4961                 max_irr >>= 4;
4962
4963         tpr = kvm_lapic_get_cr8(vcpu);
4964
4965         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4966 }
4967
4968 static void inject_pending_event(struct kvm_vcpu *vcpu)
4969 {
4970         /* try to reinject previous events if any */
4971         if (vcpu->arch.exception.pending) {
4972                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4973                                         vcpu->arch.exception.has_error_code,
4974                                         vcpu->arch.exception.error_code);
4975                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4976                                           vcpu->arch.exception.has_error_code,
4977                                           vcpu->arch.exception.error_code,
4978                                           vcpu->arch.exception.reinject);
4979                 return;
4980         }
4981
4982         if (vcpu->arch.nmi_injected) {
4983                 kvm_x86_ops->set_nmi(vcpu);
4984                 return;
4985         }
4986
4987         if (vcpu->arch.interrupt.pending) {
4988                 kvm_x86_ops->set_irq(vcpu);
4989                 return;
4990         }
4991
4992         /* try to inject new event if pending */
4993         if (vcpu->arch.nmi_pending) {
4994                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4995                         vcpu->arch.nmi_pending = false;
4996                         vcpu->arch.nmi_injected = true;
4997                         kvm_x86_ops->set_nmi(vcpu);
4998                 }
4999         } else if (kvm_cpu_has_interrupt(vcpu)) {
5000                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5001                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5002                                             false);
5003                         kvm_x86_ops->set_irq(vcpu);
5004                 }
5005         }
5006 }
5007
5008 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5009 {
5010         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5011                         !vcpu->guest_xcr0_loaded) {
5012                 /* kvm_set_xcr() also depends on this */
5013                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5014                 vcpu->guest_xcr0_loaded = 1;
5015         }
5016 }
5017
5018 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5019 {
5020         if (vcpu->guest_xcr0_loaded) {
5021                 if (vcpu->arch.xcr0 != host_xcr0)
5022                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5023                 vcpu->guest_xcr0_loaded = 0;
5024         }
5025 }
5026
5027 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5028 {
5029         int r;
5030         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5031                 vcpu->run->request_interrupt_window;
5032
5033         if (vcpu->requests) {
5034                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5035                         kvm_mmu_unload(vcpu);
5036                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5037                         __kvm_migrate_timers(vcpu);
5038                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
5039                         r = kvm_write_guest_time(vcpu);
5040                         if (unlikely(r))
5041                                 goto out;
5042                 }
5043                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5044                         kvm_mmu_sync_roots(vcpu);
5045                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5046                         kvm_x86_ops->tlb_flush(vcpu);
5047                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5048                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5049                         r = 0;
5050                         goto out;
5051                 }
5052                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5053                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5054                         r = 0;
5055                         goto out;
5056                 }
5057                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5058                         vcpu->fpu_active = 0;
5059                         kvm_x86_ops->fpu_deactivate(vcpu);
5060                 }
5061         }
5062
5063         r = kvm_mmu_reload(vcpu);
5064         if (unlikely(r))
5065                 goto out;
5066
5067         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5068                 inject_pending_event(vcpu);
5069
5070                 /* enable NMI/IRQ window open exits if needed */
5071                 if (vcpu->arch.nmi_pending)
5072                         kvm_x86_ops->enable_nmi_window(vcpu);
5073                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5074                         kvm_x86_ops->enable_irq_window(vcpu);
5075
5076                 if (kvm_lapic_enabled(vcpu)) {
5077                         update_cr8_intercept(vcpu);
5078                         kvm_lapic_sync_to_vapic(vcpu);
5079                 }
5080         }
5081
5082         preempt_disable();
5083
5084         kvm_x86_ops->prepare_guest_switch(vcpu);
5085         if (vcpu->fpu_active)
5086                 kvm_load_guest_fpu(vcpu);
5087         kvm_load_guest_xcr0(vcpu);
5088
5089         atomic_set(&vcpu->guest_mode, 1);
5090         smp_wmb();
5091
5092         local_irq_disable();
5093
5094         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5095             || need_resched() || signal_pending(current)) {
5096                 atomic_set(&vcpu->guest_mode, 0);
5097                 smp_wmb();
5098                 local_irq_enable();
5099                 preempt_enable();
5100                 kvm_x86_ops->cancel_injection(vcpu);
5101                 r = 1;
5102                 goto out;
5103         }
5104
5105         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5106
5107         kvm_guest_enter();
5108
5109         if (unlikely(vcpu->arch.switch_db_regs)) {
5110                 set_debugreg(0, 7);
5111                 set_debugreg(vcpu->arch.eff_db[0], 0);
5112                 set_debugreg(vcpu->arch.eff_db[1], 1);
5113                 set_debugreg(vcpu->arch.eff_db[2], 2);
5114                 set_debugreg(vcpu->arch.eff_db[3], 3);
5115         }
5116
5117         trace_kvm_entry(vcpu->vcpu_id);
5118         kvm_x86_ops->run(vcpu);
5119
5120         /*
5121          * If the guest has used debug registers, at least dr7
5122          * will be disabled while returning to the host.
5123          * If we don't have active breakpoints in the host, we don't
5124          * care about the messed up debug address registers. But if
5125          * we have some of them active, restore the old state.
5126          */
5127         if (hw_breakpoint_active())
5128                 hw_breakpoint_restore();
5129
5130         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5131
5132         atomic_set(&vcpu->guest_mode, 0);
5133         smp_wmb();
5134         local_irq_enable();
5135
5136         ++vcpu->stat.exits;
5137
5138         /*
5139          * We must have an instruction between local_irq_enable() and
5140          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5141          * the interrupt shadow.  The stat.exits increment will do nicely.
5142          * But we need to prevent reordering, hence this barrier():
5143          */
5144         barrier();
5145
5146         kvm_guest_exit();
5147
5148         preempt_enable();
5149
5150         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5151
5152         /*
5153          * Profile KVM exit RIPs:
5154          */
5155         if (unlikely(prof_on == KVM_PROFILING)) {
5156                 unsigned long rip = kvm_rip_read(vcpu);
5157                 profile_hit(KVM_PROFILING, (void *)rip);
5158         }
5159
5160
5161         kvm_lapic_sync_from_vapic(vcpu);
5162
5163         r = kvm_x86_ops->handle_exit(vcpu);
5164 out:
5165         return r;
5166 }
5167
5168
5169 static int __vcpu_run(struct kvm_vcpu *vcpu)
5170 {
5171         int r;
5172         struct kvm *kvm = vcpu->kvm;
5173
5174         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5175                 pr_debug("vcpu %d received sipi with vector # %x\n",
5176                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5177                 kvm_lapic_reset(vcpu);
5178                 r = kvm_arch_vcpu_reset(vcpu);
5179                 if (r)
5180                         return r;
5181                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5182         }
5183
5184         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5185         vapic_enter(vcpu);
5186
5187         r = 1;
5188         while (r > 0) {
5189                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5190                         r = vcpu_enter_guest(vcpu);
5191                 else {
5192                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5193                         kvm_vcpu_block(vcpu);
5194                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5195                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5196                         {
5197                                 switch(vcpu->arch.mp_state) {
5198                                 case KVM_MP_STATE_HALTED:
5199                                         vcpu->arch.mp_state =
5200                                                 KVM_MP_STATE_RUNNABLE;
5201                                 case KVM_MP_STATE_RUNNABLE:
5202                                         break;
5203                                 case KVM_MP_STATE_SIPI_RECEIVED:
5204                                 default:
5205                                         r = -EINTR;
5206                                         break;
5207                                 }
5208                         }
5209                 }
5210
5211                 if (r <= 0)
5212                         break;
5213
5214                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5215                 if (kvm_cpu_has_pending_timer(vcpu))
5216                         kvm_inject_pending_timer_irqs(vcpu);
5217
5218                 if (dm_request_for_irq_injection(vcpu)) {
5219                         r = -EINTR;
5220                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5221                         ++vcpu->stat.request_irq_exits;
5222                 }
5223                 if (signal_pending(current)) {
5224                         r = -EINTR;
5225                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5226                         ++vcpu->stat.signal_exits;
5227                 }
5228                 if (need_resched()) {
5229                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5230                         kvm_resched(vcpu);
5231                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5232                 }
5233         }
5234
5235         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5236
5237         vapic_exit(vcpu);
5238
5239         return r;
5240 }
5241
5242 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5243 {
5244         int r;
5245         sigset_t sigsaved;
5246
5247         if (vcpu->sigset_active)
5248                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5249
5250         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5251                 kvm_vcpu_block(vcpu);
5252                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5253                 r = -EAGAIN;
5254                 goto out;
5255         }
5256
5257         /* re-sync apic's tpr */
5258         if (!irqchip_in_kernel(vcpu->kvm))
5259                 kvm_set_cr8(vcpu, kvm_run->cr8);
5260
5261         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5262                 if (vcpu->mmio_needed) {
5263                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5264                         vcpu->mmio_read_completed = 1;
5265                         vcpu->mmio_needed = 0;
5266                 }
5267                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5268                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5269                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5270                 if (r != EMULATE_DONE) {
5271                         r = 0;
5272                         goto out;
5273                 }
5274         }
5275         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5276                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5277                                      kvm_run->hypercall.ret);
5278
5279         r = __vcpu_run(vcpu);
5280
5281 out:
5282         post_kvm_run_save(vcpu);
5283         if (vcpu->sigset_active)
5284                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5285
5286         return r;
5287 }
5288
5289 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5290 {
5291         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5292         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5293         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5294         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5295         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5296         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5297         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5298         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5299 #ifdef CONFIG_X86_64
5300         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5301         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5302         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5303         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5304         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5305         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5306         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5307         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5308 #endif
5309
5310         regs->rip = kvm_rip_read(vcpu);
5311         regs->rflags = kvm_get_rflags(vcpu);
5312
5313         return 0;
5314 }
5315
5316 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5317 {
5318         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5319         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5320         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5321         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5322         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5323         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5324         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5325         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5326 #ifdef CONFIG_X86_64
5327         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5328         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5329         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5330         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5331         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5332         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5333         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5334         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5335 #endif
5336
5337         kvm_rip_write(vcpu, regs->rip);
5338         kvm_set_rflags(vcpu, regs->rflags);
5339
5340         vcpu->arch.exception.pending = false;
5341
5342         kvm_make_request(KVM_REQ_EVENT, vcpu);
5343
5344         return 0;
5345 }
5346
5347 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5348 {
5349         struct kvm_segment cs;
5350
5351         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5352         *db = cs.db;
5353         *l = cs.l;
5354 }
5355 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5356
5357 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5358                                   struct kvm_sregs *sregs)
5359 {
5360         struct desc_ptr dt;
5361
5362         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5363         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5364         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5365         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5366         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5367         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5368
5369         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5370         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5371
5372         kvm_x86_ops->get_idt(vcpu, &dt);
5373         sregs->idt.limit = dt.size;
5374         sregs->idt.base = dt.address;
5375         kvm_x86_ops->get_gdt(vcpu, &dt);
5376         sregs->gdt.limit = dt.size;
5377         sregs->gdt.base = dt.address;
5378
5379         sregs->cr0 = kvm_read_cr0(vcpu);
5380         sregs->cr2 = vcpu->arch.cr2;
5381         sregs->cr3 = vcpu->arch.cr3;
5382         sregs->cr4 = kvm_read_cr4(vcpu);
5383         sregs->cr8 = kvm_get_cr8(vcpu);
5384         sregs->efer = vcpu->arch.efer;
5385         sregs->apic_base = kvm_get_apic_base(vcpu);
5386
5387         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5388
5389         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5390                 set_bit(vcpu->arch.interrupt.nr,
5391                         (unsigned long *)sregs->interrupt_bitmap);
5392
5393         return 0;
5394 }
5395
5396 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5397                                     struct kvm_mp_state *mp_state)
5398 {
5399         mp_state->mp_state = vcpu->arch.mp_state;
5400         return 0;
5401 }
5402
5403 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5404                                     struct kvm_mp_state *mp_state)
5405 {
5406         vcpu->arch.mp_state = mp_state->mp_state;
5407         kvm_make_request(KVM_REQ_EVENT, vcpu);
5408         return 0;
5409 }
5410
5411 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5412                     bool has_error_code, u32 error_code)
5413 {
5414         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5415         int ret;
5416
5417         init_emulate_ctxt(vcpu);
5418
5419         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5420                                    tss_selector, reason, has_error_code,
5421                                    error_code);
5422
5423         if (ret)
5424                 return EMULATE_FAIL;
5425
5426         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5427         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5428         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5429         kvm_make_request(KVM_REQ_EVENT, vcpu);
5430         return EMULATE_DONE;
5431 }
5432 EXPORT_SYMBOL_GPL(kvm_task_switch);
5433
5434 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5435                                   struct kvm_sregs *sregs)
5436 {
5437         int mmu_reset_needed = 0;
5438         int pending_vec, max_bits;
5439         struct desc_ptr dt;
5440
5441         dt.size = sregs->idt.limit;
5442         dt.address = sregs->idt.base;
5443         kvm_x86_ops->set_idt(vcpu, &dt);
5444         dt.size = sregs->gdt.limit;
5445         dt.address = sregs->gdt.base;
5446         kvm_x86_ops->set_gdt(vcpu, &dt);
5447
5448         vcpu->arch.cr2 = sregs->cr2;
5449         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5450         vcpu->arch.cr3 = sregs->cr3;
5451
5452         kvm_set_cr8(vcpu, sregs->cr8);
5453
5454         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5455         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5456         kvm_set_apic_base(vcpu, sregs->apic_base);
5457
5458         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5459         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5460         vcpu->arch.cr0 = sregs->cr0;
5461
5462         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5463         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5464         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5465                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5466                 mmu_reset_needed = 1;
5467         }
5468
5469         if (mmu_reset_needed)
5470                 kvm_mmu_reset_context(vcpu);
5471
5472         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5473         pending_vec = find_first_bit(
5474                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5475         if (pending_vec < max_bits) {
5476                 kvm_queue_interrupt(vcpu, pending_vec, false);
5477                 pr_debug("Set back pending irq %d\n", pending_vec);
5478                 if (irqchip_in_kernel(vcpu->kvm))
5479                         kvm_pic_clear_isr_ack(vcpu->kvm);
5480         }
5481
5482         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5483         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5484         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5485         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5486         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5487         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5488
5489         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5490         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5491
5492         update_cr8_intercept(vcpu);
5493
5494         /* Older userspace won't unhalt the vcpu on reset. */
5495         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5496             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5497             !is_protmode(vcpu))
5498                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5499
5500         kvm_make_request(KVM_REQ_EVENT, vcpu);
5501
5502         return 0;
5503 }
5504
5505 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5506                                         struct kvm_guest_debug *dbg)
5507 {
5508         unsigned long rflags;
5509         int i, r;
5510
5511         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5512                 r = -EBUSY;
5513                 if (vcpu->arch.exception.pending)
5514                         goto out;
5515                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5516                         kvm_queue_exception(vcpu, DB_VECTOR);
5517                 else
5518                         kvm_queue_exception(vcpu, BP_VECTOR);
5519         }
5520
5521         /*
5522          * Read rflags as long as potentially injected trace flags are still
5523          * filtered out.
5524          */
5525         rflags = kvm_get_rflags(vcpu);
5526
5527         vcpu->guest_debug = dbg->control;
5528         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5529                 vcpu->guest_debug = 0;
5530
5531         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5532                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5533                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5534                 vcpu->arch.switch_db_regs =
5535                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5536         } else {
5537                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5538                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5539                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5540         }
5541
5542         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5543                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5544                         get_segment_base(vcpu, VCPU_SREG_CS);
5545
5546         /*
5547          * Trigger an rflags update that will inject or remove the trace
5548          * flags.
5549          */
5550         kvm_set_rflags(vcpu, rflags);
5551
5552         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5553
5554         r = 0;
5555
5556 out:
5557
5558         return r;
5559 }
5560
5561 /*
5562  * Translate a guest virtual address to a guest physical address.
5563  */
5564 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5565                                     struct kvm_translation *tr)
5566 {
5567         unsigned long vaddr = tr->linear_address;
5568         gpa_t gpa;
5569         int idx;
5570
5571         idx = srcu_read_lock(&vcpu->kvm->srcu);
5572         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5573         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5574         tr->physical_address = gpa;
5575         tr->valid = gpa != UNMAPPED_GVA;
5576         tr->writeable = 1;
5577         tr->usermode = 0;
5578
5579         return 0;
5580 }
5581
5582 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5583 {
5584         struct i387_fxsave_struct *fxsave =
5585                         &vcpu->arch.guest_fpu.state->fxsave;
5586
5587         memcpy(fpu->fpr, fxsave->st_space, 128);
5588         fpu->fcw = fxsave->cwd;
5589         fpu->fsw = fxsave->swd;
5590         fpu->ftwx = fxsave->twd;
5591         fpu->last_opcode = fxsave->fop;
5592         fpu->last_ip = fxsave->rip;
5593         fpu->last_dp = fxsave->rdp;
5594         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5595
5596         return 0;
5597 }
5598
5599 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5600 {
5601         struct i387_fxsave_struct *fxsave =
5602                         &vcpu->arch.guest_fpu.state->fxsave;
5603
5604         memcpy(fxsave->st_space, fpu->fpr, 128);
5605         fxsave->cwd = fpu->fcw;
5606         fxsave->swd = fpu->fsw;
5607         fxsave->twd = fpu->ftwx;
5608         fxsave->fop = fpu->last_opcode;
5609         fxsave->rip = fpu->last_ip;
5610         fxsave->rdp = fpu->last_dp;
5611         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5612
5613         return 0;
5614 }
5615
5616 int fx_init(struct kvm_vcpu *vcpu)
5617 {
5618         int err;
5619
5620         err = fpu_alloc(&vcpu->arch.guest_fpu);
5621         if (err)
5622                 return err;
5623
5624         fpu_finit(&vcpu->arch.guest_fpu);
5625
5626         /*
5627          * Ensure guest xcr0 is valid for loading
5628          */
5629         vcpu->arch.xcr0 = XSTATE_FP;
5630
5631         vcpu->arch.cr0 |= X86_CR0_ET;
5632
5633         return 0;
5634 }
5635 EXPORT_SYMBOL_GPL(fx_init);
5636
5637 static void fx_free(struct kvm_vcpu *vcpu)
5638 {
5639         fpu_free(&vcpu->arch.guest_fpu);
5640 }
5641
5642 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5643 {
5644         if (vcpu->guest_fpu_loaded)
5645                 return;
5646
5647         /*
5648          * Restore all possible states in the guest,
5649          * and assume host would use all available bits.
5650          * Guest xcr0 would be loaded later.
5651          */
5652         kvm_put_guest_xcr0(vcpu);
5653         vcpu->guest_fpu_loaded = 1;
5654         unlazy_fpu(current);
5655         fpu_restore_checking(&vcpu->arch.guest_fpu);
5656         trace_kvm_fpu(1);
5657 }
5658
5659 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5660 {
5661         kvm_put_guest_xcr0(vcpu);
5662
5663         if (!vcpu->guest_fpu_loaded)
5664                 return;
5665
5666         vcpu->guest_fpu_loaded = 0;
5667         fpu_save_init(&vcpu->arch.guest_fpu);
5668         ++vcpu->stat.fpu_reload;
5669         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5670         trace_kvm_fpu(0);
5671 }
5672
5673 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5674 {
5675         if (vcpu->arch.time_page) {
5676                 kvm_release_page_dirty(vcpu->arch.time_page);
5677                 vcpu->arch.time_page = NULL;
5678         }
5679
5680         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5681         fx_free(vcpu);
5682         kvm_x86_ops->vcpu_free(vcpu);
5683 }
5684
5685 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5686                                                 unsigned int id)
5687 {
5688         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5689                 printk_once(KERN_WARNING
5690                 "kvm: SMP vm created on host with unstable TSC; "
5691                 "guest TSC will not be reliable\n");
5692         return kvm_x86_ops->vcpu_create(kvm, id);
5693 }
5694
5695 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5696 {
5697         int r;
5698
5699         vcpu->arch.mtrr_state.have_fixed = 1;
5700         vcpu_load(vcpu);
5701         r = kvm_arch_vcpu_reset(vcpu);
5702         if (r == 0)
5703                 r = kvm_mmu_setup(vcpu);
5704         vcpu_put(vcpu);
5705         if (r < 0)
5706                 goto free_vcpu;
5707
5708         return 0;
5709 free_vcpu:
5710         kvm_x86_ops->vcpu_free(vcpu);
5711         return r;
5712 }
5713
5714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5715 {
5716         vcpu_load(vcpu);
5717         kvm_mmu_unload(vcpu);
5718         vcpu_put(vcpu);
5719
5720         fx_free(vcpu);
5721         kvm_x86_ops->vcpu_free(vcpu);
5722 }
5723
5724 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5725 {
5726         vcpu->arch.nmi_pending = false;
5727         vcpu->arch.nmi_injected = false;
5728
5729         vcpu->arch.switch_db_regs = 0;
5730         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5731         vcpu->arch.dr6 = DR6_FIXED_1;
5732         vcpu->arch.dr7 = DR7_FIXED_1;
5733
5734         kvm_make_request(KVM_REQ_EVENT, vcpu);
5735
5736         return kvm_x86_ops->vcpu_reset(vcpu);
5737 }
5738
5739 int kvm_arch_hardware_enable(void *garbage)
5740 {
5741         struct kvm *kvm;
5742         struct kvm_vcpu *vcpu;
5743         int i;
5744
5745         kvm_shared_msr_cpu_online();
5746         list_for_each_entry(kvm, &vm_list, vm_list)
5747                 kvm_for_each_vcpu(i, vcpu, kvm)
5748                         if (vcpu->cpu == smp_processor_id())
5749                                 kvm_request_guest_time_update(vcpu);
5750         return kvm_x86_ops->hardware_enable(garbage);
5751 }
5752
5753 void kvm_arch_hardware_disable(void *garbage)
5754 {
5755         kvm_x86_ops->hardware_disable(garbage);
5756         drop_user_return_notifiers(garbage);
5757 }
5758
5759 int kvm_arch_hardware_setup(void)
5760 {
5761         return kvm_x86_ops->hardware_setup();
5762 }
5763
5764 void kvm_arch_hardware_unsetup(void)
5765 {
5766         kvm_x86_ops->hardware_unsetup();
5767 }
5768
5769 void kvm_arch_check_processor_compat(void *rtn)
5770 {
5771         kvm_x86_ops->check_processor_compatibility(rtn);
5772 }
5773
5774 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5775 {
5776         struct page *page;
5777         struct kvm *kvm;
5778         int r;
5779
5780         BUG_ON(vcpu->kvm == NULL);
5781         kvm = vcpu->kvm;
5782
5783         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5784         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5785         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5786         vcpu->arch.mmu.translate_gpa = translate_gpa;
5787         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5788         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5789                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5790         else
5791                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5792
5793         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5794         if (!page) {
5795                 r = -ENOMEM;
5796                 goto fail;
5797         }
5798         vcpu->arch.pio_data = page_address(page);
5799
5800         r = kvm_mmu_create(vcpu);
5801         if (r < 0)
5802                 goto fail_free_pio_data;
5803
5804         if (irqchip_in_kernel(kvm)) {
5805                 r = kvm_create_lapic(vcpu);
5806                 if (r < 0)
5807                         goto fail_mmu_destroy;
5808         }
5809
5810         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5811                                        GFP_KERNEL);
5812         if (!vcpu->arch.mce_banks) {
5813                 r = -ENOMEM;
5814                 goto fail_free_lapic;
5815         }
5816         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5817
5818         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5819                 goto fail_free_mce_banks;
5820
5821         return 0;
5822 fail_free_mce_banks:
5823         kfree(vcpu->arch.mce_banks);
5824 fail_free_lapic:
5825         kvm_free_lapic(vcpu);
5826 fail_mmu_destroy:
5827         kvm_mmu_destroy(vcpu);
5828 fail_free_pio_data:
5829         free_page((unsigned long)vcpu->arch.pio_data);
5830 fail:
5831         return r;
5832 }
5833
5834 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5835 {
5836         int idx;
5837
5838         kfree(vcpu->arch.mce_banks);
5839         kvm_free_lapic(vcpu);
5840         idx = srcu_read_lock(&vcpu->kvm->srcu);
5841         kvm_mmu_destroy(vcpu);
5842         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5843         free_page((unsigned long)vcpu->arch.pio_data);
5844 }
5845
5846 struct  kvm *kvm_arch_create_vm(void)
5847 {
5848         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5849
5850         if (!kvm)
5851                 return ERR_PTR(-ENOMEM);
5852
5853         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5854         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5855
5856         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5857         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5858
5859         spin_lock_init(&kvm->arch.tsc_write_lock);
5860
5861         return kvm;
5862 }
5863
5864 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5865 {
5866         vcpu_load(vcpu);
5867         kvm_mmu_unload(vcpu);
5868         vcpu_put(vcpu);
5869 }
5870
5871 static void kvm_free_vcpus(struct kvm *kvm)
5872 {
5873         unsigned int i;
5874         struct kvm_vcpu *vcpu;
5875
5876         /*
5877          * Unpin any mmu pages first.
5878          */
5879         kvm_for_each_vcpu(i, vcpu, kvm)
5880                 kvm_unload_vcpu_mmu(vcpu);
5881         kvm_for_each_vcpu(i, vcpu, kvm)
5882                 kvm_arch_vcpu_free(vcpu);
5883
5884         mutex_lock(&kvm->lock);
5885         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5886                 kvm->vcpus[i] = NULL;
5887
5888         atomic_set(&kvm->online_vcpus, 0);
5889         mutex_unlock(&kvm->lock);
5890 }
5891
5892 void kvm_arch_sync_events(struct kvm *kvm)
5893 {
5894         kvm_free_all_assigned_devices(kvm);
5895         kvm_free_pit(kvm);
5896 }
5897
5898 void kvm_arch_destroy_vm(struct kvm *kvm)
5899 {
5900         kvm_iommu_unmap_guest(kvm);
5901         kfree(kvm->arch.vpic);
5902         kfree(kvm->arch.vioapic);
5903         kvm_free_vcpus(kvm);
5904         kvm_free_physmem(kvm);
5905         if (kvm->arch.apic_access_page)
5906                 put_page(kvm->arch.apic_access_page);
5907         if (kvm->arch.ept_identity_pagetable)
5908                 put_page(kvm->arch.ept_identity_pagetable);
5909         cleanup_srcu_struct(&kvm->srcu);
5910         kfree(kvm);
5911 }
5912
5913 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5914                                 struct kvm_memory_slot *memslot,
5915                                 struct kvm_memory_slot old,
5916                                 struct kvm_userspace_memory_region *mem,
5917                                 int user_alloc)
5918 {
5919         int npages = memslot->npages;
5920         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5921
5922         /* Prevent internal slot pages from being moved by fork()/COW. */
5923         if (memslot->id >= KVM_MEMORY_SLOTS)
5924                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5925
5926         /*To keep backward compatibility with older userspace,
5927          *x86 needs to hanlde !user_alloc case.
5928          */
5929         if (!user_alloc) {
5930                 if (npages && !old.rmap) {
5931                         unsigned long userspace_addr;
5932
5933                         down_write(&current->mm->mmap_sem);
5934                         userspace_addr = do_mmap(NULL, 0,
5935                                                  npages * PAGE_SIZE,
5936                                                  PROT_READ | PROT_WRITE,
5937                                                  map_flags,
5938                                                  0);
5939                         up_write(&current->mm->mmap_sem);
5940
5941                         if (IS_ERR((void *)userspace_addr))
5942                                 return PTR_ERR((void *)userspace_addr);
5943
5944                         memslot->userspace_addr = userspace_addr;
5945                 }
5946         }
5947
5948
5949         return 0;
5950 }
5951
5952 void kvm_arch_commit_memory_region(struct kvm *kvm,
5953                                 struct kvm_userspace_memory_region *mem,
5954                                 struct kvm_memory_slot old,
5955                                 int user_alloc)
5956 {
5957
5958         int npages = mem->memory_size >> PAGE_SHIFT;
5959
5960         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5961                 int ret;
5962
5963                 down_write(&current->mm->mmap_sem);
5964                 ret = do_munmap(current->mm, old.userspace_addr,
5965                                 old.npages * PAGE_SIZE);
5966                 up_write(&current->mm->mmap_sem);
5967                 if (ret < 0)
5968                         printk(KERN_WARNING
5969                                "kvm_vm_ioctl_set_memory_region: "
5970                                "failed to munmap memory\n");
5971         }
5972
5973         spin_lock(&kvm->mmu_lock);
5974         if (!kvm->arch.n_requested_mmu_pages) {
5975                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5976                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5977         }
5978
5979         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5980         spin_unlock(&kvm->mmu_lock);
5981 }
5982
5983 void kvm_arch_flush_shadow(struct kvm *kvm)
5984 {
5985         kvm_mmu_zap_all(kvm);
5986         kvm_reload_remote_mmus(kvm);
5987 }
5988
5989 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5990 {
5991         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5992                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5993                 || vcpu->arch.nmi_pending ||
5994                 (kvm_arch_interrupt_allowed(vcpu) &&
5995                  kvm_cpu_has_interrupt(vcpu));
5996 }
5997
5998 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5999 {
6000         int me;
6001         int cpu = vcpu->cpu;
6002
6003         if (waitqueue_active(&vcpu->wq)) {
6004                 wake_up_interruptible(&vcpu->wq);
6005                 ++vcpu->stat.halt_wakeup;
6006         }
6007
6008         me = get_cpu();
6009         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6010                 if (atomic_xchg(&vcpu->guest_mode, 0))
6011                         smp_send_reschedule(cpu);
6012         put_cpu();
6013 }
6014
6015 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6016 {
6017         return kvm_x86_ops->interrupt_allowed(vcpu);
6018 }
6019
6020 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6021 {
6022         unsigned long current_rip = kvm_rip_read(vcpu) +
6023                 get_segment_base(vcpu, VCPU_SREG_CS);
6024
6025         return current_rip == linear_rip;
6026 }
6027 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6028
6029 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6030 {
6031         unsigned long rflags;
6032
6033         rflags = kvm_x86_ops->get_rflags(vcpu);
6034         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6035                 rflags &= ~X86_EFLAGS_TF;
6036         return rflags;
6037 }
6038 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6039
6040 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6041 {
6042         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6043             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6044                 rflags |= X86_EFLAGS_TF;
6045         kvm_x86_ops->set_rflags(vcpu, rflags);
6046         kvm_make_request(KVM_REQ_EVENT, vcpu);
6047 }
6048 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6049
6050 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);