Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58
59 #define MAX_IO_MSRS 256
60 #define CR0_RESERVED_BITS                                               \
61         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
62                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
63                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
64 #define CR4_RESERVED_BITS                                               \
65         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
66                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
67                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
68                           | X86_CR4_OSXSAVE \
69                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
70
71 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
72
73 #define KVM_MAX_MCE_BANKS 32
74 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
75
76 /* EFER defaults:
77  * - enable syscall per default because its emulated by KVM
78  * - enable LME and LMA per default on 64 bit KVM
79  */
80 #ifdef CONFIG_X86_64
81 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
82 #else
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
91                                     struct kvm_cpuid_entry2 __user *entries);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 int ignore_msrs = 0;
97 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 static inline u32 bit(int bitno)
157 {
158         return 1 << (bitno & 31);
159 }
160
161 static void kvm_on_user_return(struct user_return_notifier *urn)
162 {
163         unsigned slot;
164         struct kvm_shared_msrs *locals
165                 = container_of(urn, struct kvm_shared_msrs, urn);
166         struct kvm_shared_msr_values *values;
167
168         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
169                 values = &locals->values[slot];
170                 if (values->host != values->curr) {
171                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
172                         values->curr = values->host;
173                 }
174         }
175         locals->registered = false;
176         user_return_notifier_unregister(urn);
177 }
178
179 static void shared_msr_update(unsigned slot, u32 msr)
180 {
181         struct kvm_shared_msrs *smsr;
182         u64 value;
183
184         smsr = &__get_cpu_var(shared_msrs);
185         /* only read, and nobody should modify it at this time,
186          * so don't need lock */
187         if (slot >= shared_msrs_global.nr) {
188                 printk(KERN_ERR "kvm: invalid MSR slot!");
189                 return;
190         }
191         rdmsrl_safe(msr, &value);
192         smsr->values[slot].host = value;
193         smsr->values[slot].curr = value;
194 }
195
196 void kvm_define_shared_msr(unsigned slot, u32 msr)
197 {
198         if (slot >= shared_msrs_global.nr)
199                 shared_msrs_global.nr = slot + 1;
200         shared_msrs_global.msrs[slot] = msr;
201         /* we need ensured the shared_msr_global have been updated */
202         smp_wmb();
203 }
204 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
205
206 static void kvm_shared_msr_cpu_online(void)
207 {
208         unsigned i;
209
210         for (i = 0; i < shared_msrs_global.nr; ++i)
211                 shared_msr_update(i, shared_msrs_global.msrs[i]);
212 }
213
214 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
215 {
216         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
217
218         if (((value ^ smsr->values[slot].curr) & mask) == 0)
219                 return;
220         smsr->values[slot].curr = value;
221         wrmsrl(shared_msrs_global.msrs[slot], value);
222         if (!smsr->registered) {
223                 smsr->urn.on_user_return = kvm_on_user_return;
224                 user_return_notifier_register(&smsr->urn);
225                 smsr->registered = true;
226         }
227 }
228 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
229
230 static void drop_user_return_notifiers(void *ignore)
231 {
232         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
233
234         if (smsr->registered)
235                 kvm_on_user_return(&smsr->urn);
236 }
237
238 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
239 {
240         if (irqchip_in_kernel(vcpu->kvm))
241                 return vcpu->arch.apic_base;
242         else
243                 return vcpu->arch.apic_base;
244 }
245 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
246
247 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
248 {
249         /* TODO: reserve bits check */
250         if (irqchip_in_kernel(vcpu->kvm))
251                 kvm_lapic_set_base(vcpu, data);
252         else
253                 vcpu->arch.apic_base = data;
254 }
255 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
256
257 #define EXCPT_BENIGN            0
258 #define EXCPT_CONTRIBUTORY      1
259 #define EXCPT_PF                2
260
261 static int exception_class(int vector)
262 {
263         switch (vector) {
264         case PF_VECTOR:
265                 return EXCPT_PF;
266         case DE_VECTOR:
267         case TS_VECTOR:
268         case NP_VECTOR:
269         case SS_VECTOR:
270         case GP_VECTOR:
271                 return EXCPT_CONTRIBUTORY;
272         default:
273                 break;
274         }
275         return EXCPT_BENIGN;
276 }
277
278 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
279                 unsigned nr, bool has_error, u32 error_code,
280                 bool reinject)
281 {
282         u32 prev_nr;
283         int class1, class2;
284
285         if (!vcpu->arch.exception.pending) {
286         queue:
287                 vcpu->arch.exception.pending = true;
288                 vcpu->arch.exception.has_error_code = has_error;
289                 vcpu->arch.exception.nr = nr;
290                 vcpu->arch.exception.error_code = error_code;
291                 vcpu->arch.exception.reinject = reinject;
292                 return;
293         }
294
295         /* to check exception */
296         prev_nr = vcpu->arch.exception.nr;
297         if (prev_nr == DF_VECTOR) {
298                 /* triple fault -> shutdown */
299                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
300                 return;
301         }
302         class1 = exception_class(prev_nr);
303         class2 = exception_class(nr);
304         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
305                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
306                 /* generate double fault per SDM Table 5-5 */
307                 vcpu->arch.exception.pending = true;
308                 vcpu->arch.exception.has_error_code = true;
309                 vcpu->arch.exception.nr = DF_VECTOR;
310                 vcpu->arch.exception.error_code = 0;
311         } else
312                 /* replace previous exception with a new one in a hope
313                    that instruction re-execution will regenerate lost
314                    exception */
315                 goto queue;
316 }
317
318 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
319 {
320         kvm_multiple_exception(vcpu, nr, false, 0, false);
321 }
322 EXPORT_SYMBOL_GPL(kvm_queue_exception);
323
324 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, true);
327 }
328 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
329
330 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
331                            u32 error_code)
332 {
333         ++vcpu->stat.pf_guest;
334         vcpu->arch.cr2 = addr;
335         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
336 }
337
338 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
339 {
340         vcpu->arch.nmi_pending = 1;
341 }
342 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
343
344 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
345 {
346         kvm_multiple_exception(vcpu, nr, true, error_code, false);
347 }
348 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
349
350 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
351 {
352         kvm_multiple_exception(vcpu, nr, true, error_code, true);
353 }
354 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
355
356 /*
357  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
358  * a #GP and return false.
359  */
360 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
361 {
362         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
363                 return true;
364         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
365         return false;
366 }
367 EXPORT_SYMBOL_GPL(kvm_require_cpl);
368
369 /*
370  * Load the pae pdptrs.  Return true is they are all valid.
371  */
372 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
373 {
374         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
375         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
376         int i;
377         int ret;
378         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
379
380         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
381                                   offset * sizeof(u64), sizeof(pdpte));
382         if (ret < 0) {
383                 ret = 0;
384                 goto out;
385         }
386         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
387                 if (is_present_gpte(pdpte[i]) &&
388                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
389                         ret = 0;
390                         goto out;
391                 }
392         }
393         ret = 1;
394
395         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
396         __set_bit(VCPU_EXREG_PDPTR,
397                   (unsigned long *)&vcpu->arch.regs_avail);
398         __set_bit(VCPU_EXREG_PDPTR,
399                   (unsigned long *)&vcpu->arch.regs_dirty);
400 out:
401
402         return ret;
403 }
404 EXPORT_SYMBOL_GPL(load_pdptrs);
405
406 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
407 {
408         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
409         bool changed = true;
410         int r;
411
412         if (is_long_mode(vcpu) || !is_pae(vcpu))
413                 return false;
414
415         if (!test_bit(VCPU_EXREG_PDPTR,
416                       (unsigned long *)&vcpu->arch.regs_avail))
417                 return true;
418
419         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
420         if (r < 0)
421                 goto out;
422         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
423 out:
424
425         return changed;
426 }
427
428 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
429 {
430         unsigned long old_cr0 = kvm_read_cr0(vcpu);
431         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
432                                     X86_CR0_CD | X86_CR0_NW;
433
434         cr0 |= X86_CR0_ET;
435
436 #ifdef CONFIG_X86_64
437         if (cr0 & 0xffffffff00000000UL)
438                 return 1;
439 #endif
440
441         cr0 &= ~CR0_RESERVED_BITS;
442
443         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
444                 return 1;
445
446         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
447                 return 1;
448
449         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
450 #ifdef CONFIG_X86_64
451                 if ((vcpu->arch.efer & EFER_LME)) {
452                         int cs_db, cs_l;
453
454                         if (!is_pae(vcpu))
455                                 return 1;
456                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
457                         if (cs_l)
458                                 return 1;
459                 } else
460 #endif
461                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
462                         return 1;
463         }
464
465         kvm_x86_ops->set_cr0(vcpu, cr0);
466
467         if ((cr0 ^ old_cr0) & update_bits)
468                 kvm_mmu_reset_context(vcpu);
469         return 0;
470 }
471 EXPORT_SYMBOL_GPL(kvm_set_cr0);
472
473 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
474 {
475         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
476 }
477 EXPORT_SYMBOL_GPL(kvm_lmsw);
478
479 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
480 {
481         u64 xcr0;
482
483         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
484         if (index != XCR_XFEATURE_ENABLED_MASK)
485                 return 1;
486         xcr0 = xcr;
487         if (kvm_x86_ops->get_cpl(vcpu) != 0)
488                 return 1;
489         if (!(xcr0 & XSTATE_FP))
490                 return 1;
491         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
492                 return 1;
493         if (xcr0 & ~host_xcr0)
494                 return 1;
495         vcpu->arch.xcr0 = xcr0;
496         vcpu->guest_xcr0_loaded = 0;
497         return 0;
498 }
499
500 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
501 {
502         if (__kvm_set_xcr(vcpu, index, xcr)) {
503                 kvm_inject_gp(vcpu, 0);
504                 return 1;
505         }
506         return 0;
507 }
508 EXPORT_SYMBOL_GPL(kvm_set_xcr);
509
510 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
511 {
512         struct kvm_cpuid_entry2 *best;
513
514         best = kvm_find_cpuid_entry(vcpu, 1, 0);
515         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
516 }
517
518 static void update_cpuid(struct kvm_vcpu *vcpu)
519 {
520         struct kvm_cpuid_entry2 *best;
521
522         best = kvm_find_cpuid_entry(vcpu, 1, 0);
523         if (!best)
524                 return;
525
526         /* Update OSXSAVE bit */
527         if (cpu_has_xsave && best->function == 0x1) {
528                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
529                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
530                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
531         }
532 }
533
534 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
535 {
536         unsigned long old_cr4 = kvm_read_cr4(vcpu);
537         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
538
539         if (cr4 & CR4_RESERVED_BITS)
540                 return 1;
541
542         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
543                 return 1;
544
545         if (is_long_mode(vcpu)) {
546                 if (!(cr4 & X86_CR4_PAE))
547                         return 1;
548         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
549                    && ((cr4 ^ old_cr4) & pdptr_bits)
550                    && !load_pdptrs(vcpu, vcpu->arch.cr3))
551                 return 1;
552
553         if (cr4 & X86_CR4_VMXE)
554                 return 1;
555
556         kvm_x86_ops->set_cr4(vcpu, cr4);
557
558         if ((cr4 ^ old_cr4) & pdptr_bits)
559                 kvm_mmu_reset_context(vcpu);
560
561         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
562                 update_cpuid(vcpu);
563
564         return 0;
565 }
566 EXPORT_SYMBOL_GPL(kvm_set_cr4);
567
568 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
569 {
570         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
571                 kvm_mmu_sync_roots(vcpu);
572                 kvm_mmu_flush_tlb(vcpu);
573                 return 0;
574         }
575
576         if (is_long_mode(vcpu)) {
577                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
578                         return 1;
579         } else {
580                 if (is_pae(vcpu)) {
581                         if (cr3 & CR3_PAE_RESERVED_BITS)
582                                 return 1;
583                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
584                                 return 1;
585                 }
586                 /*
587                  * We don't check reserved bits in nonpae mode, because
588                  * this isn't enforced, and VMware depends on this.
589                  */
590         }
591
592         /*
593          * Does the new cr3 value map to physical memory? (Note, we
594          * catch an invalid cr3 even in real-mode, because it would
595          * cause trouble later on when we turn on paging anyway.)
596          *
597          * A real CPU would silently accept an invalid cr3 and would
598          * attempt to use it - with largely undefined (and often hard
599          * to debug) behavior on the guest side.
600          */
601         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
602                 return 1;
603         vcpu->arch.cr3 = cr3;
604         vcpu->arch.mmu.new_cr3(vcpu);
605         return 0;
606 }
607 EXPORT_SYMBOL_GPL(kvm_set_cr3);
608
609 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 {
611         if (cr8 & CR8_RESERVED_BITS)
612                 return 1;
613         if (irqchip_in_kernel(vcpu->kvm))
614                 kvm_lapic_set_tpr(vcpu, cr8);
615         else
616                 vcpu->arch.cr8 = cr8;
617         return 0;
618 }
619
620 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
621 {
622         if (__kvm_set_cr8(vcpu, cr8))
623                 kvm_inject_gp(vcpu, 0);
624 }
625 EXPORT_SYMBOL_GPL(kvm_set_cr8);
626
627 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
628 {
629         if (irqchip_in_kernel(vcpu->kvm))
630                 return kvm_lapic_get_cr8(vcpu);
631         else
632                 return vcpu->arch.cr8;
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_cr8);
635
636 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
637 {
638         switch (dr) {
639         case 0 ... 3:
640                 vcpu->arch.db[dr] = val;
641                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
642                         vcpu->arch.eff_db[dr] = val;
643                 break;
644         case 4:
645                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
646                         return 1; /* #UD */
647                 /* fall through */
648         case 6:
649                 if (val & 0xffffffff00000000ULL)
650                         return -1; /* #GP */
651                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
652                 break;
653         case 5:
654                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
655                         return 1; /* #UD */
656                 /* fall through */
657         default: /* 7 */
658                 if (val & 0xffffffff00000000ULL)
659                         return -1; /* #GP */
660                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
661                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
662                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
663                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
664                 }
665                 break;
666         }
667
668         return 0;
669 }
670
671 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
672 {
673         int res;
674
675         res = __kvm_set_dr(vcpu, dr, val);
676         if (res > 0)
677                 kvm_queue_exception(vcpu, UD_VECTOR);
678         else if (res < 0)
679                 kvm_inject_gp(vcpu, 0);
680
681         return res;
682 }
683 EXPORT_SYMBOL_GPL(kvm_set_dr);
684
685 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
686 {
687         switch (dr) {
688         case 0 ... 3:
689                 *val = vcpu->arch.db[dr];
690                 break;
691         case 4:
692                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
693                         return 1;
694                 /* fall through */
695         case 6:
696                 *val = vcpu->arch.dr6;
697                 break;
698         case 5:
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700                         return 1;
701                 /* fall through */
702         default: /* 7 */
703                 *val = vcpu->arch.dr7;
704                 break;
705         }
706
707         return 0;
708 }
709
710 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
711 {
712         if (_kvm_get_dr(vcpu, dr, val)) {
713                 kvm_queue_exception(vcpu, UD_VECTOR);
714                 return 1;
715         }
716         return 0;
717 }
718 EXPORT_SYMBOL_GPL(kvm_get_dr);
719
720 /*
721  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
722  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
723  *
724  * This list is modified at module load time to reflect the
725  * capabilities of the host cpu. This capabilities test skips MSRs that are
726  * kvm-specific. Those are put in the beginning of the list.
727  */
728
729 #define KVM_SAVE_MSRS_BEGIN     7
730 static u32 msrs_to_save[] = {
731         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
732         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
733         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
734         HV_X64_MSR_APIC_ASSIST_PAGE,
735         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
736         MSR_STAR,
737 #ifdef CONFIG_X86_64
738         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
739 #endif
740         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
741 };
742
743 static unsigned num_msrs_to_save;
744
745 static u32 emulated_msrs[] = {
746         MSR_IA32_MISC_ENABLE,
747         MSR_IA32_MCG_STATUS,
748         MSR_IA32_MCG_CTL,
749 };
750
751 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
752 {
753         u64 old_efer = vcpu->arch.efer;
754
755         if (efer & efer_reserved_bits)
756                 return 1;
757
758         if (is_paging(vcpu)
759             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
760                 return 1;
761
762         if (efer & EFER_FFXSR) {
763                 struct kvm_cpuid_entry2 *feat;
764
765                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
766                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
767                         return 1;
768         }
769
770         if (efer & EFER_SVME) {
771                 struct kvm_cpuid_entry2 *feat;
772
773                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
774                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
775                         return 1;
776         }
777
778         efer &= ~EFER_LMA;
779         efer |= vcpu->arch.efer & EFER_LMA;
780
781         kvm_x86_ops->set_efer(vcpu, efer);
782
783         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
784         kvm_mmu_reset_context(vcpu);
785
786         /* Update reserved bits */
787         if ((efer ^ old_efer) & EFER_NX)
788                 kvm_mmu_reset_context(vcpu);
789
790         return 0;
791 }
792
793 void kvm_enable_efer_bits(u64 mask)
794 {
795        efer_reserved_bits &= ~mask;
796 }
797 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
798
799
800 /*
801  * Writes msr value into into the appropriate "register".
802  * Returns 0 on success, non-0 otherwise.
803  * Assumes vcpu_load() was already called.
804  */
805 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
806 {
807         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
808 }
809
810 /*
811  * Adapt set_msr() to msr_io()'s calling convention
812  */
813 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
814 {
815         return kvm_set_msr(vcpu, index, *data);
816 }
817
818 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
819 {
820         int version;
821         int r;
822         struct pvclock_wall_clock wc;
823         struct timespec boot;
824
825         if (!wall_clock)
826                 return;
827
828         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
829         if (r)
830                 return;
831
832         if (version & 1)
833                 ++version;  /* first time write, random junk */
834
835         ++version;
836
837         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
838
839         /*
840          * The guest calculates current wall clock time by adding
841          * system time (updated by kvm_write_guest_time below) to the
842          * wall clock specified here.  guest system time equals host
843          * system time for us, thus we must fill in host boot time here.
844          */
845         getboottime(&boot);
846
847         wc.sec = boot.tv_sec;
848         wc.nsec = boot.tv_nsec;
849         wc.version = version;
850
851         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
852
853         version++;
854         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
855 }
856
857 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
858 {
859         uint32_t quotient, remainder;
860
861         /* Don't try to replace with do_div(), this one calculates
862          * "(dividend << 32) / divisor" */
863         __asm__ ( "divl %4"
864                   : "=a" (quotient), "=d" (remainder)
865                   : "0" (0), "1" (dividend), "r" (divisor) );
866         return quotient;
867 }
868
869 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
870 {
871         uint64_t nsecs = 1000000000LL;
872         int32_t  shift = 0;
873         uint64_t tps64;
874         uint32_t tps32;
875
876         tps64 = tsc_khz * 1000LL;
877         while (tps64 > nsecs*2) {
878                 tps64 >>= 1;
879                 shift--;
880         }
881
882         tps32 = (uint32_t)tps64;
883         while (tps32 <= (uint32_t)nsecs) {
884                 tps32 <<= 1;
885                 shift++;
886         }
887
888         hv_clock->tsc_shift = shift;
889         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
890
891         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
892                  __func__, tsc_khz, hv_clock->tsc_shift,
893                  hv_clock->tsc_to_system_mul);
894 }
895
896 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
897
898 static void kvm_write_guest_time(struct kvm_vcpu *v)
899 {
900         struct timespec ts;
901         unsigned long flags;
902         struct kvm_vcpu_arch *vcpu = &v->arch;
903         void *shared_kaddr;
904         unsigned long this_tsc_khz;
905
906         if ((!vcpu->time_page))
907                 return;
908
909         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
910         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
911                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
912                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
913         }
914         put_cpu_var(cpu_tsc_khz);
915
916         /* Keep irq disabled to prevent changes to the clock */
917         local_irq_save(flags);
918         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
919         ktime_get_ts(&ts);
920         monotonic_to_bootbased(&ts);
921         local_irq_restore(flags);
922
923         /* With all the info we got, fill in the values */
924
925         vcpu->hv_clock.system_time = ts.tv_nsec +
926                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
927
928         vcpu->hv_clock.flags = 0;
929
930         /*
931          * The interface expects us to write an even number signaling that the
932          * update is finished. Since the guest won't see the intermediate
933          * state, we just increase by 2 at the end.
934          */
935         vcpu->hv_clock.version += 2;
936
937         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
938
939         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
940                sizeof(vcpu->hv_clock));
941
942         kunmap_atomic(shared_kaddr, KM_USER0);
943
944         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
945 }
946
947 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
948 {
949         struct kvm_vcpu_arch *vcpu = &v->arch;
950
951         if (!vcpu->time_page)
952                 return 0;
953         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
954         return 1;
955 }
956
957 static bool msr_mtrr_valid(unsigned msr)
958 {
959         switch (msr) {
960         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
961         case MSR_MTRRfix64K_00000:
962         case MSR_MTRRfix16K_80000:
963         case MSR_MTRRfix16K_A0000:
964         case MSR_MTRRfix4K_C0000:
965         case MSR_MTRRfix4K_C8000:
966         case MSR_MTRRfix4K_D0000:
967         case MSR_MTRRfix4K_D8000:
968         case MSR_MTRRfix4K_E0000:
969         case MSR_MTRRfix4K_E8000:
970         case MSR_MTRRfix4K_F0000:
971         case MSR_MTRRfix4K_F8000:
972         case MSR_MTRRdefType:
973         case MSR_IA32_CR_PAT:
974                 return true;
975         case 0x2f8:
976                 return true;
977         }
978         return false;
979 }
980
981 static bool valid_pat_type(unsigned t)
982 {
983         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
984 }
985
986 static bool valid_mtrr_type(unsigned t)
987 {
988         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
989 }
990
991 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
992 {
993         int i;
994
995         if (!msr_mtrr_valid(msr))
996                 return false;
997
998         if (msr == MSR_IA32_CR_PAT) {
999                 for (i = 0; i < 8; i++)
1000                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1001                                 return false;
1002                 return true;
1003         } else if (msr == MSR_MTRRdefType) {
1004                 if (data & ~0xcff)
1005                         return false;
1006                 return valid_mtrr_type(data & 0xff);
1007         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1008                 for (i = 0; i < 8 ; i++)
1009                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1010                                 return false;
1011                 return true;
1012         }
1013
1014         /* variable MTRRs */
1015         return valid_mtrr_type(data & 0xff);
1016 }
1017
1018 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1019 {
1020         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1021
1022         if (!mtrr_valid(vcpu, msr, data))
1023                 return 1;
1024
1025         if (msr == MSR_MTRRdefType) {
1026                 vcpu->arch.mtrr_state.def_type = data;
1027                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1028         } else if (msr == MSR_MTRRfix64K_00000)
1029                 p[0] = data;
1030         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1031                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1032         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1033                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1034         else if (msr == MSR_IA32_CR_PAT)
1035                 vcpu->arch.pat = data;
1036         else {  /* Variable MTRRs */
1037                 int idx, is_mtrr_mask;
1038                 u64 *pt;
1039
1040                 idx = (msr - 0x200) / 2;
1041                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1042                 if (!is_mtrr_mask)
1043                         pt =
1044                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1045                 else
1046                         pt =
1047                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1048                 *pt = data;
1049         }
1050
1051         kvm_mmu_reset_context(vcpu);
1052         return 0;
1053 }
1054
1055 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1056 {
1057         u64 mcg_cap = vcpu->arch.mcg_cap;
1058         unsigned bank_num = mcg_cap & 0xff;
1059
1060         switch (msr) {
1061         case MSR_IA32_MCG_STATUS:
1062                 vcpu->arch.mcg_status = data;
1063                 break;
1064         case MSR_IA32_MCG_CTL:
1065                 if (!(mcg_cap & MCG_CTL_P))
1066                         return 1;
1067                 if (data != 0 && data != ~(u64)0)
1068                         return -1;
1069                 vcpu->arch.mcg_ctl = data;
1070                 break;
1071         default:
1072                 if (msr >= MSR_IA32_MC0_CTL &&
1073                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1074                         u32 offset = msr - MSR_IA32_MC0_CTL;
1075                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1076                          * some Linux kernels though clear bit 10 in bank 4 to
1077                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1078                          * this to avoid an uncatched #GP in the guest
1079                          */
1080                         if ((offset & 0x3) == 0 &&
1081                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1082                                 return -1;
1083                         vcpu->arch.mce_banks[offset] = data;
1084                         break;
1085                 }
1086                 return 1;
1087         }
1088         return 0;
1089 }
1090
1091 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1092 {
1093         struct kvm *kvm = vcpu->kvm;
1094         int lm = is_long_mode(vcpu);
1095         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1096                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1097         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1098                 : kvm->arch.xen_hvm_config.blob_size_32;
1099         u32 page_num = data & ~PAGE_MASK;
1100         u64 page_addr = data & PAGE_MASK;
1101         u8 *page;
1102         int r;
1103
1104         r = -E2BIG;
1105         if (page_num >= blob_size)
1106                 goto out;
1107         r = -ENOMEM;
1108         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1109         if (!page)
1110                 goto out;
1111         r = -EFAULT;
1112         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1113                 goto out_free;
1114         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1115                 goto out_free;
1116         r = 0;
1117 out_free:
1118         kfree(page);
1119 out:
1120         return r;
1121 }
1122
1123 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1124 {
1125         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1126 }
1127
1128 static bool kvm_hv_msr_partition_wide(u32 msr)
1129 {
1130         bool r = false;
1131         switch (msr) {
1132         case HV_X64_MSR_GUEST_OS_ID:
1133         case HV_X64_MSR_HYPERCALL:
1134                 r = true;
1135                 break;
1136         }
1137
1138         return r;
1139 }
1140
1141 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1142 {
1143         struct kvm *kvm = vcpu->kvm;
1144
1145         switch (msr) {
1146         case HV_X64_MSR_GUEST_OS_ID:
1147                 kvm->arch.hv_guest_os_id = data;
1148                 /* setting guest os id to zero disables hypercall page */
1149                 if (!kvm->arch.hv_guest_os_id)
1150                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1151                 break;
1152         case HV_X64_MSR_HYPERCALL: {
1153                 u64 gfn;
1154                 unsigned long addr;
1155                 u8 instructions[4];
1156
1157                 /* if guest os id is not set hypercall should remain disabled */
1158                 if (!kvm->arch.hv_guest_os_id)
1159                         break;
1160                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1161                         kvm->arch.hv_hypercall = data;
1162                         break;
1163                 }
1164                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1165                 addr = gfn_to_hva(kvm, gfn);
1166                 if (kvm_is_error_hva(addr))
1167                         return 1;
1168                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1169                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1170                 if (copy_to_user((void __user *)addr, instructions, 4))
1171                         return 1;
1172                 kvm->arch.hv_hypercall = data;
1173                 break;
1174         }
1175         default:
1176                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1177                           "data 0x%llx\n", msr, data);
1178                 return 1;
1179         }
1180         return 0;
1181 }
1182
1183 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1184 {
1185         switch (msr) {
1186         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1187                 unsigned long addr;
1188
1189                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1190                         vcpu->arch.hv_vapic = data;
1191                         break;
1192                 }
1193                 addr = gfn_to_hva(vcpu->kvm, data >>
1194                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1195                 if (kvm_is_error_hva(addr))
1196                         return 1;
1197                 if (clear_user((void __user *)addr, PAGE_SIZE))
1198                         return 1;
1199                 vcpu->arch.hv_vapic = data;
1200                 break;
1201         }
1202         case HV_X64_MSR_EOI:
1203                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1204         case HV_X64_MSR_ICR:
1205                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1206         case HV_X64_MSR_TPR:
1207                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1208         default:
1209                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1210                           "data 0x%llx\n", msr, data);
1211                 return 1;
1212         }
1213
1214         return 0;
1215 }
1216
1217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1218 {
1219         switch (msr) {
1220         case MSR_EFER:
1221                 return set_efer(vcpu, data);
1222         case MSR_K7_HWCR:
1223                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1224                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1225                 if (data != 0) {
1226                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1227                                 data);
1228                         return 1;
1229                 }
1230                 break;
1231         case MSR_FAM10H_MMIO_CONF_BASE:
1232                 if (data != 0) {
1233                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1234                                 "0x%llx\n", data);
1235                         return 1;
1236                 }
1237                 break;
1238         case MSR_AMD64_NB_CFG:
1239                 break;
1240         case MSR_IA32_DEBUGCTLMSR:
1241                 if (!data) {
1242                         /* We support the non-activated case already */
1243                         break;
1244                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1245                         /* Values other than LBR and BTF are vendor-specific,
1246                            thus reserved and should throw a #GP */
1247                         return 1;
1248                 }
1249                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1250                         __func__, data);
1251                 break;
1252         case MSR_IA32_UCODE_REV:
1253         case MSR_IA32_UCODE_WRITE:
1254         case MSR_VM_HSAVE_PA:
1255         case MSR_AMD64_PATCH_LOADER:
1256                 break;
1257         case 0x200 ... 0x2ff:
1258                 return set_msr_mtrr(vcpu, msr, data);
1259         case MSR_IA32_APICBASE:
1260                 kvm_set_apic_base(vcpu, data);
1261                 break;
1262         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1263                 return kvm_x2apic_msr_write(vcpu, msr, data);
1264         case MSR_IA32_MISC_ENABLE:
1265                 vcpu->arch.ia32_misc_enable_msr = data;
1266                 break;
1267         case MSR_KVM_WALL_CLOCK_NEW:
1268         case MSR_KVM_WALL_CLOCK:
1269                 vcpu->kvm->arch.wall_clock = data;
1270                 kvm_write_wall_clock(vcpu->kvm, data);
1271                 break;
1272         case MSR_KVM_SYSTEM_TIME_NEW:
1273         case MSR_KVM_SYSTEM_TIME: {
1274                 if (vcpu->arch.time_page) {
1275                         kvm_release_page_dirty(vcpu->arch.time_page);
1276                         vcpu->arch.time_page = NULL;
1277                 }
1278
1279                 vcpu->arch.time = data;
1280
1281                 /* we verify if the enable bit is set... */
1282                 if (!(data & 1))
1283                         break;
1284
1285                 /* ...but clean it before doing the actual write */
1286                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1287
1288                 vcpu->arch.time_page =
1289                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1290
1291                 if (is_error_page(vcpu->arch.time_page)) {
1292                         kvm_release_page_clean(vcpu->arch.time_page);
1293                         vcpu->arch.time_page = NULL;
1294                 }
1295
1296                 kvm_request_guest_time_update(vcpu);
1297                 break;
1298         }
1299         case MSR_IA32_MCG_CTL:
1300         case MSR_IA32_MCG_STATUS:
1301         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1302                 return set_msr_mce(vcpu, msr, data);
1303
1304         /* Performance counters are not protected by a CPUID bit,
1305          * so we should check all of them in the generic path for the sake of
1306          * cross vendor migration.
1307          * Writing a zero into the event select MSRs disables them,
1308          * which we perfectly emulate ;-). Any other value should be at least
1309          * reported, some guests depend on them.
1310          */
1311         case MSR_P6_EVNTSEL0:
1312         case MSR_P6_EVNTSEL1:
1313         case MSR_K7_EVNTSEL0:
1314         case MSR_K7_EVNTSEL1:
1315         case MSR_K7_EVNTSEL2:
1316         case MSR_K7_EVNTSEL3:
1317                 if (data != 0)
1318                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1319                                 "0x%x data 0x%llx\n", msr, data);
1320                 break;
1321         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1322          * so we ignore writes to make it happy.
1323          */
1324         case MSR_P6_PERFCTR0:
1325         case MSR_P6_PERFCTR1:
1326         case MSR_K7_PERFCTR0:
1327         case MSR_K7_PERFCTR1:
1328         case MSR_K7_PERFCTR2:
1329         case MSR_K7_PERFCTR3:
1330                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1331                         "0x%x data 0x%llx\n", msr, data);
1332                 break;
1333         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1334                 if (kvm_hv_msr_partition_wide(msr)) {
1335                         int r;
1336                         mutex_lock(&vcpu->kvm->lock);
1337                         r = set_msr_hyperv_pw(vcpu, msr, data);
1338                         mutex_unlock(&vcpu->kvm->lock);
1339                         return r;
1340                 } else
1341                         return set_msr_hyperv(vcpu, msr, data);
1342                 break;
1343         default:
1344                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1345                         return xen_hvm_config(vcpu, data);
1346                 if (!ignore_msrs) {
1347                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1348                                 msr, data);
1349                         return 1;
1350                 } else {
1351                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1352                                 msr, data);
1353                         break;
1354                 }
1355         }
1356         return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1359
1360
1361 /*
1362  * Reads an msr value (of 'msr_index') into 'pdata'.
1363  * Returns 0 on success, non-0 otherwise.
1364  * Assumes vcpu_load() was already called.
1365  */
1366 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1367 {
1368         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1369 }
1370
1371 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1372 {
1373         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1374
1375         if (!msr_mtrr_valid(msr))
1376                 return 1;
1377
1378         if (msr == MSR_MTRRdefType)
1379                 *pdata = vcpu->arch.mtrr_state.def_type +
1380                          (vcpu->arch.mtrr_state.enabled << 10);
1381         else if (msr == MSR_MTRRfix64K_00000)
1382                 *pdata = p[0];
1383         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1384                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1385         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1386                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1387         else if (msr == MSR_IA32_CR_PAT)
1388                 *pdata = vcpu->arch.pat;
1389         else {  /* Variable MTRRs */
1390                 int idx, is_mtrr_mask;
1391                 u64 *pt;
1392
1393                 idx = (msr - 0x200) / 2;
1394                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1395                 if (!is_mtrr_mask)
1396                         pt =
1397                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1398                 else
1399                         pt =
1400                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1401                 *pdata = *pt;
1402         }
1403
1404         return 0;
1405 }
1406
1407 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1408 {
1409         u64 data;
1410         u64 mcg_cap = vcpu->arch.mcg_cap;
1411         unsigned bank_num = mcg_cap & 0xff;
1412
1413         switch (msr) {
1414         case MSR_IA32_P5_MC_ADDR:
1415         case MSR_IA32_P5_MC_TYPE:
1416                 data = 0;
1417                 break;
1418         case MSR_IA32_MCG_CAP:
1419                 data = vcpu->arch.mcg_cap;
1420                 break;
1421         case MSR_IA32_MCG_CTL:
1422                 if (!(mcg_cap & MCG_CTL_P))
1423                         return 1;
1424                 data = vcpu->arch.mcg_ctl;
1425                 break;
1426         case MSR_IA32_MCG_STATUS:
1427                 data = vcpu->arch.mcg_status;
1428                 break;
1429         default:
1430                 if (msr >= MSR_IA32_MC0_CTL &&
1431                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1432                         u32 offset = msr - MSR_IA32_MC0_CTL;
1433                         data = vcpu->arch.mce_banks[offset];
1434                         break;
1435                 }
1436                 return 1;
1437         }
1438         *pdata = data;
1439         return 0;
1440 }
1441
1442 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1443 {
1444         u64 data = 0;
1445         struct kvm *kvm = vcpu->kvm;
1446
1447         switch (msr) {
1448         case HV_X64_MSR_GUEST_OS_ID:
1449                 data = kvm->arch.hv_guest_os_id;
1450                 break;
1451         case HV_X64_MSR_HYPERCALL:
1452                 data = kvm->arch.hv_hypercall;
1453                 break;
1454         default:
1455                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1456                 return 1;
1457         }
1458
1459         *pdata = data;
1460         return 0;
1461 }
1462
1463 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1464 {
1465         u64 data = 0;
1466
1467         switch (msr) {
1468         case HV_X64_MSR_VP_INDEX: {
1469                 int r;
1470                 struct kvm_vcpu *v;
1471                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1472                         if (v == vcpu)
1473                                 data = r;
1474                 break;
1475         }
1476         case HV_X64_MSR_EOI:
1477                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1478         case HV_X64_MSR_ICR:
1479                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1480         case HV_X64_MSR_TPR:
1481                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1482         default:
1483                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1484                 return 1;
1485         }
1486         *pdata = data;
1487         return 0;
1488 }
1489
1490 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1491 {
1492         u64 data;
1493
1494         switch (msr) {
1495         case MSR_IA32_PLATFORM_ID:
1496         case MSR_IA32_UCODE_REV:
1497         case MSR_IA32_EBL_CR_POWERON:
1498         case MSR_IA32_DEBUGCTLMSR:
1499         case MSR_IA32_LASTBRANCHFROMIP:
1500         case MSR_IA32_LASTBRANCHTOIP:
1501         case MSR_IA32_LASTINTFROMIP:
1502         case MSR_IA32_LASTINTTOIP:
1503         case MSR_K8_SYSCFG:
1504         case MSR_K7_HWCR:
1505         case MSR_VM_HSAVE_PA:
1506         case MSR_P6_PERFCTR0:
1507         case MSR_P6_PERFCTR1:
1508         case MSR_P6_EVNTSEL0:
1509         case MSR_P6_EVNTSEL1:
1510         case MSR_K7_EVNTSEL0:
1511         case MSR_K7_PERFCTR0:
1512         case MSR_K8_INT_PENDING_MSG:
1513         case MSR_AMD64_NB_CFG:
1514         case MSR_FAM10H_MMIO_CONF_BASE:
1515                 data = 0;
1516                 break;
1517         case MSR_MTRRcap:
1518                 data = 0x500 | KVM_NR_VAR_MTRR;
1519                 break;
1520         case 0x200 ... 0x2ff:
1521                 return get_msr_mtrr(vcpu, msr, pdata);
1522         case 0xcd: /* fsb frequency */
1523                 data = 3;
1524                 break;
1525         case MSR_IA32_APICBASE:
1526                 data = kvm_get_apic_base(vcpu);
1527                 break;
1528         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1529                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1530                 break;
1531         case MSR_IA32_MISC_ENABLE:
1532                 data = vcpu->arch.ia32_misc_enable_msr;
1533                 break;
1534         case MSR_IA32_PERF_STATUS:
1535                 /* TSC increment by tick */
1536                 data = 1000ULL;
1537                 /* CPU multiplier */
1538                 data |= (((uint64_t)4ULL) << 40);
1539                 break;
1540         case MSR_EFER:
1541                 data = vcpu->arch.efer;
1542                 break;
1543         case MSR_KVM_WALL_CLOCK:
1544         case MSR_KVM_WALL_CLOCK_NEW:
1545                 data = vcpu->kvm->arch.wall_clock;
1546                 break;
1547         case MSR_KVM_SYSTEM_TIME:
1548         case MSR_KVM_SYSTEM_TIME_NEW:
1549                 data = vcpu->arch.time;
1550                 break;
1551         case MSR_IA32_P5_MC_ADDR:
1552         case MSR_IA32_P5_MC_TYPE:
1553         case MSR_IA32_MCG_CAP:
1554         case MSR_IA32_MCG_CTL:
1555         case MSR_IA32_MCG_STATUS:
1556         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1557                 return get_msr_mce(vcpu, msr, pdata);
1558         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1559                 if (kvm_hv_msr_partition_wide(msr)) {
1560                         int r;
1561                         mutex_lock(&vcpu->kvm->lock);
1562                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1563                         mutex_unlock(&vcpu->kvm->lock);
1564                         return r;
1565                 } else
1566                         return get_msr_hyperv(vcpu, msr, pdata);
1567                 break;
1568         default:
1569                 if (!ignore_msrs) {
1570                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1571                         return 1;
1572                 } else {
1573                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1574                         data = 0;
1575                 }
1576                 break;
1577         }
1578         *pdata = data;
1579         return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1582
1583 /*
1584  * Read or write a bunch of msrs. All parameters are kernel addresses.
1585  *
1586  * @return number of msrs set successfully.
1587  */
1588 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1589                     struct kvm_msr_entry *entries,
1590                     int (*do_msr)(struct kvm_vcpu *vcpu,
1591                                   unsigned index, u64 *data))
1592 {
1593         int i, idx;
1594
1595         idx = srcu_read_lock(&vcpu->kvm->srcu);
1596         for (i = 0; i < msrs->nmsrs; ++i)
1597                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1598                         break;
1599         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1600
1601         return i;
1602 }
1603
1604 /*
1605  * Read or write a bunch of msrs. Parameters are user addresses.
1606  *
1607  * @return number of msrs set successfully.
1608  */
1609 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1610                   int (*do_msr)(struct kvm_vcpu *vcpu,
1611                                 unsigned index, u64 *data),
1612                   int writeback)
1613 {
1614         struct kvm_msrs msrs;
1615         struct kvm_msr_entry *entries;
1616         int r, n;
1617         unsigned size;
1618
1619         r = -EFAULT;
1620         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1621                 goto out;
1622
1623         r = -E2BIG;
1624         if (msrs.nmsrs >= MAX_IO_MSRS)
1625                 goto out;
1626
1627         r = -ENOMEM;
1628         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1629         entries = kmalloc(size, GFP_KERNEL);
1630         if (!entries)
1631                 goto out;
1632
1633         r = -EFAULT;
1634         if (copy_from_user(entries, user_msrs->entries, size))
1635                 goto out_free;
1636
1637         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1638         if (r < 0)
1639                 goto out_free;
1640
1641         r = -EFAULT;
1642         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1643                 goto out_free;
1644
1645         r = n;
1646
1647 out_free:
1648         kfree(entries);
1649 out:
1650         return r;
1651 }
1652
1653 int kvm_dev_ioctl_check_extension(long ext)
1654 {
1655         int r;
1656
1657         switch (ext) {
1658         case KVM_CAP_IRQCHIP:
1659         case KVM_CAP_HLT:
1660         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1661         case KVM_CAP_SET_TSS_ADDR:
1662         case KVM_CAP_EXT_CPUID:
1663         case KVM_CAP_CLOCKSOURCE:
1664         case KVM_CAP_PIT:
1665         case KVM_CAP_NOP_IO_DELAY:
1666         case KVM_CAP_MP_STATE:
1667         case KVM_CAP_SYNC_MMU:
1668         case KVM_CAP_REINJECT_CONTROL:
1669         case KVM_CAP_IRQ_INJECT_STATUS:
1670         case KVM_CAP_ASSIGN_DEV_IRQ:
1671         case KVM_CAP_IRQFD:
1672         case KVM_CAP_IOEVENTFD:
1673         case KVM_CAP_PIT2:
1674         case KVM_CAP_PIT_STATE2:
1675         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1676         case KVM_CAP_XEN_HVM:
1677         case KVM_CAP_ADJUST_CLOCK:
1678         case KVM_CAP_VCPU_EVENTS:
1679         case KVM_CAP_HYPERV:
1680         case KVM_CAP_HYPERV_VAPIC:
1681         case KVM_CAP_HYPERV_SPIN:
1682         case KVM_CAP_PCI_SEGMENT:
1683         case KVM_CAP_DEBUGREGS:
1684         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1685         case KVM_CAP_XSAVE:
1686                 r = 1;
1687                 break;
1688         case KVM_CAP_COALESCED_MMIO:
1689                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1690                 break;
1691         case KVM_CAP_VAPIC:
1692                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1693                 break;
1694         case KVM_CAP_NR_VCPUS:
1695                 r = KVM_MAX_VCPUS;
1696                 break;
1697         case KVM_CAP_NR_MEMSLOTS:
1698                 r = KVM_MEMORY_SLOTS;
1699                 break;
1700         case KVM_CAP_PV_MMU:    /* obsolete */
1701                 r = 0;
1702                 break;
1703         case KVM_CAP_IOMMU:
1704                 r = iommu_found();
1705                 break;
1706         case KVM_CAP_MCE:
1707                 r = KVM_MAX_MCE_BANKS;
1708                 break;
1709         case KVM_CAP_XCRS:
1710                 r = cpu_has_xsave;
1711                 break;
1712         default:
1713                 r = 0;
1714                 break;
1715         }
1716         return r;
1717
1718 }
1719
1720 long kvm_arch_dev_ioctl(struct file *filp,
1721                         unsigned int ioctl, unsigned long arg)
1722 {
1723         void __user *argp = (void __user *)arg;
1724         long r;
1725
1726         switch (ioctl) {
1727         case KVM_GET_MSR_INDEX_LIST: {
1728                 struct kvm_msr_list __user *user_msr_list = argp;
1729                 struct kvm_msr_list msr_list;
1730                 unsigned n;
1731
1732                 r = -EFAULT;
1733                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1734                         goto out;
1735                 n = msr_list.nmsrs;
1736                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1737                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1738                         goto out;
1739                 r = -E2BIG;
1740                 if (n < msr_list.nmsrs)
1741                         goto out;
1742                 r = -EFAULT;
1743                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1744                                  num_msrs_to_save * sizeof(u32)))
1745                         goto out;
1746                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1747                                  &emulated_msrs,
1748                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1749                         goto out;
1750                 r = 0;
1751                 break;
1752         }
1753         case KVM_GET_SUPPORTED_CPUID: {
1754                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1755                 struct kvm_cpuid2 cpuid;
1756
1757                 r = -EFAULT;
1758                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1759                         goto out;
1760                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1761                                                       cpuid_arg->entries);
1762                 if (r)
1763                         goto out;
1764
1765                 r = -EFAULT;
1766                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1767                         goto out;
1768                 r = 0;
1769                 break;
1770         }
1771         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1772                 u64 mce_cap;
1773
1774                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1775                 r = -EFAULT;
1776                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1777                         goto out;
1778                 r = 0;
1779                 break;
1780         }
1781         default:
1782                 r = -EINVAL;
1783         }
1784 out:
1785         return r;
1786 }
1787
1788 static void wbinvd_ipi(void *garbage)
1789 {
1790         wbinvd();
1791 }
1792
1793 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1794 {
1795         return vcpu->kvm->arch.iommu_domain &&
1796                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1797 }
1798
1799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1800 {
1801         /* Address WBINVD may be executed by guest */
1802         if (need_emulate_wbinvd(vcpu)) {
1803                 if (kvm_x86_ops->has_wbinvd_exit())
1804                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1805                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1806                         smp_call_function_single(vcpu->cpu,
1807                                         wbinvd_ipi, NULL, 1);
1808         }
1809
1810         kvm_x86_ops->vcpu_load(vcpu, cpu);
1811         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1812                 unsigned long khz = cpufreq_quick_get(cpu);
1813                 if (!khz)
1814                         khz = tsc_khz;
1815                 per_cpu(cpu_tsc_khz, cpu) = khz;
1816         }
1817         kvm_request_guest_time_update(vcpu);
1818 }
1819
1820 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1821 {
1822         kvm_x86_ops->vcpu_put(vcpu);
1823         kvm_put_guest_fpu(vcpu);
1824 }
1825
1826 static int is_efer_nx(void)
1827 {
1828         unsigned long long efer = 0;
1829
1830         rdmsrl_safe(MSR_EFER, &efer);
1831         return efer & EFER_NX;
1832 }
1833
1834 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1835 {
1836         int i;
1837         struct kvm_cpuid_entry2 *e, *entry;
1838
1839         entry = NULL;
1840         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1841                 e = &vcpu->arch.cpuid_entries[i];
1842                 if (e->function == 0x80000001) {
1843                         entry = e;
1844                         break;
1845                 }
1846         }
1847         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1848                 entry->edx &= ~(1 << 20);
1849                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1850         }
1851 }
1852
1853 /* when an old userspace process fills a new kernel module */
1854 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1855                                     struct kvm_cpuid *cpuid,
1856                                     struct kvm_cpuid_entry __user *entries)
1857 {
1858         int r, i;
1859         struct kvm_cpuid_entry *cpuid_entries;
1860
1861         r = -E2BIG;
1862         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1863                 goto out;
1864         r = -ENOMEM;
1865         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1866         if (!cpuid_entries)
1867                 goto out;
1868         r = -EFAULT;
1869         if (copy_from_user(cpuid_entries, entries,
1870                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1871                 goto out_free;
1872         for (i = 0; i < cpuid->nent; i++) {
1873                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1874                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1875                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1876                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1877                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1878                 vcpu->arch.cpuid_entries[i].index = 0;
1879                 vcpu->arch.cpuid_entries[i].flags = 0;
1880                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1881                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1882                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1883         }
1884         vcpu->arch.cpuid_nent = cpuid->nent;
1885         cpuid_fix_nx_cap(vcpu);
1886         r = 0;
1887         kvm_apic_set_version(vcpu);
1888         kvm_x86_ops->cpuid_update(vcpu);
1889         update_cpuid(vcpu);
1890
1891 out_free:
1892         vfree(cpuid_entries);
1893 out:
1894         return r;
1895 }
1896
1897 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1898                                      struct kvm_cpuid2 *cpuid,
1899                                      struct kvm_cpuid_entry2 __user *entries)
1900 {
1901         int r;
1902
1903         r = -E2BIG;
1904         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1905                 goto out;
1906         r = -EFAULT;
1907         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1908                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1909                 goto out;
1910         vcpu->arch.cpuid_nent = cpuid->nent;
1911         kvm_apic_set_version(vcpu);
1912         kvm_x86_ops->cpuid_update(vcpu);
1913         update_cpuid(vcpu);
1914         return 0;
1915
1916 out:
1917         return r;
1918 }
1919
1920 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1921                                      struct kvm_cpuid2 *cpuid,
1922                                      struct kvm_cpuid_entry2 __user *entries)
1923 {
1924         int r;
1925
1926         r = -E2BIG;
1927         if (cpuid->nent < vcpu->arch.cpuid_nent)
1928                 goto out;
1929         r = -EFAULT;
1930         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1931                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1932                 goto out;
1933         return 0;
1934
1935 out:
1936         cpuid->nent = vcpu->arch.cpuid_nent;
1937         return r;
1938 }
1939
1940 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1941                            u32 index)
1942 {
1943         entry->function = function;
1944         entry->index = index;
1945         cpuid_count(entry->function, entry->index,
1946                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1947         entry->flags = 0;
1948 }
1949
1950 #define F(x) bit(X86_FEATURE_##x)
1951
1952 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1953                          u32 index, int *nent, int maxnent)
1954 {
1955         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1956 #ifdef CONFIG_X86_64
1957         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1958                                 ? F(GBPAGES) : 0;
1959         unsigned f_lm = F(LM);
1960 #else
1961         unsigned f_gbpages = 0;
1962         unsigned f_lm = 0;
1963 #endif
1964         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1965
1966         /* cpuid 1.edx */
1967         const u32 kvm_supported_word0_x86_features =
1968                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1969                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1970                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1971                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1972                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1973                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1974                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1975                 0 /* HTT, TM, Reserved, PBE */;
1976         /* cpuid 0x80000001.edx */
1977         const u32 kvm_supported_word1_x86_features =
1978                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1979                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1980                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1981                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1982                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1983                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1984                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1985                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1986         /* cpuid 1.ecx */
1987         const u32 kvm_supported_word4_x86_features =
1988                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
1989                 0 /* DS-CPL, VMX, SMX, EST */ |
1990                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1991                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1992                 0 /* Reserved, DCA */ | F(XMM4_1) |
1993                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1994                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
1995         /* cpuid 0x80000001.ecx */
1996         const u32 kvm_supported_word6_x86_features =
1997                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1998                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1999                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2000                 0 /* SKINIT */ | 0 /* WDT */;
2001
2002         /* all calls to cpuid_count() should be made on the same cpu */
2003         get_cpu();
2004         do_cpuid_1_ent(entry, function, index);
2005         ++*nent;
2006
2007         switch (function) {
2008         case 0:
2009                 entry->eax = min(entry->eax, (u32)0xd);
2010                 break;
2011         case 1:
2012                 entry->edx &= kvm_supported_word0_x86_features;
2013                 entry->ecx &= kvm_supported_word4_x86_features;
2014                 /* we support x2apic emulation even if host does not support
2015                  * it since we emulate x2apic in software */
2016                 entry->ecx |= F(X2APIC);
2017                 break;
2018         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2019          * may return different values. This forces us to get_cpu() before
2020          * issuing the first command, and also to emulate this annoying behavior
2021          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2022         case 2: {
2023                 int t, times = entry->eax & 0xff;
2024
2025                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2026                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2027                 for (t = 1; t < times && *nent < maxnent; ++t) {
2028                         do_cpuid_1_ent(&entry[t], function, 0);
2029                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2030                         ++*nent;
2031                 }
2032                 break;
2033         }
2034         /* function 4 and 0xb have additional index. */
2035         case 4: {
2036                 int i, cache_type;
2037
2038                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2039                 /* read more entries until cache_type is zero */
2040                 for (i = 1; *nent < maxnent; ++i) {
2041                         cache_type = entry[i - 1].eax & 0x1f;
2042                         if (!cache_type)
2043                                 break;
2044                         do_cpuid_1_ent(&entry[i], function, i);
2045                         entry[i].flags |=
2046                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2047                         ++*nent;
2048                 }
2049                 break;
2050         }
2051         case 0xb: {
2052                 int i, level_type;
2053
2054                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2055                 /* read more entries until level_type is zero */
2056                 for (i = 1; *nent < maxnent; ++i) {
2057                         level_type = entry[i - 1].ecx & 0xff00;
2058                         if (!level_type)
2059                                 break;
2060                         do_cpuid_1_ent(&entry[i], function, i);
2061                         entry[i].flags |=
2062                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2063                         ++*nent;
2064                 }
2065                 break;
2066         }
2067         case 0xd: {
2068                 int i;
2069
2070                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2071                 for (i = 1; *nent < maxnent; ++i) {
2072                         if (entry[i - 1].eax == 0 && i != 2)
2073                                 break;
2074                         do_cpuid_1_ent(&entry[i], function, i);
2075                         entry[i].flags |=
2076                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2077                         ++*nent;
2078                 }
2079                 break;
2080         }
2081         case KVM_CPUID_SIGNATURE: {
2082                 char signature[12] = "KVMKVMKVM\0\0";
2083                 u32 *sigptr = (u32 *)signature;
2084                 entry->eax = 0;
2085                 entry->ebx = sigptr[0];
2086                 entry->ecx = sigptr[1];
2087                 entry->edx = sigptr[2];
2088                 break;
2089         }
2090         case KVM_CPUID_FEATURES:
2091                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2092                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2093                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2094                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2095                 entry->ebx = 0;
2096                 entry->ecx = 0;
2097                 entry->edx = 0;
2098                 break;
2099         case 0x80000000:
2100                 entry->eax = min(entry->eax, 0x8000001a);
2101                 break;
2102         case 0x80000001:
2103                 entry->edx &= kvm_supported_word1_x86_features;
2104                 entry->ecx &= kvm_supported_word6_x86_features;
2105                 break;
2106         }
2107
2108         kvm_x86_ops->set_supported_cpuid(function, entry);
2109
2110         put_cpu();
2111 }
2112
2113 #undef F
2114
2115 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2116                                      struct kvm_cpuid_entry2 __user *entries)
2117 {
2118         struct kvm_cpuid_entry2 *cpuid_entries;
2119         int limit, nent = 0, r = -E2BIG;
2120         u32 func;
2121
2122         if (cpuid->nent < 1)
2123                 goto out;
2124         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2125                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2126         r = -ENOMEM;
2127         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2128         if (!cpuid_entries)
2129                 goto out;
2130
2131         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2132         limit = cpuid_entries[0].eax;
2133         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2134                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2135                              &nent, cpuid->nent);
2136         r = -E2BIG;
2137         if (nent >= cpuid->nent)
2138                 goto out_free;
2139
2140         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2141         limit = cpuid_entries[nent - 1].eax;
2142         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2143                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2144                              &nent, cpuid->nent);
2145
2146
2147
2148         r = -E2BIG;
2149         if (nent >= cpuid->nent)
2150                 goto out_free;
2151
2152         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2153                      cpuid->nent);
2154
2155         r = -E2BIG;
2156         if (nent >= cpuid->nent)
2157                 goto out_free;
2158
2159         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2160                      cpuid->nent);
2161
2162         r = -E2BIG;
2163         if (nent >= cpuid->nent)
2164                 goto out_free;
2165
2166         r = -EFAULT;
2167         if (copy_to_user(entries, cpuid_entries,
2168                          nent * sizeof(struct kvm_cpuid_entry2)))
2169                 goto out_free;
2170         cpuid->nent = nent;
2171         r = 0;
2172
2173 out_free:
2174         vfree(cpuid_entries);
2175 out:
2176         return r;
2177 }
2178
2179 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2180                                     struct kvm_lapic_state *s)
2181 {
2182         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2183
2184         return 0;
2185 }
2186
2187 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2188                                     struct kvm_lapic_state *s)
2189 {
2190         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2191         kvm_apic_post_state_restore(vcpu);
2192         update_cr8_intercept(vcpu);
2193
2194         return 0;
2195 }
2196
2197 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2198                                     struct kvm_interrupt *irq)
2199 {
2200         if (irq->irq < 0 || irq->irq >= 256)
2201                 return -EINVAL;
2202         if (irqchip_in_kernel(vcpu->kvm))
2203                 return -ENXIO;
2204
2205         kvm_queue_interrupt(vcpu, irq->irq, false);
2206
2207         return 0;
2208 }
2209
2210 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2211 {
2212         kvm_inject_nmi(vcpu);
2213
2214         return 0;
2215 }
2216
2217 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2218                                            struct kvm_tpr_access_ctl *tac)
2219 {
2220         if (tac->flags)
2221                 return -EINVAL;
2222         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2223         return 0;
2224 }
2225
2226 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2227                                         u64 mcg_cap)
2228 {
2229         int r;
2230         unsigned bank_num = mcg_cap & 0xff, bank;
2231
2232         r = -EINVAL;
2233         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2234                 goto out;
2235         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2236                 goto out;
2237         r = 0;
2238         vcpu->arch.mcg_cap = mcg_cap;
2239         /* Init IA32_MCG_CTL to all 1s */
2240         if (mcg_cap & MCG_CTL_P)
2241                 vcpu->arch.mcg_ctl = ~(u64)0;
2242         /* Init IA32_MCi_CTL to all 1s */
2243         for (bank = 0; bank < bank_num; bank++)
2244                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2245 out:
2246         return r;
2247 }
2248
2249 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2250                                       struct kvm_x86_mce *mce)
2251 {
2252         u64 mcg_cap = vcpu->arch.mcg_cap;
2253         unsigned bank_num = mcg_cap & 0xff;
2254         u64 *banks = vcpu->arch.mce_banks;
2255
2256         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2257                 return -EINVAL;
2258         /*
2259          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2260          * reporting is disabled
2261          */
2262         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2263             vcpu->arch.mcg_ctl != ~(u64)0)
2264                 return 0;
2265         banks += 4 * mce->bank;
2266         /*
2267          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2268          * reporting is disabled for the bank
2269          */
2270         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2271                 return 0;
2272         if (mce->status & MCI_STATUS_UC) {
2273                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2274                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2275                         printk(KERN_DEBUG "kvm: set_mce: "
2276                                "injects mce exception while "
2277                                "previous one is in progress!\n");
2278                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2279                         return 0;
2280                 }
2281                 if (banks[1] & MCI_STATUS_VAL)
2282                         mce->status |= MCI_STATUS_OVER;
2283                 banks[2] = mce->addr;
2284                 banks[3] = mce->misc;
2285                 vcpu->arch.mcg_status = mce->mcg_status;
2286                 banks[1] = mce->status;
2287                 kvm_queue_exception(vcpu, MC_VECTOR);
2288         } else if (!(banks[1] & MCI_STATUS_VAL)
2289                    || !(banks[1] & MCI_STATUS_UC)) {
2290                 if (banks[1] & MCI_STATUS_VAL)
2291                         mce->status |= MCI_STATUS_OVER;
2292                 banks[2] = mce->addr;
2293                 banks[3] = mce->misc;
2294                 banks[1] = mce->status;
2295         } else
2296                 banks[1] |= MCI_STATUS_OVER;
2297         return 0;
2298 }
2299
2300 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2301                                                struct kvm_vcpu_events *events)
2302 {
2303         events->exception.injected =
2304                 vcpu->arch.exception.pending &&
2305                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2306         events->exception.nr = vcpu->arch.exception.nr;
2307         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2308         events->exception.error_code = vcpu->arch.exception.error_code;
2309
2310         events->interrupt.injected =
2311                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2312         events->interrupt.nr = vcpu->arch.interrupt.nr;
2313         events->interrupt.soft = 0;
2314         events->interrupt.shadow =
2315                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2316                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2317
2318         events->nmi.injected = vcpu->arch.nmi_injected;
2319         events->nmi.pending = vcpu->arch.nmi_pending;
2320         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2321
2322         events->sipi_vector = vcpu->arch.sipi_vector;
2323
2324         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2325                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2326                          | KVM_VCPUEVENT_VALID_SHADOW);
2327 }
2328
2329 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2330                                               struct kvm_vcpu_events *events)
2331 {
2332         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2333                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2334                               | KVM_VCPUEVENT_VALID_SHADOW))
2335                 return -EINVAL;
2336
2337         vcpu->arch.exception.pending = events->exception.injected;
2338         vcpu->arch.exception.nr = events->exception.nr;
2339         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2340         vcpu->arch.exception.error_code = events->exception.error_code;
2341
2342         vcpu->arch.interrupt.pending = events->interrupt.injected;
2343         vcpu->arch.interrupt.nr = events->interrupt.nr;
2344         vcpu->arch.interrupt.soft = events->interrupt.soft;
2345         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2346                 kvm_pic_clear_isr_ack(vcpu->kvm);
2347         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2348                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2349                                                   events->interrupt.shadow);
2350
2351         vcpu->arch.nmi_injected = events->nmi.injected;
2352         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2353                 vcpu->arch.nmi_pending = events->nmi.pending;
2354         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2355
2356         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2357                 vcpu->arch.sipi_vector = events->sipi_vector;
2358
2359         return 0;
2360 }
2361
2362 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2363                                              struct kvm_debugregs *dbgregs)
2364 {
2365         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2366         dbgregs->dr6 = vcpu->arch.dr6;
2367         dbgregs->dr7 = vcpu->arch.dr7;
2368         dbgregs->flags = 0;
2369 }
2370
2371 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2372                                             struct kvm_debugregs *dbgregs)
2373 {
2374         if (dbgregs->flags)
2375                 return -EINVAL;
2376
2377         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2378         vcpu->arch.dr6 = dbgregs->dr6;
2379         vcpu->arch.dr7 = dbgregs->dr7;
2380
2381         return 0;
2382 }
2383
2384 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2385                                          struct kvm_xsave *guest_xsave)
2386 {
2387         if (cpu_has_xsave)
2388                 memcpy(guest_xsave->region,
2389                         &vcpu->arch.guest_fpu.state->xsave,
2390                         xstate_size);
2391         else {
2392                 memcpy(guest_xsave->region,
2393                         &vcpu->arch.guest_fpu.state->fxsave,
2394                         sizeof(struct i387_fxsave_struct));
2395                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2396                         XSTATE_FPSSE;
2397         }
2398 }
2399
2400 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2401                                         struct kvm_xsave *guest_xsave)
2402 {
2403         u64 xstate_bv =
2404                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2405
2406         if (cpu_has_xsave)
2407                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2408                         guest_xsave->region, xstate_size);
2409         else {
2410                 if (xstate_bv & ~XSTATE_FPSSE)
2411                         return -EINVAL;
2412                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2413                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2414         }
2415         return 0;
2416 }
2417
2418 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2419                                         struct kvm_xcrs *guest_xcrs)
2420 {
2421         if (!cpu_has_xsave) {
2422                 guest_xcrs->nr_xcrs = 0;
2423                 return;
2424         }
2425
2426         guest_xcrs->nr_xcrs = 1;
2427         guest_xcrs->flags = 0;
2428         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2429         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2430 }
2431
2432 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2433                                        struct kvm_xcrs *guest_xcrs)
2434 {
2435         int i, r = 0;
2436
2437         if (!cpu_has_xsave)
2438                 return -EINVAL;
2439
2440         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2441                 return -EINVAL;
2442
2443         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2444                 /* Only support XCR0 currently */
2445                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2446                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2447                                 guest_xcrs->xcrs[0].value);
2448                         break;
2449                 }
2450         if (r)
2451                 r = -EINVAL;
2452         return r;
2453 }
2454
2455 long kvm_arch_vcpu_ioctl(struct file *filp,
2456                          unsigned int ioctl, unsigned long arg)
2457 {
2458         struct kvm_vcpu *vcpu = filp->private_data;
2459         void __user *argp = (void __user *)arg;
2460         int r;
2461         union {
2462                 struct kvm_lapic_state *lapic;
2463                 struct kvm_xsave *xsave;
2464                 struct kvm_xcrs *xcrs;
2465                 void *buffer;
2466         } u;
2467
2468         u.buffer = NULL;
2469         switch (ioctl) {
2470         case KVM_GET_LAPIC: {
2471                 r = -EINVAL;
2472                 if (!vcpu->arch.apic)
2473                         goto out;
2474                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2475
2476                 r = -ENOMEM;
2477                 if (!u.lapic)
2478                         goto out;
2479                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2480                 if (r)
2481                         goto out;
2482                 r = -EFAULT;
2483                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2484                         goto out;
2485                 r = 0;
2486                 break;
2487         }
2488         case KVM_SET_LAPIC: {
2489                 r = -EINVAL;
2490                 if (!vcpu->arch.apic)
2491                         goto out;
2492                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2493                 r = -ENOMEM;
2494                 if (!u.lapic)
2495                         goto out;
2496                 r = -EFAULT;
2497                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2498                         goto out;
2499                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2500                 if (r)
2501                         goto out;
2502                 r = 0;
2503                 break;
2504         }
2505         case KVM_INTERRUPT: {
2506                 struct kvm_interrupt irq;
2507
2508                 r = -EFAULT;
2509                 if (copy_from_user(&irq, argp, sizeof irq))
2510                         goto out;
2511                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2512                 if (r)
2513                         goto out;
2514                 r = 0;
2515                 break;
2516         }
2517         case KVM_NMI: {
2518                 r = kvm_vcpu_ioctl_nmi(vcpu);
2519                 if (r)
2520                         goto out;
2521                 r = 0;
2522                 break;
2523         }
2524         case KVM_SET_CPUID: {
2525                 struct kvm_cpuid __user *cpuid_arg = argp;
2526                 struct kvm_cpuid cpuid;
2527
2528                 r = -EFAULT;
2529                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2530                         goto out;
2531                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2532                 if (r)
2533                         goto out;
2534                 break;
2535         }
2536         case KVM_SET_CPUID2: {
2537                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2538                 struct kvm_cpuid2 cpuid;
2539
2540                 r = -EFAULT;
2541                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2542                         goto out;
2543                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2544                                               cpuid_arg->entries);
2545                 if (r)
2546                         goto out;
2547                 break;
2548         }
2549         case KVM_GET_CPUID2: {
2550                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2551                 struct kvm_cpuid2 cpuid;
2552
2553                 r = -EFAULT;
2554                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2555                         goto out;
2556                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2557                                               cpuid_arg->entries);
2558                 if (r)
2559                         goto out;
2560                 r = -EFAULT;
2561                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2562                         goto out;
2563                 r = 0;
2564                 break;
2565         }
2566         case KVM_GET_MSRS:
2567                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2568                 break;
2569         case KVM_SET_MSRS:
2570                 r = msr_io(vcpu, argp, do_set_msr, 0);
2571                 break;
2572         case KVM_TPR_ACCESS_REPORTING: {
2573                 struct kvm_tpr_access_ctl tac;
2574
2575                 r = -EFAULT;
2576                 if (copy_from_user(&tac, argp, sizeof tac))
2577                         goto out;
2578                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2579                 if (r)
2580                         goto out;
2581                 r = -EFAULT;
2582                 if (copy_to_user(argp, &tac, sizeof tac))
2583                         goto out;
2584                 r = 0;
2585                 break;
2586         };
2587         case KVM_SET_VAPIC_ADDR: {
2588                 struct kvm_vapic_addr va;
2589
2590                 r = -EINVAL;
2591                 if (!irqchip_in_kernel(vcpu->kvm))
2592                         goto out;
2593                 r = -EFAULT;
2594                 if (copy_from_user(&va, argp, sizeof va))
2595                         goto out;
2596                 r = 0;
2597                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2598                 break;
2599         }
2600         case KVM_X86_SETUP_MCE: {
2601                 u64 mcg_cap;
2602
2603                 r = -EFAULT;
2604                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2605                         goto out;
2606                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2607                 break;
2608         }
2609         case KVM_X86_SET_MCE: {
2610                 struct kvm_x86_mce mce;
2611
2612                 r = -EFAULT;
2613                 if (copy_from_user(&mce, argp, sizeof mce))
2614                         goto out;
2615                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2616                 break;
2617         }
2618         case KVM_GET_VCPU_EVENTS: {
2619                 struct kvm_vcpu_events events;
2620
2621                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2622
2623                 r = -EFAULT;
2624                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2625                         break;
2626                 r = 0;
2627                 break;
2628         }
2629         case KVM_SET_VCPU_EVENTS: {
2630                 struct kvm_vcpu_events events;
2631
2632                 r = -EFAULT;
2633                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2634                         break;
2635
2636                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2637                 break;
2638         }
2639         case KVM_GET_DEBUGREGS: {
2640                 struct kvm_debugregs dbgregs;
2641
2642                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2643
2644                 r = -EFAULT;
2645                 if (copy_to_user(argp, &dbgregs,
2646                                  sizeof(struct kvm_debugregs)))
2647                         break;
2648                 r = 0;
2649                 break;
2650         }
2651         case KVM_SET_DEBUGREGS: {
2652                 struct kvm_debugregs dbgregs;
2653
2654                 r = -EFAULT;
2655                 if (copy_from_user(&dbgregs, argp,
2656                                    sizeof(struct kvm_debugregs)))
2657                         break;
2658
2659                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2660                 break;
2661         }
2662         case KVM_GET_XSAVE: {
2663                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2664                 r = -ENOMEM;
2665                 if (!u.xsave)
2666                         break;
2667
2668                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2669
2670                 r = -EFAULT;
2671                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2672                         break;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_SET_XSAVE: {
2677                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2678                 r = -ENOMEM;
2679                 if (!u.xsave)
2680                         break;
2681
2682                 r = -EFAULT;
2683                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2684                         break;
2685
2686                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2687                 break;
2688         }
2689         case KVM_GET_XCRS: {
2690                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2691                 r = -ENOMEM;
2692                 if (!u.xcrs)
2693                         break;
2694
2695                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2696
2697                 r = -EFAULT;
2698                 if (copy_to_user(argp, u.xcrs,
2699                                  sizeof(struct kvm_xcrs)))
2700                         break;
2701                 r = 0;
2702                 break;
2703         }
2704         case KVM_SET_XCRS: {
2705                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2706                 r = -ENOMEM;
2707                 if (!u.xcrs)
2708                         break;
2709
2710                 r = -EFAULT;
2711                 if (copy_from_user(u.xcrs, argp,
2712                                    sizeof(struct kvm_xcrs)))
2713                         break;
2714
2715                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2716                 break;
2717         }
2718         default:
2719                 r = -EINVAL;
2720         }
2721 out:
2722         kfree(u.buffer);
2723         return r;
2724 }
2725
2726 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2727 {
2728         int ret;
2729
2730         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2731                 return -1;
2732         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2733         return ret;
2734 }
2735
2736 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2737                                               u64 ident_addr)
2738 {
2739         kvm->arch.ept_identity_map_addr = ident_addr;
2740         return 0;
2741 }
2742
2743 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2744                                           u32 kvm_nr_mmu_pages)
2745 {
2746         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2747                 return -EINVAL;
2748
2749         mutex_lock(&kvm->slots_lock);
2750         spin_lock(&kvm->mmu_lock);
2751
2752         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2753         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2754
2755         spin_unlock(&kvm->mmu_lock);
2756         mutex_unlock(&kvm->slots_lock);
2757         return 0;
2758 }
2759
2760 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2761 {
2762         return kvm->arch.n_alloc_mmu_pages;
2763 }
2764
2765 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2766 {
2767         int r;
2768
2769         r = 0;
2770         switch (chip->chip_id) {
2771         case KVM_IRQCHIP_PIC_MASTER:
2772                 memcpy(&chip->chip.pic,
2773                         &pic_irqchip(kvm)->pics[0],
2774                         sizeof(struct kvm_pic_state));
2775                 break;
2776         case KVM_IRQCHIP_PIC_SLAVE:
2777                 memcpy(&chip->chip.pic,
2778                         &pic_irqchip(kvm)->pics[1],
2779                         sizeof(struct kvm_pic_state));
2780                 break;
2781         case KVM_IRQCHIP_IOAPIC:
2782                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2783                 break;
2784         default:
2785                 r = -EINVAL;
2786                 break;
2787         }
2788         return r;
2789 }
2790
2791 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2792 {
2793         int r;
2794
2795         r = 0;
2796         switch (chip->chip_id) {
2797         case KVM_IRQCHIP_PIC_MASTER:
2798                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2799                 memcpy(&pic_irqchip(kvm)->pics[0],
2800                         &chip->chip.pic,
2801                         sizeof(struct kvm_pic_state));
2802                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2803                 break;
2804         case KVM_IRQCHIP_PIC_SLAVE:
2805                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2806                 memcpy(&pic_irqchip(kvm)->pics[1],
2807                         &chip->chip.pic,
2808                         sizeof(struct kvm_pic_state));
2809                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2810                 break;
2811         case KVM_IRQCHIP_IOAPIC:
2812                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2813                 break;
2814         default:
2815                 r = -EINVAL;
2816                 break;
2817         }
2818         kvm_pic_update_irq(pic_irqchip(kvm));
2819         return r;
2820 }
2821
2822 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2823 {
2824         int r = 0;
2825
2826         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2827         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2828         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2829         return r;
2830 }
2831
2832 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2833 {
2834         int r = 0;
2835
2836         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2837         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2838         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2839         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2840         return r;
2841 }
2842
2843 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2844 {
2845         int r = 0;
2846
2847         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2848         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2849                 sizeof(ps->channels));
2850         ps->flags = kvm->arch.vpit->pit_state.flags;
2851         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2852         return r;
2853 }
2854
2855 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2856 {
2857         int r = 0, start = 0;
2858         u32 prev_legacy, cur_legacy;
2859         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2860         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2861         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2862         if (!prev_legacy && cur_legacy)
2863                 start = 1;
2864         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2865                sizeof(kvm->arch.vpit->pit_state.channels));
2866         kvm->arch.vpit->pit_state.flags = ps->flags;
2867         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2868         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2869         return r;
2870 }
2871
2872 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2873                                  struct kvm_reinject_control *control)
2874 {
2875         if (!kvm->arch.vpit)
2876                 return -ENXIO;
2877         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2878         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2879         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2880         return 0;
2881 }
2882
2883 /*
2884  * Get (and clear) the dirty memory log for a memory slot.
2885  */
2886 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2887                                       struct kvm_dirty_log *log)
2888 {
2889         int r, i;
2890         struct kvm_memory_slot *memslot;
2891         unsigned long n;
2892         unsigned long is_dirty = 0;
2893
2894         mutex_lock(&kvm->slots_lock);
2895
2896         r = -EINVAL;
2897         if (log->slot >= KVM_MEMORY_SLOTS)
2898                 goto out;
2899
2900         memslot = &kvm->memslots->memslots[log->slot];
2901         r = -ENOENT;
2902         if (!memslot->dirty_bitmap)
2903                 goto out;
2904
2905         n = kvm_dirty_bitmap_bytes(memslot);
2906
2907         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2908                 is_dirty = memslot->dirty_bitmap[i];
2909
2910         /* If nothing is dirty, don't bother messing with page tables. */
2911         if (is_dirty) {
2912                 struct kvm_memslots *slots, *old_slots;
2913                 unsigned long *dirty_bitmap;
2914
2915                 spin_lock(&kvm->mmu_lock);
2916                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2917                 spin_unlock(&kvm->mmu_lock);
2918
2919                 r = -ENOMEM;
2920                 dirty_bitmap = vmalloc(n);
2921                 if (!dirty_bitmap)
2922                         goto out;
2923                 memset(dirty_bitmap, 0, n);
2924
2925                 r = -ENOMEM;
2926                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2927                 if (!slots) {
2928                         vfree(dirty_bitmap);
2929                         goto out;
2930                 }
2931                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2932                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2933
2934                 old_slots = kvm->memslots;
2935                 rcu_assign_pointer(kvm->memslots, slots);
2936                 synchronize_srcu_expedited(&kvm->srcu);
2937                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2938                 kfree(old_slots);
2939
2940                 r = -EFAULT;
2941                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
2942                         vfree(dirty_bitmap);
2943                         goto out;
2944                 }
2945                 vfree(dirty_bitmap);
2946         } else {
2947                 r = -EFAULT;
2948                 if (clear_user(log->dirty_bitmap, n))
2949                         goto out;
2950         }
2951
2952         r = 0;
2953 out:
2954         mutex_unlock(&kvm->slots_lock);
2955         return r;
2956 }
2957
2958 long kvm_arch_vm_ioctl(struct file *filp,
2959                        unsigned int ioctl, unsigned long arg)
2960 {
2961         struct kvm *kvm = filp->private_data;
2962         void __user *argp = (void __user *)arg;
2963         int r = -ENOTTY;
2964         /*
2965          * This union makes it completely explicit to gcc-3.x
2966          * that these two variables' stack usage should be
2967          * combined, not added together.
2968          */
2969         union {
2970                 struct kvm_pit_state ps;
2971                 struct kvm_pit_state2 ps2;
2972                 struct kvm_pit_config pit_config;
2973         } u;
2974
2975         switch (ioctl) {
2976         case KVM_SET_TSS_ADDR:
2977                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2978                 if (r < 0)
2979                         goto out;
2980                 break;
2981         case KVM_SET_IDENTITY_MAP_ADDR: {
2982                 u64 ident_addr;
2983
2984                 r = -EFAULT;
2985                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2986                         goto out;
2987                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2988                 if (r < 0)
2989                         goto out;
2990                 break;
2991         }
2992         case KVM_SET_NR_MMU_PAGES:
2993                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2994                 if (r)
2995                         goto out;
2996                 break;
2997         case KVM_GET_NR_MMU_PAGES:
2998                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2999                 break;
3000         case KVM_CREATE_IRQCHIP: {
3001                 struct kvm_pic *vpic;
3002
3003                 mutex_lock(&kvm->lock);
3004                 r = -EEXIST;
3005                 if (kvm->arch.vpic)
3006                         goto create_irqchip_unlock;
3007                 r = -ENOMEM;
3008                 vpic = kvm_create_pic(kvm);
3009                 if (vpic) {
3010                         r = kvm_ioapic_init(kvm);
3011                         if (r) {
3012                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3013                                                           &vpic->dev);
3014                                 kfree(vpic);
3015                                 goto create_irqchip_unlock;
3016                         }
3017                 } else
3018                         goto create_irqchip_unlock;
3019                 smp_wmb();
3020                 kvm->arch.vpic = vpic;
3021                 smp_wmb();
3022                 r = kvm_setup_default_irq_routing(kvm);
3023                 if (r) {
3024                         mutex_lock(&kvm->irq_lock);
3025                         kvm_ioapic_destroy(kvm);
3026                         kvm_destroy_pic(kvm);
3027                         mutex_unlock(&kvm->irq_lock);
3028                 }
3029         create_irqchip_unlock:
3030                 mutex_unlock(&kvm->lock);
3031                 break;
3032         }
3033         case KVM_CREATE_PIT:
3034                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3035                 goto create_pit;
3036         case KVM_CREATE_PIT2:
3037                 r = -EFAULT;
3038                 if (copy_from_user(&u.pit_config, argp,
3039                                    sizeof(struct kvm_pit_config)))
3040                         goto out;
3041         create_pit:
3042                 mutex_lock(&kvm->slots_lock);
3043                 r = -EEXIST;
3044                 if (kvm->arch.vpit)
3045                         goto create_pit_unlock;
3046                 r = -ENOMEM;
3047                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3048                 if (kvm->arch.vpit)
3049                         r = 0;
3050         create_pit_unlock:
3051                 mutex_unlock(&kvm->slots_lock);
3052                 break;
3053         case KVM_IRQ_LINE_STATUS:
3054         case KVM_IRQ_LINE: {
3055                 struct kvm_irq_level irq_event;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3059                         goto out;
3060                 r = -ENXIO;
3061                 if (irqchip_in_kernel(kvm)) {
3062                         __s32 status;
3063                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3064                                         irq_event.irq, irq_event.level);
3065                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3066                                 r = -EFAULT;
3067                                 irq_event.status = status;
3068                                 if (copy_to_user(argp, &irq_event,
3069                                                         sizeof irq_event))
3070                                         goto out;
3071                         }
3072                         r = 0;
3073                 }
3074                 break;
3075         }
3076         case KVM_GET_IRQCHIP: {
3077                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3078                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3079
3080                 r = -ENOMEM;
3081                 if (!chip)
3082                         goto out;
3083                 r = -EFAULT;
3084                 if (copy_from_user(chip, argp, sizeof *chip))
3085                         goto get_irqchip_out;
3086                 r = -ENXIO;
3087                 if (!irqchip_in_kernel(kvm))
3088                         goto get_irqchip_out;
3089                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3090                 if (r)
3091                         goto get_irqchip_out;
3092                 r = -EFAULT;
3093                 if (copy_to_user(argp, chip, sizeof *chip))
3094                         goto get_irqchip_out;
3095                 r = 0;
3096         get_irqchip_out:
3097                 kfree(chip);
3098                 if (r)
3099                         goto out;
3100                 break;
3101         }
3102         case KVM_SET_IRQCHIP: {
3103                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3104                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3105
3106                 r = -ENOMEM;
3107                 if (!chip)
3108                         goto out;
3109                 r = -EFAULT;
3110                 if (copy_from_user(chip, argp, sizeof *chip))
3111                         goto set_irqchip_out;
3112                 r = -ENXIO;
3113                 if (!irqchip_in_kernel(kvm))
3114                         goto set_irqchip_out;
3115                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3116                 if (r)
3117                         goto set_irqchip_out;
3118                 r = 0;
3119         set_irqchip_out:
3120                 kfree(chip);
3121                 if (r)
3122                         goto out;
3123                 break;
3124         }
3125         case KVM_GET_PIT: {
3126                 r = -EFAULT;
3127                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3128                         goto out;
3129                 r = -ENXIO;
3130                 if (!kvm->arch.vpit)
3131                         goto out;
3132                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3133                 if (r)
3134                         goto out;
3135                 r = -EFAULT;
3136                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3137                         goto out;
3138                 r = 0;
3139                 break;
3140         }
3141         case KVM_SET_PIT: {
3142                 r = -EFAULT;
3143                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3144                         goto out;
3145                 r = -ENXIO;
3146                 if (!kvm->arch.vpit)
3147                         goto out;
3148                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3149                 if (r)
3150                         goto out;
3151                 r = 0;
3152                 break;
3153         }
3154         case KVM_GET_PIT2: {
3155                 r = -ENXIO;
3156                 if (!kvm->arch.vpit)
3157                         goto out;
3158                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3159                 if (r)
3160                         goto out;
3161                 r = -EFAULT;
3162                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3163                         goto out;
3164                 r = 0;
3165                 break;
3166         }
3167         case KVM_SET_PIT2: {
3168                 r = -EFAULT;
3169                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3170                         goto out;
3171                 r = -ENXIO;
3172                 if (!kvm->arch.vpit)
3173                         goto out;
3174                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3175                 if (r)
3176                         goto out;
3177                 r = 0;
3178                 break;
3179         }
3180         case KVM_REINJECT_CONTROL: {
3181                 struct kvm_reinject_control control;
3182                 r =  -EFAULT;
3183                 if (copy_from_user(&control, argp, sizeof(control)))
3184                         goto out;
3185                 r = kvm_vm_ioctl_reinject(kvm, &control);
3186                 if (r)
3187                         goto out;
3188                 r = 0;
3189                 break;
3190         }
3191         case KVM_XEN_HVM_CONFIG: {
3192                 r = -EFAULT;
3193                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3194                                    sizeof(struct kvm_xen_hvm_config)))
3195                         goto out;
3196                 r = -EINVAL;
3197                 if (kvm->arch.xen_hvm_config.flags)
3198                         goto out;
3199                 r = 0;
3200                 break;
3201         }
3202         case KVM_SET_CLOCK: {
3203                 struct timespec now;
3204                 struct kvm_clock_data user_ns;
3205                 u64 now_ns;
3206                 s64 delta;
3207
3208                 r = -EFAULT;
3209                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3210                         goto out;
3211
3212                 r = -EINVAL;
3213                 if (user_ns.flags)
3214                         goto out;
3215
3216                 r = 0;
3217                 ktime_get_ts(&now);
3218                 now_ns = timespec_to_ns(&now);
3219                 delta = user_ns.clock - now_ns;
3220                 kvm->arch.kvmclock_offset = delta;
3221                 break;
3222         }
3223         case KVM_GET_CLOCK: {
3224                 struct timespec now;
3225                 struct kvm_clock_data user_ns;
3226                 u64 now_ns;
3227
3228                 ktime_get_ts(&now);
3229                 now_ns = timespec_to_ns(&now);
3230                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3231                 user_ns.flags = 0;
3232
3233                 r = -EFAULT;
3234                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3235                         goto out;
3236                 r = 0;
3237                 break;
3238         }
3239
3240         default:
3241                 ;
3242         }
3243 out:
3244         return r;
3245 }
3246
3247 static void kvm_init_msr_list(void)
3248 {
3249         u32 dummy[2];
3250         unsigned i, j;
3251
3252         /* skip the first msrs in the list. KVM-specific */
3253         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3254                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3255                         continue;
3256                 if (j < i)
3257                         msrs_to_save[j] = msrs_to_save[i];
3258                 j++;
3259         }
3260         num_msrs_to_save = j;
3261 }
3262
3263 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3264                            const void *v)
3265 {
3266         if (vcpu->arch.apic &&
3267             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3268                 return 0;
3269
3270         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3271 }
3272
3273 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3274 {
3275         if (vcpu->arch.apic &&
3276             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3277                 return 0;
3278
3279         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3280 }
3281
3282 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3283                         struct kvm_segment *var, int seg)
3284 {
3285         kvm_x86_ops->set_segment(vcpu, var, seg);
3286 }
3287
3288 void kvm_get_segment(struct kvm_vcpu *vcpu,
3289                      struct kvm_segment *var, int seg)
3290 {
3291         kvm_x86_ops->get_segment(vcpu, var, seg);
3292 }
3293
3294 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3295 {
3296         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3297         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3298 }
3299
3300  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3301 {
3302         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3303         access |= PFERR_FETCH_MASK;
3304         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3305 }
3306
3307 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3308 {
3309         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3310         access |= PFERR_WRITE_MASK;
3311         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3312 }
3313
3314 /* uses this to access any guest's mapped memory without checking CPL */
3315 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3316 {
3317         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3318 }
3319
3320 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3321                                       struct kvm_vcpu *vcpu, u32 access,
3322                                       u32 *error)
3323 {
3324         void *data = val;
3325         int r = X86EMUL_CONTINUE;
3326
3327         while (bytes) {
3328                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3329                 unsigned offset = addr & (PAGE_SIZE-1);
3330                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3331                 int ret;
3332
3333                 if (gpa == UNMAPPED_GVA) {
3334                         r = X86EMUL_PROPAGATE_FAULT;
3335                         goto out;
3336                 }
3337                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3338                 if (ret < 0) {
3339                         r = X86EMUL_IO_NEEDED;
3340                         goto out;
3341                 }
3342
3343                 bytes -= toread;
3344                 data += toread;
3345                 addr += toread;
3346         }
3347 out:
3348         return r;
3349 }
3350
3351 /* used for instruction fetching */
3352 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3353                                 struct kvm_vcpu *vcpu, u32 *error)
3354 {
3355         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3356         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3357                                           access | PFERR_FETCH_MASK, error);
3358 }
3359
3360 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3361                                struct kvm_vcpu *vcpu, u32 *error)
3362 {
3363         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3364         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3365                                           error);
3366 }
3367
3368 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3369                                struct kvm_vcpu *vcpu, u32 *error)
3370 {
3371         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3372 }
3373
3374 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3375                                        unsigned int bytes,
3376                                        struct kvm_vcpu *vcpu,
3377                                        u32 *error)
3378 {
3379         void *data = val;
3380         int r = X86EMUL_CONTINUE;
3381
3382         while (bytes) {
3383                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3384                                                        PFERR_WRITE_MASK, error);
3385                 unsigned offset = addr & (PAGE_SIZE-1);
3386                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3387                 int ret;
3388
3389                 if (gpa == UNMAPPED_GVA) {
3390                         r = X86EMUL_PROPAGATE_FAULT;
3391                         goto out;
3392                 }
3393                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3394                 if (ret < 0) {
3395                         r = X86EMUL_IO_NEEDED;
3396                         goto out;
3397                 }
3398
3399                 bytes -= towrite;
3400                 data += towrite;
3401                 addr += towrite;
3402         }
3403 out:
3404         return r;
3405 }
3406
3407 static int emulator_read_emulated(unsigned long addr,
3408                                   void *val,
3409                                   unsigned int bytes,
3410                                   unsigned int *error_code,
3411                                   struct kvm_vcpu *vcpu)
3412 {
3413         gpa_t                 gpa;
3414
3415         if (vcpu->mmio_read_completed) {
3416                 memcpy(val, vcpu->mmio_data, bytes);
3417                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3418                                vcpu->mmio_phys_addr, *(u64 *)val);
3419                 vcpu->mmio_read_completed = 0;
3420                 return X86EMUL_CONTINUE;
3421         }
3422
3423         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3424
3425         if (gpa == UNMAPPED_GVA)
3426                 return X86EMUL_PROPAGATE_FAULT;
3427
3428         /* For APIC access vmexit */
3429         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3430                 goto mmio;
3431
3432         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3433                                 == X86EMUL_CONTINUE)
3434                 return X86EMUL_CONTINUE;
3435
3436 mmio:
3437         /*
3438          * Is this MMIO handled locally?
3439          */
3440         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3441                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3442                 return X86EMUL_CONTINUE;
3443         }
3444
3445         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3446
3447         vcpu->mmio_needed = 1;
3448         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3449         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3450         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3451         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3452
3453         return X86EMUL_IO_NEEDED;
3454 }
3455
3456 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3457                           const void *val, int bytes)
3458 {
3459         int ret;
3460
3461         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3462         if (ret < 0)
3463                 return 0;
3464         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3465         return 1;
3466 }
3467
3468 static int emulator_write_emulated_onepage(unsigned long addr,
3469                                            const void *val,
3470                                            unsigned int bytes,
3471                                            unsigned int *error_code,
3472                                            struct kvm_vcpu *vcpu)
3473 {
3474         gpa_t                 gpa;
3475
3476         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3477
3478         if (gpa == UNMAPPED_GVA)
3479                 return X86EMUL_PROPAGATE_FAULT;
3480
3481         /* For APIC access vmexit */
3482         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3483                 goto mmio;
3484
3485         if (emulator_write_phys(vcpu, gpa, val, bytes))
3486                 return X86EMUL_CONTINUE;
3487
3488 mmio:
3489         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3490         /*
3491          * Is this MMIO handled locally?
3492          */
3493         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3494                 return X86EMUL_CONTINUE;
3495
3496         vcpu->mmio_needed = 1;
3497         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3498         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3499         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3500         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3501         memcpy(vcpu->run->mmio.data, val, bytes);
3502
3503         return X86EMUL_CONTINUE;
3504 }
3505
3506 int emulator_write_emulated(unsigned long addr,
3507                             const void *val,
3508                             unsigned int bytes,
3509                             unsigned int *error_code,
3510                             struct kvm_vcpu *vcpu)
3511 {
3512         /* Crossing a page boundary? */
3513         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3514                 int rc, now;
3515
3516                 now = -addr & ~PAGE_MASK;
3517                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3518                                                      vcpu);
3519                 if (rc != X86EMUL_CONTINUE)
3520                         return rc;
3521                 addr += now;
3522                 val += now;
3523                 bytes -= now;
3524         }
3525         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3526                                                vcpu);
3527 }
3528
3529 #define CMPXCHG_TYPE(t, ptr, old, new) \
3530         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3531
3532 #ifdef CONFIG_X86_64
3533 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3534 #else
3535 #  define CMPXCHG64(ptr, old, new) \
3536         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3537 #endif
3538
3539 static int emulator_cmpxchg_emulated(unsigned long addr,
3540                                      const void *old,
3541                                      const void *new,
3542                                      unsigned int bytes,
3543                                      unsigned int *error_code,
3544                                      struct kvm_vcpu *vcpu)
3545 {
3546         gpa_t gpa;
3547         struct page *page;
3548         char *kaddr;
3549         bool exchanged;
3550
3551         /* guests cmpxchg8b have to be emulated atomically */
3552         if (bytes > 8 || (bytes & (bytes - 1)))
3553                 goto emul_write;
3554
3555         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3556
3557         if (gpa == UNMAPPED_GVA ||
3558             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3559                 goto emul_write;
3560
3561         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3562                 goto emul_write;
3563
3564         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3565         if (is_error_page(page)) {
3566                 kvm_release_page_clean(page);
3567                 goto emul_write;
3568         }
3569
3570         kaddr = kmap_atomic(page, KM_USER0);
3571         kaddr += offset_in_page(gpa);
3572         switch (bytes) {
3573         case 1:
3574                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3575                 break;
3576         case 2:
3577                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3578                 break;
3579         case 4:
3580                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3581                 break;
3582         case 8:
3583                 exchanged = CMPXCHG64(kaddr, old, new);
3584                 break;
3585         default:
3586                 BUG();
3587         }
3588         kunmap_atomic(kaddr, KM_USER0);
3589         kvm_release_page_dirty(page);
3590
3591         if (!exchanged)
3592                 return X86EMUL_CMPXCHG_FAILED;
3593
3594         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3595
3596         return X86EMUL_CONTINUE;
3597
3598 emul_write:
3599         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3600
3601         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3602 }
3603
3604 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3605 {
3606         /* TODO: String I/O for in kernel device */
3607         int r;
3608
3609         if (vcpu->arch.pio.in)
3610                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3611                                     vcpu->arch.pio.size, pd);
3612         else
3613                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3614                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3615                                      pd);
3616         return r;
3617 }
3618
3619
3620 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3621                              unsigned int count, struct kvm_vcpu *vcpu)
3622 {
3623         if (vcpu->arch.pio.count)
3624                 goto data_avail;
3625
3626         trace_kvm_pio(1, port, size, 1);
3627
3628         vcpu->arch.pio.port = port;
3629         vcpu->arch.pio.in = 1;
3630         vcpu->arch.pio.count  = count;
3631         vcpu->arch.pio.size = size;
3632
3633         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3634         data_avail:
3635                 memcpy(val, vcpu->arch.pio_data, size * count);
3636                 vcpu->arch.pio.count = 0;
3637                 return 1;
3638         }
3639
3640         vcpu->run->exit_reason = KVM_EXIT_IO;
3641         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3642         vcpu->run->io.size = size;
3643         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3644         vcpu->run->io.count = count;
3645         vcpu->run->io.port = port;
3646
3647         return 0;
3648 }
3649
3650 static int emulator_pio_out_emulated(int size, unsigned short port,
3651                               const void *val, unsigned int count,
3652                               struct kvm_vcpu *vcpu)
3653 {
3654         trace_kvm_pio(0, port, size, 1);
3655
3656         vcpu->arch.pio.port = port;
3657         vcpu->arch.pio.in = 0;
3658         vcpu->arch.pio.count = count;
3659         vcpu->arch.pio.size = size;
3660
3661         memcpy(vcpu->arch.pio_data, val, size * count);
3662
3663         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3664                 vcpu->arch.pio.count = 0;
3665                 return 1;
3666         }
3667
3668         vcpu->run->exit_reason = KVM_EXIT_IO;
3669         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3670         vcpu->run->io.size = size;
3671         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3672         vcpu->run->io.count = count;
3673         vcpu->run->io.port = port;
3674
3675         return 0;
3676 }
3677
3678 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3679 {
3680         return kvm_x86_ops->get_segment_base(vcpu, seg);
3681 }
3682
3683 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3684 {
3685         kvm_mmu_invlpg(vcpu, address);
3686         return X86EMUL_CONTINUE;
3687 }
3688
3689 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3690 {
3691         if (!need_emulate_wbinvd(vcpu))
3692                 return X86EMUL_CONTINUE;
3693
3694         if (kvm_x86_ops->has_wbinvd_exit()) {
3695                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3696                                 wbinvd_ipi, NULL, 1);
3697                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3698         }
3699         wbinvd();
3700         return X86EMUL_CONTINUE;
3701 }
3702 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3703
3704 int emulate_clts(struct kvm_vcpu *vcpu)
3705 {
3706         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3707         kvm_x86_ops->fpu_activate(vcpu);
3708         return X86EMUL_CONTINUE;
3709 }
3710
3711 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3712 {
3713         return _kvm_get_dr(vcpu, dr, dest);
3714 }
3715
3716 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3717 {
3718
3719         return __kvm_set_dr(vcpu, dr, value);
3720 }
3721
3722 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3723 {
3724         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3725 }
3726
3727 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3728 {
3729         unsigned long value;
3730
3731         switch (cr) {
3732         case 0:
3733                 value = kvm_read_cr0(vcpu);
3734                 break;
3735         case 2:
3736                 value = vcpu->arch.cr2;
3737                 break;
3738         case 3:
3739                 value = vcpu->arch.cr3;
3740                 break;
3741         case 4:
3742                 value = kvm_read_cr4(vcpu);
3743                 break;
3744         case 8:
3745                 value = kvm_get_cr8(vcpu);
3746                 break;
3747         default:
3748                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3749                 return 0;
3750         }
3751
3752         return value;
3753 }
3754
3755 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3756 {
3757         int res = 0;
3758
3759         switch (cr) {
3760         case 0:
3761                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3762                 break;
3763         case 2:
3764                 vcpu->arch.cr2 = val;
3765                 break;
3766         case 3:
3767                 res = kvm_set_cr3(vcpu, val);
3768                 break;
3769         case 4:
3770                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3771                 break;
3772         case 8:
3773                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3774                 break;
3775         default:
3776                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3777                 res = -1;
3778         }
3779
3780         return res;
3781 }
3782
3783 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3784 {
3785         return kvm_x86_ops->get_cpl(vcpu);
3786 }
3787
3788 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3789 {
3790         kvm_x86_ops->get_gdt(vcpu, dt);
3791 }
3792
3793 static unsigned long emulator_get_cached_segment_base(int seg,
3794                                                       struct kvm_vcpu *vcpu)
3795 {
3796         return get_segment_base(vcpu, seg);
3797 }
3798
3799 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3800                                            struct kvm_vcpu *vcpu)
3801 {
3802         struct kvm_segment var;
3803
3804         kvm_get_segment(vcpu, &var, seg);
3805
3806         if (var.unusable)
3807                 return false;
3808
3809         if (var.g)
3810                 var.limit >>= 12;
3811         set_desc_limit(desc, var.limit);
3812         set_desc_base(desc, (unsigned long)var.base);
3813         desc->type = var.type;
3814         desc->s = var.s;
3815         desc->dpl = var.dpl;
3816         desc->p = var.present;
3817         desc->avl = var.avl;
3818         desc->l = var.l;
3819         desc->d = var.db;
3820         desc->g = var.g;
3821
3822         return true;
3823 }
3824
3825 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3826                                            struct kvm_vcpu *vcpu)
3827 {
3828         struct kvm_segment var;
3829
3830         /* needed to preserve selector */
3831         kvm_get_segment(vcpu, &var, seg);
3832
3833         var.base = get_desc_base(desc);
3834         var.limit = get_desc_limit(desc);
3835         if (desc->g)
3836                 var.limit = (var.limit << 12) | 0xfff;
3837         var.type = desc->type;
3838         var.present = desc->p;
3839         var.dpl = desc->dpl;
3840         var.db = desc->d;
3841         var.s = desc->s;
3842         var.l = desc->l;
3843         var.g = desc->g;
3844         var.avl = desc->avl;
3845         var.present = desc->p;
3846         var.unusable = !var.present;
3847         var.padding = 0;
3848
3849         kvm_set_segment(vcpu, &var, seg);
3850         return;
3851 }
3852
3853 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3854 {
3855         struct kvm_segment kvm_seg;
3856
3857         kvm_get_segment(vcpu, &kvm_seg, seg);
3858         return kvm_seg.selector;
3859 }
3860
3861 static void emulator_set_segment_selector(u16 sel, int seg,
3862                                           struct kvm_vcpu *vcpu)
3863 {
3864         struct kvm_segment kvm_seg;
3865
3866         kvm_get_segment(vcpu, &kvm_seg, seg);
3867         kvm_seg.selector = sel;
3868         kvm_set_segment(vcpu, &kvm_seg, seg);
3869 }
3870
3871 static struct x86_emulate_ops emulate_ops = {
3872         .read_std            = kvm_read_guest_virt_system,
3873         .write_std           = kvm_write_guest_virt_system,
3874         .fetch               = kvm_fetch_guest_virt,
3875         .read_emulated       = emulator_read_emulated,
3876         .write_emulated      = emulator_write_emulated,
3877         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3878         .pio_in_emulated     = emulator_pio_in_emulated,
3879         .pio_out_emulated    = emulator_pio_out_emulated,
3880         .get_cached_descriptor = emulator_get_cached_descriptor,
3881         .set_cached_descriptor = emulator_set_cached_descriptor,
3882         .get_segment_selector = emulator_get_segment_selector,
3883         .set_segment_selector = emulator_set_segment_selector,
3884         .get_cached_segment_base = emulator_get_cached_segment_base,
3885         .get_gdt             = emulator_get_gdt,
3886         .get_cr              = emulator_get_cr,
3887         .set_cr              = emulator_set_cr,
3888         .cpl                 = emulator_get_cpl,
3889         .get_dr              = emulator_get_dr,
3890         .set_dr              = emulator_set_dr,
3891         .set_msr             = kvm_set_msr,
3892         .get_msr             = kvm_get_msr,
3893 };
3894
3895 static void cache_all_regs(struct kvm_vcpu *vcpu)
3896 {
3897         kvm_register_read(vcpu, VCPU_REGS_RAX);
3898         kvm_register_read(vcpu, VCPU_REGS_RSP);
3899         kvm_register_read(vcpu, VCPU_REGS_RIP);
3900         vcpu->arch.regs_dirty = ~0;
3901 }
3902
3903 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
3904 {
3905         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
3906         /*
3907          * an sti; sti; sequence only disable interrupts for the first
3908          * instruction. So, if the last instruction, be it emulated or
3909          * not, left the system with the INT_STI flag enabled, it
3910          * means that the last instruction is an sti. We should not
3911          * leave the flag on in this case. The same goes for mov ss
3912          */
3913         if (!(int_shadow & mask))
3914                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
3915 }
3916
3917 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
3918 {
3919         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
3920         if (ctxt->exception == PF_VECTOR)
3921                 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
3922         else if (ctxt->error_code_valid)
3923                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
3924         else
3925                 kvm_queue_exception(vcpu, ctxt->exception);
3926 }
3927
3928 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
3929 {
3930         ++vcpu->stat.insn_emulation_fail;
3931         trace_kvm_emulate_insn_failed(vcpu);
3932         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3933         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3934         vcpu->run->internal.ndata = 0;
3935         kvm_queue_exception(vcpu, UD_VECTOR);
3936         return EMULATE_FAIL;
3937 }
3938
3939 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
3940 {
3941         gpa_t gpa;
3942
3943         if (tdp_enabled)
3944                 return false;
3945
3946         /*
3947          * if emulation was due to access to shadowed page table
3948          * and it failed try to unshadow page and re-entetr the
3949          * guest to let CPU execute the instruction.
3950          */
3951         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
3952                 return true;
3953
3954         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
3955
3956         if (gpa == UNMAPPED_GVA)
3957                 return true; /* let cpu generate fault */
3958
3959         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
3960                 return true;
3961
3962         return false;
3963 }
3964
3965 int emulate_instruction(struct kvm_vcpu *vcpu,
3966                         unsigned long cr2,
3967                         u16 error_code,
3968                         int emulation_type)
3969 {
3970         int r;
3971         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
3972
3973         kvm_clear_exception_queue(vcpu);
3974         vcpu->arch.mmio_fault_cr2 = cr2;
3975         /*
3976          * TODO: fix emulate.c to use guest_read/write_register
3977          * instead of direct ->regs accesses, can save hundred cycles
3978          * on Intel for instructions that don't read/change RSP, for
3979          * for example.
3980          */
3981         cache_all_regs(vcpu);
3982
3983         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3984                 int cs_db, cs_l;
3985                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3986
3987                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3988                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3989                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3990                 vcpu->arch.emulate_ctxt.mode =
3991                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3992                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3993                         ? X86EMUL_MODE_VM86 : cs_l
3994                         ? X86EMUL_MODE_PROT64 : cs_db
3995                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3996                 memset(c, 0, sizeof(struct decode_cache));
3997                 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
3998                 vcpu->arch.emulate_ctxt.interruptibility = 0;
3999                 vcpu->arch.emulate_ctxt.exception = -1;
4000
4001                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4002                 trace_kvm_emulate_insn_start(vcpu);
4003
4004                 /* Only allow emulation of specific instructions on #UD
4005                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4006                 if (emulation_type & EMULTYPE_TRAP_UD) {
4007                         if (!c->twobyte)
4008                                 return EMULATE_FAIL;
4009                         switch (c->b) {
4010                         case 0x01: /* VMMCALL */
4011                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4012                                         return EMULATE_FAIL;
4013                                 break;
4014                         case 0x34: /* sysenter */
4015                         case 0x35: /* sysexit */
4016                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4017                                         return EMULATE_FAIL;
4018                                 break;
4019                         case 0x05: /* syscall */
4020                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4021                                         return EMULATE_FAIL;
4022                                 break;
4023                         default:
4024                                 return EMULATE_FAIL;
4025                         }
4026
4027                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4028                                 return EMULATE_FAIL;
4029                 }
4030
4031                 ++vcpu->stat.insn_emulation;
4032                 if (r)  {
4033                         if (reexecute_instruction(vcpu, cr2))
4034                                 return EMULATE_DONE;
4035                         if (emulation_type & EMULTYPE_SKIP)
4036                                 return EMULATE_FAIL;
4037                         return handle_emulation_failure(vcpu);
4038                 }
4039         }
4040
4041         if (emulation_type & EMULTYPE_SKIP) {
4042                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4043                 return EMULATE_DONE;
4044         }
4045
4046         /* this is needed for vmware backdor interface to work since it
4047            changes registers values  during IO operation */
4048         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4049
4050 restart:
4051         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
4052
4053         if (r) { /* emulation failed */
4054                 if (reexecute_instruction(vcpu, cr2))
4055                         return EMULATE_DONE;
4056
4057                 return handle_emulation_failure(vcpu);
4058         }
4059
4060         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4061         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4062         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4063         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4064
4065         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4066                 inject_emulated_exception(vcpu);
4067                 return EMULATE_DONE;
4068         }
4069
4070         if (vcpu->arch.pio.count) {
4071                 if (!vcpu->arch.pio.in)
4072                         vcpu->arch.pio.count = 0;
4073                 return EMULATE_DO_MMIO;
4074         }
4075
4076         if (vcpu->mmio_needed) {
4077                 if (vcpu->mmio_is_write)
4078                         vcpu->mmio_needed = 0;
4079                 return EMULATE_DO_MMIO;
4080         }
4081
4082         if (vcpu->arch.emulate_ctxt.restart)
4083                 goto restart;
4084
4085         return EMULATE_DONE;
4086 }
4087 EXPORT_SYMBOL_GPL(emulate_instruction);
4088
4089 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4090 {
4091         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4092         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4093         /* do not return to emulator after return from userspace */
4094         vcpu->arch.pio.count = 0;
4095         return ret;
4096 }
4097 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4098
4099 static void bounce_off(void *info)
4100 {
4101         /* nothing */
4102 }
4103
4104 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4105                                      void *data)
4106 {
4107         struct cpufreq_freqs *freq = data;
4108         struct kvm *kvm;
4109         struct kvm_vcpu *vcpu;
4110         int i, send_ipi = 0;
4111
4112         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4113                 return 0;
4114         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4115                 return 0;
4116         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
4117
4118         spin_lock(&kvm_lock);
4119         list_for_each_entry(kvm, &vm_list, vm_list) {
4120                 kvm_for_each_vcpu(i, vcpu, kvm) {
4121                         if (vcpu->cpu != freq->cpu)
4122                                 continue;
4123                         if (!kvm_request_guest_time_update(vcpu))
4124                                 continue;
4125                         if (vcpu->cpu != smp_processor_id())
4126                                 send_ipi++;
4127                 }
4128         }
4129         spin_unlock(&kvm_lock);
4130
4131         if (freq->old < freq->new && send_ipi) {
4132                 /*
4133                  * We upscale the frequency.  Must make the guest
4134                  * doesn't see old kvmclock values while running with
4135                  * the new frequency, otherwise we risk the guest sees
4136                  * time go backwards.
4137                  *
4138                  * In case we update the frequency for another cpu
4139                  * (which might be in guest context) send an interrupt
4140                  * to kick the cpu out of guest context.  Next time
4141                  * guest context is entered kvmclock will be updated,
4142                  * so the guest will not see stale values.
4143                  */
4144                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4145         }
4146         return 0;
4147 }
4148
4149 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4150         .notifier_call  = kvmclock_cpufreq_notifier
4151 };
4152
4153 static void kvm_timer_init(void)
4154 {
4155         int cpu;
4156
4157         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4158                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4159                                           CPUFREQ_TRANSITION_NOTIFIER);
4160                 for_each_online_cpu(cpu) {
4161                         unsigned long khz = cpufreq_get(cpu);
4162                         if (!khz)
4163                                 khz = tsc_khz;
4164                         per_cpu(cpu_tsc_khz, cpu) = khz;
4165                 }
4166         } else {
4167                 for_each_possible_cpu(cpu)
4168                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4169         }
4170 }
4171
4172 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4173
4174 static int kvm_is_in_guest(void)
4175 {
4176         return percpu_read(current_vcpu) != NULL;
4177 }
4178
4179 static int kvm_is_user_mode(void)
4180 {
4181         int user_mode = 3;
4182
4183         if (percpu_read(current_vcpu))
4184                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4185
4186         return user_mode != 0;
4187 }
4188
4189 static unsigned long kvm_get_guest_ip(void)
4190 {
4191         unsigned long ip = 0;
4192
4193         if (percpu_read(current_vcpu))
4194                 ip = kvm_rip_read(percpu_read(current_vcpu));
4195
4196         return ip;
4197 }
4198
4199 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4200         .is_in_guest            = kvm_is_in_guest,
4201         .is_user_mode           = kvm_is_user_mode,
4202         .get_guest_ip           = kvm_get_guest_ip,
4203 };
4204
4205 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4206 {
4207         percpu_write(current_vcpu, vcpu);
4208 }
4209 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4210
4211 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4212 {
4213         percpu_write(current_vcpu, NULL);
4214 }
4215 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4216
4217 int kvm_arch_init(void *opaque)
4218 {
4219         int r;
4220         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4221
4222         if (kvm_x86_ops) {
4223                 printk(KERN_ERR "kvm: already loaded the other module\n");
4224                 r = -EEXIST;
4225                 goto out;
4226         }
4227
4228         if (!ops->cpu_has_kvm_support()) {
4229                 printk(KERN_ERR "kvm: no hardware support\n");
4230                 r = -EOPNOTSUPP;
4231                 goto out;
4232         }
4233         if (ops->disabled_by_bios()) {
4234                 printk(KERN_ERR "kvm: disabled by bios\n");
4235                 r = -EOPNOTSUPP;
4236                 goto out;
4237         }
4238
4239         r = kvm_mmu_module_init();
4240         if (r)
4241                 goto out;
4242
4243         kvm_init_msr_list();
4244
4245         kvm_x86_ops = ops;
4246         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4247         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4248         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4249                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4250
4251         kvm_timer_init();
4252
4253         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4254
4255         if (cpu_has_xsave)
4256                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4257
4258         return 0;
4259
4260 out:
4261         return r;
4262 }
4263
4264 void kvm_arch_exit(void)
4265 {
4266         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4267
4268         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4269                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4270                                             CPUFREQ_TRANSITION_NOTIFIER);
4271         kvm_x86_ops = NULL;
4272         kvm_mmu_module_exit();
4273 }
4274
4275 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4276 {
4277         ++vcpu->stat.halt_exits;
4278         if (irqchip_in_kernel(vcpu->kvm)) {
4279                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4280                 return 1;
4281         } else {
4282                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4283                 return 0;
4284         }
4285 }
4286 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4287
4288 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4289                            unsigned long a1)
4290 {
4291         if (is_long_mode(vcpu))
4292                 return a0;
4293         else
4294                 return a0 | ((gpa_t)a1 << 32);
4295 }
4296
4297 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4298 {
4299         u64 param, ingpa, outgpa, ret;
4300         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4301         bool fast, longmode;
4302         int cs_db, cs_l;
4303
4304         /*
4305          * hypercall generates UD from non zero cpl and real mode
4306          * per HYPER-V spec
4307          */
4308         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4309                 kvm_queue_exception(vcpu, UD_VECTOR);
4310                 return 0;
4311         }
4312
4313         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4314         longmode = is_long_mode(vcpu) && cs_l == 1;
4315
4316         if (!longmode) {
4317                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4318                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4319                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4320                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4321                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4322                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4323         }
4324 #ifdef CONFIG_X86_64
4325         else {
4326                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4327                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4328                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4329         }
4330 #endif
4331
4332         code = param & 0xffff;
4333         fast = (param >> 16) & 0x1;
4334         rep_cnt = (param >> 32) & 0xfff;
4335         rep_idx = (param >> 48) & 0xfff;
4336
4337         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4338
4339         switch (code) {
4340         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4341                 kvm_vcpu_on_spin(vcpu);
4342                 break;
4343         default:
4344                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4345                 break;
4346         }
4347
4348         ret = res | (((u64)rep_done & 0xfff) << 32);
4349         if (longmode) {
4350                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4351         } else {
4352                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4353                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4354         }
4355
4356         return 1;
4357 }
4358
4359 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4360 {
4361         unsigned long nr, a0, a1, a2, a3, ret;
4362         int r = 1;
4363
4364         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4365                 return kvm_hv_hypercall(vcpu);
4366
4367         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4368         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4369         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4370         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4371         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4372
4373         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4374
4375         if (!is_long_mode(vcpu)) {
4376                 nr &= 0xFFFFFFFF;
4377                 a0 &= 0xFFFFFFFF;
4378                 a1 &= 0xFFFFFFFF;
4379                 a2 &= 0xFFFFFFFF;
4380                 a3 &= 0xFFFFFFFF;
4381         }
4382
4383         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4384                 ret = -KVM_EPERM;
4385                 goto out;
4386         }
4387
4388         switch (nr) {
4389         case KVM_HC_VAPIC_POLL_IRQ:
4390                 ret = 0;
4391                 break;
4392         case KVM_HC_MMU_OP:
4393                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4394                 break;
4395         default:
4396                 ret = -KVM_ENOSYS;
4397                 break;
4398         }
4399 out:
4400         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4401         ++vcpu->stat.hypercalls;
4402         return r;
4403 }
4404 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4405
4406 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4407 {
4408         char instruction[3];
4409         unsigned long rip = kvm_rip_read(vcpu);
4410
4411         /*
4412          * Blow out the MMU to ensure that no other VCPU has an active mapping
4413          * to ensure that the updated hypercall appears atomically across all
4414          * VCPUs.
4415          */
4416         kvm_mmu_zap_all(vcpu->kvm);
4417
4418         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4419
4420         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4421 }
4422
4423 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4424 {
4425         struct desc_ptr dt = { limit, base };
4426
4427         kvm_x86_ops->set_gdt(vcpu, &dt);
4428 }
4429
4430 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4431 {
4432         struct desc_ptr dt = { limit, base };
4433
4434         kvm_x86_ops->set_idt(vcpu, &dt);
4435 }
4436
4437 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4438 {
4439         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4440         int j, nent = vcpu->arch.cpuid_nent;
4441
4442         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4443         /* when no next entry is found, the current entry[i] is reselected */
4444         for (j = i + 1; ; j = (j + 1) % nent) {
4445                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4446                 if (ej->function == e->function) {
4447                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4448                         return j;
4449                 }
4450         }
4451         return 0; /* silence gcc, even though control never reaches here */
4452 }
4453
4454 /* find an entry with matching function, matching index (if needed), and that
4455  * should be read next (if it's stateful) */
4456 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4457         u32 function, u32 index)
4458 {
4459         if (e->function != function)
4460                 return 0;
4461         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4462                 return 0;
4463         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4464             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4465                 return 0;
4466         return 1;
4467 }
4468
4469 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4470                                               u32 function, u32 index)
4471 {
4472         int i;
4473         struct kvm_cpuid_entry2 *best = NULL;
4474
4475         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4476                 struct kvm_cpuid_entry2 *e;
4477
4478                 e = &vcpu->arch.cpuid_entries[i];
4479                 if (is_matching_cpuid_entry(e, function, index)) {
4480                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4481                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4482                         best = e;
4483                         break;
4484                 }
4485                 /*
4486                  * Both basic or both extended?
4487                  */
4488                 if (((e->function ^ function) & 0x80000000) == 0)
4489                         if (!best || e->function > best->function)
4490                                 best = e;
4491         }
4492         return best;
4493 }
4494 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4495
4496 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4497 {
4498         struct kvm_cpuid_entry2 *best;
4499
4500         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4501         if (!best || best->eax < 0x80000008)
4502                 goto not_found;
4503         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4504         if (best)
4505                 return best->eax & 0xff;
4506 not_found:
4507         return 36;
4508 }
4509
4510 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4511 {
4512         u32 function, index;
4513         struct kvm_cpuid_entry2 *best;
4514
4515         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4516         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4517         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4518         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4519         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4520         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4521         best = kvm_find_cpuid_entry(vcpu, function, index);
4522         if (best) {
4523                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4524                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4525                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4526                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4527         }
4528         kvm_x86_ops->skip_emulated_instruction(vcpu);
4529         trace_kvm_cpuid(function,
4530                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4531                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4532                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4533                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4534 }
4535 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4536
4537 /*
4538  * Check if userspace requested an interrupt window, and that the
4539  * interrupt window is open.
4540  *
4541  * No need to exit to userspace if we already have an interrupt queued.
4542  */
4543 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4544 {
4545         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4546                 vcpu->run->request_interrupt_window &&
4547                 kvm_arch_interrupt_allowed(vcpu));
4548 }
4549
4550 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4551 {
4552         struct kvm_run *kvm_run = vcpu->run;
4553
4554         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4555         kvm_run->cr8 = kvm_get_cr8(vcpu);
4556         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4557         if (irqchip_in_kernel(vcpu->kvm))
4558                 kvm_run->ready_for_interrupt_injection = 1;
4559         else
4560                 kvm_run->ready_for_interrupt_injection =
4561                         kvm_arch_interrupt_allowed(vcpu) &&
4562                         !kvm_cpu_has_interrupt(vcpu) &&
4563                         !kvm_event_needs_reinjection(vcpu);
4564 }
4565
4566 static void vapic_enter(struct kvm_vcpu *vcpu)
4567 {
4568         struct kvm_lapic *apic = vcpu->arch.apic;
4569         struct page *page;
4570
4571         if (!apic || !apic->vapic_addr)
4572                 return;
4573
4574         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4575
4576         vcpu->arch.apic->vapic_page = page;
4577 }
4578
4579 static void vapic_exit(struct kvm_vcpu *vcpu)
4580 {
4581         struct kvm_lapic *apic = vcpu->arch.apic;
4582         int idx;
4583
4584         if (!apic || !apic->vapic_addr)
4585                 return;
4586
4587         idx = srcu_read_lock(&vcpu->kvm->srcu);
4588         kvm_release_page_dirty(apic->vapic_page);
4589         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4590         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4591 }
4592
4593 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4594 {
4595         int max_irr, tpr;
4596
4597         if (!kvm_x86_ops->update_cr8_intercept)
4598                 return;
4599
4600         if (!vcpu->arch.apic)
4601                 return;
4602
4603         if (!vcpu->arch.apic->vapic_addr)
4604                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4605         else
4606                 max_irr = -1;
4607
4608         if (max_irr != -1)
4609                 max_irr >>= 4;
4610
4611         tpr = kvm_lapic_get_cr8(vcpu);
4612
4613         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4614 }
4615
4616 static void inject_pending_event(struct kvm_vcpu *vcpu)
4617 {
4618         /* try to reinject previous events if any */
4619         if (vcpu->arch.exception.pending) {
4620                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4621                                         vcpu->arch.exception.has_error_code,
4622                                         vcpu->arch.exception.error_code);
4623                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4624                                           vcpu->arch.exception.has_error_code,
4625                                           vcpu->arch.exception.error_code,
4626                                           vcpu->arch.exception.reinject);
4627                 return;
4628         }
4629
4630         if (vcpu->arch.nmi_injected) {
4631                 kvm_x86_ops->set_nmi(vcpu);
4632                 return;
4633         }
4634
4635         if (vcpu->arch.interrupt.pending) {
4636                 kvm_x86_ops->set_irq(vcpu);
4637                 return;
4638         }
4639
4640         /* try to inject new event if pending */
4641         if (vcpu->arch.nmi_pending) {
4642                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4643                         vcpu->arch.nmi_pending = false;
4644                         vcpu->arch.nmi_injected = true;
4645                         kvm_x86_ops->set_nmi(vcpu);
4646                 }
4647         } else if (kvm_cpu_has_interrupt(vcpu)) {
4648                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4649                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4650                                             false);
4651                         kvm_x86_ops->set_irq(vcpu);
4652                 }
4653         }
4654 }
4655
4656 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4657 {
4658         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4659                         !vcpu->guest_xcr0_loaded) {
4660                 /* kvm_set_xcr() also depends on this */
4661                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4662                 vcpu->guest_xcr0_loaded = 1;
4663         }
4664 }
4665
4666 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4667 {
4668         if (vcpu->guest_xcr0_loaded) {
4669                 if (vcpu->arch.xcr0 != host_xcr0)
4670                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4671                 vcpu->guest_xcr0_loaded = 0;
4672         }
4673 }
4674
4675 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4676 {
4677         int r;
4678         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4679                 vcpu->run->request_interrupt_window;
4680
4681         if (vcpu->requests) {
4682                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4683                         kvm_mmu_unload(vcpu);
4684                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4685                         __kvm_migrate_timers(vcpu);
4686                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu))
4687                         kvm_write_guest_time(vcpu);
4688                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4689                         kvm_mmu_sync_roots(vcpu);
4690                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4691                         kvm_x86_ops->tlb_flush(vcpu);
4692                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4693                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4694                         r = 0;
4695                         goto out;
4696                 }
4697                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4698                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4699                         r = 0;
4700                         goto out;
4701                 }
4702                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4703                         vcpu->fpu_active = 0;
4704                         kvm_x86_ops->fpu_deactivate(vcpu);
4705                 }
4706         }
4707
4708         r = kvm_mmu_reload(vcpu);
4709         if (unlikely(r))
4710                 goto out;
4711
4712         preempt_disable();
4713
4714         kvm_x86_ops->prepare_guest_switch(vcpu);
4715         if (vcpu->fpu_active)
4716                 kvm_load_guest_fpu(vcpu);
4717         kvm_load_guest_xcr0(vcpu);
4718
4719         atomic_set(&vcpu->guest_mode, 1);
4720         smp_wmb();
4721
4722         local_irq_disable();
4723
4724         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4725             || need_resched() || signal_pending(current)) {
4726                 atomic_set(&vcpu->guest_mode, 0);
4727                 smp_wmb();
4728                 local_irq_enable();
4729                 preempt_enable();
4730                 r = 1;
4731                 goto out;
4732         }
4733
4734         inject_pending_event(vcpu);
4735
4736         /* enable NMI/IRQ window open exits if needed */
4737         if (vcpu->arch.nmi_pending)
4738                 kvm_x86_ops->enable_nmi_window(vcpu);
4739         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4740                 kvm_x86_ops->enable_irq_window(vcpu);
4741
4742         if (kvm_lapic_enabled(vcpu)) {
4743                 update_cr8_intercept(vcpu);
4744                 kvm_lapic_sync_to_vapic(vcpu);
4745         }
4746
4747         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4748
4749         kvm_guest_enter();
4750
4751         if (unlikely(vcpu->arch.switch_db_regs)) {
4752                 set_debugreg(0, 7);
4753                 set_debugreg(vcpu->arch.eff_db[0], 0);
4754                 set_debugreg(vcpu->arch.eff_db[1], 1);
4755                 set_debugreg(vcpu->arch.eff_db[2], 2);
4756                 set_debugreg(vcpu->arch.eff_db[3], 3);
4757         }
4758
4759         trace_kvm_entry(vcpu->vcpu_id);
4760         kvm_x86_ops->run(vcpu);
4761
4762         /*
4763          * If the guest has used debug registers, at least dr7
4764          * will be disabled while returning to the host.
4765          * If we don't have active breakpoints in the host, we don't
4766          * care about the messed up debug address registers. But if
4767          * we have some of them active, restore the old state.
4768          */
4769         if (hw_breakpoint_active())
4770                 hw_breakpoint_restore();
4771
4772         atomic_set(&vcpu->guest_mode, 0);
4773         smp_wmb();
4774         local_irq_enable();
4775
4776         ++vcpu->stat.exits;
4777
4778         /*
4779          * We must have an instruction between local_irq_enable() and
4780          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4781          * the interrupt shadow.  The stat.exits increment will do nicely.
4782          * But we need to prevent reordering, hence this barrier():
4783          */
4784         barrier();
4785
4786         kvm_guest_exit();
4787
4788         preempt_enable();
4789
4790         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4791
4792         /*
4793          * Profile KVM exit RIPs:
4794          */
4795         if (unlikely(prof_on == KVM_PROFILING)) {
4796                 unsigned long rip = kvm_rip_read(vcpu);
4797                 profile_hit(KVM_PROFILING, (void *)rip);
4798         }
4799
4800
4801         kvm_lapic_sync_from_vapic(vcpu);
4802
4803         r = kvm_x86_ops->handle_exit(vcpu);
4804 out:
4805         return r;
4806 }
4807
4808
4809 static int __vcpu_run(struct kvm_vcpu *vcpu)
4810 {
4811         int r;
4812         struct kvm *kvm = vcpu->kvm;
4813
4814         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4815                 pr_debug("vcpu %d received sipi with vector # %x\n",
4816                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4817                 kvm_lapic_reset(vcpu);
4818                 r = kvm_arch_vcpu_reset(vcpu);
4819                 if (r)
4820                         return r;
4821                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4822         }
4823
4824         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4825         vapic_enter(vcpu);
4826
4827         r = 1;
4828         while (r > 0) {
4829                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4830                         r = vcpu_enter_guest(vcpu);
4831                 else {
4832                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4833                         kvm_vcpu_block(vcpu);
4834                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4835                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
4836                         {
4837                                 switch(vcpu->arch.mp_state) {
4838                                 case KVM_MP_STATE_HALTED:
4839                                         vcpu->arch.mp_state =
4840                                                 KVM_MP_STATE_RUNNABLE;
4841                                 case KVM_MP_STATE_RUNNABLE:
4842                                         break;
4843                                 case KVM_MP_STATE_SIPI_RECEIVED:
4844                                 default:
4845                                         r = -EINTR;
4846                                         break;
4847                                 }
4848                         }
4849                 }
4850
4851                 if (r <= 0)
4852                         break;
4853
4854                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4855                 if (kvm_cpu_has_pending_timer(vcpu))
4856                         kvm_inject_pending_timer_irqs(vcpu);
4857
4858                 if (dm_request_for_irq_injection(vcpu)) {
4859                         r = -EINTR;
4860                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4861                         ++vcpu->stat.request_irq_exits;
4862                 }
4863                 if (signal_pending(current)) {
4864                         r = -EINTR;
4865                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4866                         ++vcpu->stat.signal_exits;
4867                 }
4868                 if (need_resched()) {
4869                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4870                         kvm_resched(vcpu);
4871                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4872                 }
4873         }
4874
4875         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4876
4877         vapic_exit(vcpu);
4878
4879         return r;
4880 }
4881
4882 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4883 {
4884         int r;
4885         sigset_t sigsaved;
4886
4887         if (vcpu->sigset_active)
4888                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4889
4890         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4891                 kvm_vcpu_block(vcpu);
4892                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4893                 r = -EAGAIN;
4894                 goto out;
4895         }
4896
4897         /* re-sync apic's tpr */
4898         if (!irqchip_in_kernel(vcpu->kvm))
4899                 kvm_set_cr8(vcpu, kvm_run->cr8);
4900
4901         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4902             vcpu->arch.emulate_ctxt.restart) {
4903                 if (vcpu->mmio_needed) {
4904                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4905                         vcpu->mmio_read_completed = 1;
4906                         vcpu->mmio_needed = 0;
4907                 }
4908                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4909                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4910                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4911                 if (r != EMULATE_DONE) {
4912                         r = 0;
4913                         goto out;
4914                 }
4915         }
4916         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4917                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4918                                      kvm_run->hypercall.ret);
4919
4920         r = __vcpu_run(vcpu);
4921
4922 out:
4923         post_kvm_run_save(vcpu);
4924         if (vcpu->sigset_active)
4925                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4926
4927         return r;
4928 }
4929
4930 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4931 {
4932         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4933         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4934         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4935         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4936         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4937         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4938         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4939         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4940 #ifdef CONFIG_X86_64
4941         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4942         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4943         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4944         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4945         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4946         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4947         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4948         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4949 #endif
4950
4951         regs->rip = kvm_rip_read(vcpu);
4952         regs->rflags = kvm_get_rflags(vcpu);
4953
4954         return 0;
4955 }
4956
4957 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4958 {
4959         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4960         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4961         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4962         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4963         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4964         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4965         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4966         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4967 #ifdef CONFIG_X86_64
4968         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4969         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4970         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4971         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4972         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4973         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4974         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4975         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4976 #endif
4977
4978         kvm_rip_write(vcpu, regs->rip);
4979         kvm_set_rflags(vcpu, regs->rflags);
4980
4981         vcpu->arch.exception.pending = false;
4982
4983         return 0;
4984 }
4985
4986 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4987 {
4988         struct kvm_segment cs;
4989
4990         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4991         *db = cs.db;
4992         *l = cs.l;
4993 }
4994 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4995
4996 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4997                                   struct kvm_sregs *sregs)
4998 {
4999         struct desc_ptr dt;
5000
5001         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5002         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5003         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5004         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5005         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5006         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5007
5008         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5009         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5010
5011         kvm_x86_ops->get_idt(vcpu, &dt);
5012         sregs->idt.limit = dt.size;
5013         sregs->idt.base = dt.address;
5014         kvm_x86_ops->get_gdt(vcpu, &dt);
5015         sregs->gdt.limit = dt.size;
5016         sregs->gdt.base = dt.address;
5017
5018         sregs->cr0 = kvm_read_cr0(vcpu);
5019         sregs->cr2 = vcpu->arch.cr2;
5020         sregs->cr3 = vcpu->arch.cr3;
5021         sregs->cr4 = kvm_read_cr4(vcpu);
5022         sregs->cr8 = kvm_get_cr8(vcpu);
5023         sregs->efer = vcpu->arch.efer;
5024         sregs->apic_base = kvm_get_apic_base(vcpu);
5025
5026         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5027
5028         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5029                 set_bit(vcpu->arch.interrupt.nr,
5030                         (unsigned long *)sregs->interrupt_bitmap);
5031
5032         return 0;
5033 }
5034
5035 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5036                                     struct kvm_mp_state *mp_state)
5037 {
5038         mp_state->mp_state = vcpu->arch.mp_state;
5039         return 0;
5040 }
5041
5042 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5043                                     struct kvm_mp_state *mp_state)
5044 {
5045         vcpu->arch.mp_state = mp_state->mp_state;
5046         return 0;
5047 }
5048
5049 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5050                     bool has_error_code, u32 error_code)
5051 {
5052         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5053         int cs_db, cs_l, ret;
5054         cache_all_regs(vcpu);
5055
5056         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5057
5058         vcpu->arch.emulate_ctxt.vcpu = vcpu;
5059         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
5060         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
5061         vcpu->arch.emulate_ctxt.mode =
5062                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5063                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
5064                 ? X86EMUL_MODE_VM86 : cs_l
5065                 ? X86EMUL_MODE_PROT64 : cs_db
5066                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
5067         memset(c, 0, sizeof(struct decode_cache));
5068         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
5069
5070         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
5071                                    tss_selector, reason, has_error_code,
5072                                    error_code);
5073
5074         if (ret)
5075                 return EMULATE_FAIL;
5076
5077         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5078         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5079         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5080         return EMULATE_DONE;
5081 }
5082 EXPORT_SYMBOL_GPL(kvm_task_switch);
5083
5084 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5085                                   struct kvm_sregs *sregs)
5086 {
5087         int mmu_reset_needed = 0;
5088         int pending_vec, max_bits;
5089         struct desc_ptr dt;
5090
5091         dt.size = sregs->idt.limit;
5092         dt.address = sregs->idt.base;
5093         kvm_x86_ops->set_idt(vcpu, &dt);
5094         dt.size = sregs->gdt.limit;
5095         dt.address = sregs->gdt.base;
5096         kvm_x86_ops->set_gdt(vcpu, &dt);
5097
5098         vcpu->arch.cr2 = sregs->cr2;
5099         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5100         vcpu->arch.cr3 = sregs->cr3;
5101
5102         kvm_set_cr8(vcpu, sregs->cr8);
5103
5104         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5105         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5106         kvm_set_apic_base(vcpu, sregs->apic_base);
5107
5108         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5109         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5110         vcpu->arch.cr0 = sregs->cr0;
5111
5112         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5113         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5114         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5115                 load_pdptrs(vcpu, vcpu->arch.cr3);
5116                 mmu_reset_needed = 1;
5117         }
5118
5119         if (mmu_reset_needed)
5120                 kvm_mmu_reset_context(vcpu);
5121
5122         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5123         pending_vec = find_first_bit(
5124                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5125         if (pending_vec < max_bits) {
5126                 kvm_queue_interrupt(vcpu, pending_vec, false);
5127                 pr_debug("Set back pending irq %d\n", pending_vec);
5128                 if (irqchip_in_kernel(vcpu->kvm))
5129                         kvm_pic_clear_isr_ack(vcpu->kvm);
5130         }
5131
5132         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5133         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5134         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5135         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5136         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5137         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5138
5139         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5140         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5141
5142         update_cr8_intercept(vcpu);
5143
5144         /* Older userspace won't unhalt the vcpu on reset. */
5145         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5146             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5147             !is_protmode(vcpu))
5148                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5149
5150         return 0;
5151 }
5152
5153 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5154                                         struct kvm_guest_debug *dbg)
5155 {
5156         unsigned long rflags;
5157         int i, r;
5158
5159         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5160                 r = -EBUSY;
5161                 if (vcpu->arch.exception.pending)
5162                         goto out;
5163                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5164                         kvm_queue_exception(vcpu, DB_VECTOR);
5165                 else
5166                         kvm_queue_exception(vcpu, BP_VECTOR);
5167         }
5168
5169         /*
5170          * Read rflags as long as potentially injected trace flags are still
5171          * filtered out.
5172          */
5173         rflags = kvm_get_rflags(vcpu);
5174
5175         vcpu->guest_debug = dbg->control;
5176         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5177                 vcpu->guest_debug = 0;
5178
5179         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5180                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5181                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5182                 vcpu->arch.switch_db_regs =
5183                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5184         } else {
5185                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5186                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5187                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5188         }
5189
5190         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5191                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5192                         get_segment_base(vcpu, VCPU_SREG_CS);
5193
5194         /*
5195          * Trigger an rflags update that will inject or remove the trace
5196          * flags.
5197          */
5198         kvm_set_rflags(vcpu, rflags);
5199
5200         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5201
5202         r = 0;
5203
5204 out:
5205
5206         return r;
5207 }
5208
5209 /*
5210  * Translate a guest virtual address to a guest physical address.
5211  */
5212 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5213                                     struct kvm_translation *tr)
5214 {
5215         unsigned long vaddr = tr->linear_address;
5216         gpa_t gpa;
5217         int idx;
5218
5219         idx = srcu_read_lock(&vcpu->kvm->srcu);
5220         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5221         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5222         tr->physical_address = gpa;
5223         tr->valid = gpa != UNMAPPED_GVA;
5224         tr->writeable = 1;
5225         tr->usermode = 0;
5226
5227         return 0;
5228 }
5229
5230 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5231 {
5232         struct i387_fxsave_struct *fxsave =
5233                         &vcpu->arch.guest_fpu.state->fxsave;
5234
5235         memcpy(fpu->fpr, fxsave->st_space, 128);
5236         fpu->fcw = fxsave->cwd;
5237         fpu->fsw = fxsave->swd;
5238         fpu->ftwx = fxsave->twd;
5239         fpu->last_opcode = fxsave->fop;
5240         fpu->last_ip = fxsave->rip;
5241         fpu->last_dp = fxsave->rdp;
5242         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5243
5244         return 0;
5245 }
5246
5247 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5248 {
5249         struct i387_fxsave_struct *fxsave =
5250                         &vcpu->arch.guest_fpu.state->fxsave;
5251
5252         memcpy(fxsave->st_space, fpu->fpr, 128);
5253         fxsave->cwd = fpu->fcw;
5254         fxsave->swd = fpu->fsw;
5255         fxsave->twd = fpu->ftwx;
5256         fxsave->fop = fpu->last_opcode;
5257         fxsave->rip = fpu->last_ip;
5258         fxsave->rdp = fpu->last_dp;
5259         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5260
5261         return 0;
5262 }
5263
5264 int fx_init(struct kvm_vcpu *vcpu)
5265 {
5266         int err;
5267
5268         err = fpu_alloc(&vcpu->arch.guest_fpu);
5269         if (err)
5270                 return err;
5271
5272         fpu_finit(&vcpu->arch.guest_fpu);
5273
5274         /*
5275          * Ensure guest xcr0 is valid for loading
5276          */
5277         vcpu->arch.xcr0 = XSTATE_FP;
5278
5279         vcpu->arch.cr0 |= X86_CR0_ET;
5280
5281         return 0;
5282 }
5283 EXPORT_SYMBOL_GPL(fx_init);
5284
5285 static void fx_free(struct kvm_vcpu *vcpu)
5286 {
5287         fpu_free(&vcpu->arch.guest_fpu);
5288 }
5289
5290 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5291 {
5292         if (vcpu->guest_fpu_loaded)
5293                 return;
5294
5295         /*
5296          * Restore all possible states in the guest,
5297          * and assume host would use all available bits.
5298          * Guest xcr0 would be loaded later.
5299          */
5300         kvm_put_guest_xcr0(vcpu);
5301         vcpu->guest_fpu_loaded = 1;
5302         unlazy_fpu(current);
5303         fpu_restore_checking(&vcpu->arch.guest_fpu);
5304         trace_kvm_fpu(1);
5305 }
5306
5307 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5308 {
5309         kvm_put_guest_xcr0(vcpu);
5310
5311         if (!vcpu->guest_fpu_loaded)
5312                 return;
5313
5314         vcpu->guest_fpu_loaded = 0;
5315         fpu_save_init(&vcpu->arch.guest_fpu);
5316         ++vcpu->stat.fpu_reload;
5317         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5318         trace_kvm_fpu(0);
5319 }
5320
5321 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5322 {
5323         if (vcpu->arch.time_page) {
5324                 kvm_release_page_dirty(vcpu->arch.time_page);
5325                 vcpu->arch.time_page = NULL;
5326         }
5327
5328         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5329         fx_free(vcpu);
5330         kvm_x86_ops->vcpu_free(vcpu);
5331 }
5332
5333 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5334                                                 unsigned int id)
5335 {
5336         return kvm_x86_ops->vcpu_create(kvm, id);
5337 }
5338
5339 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5340 {
5341         int r;
5342
5343         vcpu->arch.mtrr_state.have_fixed = 1;
5344         vcpu_load(vcpu);
5345         r = kvm_arch_vcpu_reset(vcpu);
5346         if (r == 0)
5347                 r = kvm_mmu_setup(vcpu);
5348         vcpu_put(vcpu);
5349         if (r < 0)
5350                 goto free_vcpu;
5351
5352         return 0;
5353 free_vcpu:
5354         kvm_x86_ops->vcpu_free(vcpu);
5355         return r;
5356 }
5357
5358 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5359 {
5360         vcpu_load(vcpu);
5361         kvm_mmu_unload(vcpu);
5362         vcpu_put(vcpu);
5363
5364         fx_free(vcpu);
5365         kvm_x86_ops->vcpu_free(vcpu);
5366 }
5367
5368 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5369 {
5370         vcpu->arch.nmi_pending = false;
5371         vcpu->arch.nmi_injected = false;
5372
5373         vcpu->arch.switch_db_regs = 0;
5374         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5375         vcpu->arch.dr6 = DR6_FIXED_1;
5376         vcpu->arch.dr7 = DR7_FIXED_1;
5377
5378         return kvm_x86_ops->vcpu_reset(vcpu);
5379 }
5380
5381 int kvm_arch_hardware_enable(void *garbage)
5382 {
5383         /*
5384          * Since this may be called from a hotplug notifcation,
5385          * we can't get the CPU frequency directly.
5386          */
5387         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5388                 int cpu = raw_smp_processor_id();
5389                 per_cpu(cpu_tsc_khz, cpu) = 0;
5390         }
5391
5392         kvm_shared_msr_cpu_online();
5393
5394         return kvm_x86_ops->hardware_enable(garbage);
5395 }
5396
5397 void kvm_arch_hardware_disable(void *garbage)
5398 {
5399         kvm_x86_ops->hardware_disable(garbage);
5400         drop_user_return_notifiers(garbage);
5401 }
5402
5403 int kvm_arch_hardware_setup(void)
5404 {
5405         return kvm_x86_ops->hardware_setup();
5406 }
5407
5408 void kvm_arch_hardware_unsetup(void)
5409 {
5410         kvm_x86_ops->hardware_unsetup();
5411 }
5412
5413 void kvm_arch_check_processor_compat(void *rtn)
5414 {
5415         kvm_x86_ops->check_processor_compatibility(rtn);
5416 }
5417
5418 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5419 {
5420         struct page *page;
5421         struct kvm *kvm;
5422         int r;
5423
5424         BUG_ON(vcpu->kvm == NULL);
5425         kvm = vcpu->kvm;
5426
5427         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5428         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5429                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5430         else
5431                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5432
5433         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5434         if (!page) {
5435                 r = -ENOMEM;
5436                 goto fail;
5437         }
5438         vcpu->arch.pio_data = page_address(page);
5439
5440         r = kvm_mmu_create(vcpu);
5441         if (r < 0)
5442                 goto fail_free_pio_data;
5443
5444         if (irqchip_in_kernel(kvm)) {
5445                 r = kvm_create_lapic(vcpu);
5446                 if (r < 0)
5447                         goto fail_mmu_destroy;
5448         }
5449
5450         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5451                                        GFP_KERNEL);
5452         if (!vcpu->arch.mce_banks) {
5453                 r = -ENOMEM;
5454                 goto fail_free_lapic;
5455         }
5456         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5457
5458         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5459                 goto fail_free_mce_banks;
5460
5461         return 0;
5462 fail_free_mce_banks:
5463         kfree(vcpu->arch.mce_banks);
5464 fail_free_lapic:
5465         kvm_free_lapic(vcpu);
5466 fail_mmu_destroy:
5467         kvm_mmu_destroy(vcpu);
5468 fail_free_pio_data:
5469         free_page((unsigned long)vcpu->arch.pio_data);
5470 fail:
5471         return r;
5472 }
5473
5474 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5475 {
5476         int idx;
5477
5478         kfree(vcpu->arch.mce_banks);
5479         kvm_free_lapic(vcpu);
5480         idx = srcu_read_lock(&vcpu->kvm->srcu);
5481         kvm_mmu_destroy(vcpu);
5482         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5483         free_page((unsigned long)vcpu->arch.pio_data);
5484 }
5485
5486 struct  kvm *kvm_arch_create_vm(void)
5487 {
5488         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5489
5490         if (!kvm)
5491                 return ERR_PTR(-ENOMEM);
5492
5493         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5494         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5495
5496         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5497         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5498
5499         rdtscll(kvm->arch.vm_init_tsc);
5500
5501         return kvm;
5502 }
5503
5504 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5505 {
5506         vcpu_load(vcpu);
5507         kvm_mmu_unload(vcpu);
5508         vcpu_put(vcpu);
5509 }
5510
5511 static void kvm_free_vcpus(struct kvm *kvm)
5512 {
5513         unsigned int i;
5514         struct kvm_vcpu *vcpu;
5515
5516         /*
5517          * Unpin any mmu pages first.
5518          */
5519         kvm_for_each_vcpu(i, vcpu, kvm)
5520                 kvm_unload_vcpu_mmu(vcpu);
5521         kvm_for_each_vcpu(i, vcpu, kvm)
5522                 kvm_arch_vcpu_free(vcpu);
5523
5524         mutex_lock(&kvm->lock);
5525         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5526                 kvm->vcpus[i] = NULL;
5527
5528         atomic_set(&kvm->online_vcpus, 0);
5529         mutex_unlock(&kvm->lock);
5530 }
5531
5532 void kvm_arch_sync_events(struct kvm *kvm)
5533 {
5534         kvm_free_all_assigned_devices(kvm);
5535         kvm_free_pit(kvm);
5536 }
5537
5538 void kvm_arch_destroy_vm(struct kvm *kvm)
5539 {
5540         kvm_iommu_unmap_guest(kvm);
5541         kfree(kvm->arch.vpic);
5542         kfree(kvm->arch.vioapic);
5543         kvm_free_vcpus(kvm);
5544         kvm_free_physmem(kvm);
5545         if (kvm->arch.apic_access_page)
5546                 put_page(kvm->arch.apic_access_page);
5547         if (kvm->arch.ept_identity_pagetable)
5548                 put_page(kvm->arch.ept_identity_pagetable);
5549         cleanup_srcu_struct(&kvm->srcu);
5550         kfree(kvm);
5551 }
5552
5553 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5554                                 struct kvm_memory_slot *memslot,
5555                                 struct kvm_memory_slot old,
5556                                 struct kvm_userspace_memory_region *mem,
5557                                 int user_alloc)
5558 {
5559         int npages = memslot->npages;
5560         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5561
5562         /* Prevent internal slot pages from being moved by fork()/COW. */
5563         if (memslot->id >= KVM_MEMORY_SLOTS)
5564                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5565
5566         /*To keep backward compatibility with older userspace,
5567          *x86 needs to hanlde !user_alloc case.
5568          */
5569         if (!user_alloc) {
5570                 if (npages && !old.rmap) {
5571                         unsigned long userspace_addr;
5572
5573                         down_write(&current->mm->mmap_sem);
5574                         userspace_addr = do_mmap(NULL, 0,
5575                                                  npages * PAGE_SIZE,
5576                                                  PROT_READ | PROT_WRITE,
5577                                                  map_flags,
5578                                                  0);
5579                         up_write(&current->mm->mmap_sem);
5580
5581                         if (IS_ERR((void *)userspace_addr))
5582                                 return PTR_ERR((void *)userspace_addr);
5583
5584                         memslot->userspace_addr = userspace_addr;
5585                 }
5586         }
5587
5588
5589         return 0;
5590 }
5591
5592 void kvm_arch_commit_memory_region(struct kvm *kvm,
5593                                 struct kvm_userspace_memory_region *mem,
5594                                 struct kvm_memory_slot old,
5595                                 int user_alloc)
5596 {
5597
5598         int npages = mem->memory_size >> PAGE_SHIFT;
5599
5600         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5601                 int ret;
5602
5603                 down_write(&current->mm->mmap_sem);
5604                 ret = do_munmap(current->mm, old.userspace_addr,
5605                                 old.npages * PAGE_SIZE);
5606                 up_write(&current->mm->mmap_sem);
5607                 if (ret < 0)
5608                         printk(KERN_WARNING
5609                                "kvm_vm_ioctl_set_memory_region: "
5610                                "failed to munmap memory\n");
5611         }
5612
5613         spin_lock(&kvm->mmu_lock);
5614         if (!kvm->arch.n_requested_mmu_pages) {
5615                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5616                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5617         }
5618
5619         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5620         spin_unlock(&kvm->mmu_lock);
5621 }
5622
5623 void kvm_arch_flush_shadow(struct kvm *kvm)
5624 {
5625         kvm_mmu_zap_all(kvm);
5626         kvm_reload_remote_mmus(kvm);
5627 }
5628
5629 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5630 {
5631         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5632                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5633                 || vcpu->arch.nmi_pending ||
5634                 (kvm_arch_interrupt_allowed(vcpu) &&
5635                  kvm_cpu_has_interrupt(vcpu));
5636 }
5637
5638 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5639 {
5640         int me;
5641         int cpu = vcpu->cpu;
5642
5643         if (waitqueue_active(&vcpu->wq)) {
5644                 wake_up_interruptible(&vcpu->wq);
5645                 ++vcpu->stat.halt_wakeup;
5646         }
5647
5648         me = get_cpu();
5649         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5650                 if (atomic_xchg(&vcpu->guest_mode, 0))
5651                         smp_send_reschedule(cpu);
5652         put_cpu();
5653 }
5654
5655 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5656 {
5657         return kvm_x86_ops->interrupt_allowed(vcpu);
5658 }
5659
5660 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5661 {
5662         unsigned long current_rip = kvm_rip_read(vcpu) +
5663                 get_segment_base(vcpu, VCPU_SREG_CS);
5664
5665         return current_rip == linear_rip;
5666 }
5667 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5668
5669 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5670 {
5671         unsigned long rflags;
5672
5673         rflags = kvm_x86_ops->get_rflags(vcpu);
5674         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5675                 rflags &= ~X86_EFLAGS_TF;
5676         return rflags;
5677 }
5678 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5679
5680 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5681 {
5682         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5683             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5684                 rflags |= X86_EFLAGS_TF;
5685         kvm_x86_ops->set_rflags(vcpu, rflags);
5686 }
5687 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5688
5689 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5690 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5691 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5692 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5693 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5694 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5695 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5696 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5697 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5698 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5699 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);