KVM: Wake up waitqueue before calling get_cpu()
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS                                               \
48         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS                                               \
52         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
54                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
55                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59  * - enable syscall per default because its emulated by KVM
60  * - enable LME and LMA per default on 64 bit KVM
61  */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72                                     struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74                                               u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80         { "pf_fixed", VCPU_STAT(pf_fixed) },
81         { "pf_guest", VCPU_STAT(pf_guest) },
82         { "tlb_flush", VCPU_STAT(tlb_flush) },
83         { "invlpg", VCPU_STAT(invlpg) },
84         { "exits", VCPU_STAT(exits) },
85         { "io_exits", VCPU_STAT(io_exits) },
86         { "mmio_exits", VCPU_STAT(mmio_exits) },
87         { "signal_exits", VCPU_STAT(signal_exits) },
88         { "irq_window", VCPU_STAT(irq_window_exits) },
89         { "nmi_window", VCPU_STAT(nmi_window_exits) },
90         { "halt_exits", VCPU_STAT(halt_exits) },
91         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92         { "hypercalls", VCPU_STAT(hypercalls) },
93         { "request_irq", VCPU_STAT(request_irq_exits) },
94         { "request_nmi", VCPU_STAT(request_nmi_exits) },
95         { "irq_exits", VCPU_STAT(irq_exits) },
96         { "host_state_reload", VCPU_STAT(host_state_reload) },
97         { "efer_reload", VCPU_STAT(efer_reload) },
98         { "fpu_reload", VCPU_STAT(fpu_reload) },
99         { "insn_emulation", VCPU_STAT(insn_emulation) },
100         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
101         { "irq_injections", VCPU_STAT(irq_injections) },
102         { "nmi_injections", VCPU_STAT(nmi_injections) },
103         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
104         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
105         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
106         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
107         { "mmu_flooded", VM_STAT(mmu_flooded) },
108         { "mmu_recycled", VM_STAT(mmu_recycled) },
109         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
110         { "mmu_unsync", VM_STAT(mmu_unsync) },
111         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
112         { "largepages", VM_STAT(lpages) },
113         { NULL }
114 };
115
116 unsigned long segment_base(u16 selector)
117 {
118         struct descriptor_table gdt;
119         struct desc_struct *d;
120         unsigned long table_base;
121         unsigned long v;
122
123         if (selector == 0)
124                 return 0;
125
126         asm("sgdt %0" : "=m"(gdt));
127         table_base = gdt.base;
128
129         if (selector & 4) {           /* from ldt */
130                 u16 ldt_selector;
131
132                 asm("sldt %0" : "=g"(ldt_selector));
133                 table_base = segment_base(ldt_selector);
134         }
135         d = (struct desc_struct *)(table_base + (selector & ~7));
136         v = d->base0 | ((unsigned long)d->base1 << 16) |
137                 ((unsigned long)d->base2 << 24);
138 #ifdef CONFIG_X86_64
139         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
140                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
141 #endif
142         return v;
143 }
144 EXPORT_SYMBOL_GPL(segment_base);
145
146 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
147 {
148         if (irqchip_in_kernel(vcpu->kvm))
149                 return vcpu->arch.apic_base;
150         else
151                 return vcpu->arch.apic_base;
152 }
153 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
154
155 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
156 {
157         /* TODO: reserve bits check */
158         if (irqchip_in_kernel(vcpu->kvm))
159                 kvm_lapic_set_base(vcpu, data);
160         else
161                 vcpu->arch.apic_base = data;
162 }
163 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
164
165 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
166 {
167         WARN_ON(vcpu->arch.exception.pending);
168         vcpu->arch.exception.pending = true;
169         vcpu->arch.exception.has_error_code = false;
170         vcpu->arch.exception.nr = nr;
171 }
172 EXPORT_SYMBOL_GPL(kvm_queue_exception);
173
174 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
175                            u32 error_code)
176 {
177         ++vcpu->stat.pf_guest;
178
179         if (vcpu->arch.exception.pending) {
180                 if (vcpu->arch.exception.nr == PF_VECTOR) {
181                         printk(KERN_DEBUG "kvm: inject_page_fault:"
182                                         " double fault 0x%lx\n", addr);
183                         vcpu->arch.exception.nr = DF_VECTOR;
184                         vcpu->arch.exception.error_code = 0;
185                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
186                         /* triple fault -> shutdown */
187                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
188                 }
189                 return;
190         }
191         vcpu->arch.cr2 = addr;
192         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
193 }
194
195 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
196 {
197         vcpu->arch.nmi_pending = 1;
198 }
199 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
200
201 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
202 {
203         WARN_ON(vcpu->arch.exception.pending);
204         vcpu->arch.exception.pending = true;
205         vcpu->arch.exception.has_error_code = true;
206         vcpu->arch.exception.nr = nr;
207         vcpu->arch.exception.error_code = error_code;
208 }
209 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
210
211 static void __queue_exception(struct kvm_vcpu *vcpu)
212 {
213         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
214                                      vcpu->arch.exception.has_error_code,
215                                      vcpu->arch.exception.error_code);
216 }
217
218 /*
219  * Load the pae pdptrs.  Return true is they are all valid.
220  */
221 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
222 {
223         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
224         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
225         int i;
226         int ret;
227         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228
229         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
230                                   offset * sizeof(u64), sizeof(pdpte));
231         if (ret < 0) {
232                 ret = 0;
233                 goto out;
234         }
235         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
236                 if (is_present_pte(pdpte[i]) &&
237                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
238                         ret = 0;
239                         goto out;
240                 }
241         }
242         ret = 1;
243
244         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
245 out:
246
247         return ret;
248 }
249 EXPORT_SYMBOL_GPL(load_pdptrs);
250
251 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 {
253         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
254         bool changed = true;
255         int r;
256
257         if (is_long_mode(vcpu) || !is_pae(vcpu))
258                 return false;
259
260         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
261         if (r < 0)
262                 goto out;
263         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
264 out:
265
266         return changed;
267 }
268
269 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 {
271         if (cr0 & CR0_RESERVED_BITS) {
272                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273                        cr0, vcpu->arch.cr0);
274                 kvm_inject_gp(vcpu, 0);
275                 return;
276         }
277
278         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
279                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
280                 kvm_inject_gp(vcpu, 0);
281                 return;
282         }
283
284         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
285                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
286                        "and a clear PE flag\n");
287                 kvm_inject_gp(vcpu, 0);
288                 return;
289         }
290
291         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
292 #ifdef CONFIG_X86_64
293                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
294                         int cs_db, cs_l;
295
296                         if (!is_pae(vcpu)) {
297                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
298                                        "in long mode while PAE is disabled\n");
299                                 kvm_inject_gp(vcpu, 0);
300                                 return;
301                         }
302                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
303                         if (cs_l) {
304                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
305                                        "in long mode while CS.L == 1\n");
306                                 kvm_inject_gp(vcpu, 0);
307                                 return;
308
309                         }
310                 } else
311 #endif
312                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
313                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
314                                "reserved bits\n");
315                         kvm_inject_gp(vcpu, 0);
316                         return;
317                 }
318
319         }
320
321         kvm_x86_ops->set_cr0(vcpu, cr0);
322         vcpu->arch.cr0 = cr0;
323
324         kvm_mmu_reset_context(vcpu);
325         return;
326 }
327 EXPORT_SYMBOL_GPL(kvm_set_cr0);
328
329 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
330 {
331         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
332         KVMTRACE_1D(LMSW, vcpu,
333                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
334                     handler);
335 }
336 EXPORT_SYMBOL_GPL(kvm_lmsw);
337
338 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
339 {
340         unsigned long old_cr4 = vcpu->arch.cr4;
341         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
342
343         if (cr4 & CR4_RESERVED_BITS) {
344                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
345                 kvm_inject_gp(vcpu, 0);
346                 return;
347         }
348
349         if (is_long_mode(vcpu)) {
350                 if (!(cr4 & X86_CR4_PAE)) {
351                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
352                                "in long mode\n");
353                         kvm_inject_gp(vcpu, 0);
354                         return;
355                 }
356         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
357                    && ((cr4 ^ old_cr4) & pdptr_bits)
358                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
359                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
360                 kvm_inject_gp(vcpu, 0);
361                 return;
362         }
363
364         if (cr4 & X86_CR4_VMXE) {
365                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
366                 kvm_inject_gp(vcpu, 0);
367                 return;
368         }
369         kvm_x86_ops->set_cr4(vcpu, cr4);
370         vcpu->arch.cr4 = cr4;
371         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
372         kvm_mmu_reset_context(vcpu);
373 }
374 EXPORT_SYMBOL_GPL(kvm_set_cr4);
375
376 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
377 {
378         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
379                 kvm_mmu_sync_roots(vcpu);
380                 kvm_mmu_flush_tlb(vcpu);
381                 return;
382         }
383
384         if (is_long_mode(vcpu)) {
385                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
386                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
387                         kvm_inject_gp(vcpu, 0);
388                         return;
389                 }
390         } else {
391                 if (is_pae(vcpu)) {
392                         if (cr3 & CR3_PAE_RESERVED_BITS) {
393                                 printk(KERN_DEBUG
394                                        "set_cr3: #GP, reserved bits\n");
395                                 kvm_inject_gp(vcpu, 0);
396                                 return;
397                         }
398                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
399                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
400                                        "reserved bits\n");
401                                 kvm_inject_gp(vcpu, 0);
402                                 return;
403                         }
404                 }
405                 /*
406                  * We don't check reserved bits in nonpae mode, because
407                  * this isn't enforced, and VMware depends on this.
408                  */
409         }
410
411         /*
412          * Does the new cr3 value map to physical memory? (Note, we
413          * catch an invalid cr3 even in real-mode, because it would
414          * cause trouble later on when we turn on paging anyway.)
415          *
416          * A real CPU would silently accept an invalid cr3 and would
417          * attempt to use it - with largely undefined (and often hard
418          * to debug) behavior on the guest side.
419          */
420         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
421                 kvm_inject_gp(vcpu, 0);
422         else {
423                 vcpu->arch.cr3 = cr3;
424                 vcpu->arch.mmu.new_cr3(vcpu);
425         }
426 }
427 EXPORT_SYMBOL_GPL(kvm_set_cr3);
428
429 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
430 {
431         if (cr8 & CR8_RESERVED_BITS) {
432                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
433                 kvm_inject_gp(vcpu, 0);
434                 return;
435         }
436         if (irqchip_in_kernel(vcpu->kvm))
437                 kvm_lapic_set_tpr(vcpu, cr8);
438         else
439                 vcpu->arch.cr8 = cr8;
440 }
441 EXPORT_SYMBOL_GPL(kvm_set_cr8);
442
443 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
444 {
445         if (irqchip_in_kernel(vcpu->kvm))
446                 return kvm_lapic_get_cr8(vcpu);
447         else
448                 return vcpu->arch.cr8;
449 }
450 EXPORT_SYMBOL_GPL(kvm_get_cr8);
451
452 static inline u32 bit(int bitno)
453 {
454         return 1 << (bitno & 31);
455 }
456
457 /*
458  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
459  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
460  *
461  * This list is modified at module load time to reflect the
462  * capabilities of the host cpu.
463  */
464 static u32 msrs_to_save[] = {
465         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
466         MSR_K6_STAR,
467 #ifdef CONFIG_X86_64
468         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
469 #endif
470         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
471         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
472 };
473
474 static unsigned num_msrs_to_save;
475
476 static u32 emulated_msrs[] = {
477         MSR_IA32_MISC_ENABLE,
478 };
479
480 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
481 {
482         if (efer & efer_reserved_bits) {
483                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
484                        efer);
485                 kvm_inject_gp(vcpu, 0);
486                 return;
487         }
488
489         if (is_paging(vcpu)
490             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
491                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
492                 kvm_inject_gp(vcpu, 0);
493                 return;
494         }
495
496         if (efer & EFER_FFXSR) {
497                 struct kvm_cpuid_entry2 *feat;
498
499                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
500                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
501                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
502                         kvm_inject_gp(vcpu, 0);
503                         return;
504                 }
505         }
506
507         if (efer & EFER_SVME) {
508                 struct kvm_cpuid_entry2 *feat;
509
510                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
511                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
512                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
513                         kvm_inject_gp(vcpu, 0);
514                         return;
515                 }
516         }
517
518         kvm_x86_ops->set_efer(vcpu, efer);
519
520         efer &= ~EFER_LMA;
521         efer |= vcpu->arch.shadow_efer & EFER_LMA;
522
523         vcpu->arch.shadow_efer = efer;
524
525         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
526         kvm_mmu_reset_context(vcpu);
527 }
528
529 void kvm_enable_efer_bits(u64 mask)
530 {
531        efer_reserved_bits &= ~mask;
532 }
533 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
534
535
536 /*
537  * Writes msr value into into the appropriate "register".
538  * Returns 0 on success, non-0 otherwise.
539  * Assumes vcpu_load() was already called.
540  */
541 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
542 {
543         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
544 }
545
546 /*
547  * Adapt set_msr() to msr_io()'s calling convention
548  */
549 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
550 {
551         return kvm_set_msr(vcpu, index, *data);
552 }
553
554 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
555 {
556         static int version;
557         struct pvclock_wall_clock wc;
558         struct timespec now, sys, boot;
559
560         if (!wall_clock)
561                 return;
562
563         version++;
564
565         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
566
567         /*
568          * The guest calculates current wall clock time by adding
569          * system time (updated by kvm_write_guest_time below) to the
570          * wall clock specified here.  guest system time equals host
571          * system time for us, thus we must fill in host boot time here.
572          */
573         now = current_kernel_time();
574         ktime_get_ts(&sys);
575         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
576
577         wc.sec = boot.tv_sec;
578         wc.nsec = boot.tv_nsec;
579         wc.version = version;
580
581         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
582
583         version++;
584         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
585 }
586
587 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
588 {
589         uint32_t quotient, remainder;
590
591         /* Don't try to replace with do_div(), this one calculates
592          * "(dividend << 32) / divisor" */
593         __asm__ ( "divl %4"
594                   : "=a" (quotient), "=d" (remainder)
595                   : "0" (0), "1" (dividend), "r" (divisor) );
596         return quotient;
597 }
598
599 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
600 {
601         uint64_t nsecs = 1000000000LL;
602         int32_t  shift = 0;
603         uint64_t tps64;
604         uint32_t tps32;
605
606         tps64 = tsc_khz * 1000LL;
607         while (tps64 > nsecs*2) {
608                 tps64 >>= 1;
609                 shift--;
610         }
611
612         tps32 = (uint32_t)tps64;
613         while (tps32 <= (uint32_t)nsecs) {
614                 tps32 <<= 1;
615                 shift++;
616         }
617
618         hv_clock->tsc_shift = shift;
619         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
620
621         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
622                  __func__, tsc_khz, hv_clock->tsc_shift,
623                  hv_clock->tsc_to_system_mul);
624 }
625
626 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
627
628 static void kvm_write_guest_time(struct kvm_vcpu *v)
629 {
630         struct timespec ts;
631         unsigned long flags;
632         struct kvm_vcpu_arch *vcpu = &v->arch;
633         void *shared_kaddr;
634         unsigned long this_tsc_khz;
635
636         if ((!vcpu->time_page))
637                 return;
638
639         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
640         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
641                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
642                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
643         }
644         put_cpu_var(cpu_tsc_khz);
645
646         /* Keep irq disabled to prevent changes to the clock */
647         local_irq_save(flags);
648         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
649                           &vcpu->hv_clock.tsc_timestamp);
650         ktime_get_ts(&ts);
651         local_irq_restore(flags);
652
653         /* With all the info we got, fill in the values */
654
655         vcpu->hv_clock.system_time = ts.tv_nsec +
656                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
657         /*
658          * The interface expects us to write an even number signaling that the
659          * update is finished. Since the guest won't see the intermediate
660          * state, we just increase by 2 at the end.
661          */
662         vcpu->hv_clock.version += 2;
663
664         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
665
666         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
667                sizeof(vcpu->hv_clock));
668
669         kunmap_atomic(shared_kaddr, KM_USER0);
670
671         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
672 }
673
674 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
675 {
676         struct kvm_vcpu_arch *vcpu = &v->arch;
677
678         if (!vcpu->time_page)
679                 return 0;
680         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
681         return 1;
682 }
683
684 static bool msr_mtrr_valid(unsigned msr)
685 {
686         switch (msr) {
687         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
688         case MSR_MTRRfix64K_00000:
689         case MSR_MTRRfix16K_80000:
690         case MSR_MTRRfix16K_A0000:
691         case MSR_MTRRfix4K_C0000:
692         case MSR_MTRRfix4K_C8000:
693         case MSR_MTRRfix4K_D0000:
694         case MSR_MTRRfix4K_D8000:
695         case MSR_MTRRfix4K_E0000:
696         case MSR_MTRRfix4K_E8000:
697         case MSR_MTRRfix4K_F0000:
698         case MSR_MTRRfix4K_F8000:
699         case MSR_MTRRdefType:
700         case MSR_IA32_CR_PAT:
701                 return true;
702         case 0x2f8:
703                 return true;
704         }
705         return false;
706 }
707
708 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
709 {
710         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
711
712         if (!msr_mtrr_valid(msr))
713                 return 1;
714
715         if (msr == MSR_MTRRdefType) {
716                 vcpu->arch.mtrr_state.def_type = data;
717                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
718         } else if (msr == MSR_MTRRfix64K_00000)
719                 p[0] = data;
720         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
721                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
722         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
723                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
724         else if (msr == MSR_IA32_CR_PAT)
725                 vcpu->arch.pat = data;
726         else {  /* Variable MTRRs */
727                 int idx, is_mtrr_mask;
728                 u64 *pt;
729
730                 idx = (msr - 0x200) / 2;
731                 is_mtrr_mask = msr - 0x200 - 2 * idx;
732                 if (!is_mtrr_mask)
733                         pt =
734                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
735                 else
736                         pt =
737                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
738                 *pt = data;
739         }
740
741         kvm_mmu_reset_context(vcpu);
742         return 0;
743 }
744
745 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
746 {
747         switch (msr) {
748         case MSR_EFER:
749                 set_efer(vcpu, data);
750                 break;
751         case MSR_IA32_MC0_STATUS:
752                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
753                        __func__, data);
754                 break;
755         case MSR_IA32_MCG_STATUS:
756                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
757                         __func__, data);
758                 break;
759         case MSR_IA32_MCG_CTL:
760                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
761                         __func__, data);
762                 break;
763         case MSR_IA32_DEBUGCTLMSR:
764                 if (!data) {
765                         /* We support the non-activated case already */
766                         break;
767                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
768                         /* Values other than LBR and BTF are vendor-specific,
769                            thus reserved and should throw a #GP */
770                         return 1;
771                 }
772                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
773                         __func__, data);
774                 break;
775         case MSR_IA32_UCODE_REV:
776         case MSR_IA32_UCODE_WRITE:
777         case MSR_VM_HSAVE_PA:
778                 break;
779         case 0x200 ... 0x2ff:
780                 return set_msr_mtrr(vcpu, msr, data);
781         case MSR_IA32_APICBASE:
782                 kvm_set_apic_base(vcpu, data);
783                 break;
784         case MSR_IA32_MISC_ENABLE:
785                 vcpu->arch.ia32_misc_enable_msr = data;
786                 break;
787         case MSR_KVM_WALL_CLOCK:
788                 vcpu->kvm->arch.wall_clock = data;
789                 kvm_write_wall_clock(vcpu->kvm, data);
790                 break;
791         case MSR_KVM_SYSTEM_TIME: {
792                 if (vcpu->arch.time_page) {
793                         kvm_release_page_dirty(vcpu->arch.time_page);
794                         vcpu->arch.time_page = NULL;
795                 }
796
797                 vcpu->arch.time = data;
798
799                 /* we verify if the enable bit is set... */
800                 if (!(data & 1))
801                         break;
802
803                 /* ...but clean it before doing the actual write */
804                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
805
806                 vcpu->arch.time_page =
807                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
808
809                 if (is_error_page(vcpu->arch.time_page)) {
810                         kvm_release_page_clean(vcpu->arch.time_page);
811                         vcpu->arch.time_page = NULL;
812                 }
813
814                 kvm_request_guest_time_update(vcpu);
815                 break;
816         }
817         default:
818                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
819                 return 1;
820         }
821         return 0;
822 }
823 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
824
825
826 /*
827  * Reads an msr value (of 'msr_index') into 'pdata'.
828  * Returns 0 on success, non-0 otherwise.
829  * Assumes vcpu_load() was already called.
830  */
831 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
832 {
833         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
834 }
835
836 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
837 {
838         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
839
840         if (!msr_mtrr_valid(msr))
841                 return 1;
842
843         if (msr == MSR_MTRRdefType)
844                 *pdata = vcpu->arch.mtrr_state.def_type +
845                          (vcpu->arch.mtrr_state.enabled << 10);
846         else if (msr == MSR_MTRRfix64K_00000)
847                 *pdata = p[0];
848         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
849                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
850         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
851                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
852         else if (msr == MSR_IA32_CR_PAT)
853                 *pdata = vcpu->arch.pat;
854         else {  /* Variable MTRRs */
855                 int idx, is_mtrr_mask;
856                 u64 *pt;
857
858                 idx = (msr - 0x200) / 2;
859                 is_mtrr_mask = msr - 0x200 - 2 * idx;
860                 if (!is_mtrr_mask)
861                         pt =
862                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
863                 else
864                         pt =
865                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
866                 *pdata = *pt;
867         }
868
869         return 0;
870 }
871
872 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
873 {
874         u64 data;
875
876         switch (msr) {
877         case 0xc0010010: /* SYSCFG */
878         case 0xc0010015: /* HWCR */
879         case MSR_IA32_PLATFORM_ID:
880         case MSR_IA32_P5_MC_ADDR:
881         case MSR_IA32_P5_MC_TYPE:
882         case MSR_IA32_MC0_CTL:
883         case MSR_IA32_MCG_STATUS:
884         case MSR_IA32_MCG_CAP:
885         case MSR_IA32_MCG_CTL:
886         case MSR_IA32_MC0_MISC:
887         case MSR_IA32_MC0_MISC+4:
888         case MSR_IA32_MC0_MISC+8:
889         case MSR_IA32_MC0_MISC+12:
890         case MSR_IA32_MC0_MISC+16:
891         case MSR_IA32_MC0_MISC+20:
892         case MSR_IA32_UCODE_REV:
893         case MSR_IA32_EBL_CR_POWERON:
894         case MSR_IA32_DEBUGCTLMSR:
895         case MSR_IA32_LASTBRANCHFROMIP:
896         case MSR_IA32_LASTBRANCHTOIP:
897         case MSR_IA32_LASTINTFROMIP:
898         case MSR_IA32_LASTINTTOIP:
899         case MSR_VM_HSAVE_PA:
900         case MSR_P6_EVNTSEL0:
901         case MSR_P6_EVNTSEL1:
902                 data = 0;
903                 break;
904         case MSR_MTRRcap:
905                 data = 0x500 | KVM_NR_VAR_MTRR;
906                 break;
907         case 0x200 ... 0x2ff:
908                 return get_msr_mtrr(vcpu, msr, pdata);
909         case 0xcd: /* fsb frequency */
910                 data = 3;
911                 break;
912         case MSR_IA32_APICBASE:
913                 data = kvm_get_apic_base(vcpu);
914                 break;
915         case MSR_IA32_MISC_ENABLE:
916                 data = vcpu->arch.ia32_misc_enable_msr;
917                 break;
918         case MSR_IA32_PERF_STATUS:
919                 /* TSC increment by tick */
920                 data = 1000ULL;
921                 /* CPU multiplier */
922                 data |= (((uint64_t)4ULL) << 40);
923                 break;
924         case MSR_EFER:
925                 data = vcpu->arch.shadow_efer;
926                 break;
927         case MSR_KVM_WALL_CLOCK:
928                 data = vcpu->kvm->arch.wall_clock;
929                 break;
930         case MSR_KVM_SYSTEM_TIME:
931                 data = vcpu->arch.time;
932                 break;
933         default:
934                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
935                 return 1;
936         }
937         *pdata = data;
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
941
942 /*
943  * Read or write a bunch of msrs. All parameters are kernel addresses.
944  *
945  * @return number of msrs set successfully.
946  */
947 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
948                     struct kvm_msr_entry *entries,
949                     int (*do_msr)(struct kvm_vcpu *vcpu,
950                                   unsigned index, u64 *data))
951 {
952         int i;
953
954         vcpu_load(vcpu);
955
956         down_read(&vcpu->kvm->slots_lock);
957         for (i = 0; i < msrs->nmsrs; ++i)
958                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
959                         break;
960         up_read(&vcpu->kvm->slots_lock);
961
962         vcpu_put(vcpu);
963
964         return i;
965 }
966
967 /*
968  * Read or write a bunch of msrs. Parameters are user addresses.
969  *
970  * @return number of msrs set successfully.
971  */
972 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
973                   int (*do_msr)(struct kvm_vcpu *vcpu,
974                                 unsigned index, u64 *data),
975                   int writeback)
976 {
977         struct kvm_msrs msrs;
978         struct kvm_msr_entry *entries;
979         int r, n;
980         unsigned size;
981
982         r = -EFAULT;
983         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
984                 goto out;
985
986         r = -E2BIG;
987         if (msrs.nmsrs >= MAX_IO_MSRS)
988                 goto out;
989
990         r = -ENOMEM;
991         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
992         entries = vmalloc(size);
993         if (!entries)
994                 goto out;
995
996         r = -EFAULT;
997         if (copy_from_user(entries, user_msrs->entries, size))
998                 goto out_free;
999
1000         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1001         if (r < 0)
1002                 goto out_free;
1003
1004         r = -EFAULT;
1005         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1006                 goto out_free;
1007
1008         r = n;
1009
1010 out_free:
1011         vfree(entries);
1012 out:
1013         return r;
1014 }
1015
1016 int kvm_dev_ioctl_check_extension(long ext)
1017 {
1018         int r;
1019
1020         switch (ext) {
1021         case KVM_CAP_IRQCHIP:
1022         case KVM_CAP_HLT:
1023         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1024         case KVM_CAP_SET_TSS_ADDR:
1025         case KVM_CAP_EXT_CPUID:
1026         case KVM_CAP_CLOCKSOURCE:
1027         case KVM_CAP_PIT:
1028         case KVM_CAP_NOP_IO_DELAY:
1029         case KVM_CAP_MP_STATE:
1030         case KVM_CAP_SYNC_MMU:
1031         case KVM_CAP_REINJECT_CONTROL:
1032         case KVM_CAP_IRQ_INJECT_STATUS:
1033         case KVM_CAP_ASSIGN_DEV_IRQ:
1034                 r = 1;
1035                 break;
1036         case KVM_CAP_COALESCED_MMIO:
1037                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1038                 break;
1039         case KVM_CAP_VAPIC:
1040                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1041                 break;
1042         case KVM_CAP_NR_VCPUS:
1043                 r = KVM_MAX_VCPUS;
1044                 break;
1045         case KVM_CAP_NR_MEMSLOTS:
1046                 r = KVM_MEMORY_SLOTS;
1047                 break;
1048         case KVM_CAP_PV_MMU:
1049                 r = !tdp_enabled;
1050                 break;
1051         case KVM_CAP_IOMMU:
1052                 r = iommu_found();
1053                 break;
1054         default:
1055                 r = 0;
1056                 break;
1057         }
1058         return r;
1059
1060 }
1061
1062 long kvm_arch_dev_ioctl(struct file *filp,
1063                         unsigned int ioctl, unsigned long arg)
1064 {
1065         void __user *argp = (void __user *)arg;
1066         long r;
1067
1068         switch (ioctl) {
1069         case KVM_GET_MSR_INDEX_LIST: {
1070                 struct kvm_msr_list __user *user_msr_list = argp;
1071                 struct kvm_msr_list msr_list;
1072                 unsigned n;
1073
1074                 r = -EFAULT;
1075                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1076                         goto out;
1077                 n = msr_list.nmsrs;
1078                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1079                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1080                         goto out;
1081                 r = -E2BIG;
1082                 if (n < num_msrs_to_save)
1083                         goto out;
1084                 r = -EFAULT;
1085                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1086                                  num_msrs_to_save * sizeof(u32)))
1087                         goto out;
1088                 if (copy_to_user(user_msr_list->indices
1089                                  + num_msrs_to_save * sizeof(u32),
1090                                  &emulated_msrs,
1091                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1092                         goto out;
1093                 r = 0;
1094                 break;
1095         }
1096         case KVM_GET_SUPPORTED_CPUID: {
1097                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1098                 struct kvm_cpuid2 cpuid;
1099
1100                 r = -EFAULT;
1101                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1102                         goto out;
1103                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1104                                                       cpuid_arg->entries);
1105                 if (r)
1106                         goto out;
1107
1108                 r = -EFAULT;
1109                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1110                         goto out;
1111                 r = 0;
1112                 break;
1113         }
1114         default:
1115                 r = -EINVAL;
1116         }
1117 out:
1118         return r;
1119 }
1120
1121 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1122 {
1123         kvm_x86_ops->vcpu_load(vcpu, cpu);
1124         kvm_request_guest_time_update(vcpu);
1125 }
1126
1127 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1128 {
1129         kvm_x86_ops->vcpu_put(vcpu);
1130         kvm_put_guest_fpu(vcpu);
1131 }
1132
1133 static int is_efer_nx(void)
1134 {
1135         unsigned long long efer = 0;
1136
1137         rdmsrl_safe(MSR_EFER, &efer);
1138         return efer & EFER_NX;
1139 }
1140
1141 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1142 {
1143         int i;
1144         struct kvm_cpuid_entry2 *e, *entry;
1145
1146         entry = NULL;
1147         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1148                 e = &vcpu->arch.cpuid_entries[i];
1149                 if (e->function == 0x80000001) {
1150                         entry = e;
1151                         break;
1152                 }
1153         }
1154         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1155                 entry->edx &= ~(1 << 20);
1156                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1157         }
1158 }
1159
1160 /* when an old userspace process fills a new kernel module */
1161 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1162                                     struct kvm_cpuid *cpuid,
1163                                     struct kvm_cpuid_entry __user *entries)
1164 {
1165         int r, i;
1166         struct kvm_cpuid_entry *cpuid_entries;
1167
1168         r = -E2BIG;
1169         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1170                 goto out;
1171         r = -ENOMEM;
1172         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1173         if (!cpuid_entries)
1174                 goto out;
1175         r = -EFAULT;
1176         if (copy_from_user(cpuid_entries, entries,
1177                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1178                 goto out_free;
1179         for (i = 0; i < cpuid->nent; i++) {
1180                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1181                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1182                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1183                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1184                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1185                 vcpu->arch.cpuid_entries[i].index = 0;
1186                 vcpu->arch.cpuid_entries[i].flags = 0;
1187                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1188                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1189                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1190         }
1191         vcpu->arch.cpuid_nent = cpuid->nent;
1192         cpuid_fix_nx_cap(vcpu);
1193         r = 0;
1194
1195 out_free:
1196         vfree(cpuid_entries);
1197 out:
1198         return r;
1199 }
1200
1201 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1202                                      struct kvm_cpuid2 *cpuid,
1203                                      struct kvm_cpuid_entry2 __user *entries)
1204 {
1205         int r;
1206
1207         r = -E2BIG;
1208         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1209                 goto out;
1210         r = -EFAULT;
1211         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1212                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1213                 goto out;
1214         vcpu->arch.cpuid_nent = cpuid->nent;
1215         return 0;
1216
1217 out:
1218         return r;
1219 }
1220
1221 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1222                                      struct kvm_cpuid2 *cpuid,
1223                                      struct kvm_cpuid_entry2 __user *entries)
1224 {
1225         int r;
1226
1227         r = -E2BIG;
1228         if (cpuid->nent < vcpu->arch.cpuid_nent)
1229                 goto out;
1230         r = -EFAULT;
1231         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1232                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1233                 goto out;
1234         return 0;
1235
1236 out:
1237         cpuid->nent = vcpu->arch.cpuid_nent;
1238         return r;
1239 }
1240
1241 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1242                            u32 index)
1243 {
1244         entry->function = function;
1245         entry->index = index;
1246         cpuid_count(entry->function, entry->index,
1247                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1248         entry->flags = 0;
1249 }
1250
1251 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1252                          u32 index, int *nent, int maxnent)
1253 {
1254         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1255                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1256                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1257                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1258                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1259                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1260                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1261                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1262                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1263                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1264         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1265                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1266                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1267                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1268                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1269                 bit(X86_FEATURE_PGE) |
1270                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1271                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1272                 bit(X86_FEATURE_SYSCALL) |
1273                 (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
1274 #ifdef CONFIG_X86_64
1275                 bit(X86_FEATURE_LM) |
1276 #endif
1277                 bit(X86_FEATURE_FXSR_OPT) |
1278                 bit(X86_FEATURE_MMXEXT) |
1279                 bit(X86_FEATURE_3DNOWEXT) |
1280                 bit(X86_FEATURE_3DNOW);
1281         const u32 kvm_supported_word3_x86_features =
1282                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1283         const u32 kvm_supported_word6_x86_features =
1284                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1285                 bit(X86_FEATURE_SVM);
1286
1287         /* all calls to cpuid_count() should be made on the same cpu */
1288         get_cpu();
1289         do_cpuid_1_ent(entry, function, index);
1290         ++*nent;
1291
1292         switch (function) {
1293         case 0:
1294                 entry->eax = min(entry->eax, (u32)0xb);
1295                 break;
1296         case 1:
1297                 entry->edx &= kvm_supported_word0_x86_features;
1298                 entry->ecx &= kvm_supported_word3_x86_features;
1299                 break;
1300         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1301          * may return different values. This forces us to get_cpu() before
1302          * issuing the first command, and also to emulate this annoying behavior
1303          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1304         case 2: {
1305                 int t, times = entry->eax & 0xff;
1306
1307                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1308                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1309                 for (t = 1; t < times && *nent < maxnent; ++t) {
1310                         do_cpuid_1_ent(&entry[t], function, 0);
1311                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1312                         ++*nent;
1313                 }
1314                 break;
1315         }
1316         /* function 4 and 0xb have additional index. */
1317         case 4: {
1318                 int i, cache_type;
1319
1320                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1321                 /* read more entries until cache_type is zero */
1322                 for (i = 1; *nent < maxnent; ++i) {
1323                         cache_type = entry[i - 1].eax & 0x1f;
1324                         if (!cache_type)
1325                                 break;
1326                         do_cpuid_1_ent(&entry[i], function, i);
1327                         entry[i].flags |=
1328                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1329                         ++*nent;
1330                 }
1331                 break;
1332         }
1333         case 0xb: {
1334                 int i, level_type;
1335
1336                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1337                 /* read more entries until level_type is zero */
1338                 for (i = 1; *nent < maxnent; ++i) {
1339                         level_type = entry[i - 1].ecx & 0xff00;
1340                         if (!level_type)
1341                                 break;
1342                         do_cpuid_1_ent(&entry[i], function, i);
1343                         entry[i].flags |=
1344                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1345                         ++*nent;
1346                 }
1347                 break;
1348         }
1349         case 0x80000000:
1350                 entry->eax = min(entry->eax, 0x8000001a);
1351                 break;
1352         case 0x80000001:
1353                 entry->edx &= kvm_supported_word1_x86_features;
1354                 entry->ecx &= kvm_supported_word6_x86_features;
1355                 break;
1356         }
1357         put_cpu();
1358 }
1359
1360 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1361                                      struct kvm_cpuid_entry2 __user *entries)
1362 {
1363         struct kvm_cpuid_entry2 *cpuid_entries;
1364         int limit, nent = 0, r = -E2BIG;
1365         u32 func;
1366
1367         if (cpuid->nent < 1)
1368                 goto out;
1369         r = -ENOMEM;
1370         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1371         if (!cpuid_entries)
1372                 goto out;
1373
1374         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1375         limit = cpuid_entries[0].eax;
1376         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1377                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1378                              &nent, cpuid->nent);
1379         r = -E2BIG;
1380         if (nent >= cpuid->nent)
1381                 goto out_free;
1382
1383         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1384         limit = cpuid_entries[nent - 1].eax;
1385         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1386                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1387                              &nent, cpuid->nent);
1388         r = -EFAULT;
1389         if (copy_to_user(entries, cpuid_entries,
1390                          nent * sizeof(struct kvm_cpuid_entry2)))
1391                 goto out_free;
1392         cpuid->nent = nent;
1393         r = 0;
1394
1395 out_free:
1396         vfree(cpuid_entries);
1397 out:
1398         return r;
1399 }
1400
1401 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1402                                     struct kvm_lapic_state *s)
1403 {
1404         vcpu_load(vcpu);
1405         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1406         vcpu_put(vcpu);
1407
1408         return 0;
1409 }
1410
1411 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1412                                     struct kvm_lapic_state *s)
1413 {
1414         vcpu_load(vcpu);
1415         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1416         kvm_apic_post_state_restore(vcpu);
1417         vcpu_put(vcpu);
1418
1419         return 0;
1420 }
1421
1422 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1423                                     struct kvm_interrupt *irq)
1424 {
1425         if (irq->irq < 0 || irq->irq >= 256)
1426                 return -EINVAL;
1427         if (irqchip_in_kernel(vcpu->kvm))
1428                 return -ENXIO;
1429         vcpu_load(vcpu);
1430
1431         set_bit(irq->irq, vcpu->arch.irq_pending);
1432         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1433
1434         vcpu_put(vcpu);
1435
1436         return 0;
1437 }
1438
1439 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1440 {
1441         vcpu_load(vcpu);
1442         kvm_inject_nmi(vcpu);
1443         vcpu_put(vcpu);
1444
1445         return 0;
1446 }
1447
1448 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1449                                            struct kvm_tpr_access_ctl *tac)
1450 {
1451         if (tac->flags)
1452                 return -EINVAL;
1453         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1454         return 0;
1455 }
1456
1457 long kvm_arch_vcpu_ioctl(struct file *filp,
1458                          unsigned int ioctl, unsigned long arg)
1459 {
1460         struct kvm_vcpu *vcpu = filp->private_data;
1461         void __user *argp = (void __user *)arg;
1462         int r;
1463         struct kvm_lapic_state *lapic = NULL;
1464
1465         switch (ioctl) {
1466         case KVM_GET_LAPIC: {
1467                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1468
1469                 r = -ENOMEM;
1470                 if (!lapic)
1471                         goto out;
1472                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1473                 if (r)
1474                         goto out;
1475                 r = -EFAULT;
1476                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1477                         goto out;
1478                 r = 0;
1479                 break;
1480         }
1481         case KVM_SET_LAPIC: {
1482                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1483                 r = -ENOMEM;
1484                 if (!lapic)
1485                         goto out;
1486                 r = -EFAULT;
1487                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1488                         goto out;
1489                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1490                 if (r)
1491                         goto out;
1492                 r = 0;
1493                 break;
1494         }
1495         case KVM_INTERRUPT: {
1496                 struct kvm_interrupt irq;
1497
1498                 r = -EFAULT;
1499                 if (copy_from_user(&irq, argp, sizeof irq))
1500                         goto out;
1501                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1502                 if (r)
1503                         goto out;
1504                 r = 0;
1505                 break;
1506         }
1507         case KVM_NMI: {
1508                 r = kvm_vcpu_ioctl_nmi(vcpu);
1509                 if (r)
1510                         goto out;
1511                 r = 0;
1512                 break;
1513         }
1514         case KVM_SET_CPUID: {
1515                 struct kvm_cpuid __user *cpuid_arg = argp;
1516                 struct kvm_cpuid cpuid;
1517
1518                 r = -EFAULT;
1519                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1520                         goto out;
1521                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1522                 if (r)
1523                         goto out;
1524                 break;
1525         }
1526         case KVM_SET_CPUID2: {
1527                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1528                 struct kvm_cpuid2 cpuid;
1529
1530                 r = -EFAULT;
1531                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1532                         goto out;
1533                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1534                                               cpuid_arg->entries);
1535                 if (r)
1536                         goto out;
1537                 break;
1538         }
1539         case KVM_GET_CPUID2: {
1540                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1541                 struct kvm_cpuid2 cpuid;
1542
1543                 r = -EFAULT;
1544                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1545                         goto out;
1546                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1547                                               cpuid_arg->entries);
1548                 if (r)
1549                         goto out;
1550                 r = -EFAULT;
1551                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1552                         goto out;
1553                 r = 0;
1554                 break;
1555         }
1556         case KVM_GET_MSRS:
1557                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1558                 break;
1559         case KVM_SET_MSRS:
1560                 r = msr_io(vcpu, argp, do_set_msr, 0);
1561                 break;
1562         case KVM_TPR_ACCESS_REPORTING: {
1563                 struct kvm_tpr_access_ctl tac;
1564
1565                 r = -EFAULT;
1566                 if (copy_from_user(&tac, argp, sizeof tac))
1567                         goto out;
1568                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1569                 if (r)
1570                         goto out;
1571                 r = -EFAULT;
1572                 if (copy_to_user(argp, &tac, sizeof tac))
1573                         goto out;
1574                 r = 0;
1575                 break;
1576         };
1577         case KVM_SET_VAPIC_ADDR: {
1578                 struct kvm_vapic_addr va;
1579
1580                 r = -EINVAL;
1581                 if (!irqchip_in_kernel(vcpu->kvm))
1582                         goto out;
1583                 r = -EFAULT;
1584                 if (copy_from_user(&va, argp, sizeof va))
1585                         goto out;
1586                 r = 0;
1587                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1588                 break;
1589         }
1590         default:
1591                 r = -EINVAL;
1592         }
1593 out:
1594         kfree(lapic);
1595         return r;
1596 }
1597
1598 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1599 {
1600         int ret;
1601
1602         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1603                 return -1;
1604         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1605         return ret;
1606 }
1607
1608 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1609                                           u32 kvm_nr_mmu_pages)
1610 {
1611         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1612                 return -EINVAL;
1613
1614         down_write(&kvm->slots_lock);
1615
1616         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1617         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1618
1619         up_write(&kvm->slots_lock);
1620         return 0;
1621 }
1622
1623 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1624 {
1625         return kvm->arch.n_alloc_mmu_pages;
1626 }
1627
1628 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1629 {
1630         int i;
1631         struct kvm_mem_alias *alias;
1632
1633         for (i = 0; i < kvm->arch.naliases; ++i) {
1634                 alias = &kvm->arch.aliases[i];
1635                 if (gfn >= alias->base_gfn
1636                     && gfn < alias->base_gfn + alias->npages)
1637                         return alias->target_gfn + gfn - alias->base_gfn;
1638         }
1639         return gfn;
1640 }
1641
1642 /*
1643  * Set a new alias region.  Aliases map a portion of physical memory into
1644  * another portion.  This is useful for memory windows, for example the PC
1645  * VGA region.
1646  */
1647 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1648                                          struct kvm_memory_alias *alias)
1649 {
1650         int r, n;
1651         struct kvm_mem_alias *p;
1652
1653         r = -EINVAL;
1654         /* General sanity checks */
1655         if (alias->memory_size & (PAGE_SIZE - 1))
1656                 goto out;
1657         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1658                 goto out;
1659         if (alias->slot >= KVM_ALIAS_SLOTS)
1660                 goto out;
1661         if (alias->guest_phys_addr + alias->memory_size
1662             < alias->guest_phys_addr)
1663                 goto out;
1664         if (alias->target_phys_addr + alias->memory_size
1665             < alias->target_phys_addr)
1666                 goto out;
1667
1668         down_write(&kvm->slots_lock);
1669         spin_lock(&kvm->mmu_lock);
1670
1671         p = &kvm->arch.aliases[alias->slot];
1672         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1673         p->npages = alias->memory_size >> PAGE_SHIFT;
1674         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1675
1676         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1677                 if (kvm->arch.aliases[n - 1].npages)
1678                         break;
1679         kvm->arch.naliases = n;
1680
1681         spin_unlock(&kvm->mmu_lock);
1682         kvm_mmu_zap_all(kvm);
1683
1684         up_write(&kvm->slots_lock);
1685
1686         return 0;
1687
1688 out:
1689         return r;
1690 }
1691
1692 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1693 {
1694         int r;
1695
1696         r = 0;
1697         switch (chip->chip_id) {
1698         case KVM_IRQCHIP_PIC_MASTER:
1699                 memcpy(&chip->chip.pic,
1700                         &pic_irqchip(kvm)->pics[0],
1701                         sizeof(struct kvm_pic_state));
1702                 break;
1703         case KVM_IRQCHIP_PIC_SLAVE:
1704                 memcpy(&chip->chip.pic,
1705                         &pic_irqchip(kvm)->pics[1],
1706                         sizeof(struct kvm_pic_state));
1707                 break;
1708         case KVM_IRQCHIP_IOAPIC:
1709                 memcpy(&chip->chip.ioapic,
1710                         ioapic_irqchip(kvm),
1711                         sizeof(struct kvm_ioapic_state));
1712                 break;
1713         default:
1714                 r = -EINVAL;
1715                 break;
1716         }
1717         return r;
1718 }
1719
1720 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1721 {
1722         int r;
1723
1724         r = 0;
1725         switch (chip->chip_id) {
1726         case KVM_IRQCHIP_PIC_MASTER:
1727                 memcpy(&pic_irqchip(kvm)->pics[0],
1728                         &chip->chip.pic,
1729                         sizeof(struct kvm_pic_state));
1730                 break;
1731         case KVM_IRQCHIP_PIC_SLAVE:
1732                 memcpy(&pic_irqchip(kvm)->pics[1],
1733                         &chip->chip.pic,
1734                         sizeof(struct kvm_pic_state));
1735                 break;
1736         case KVM_IRQCHIP_IOAPIC:
1737                 memcpy(ioapic_irqchip(kvm),
1738                         &chip->chip.ioapic,
1739                         sizeof(struct kvm_ioapic_state));
1740                 break;
1741         default:
1742                 r = -EINVAL;
1743                 break;
1744         }
1745         kvm_pic_update_irq(pic_irqchip(kvm));
1746         return r;
1747 }
1748
1749 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1750 {
1751         int r = 0;
1752
1753         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1754         return r;
1755 }
1756
1757 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1758 {
1759         int r = 0;
1760
1761         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1762         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1763         return r;
1764 }
1765
1766 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1767                                  struct kvm_reinject_control *control)
1768 {
1769         if (!kvm->arch.vpit)
1770                 return -ENXIO;
1771         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1772         return 0;
1773 }
1774
1775 /*
1776  * Get (and clear) the dirty memory log for a memory slot.
1777  */
1778 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1779                                       struct kvm_dirty_log *log)
1780 {
1781         int r;
1782         int n;
1783         struct kvm_memory_slot *memslot;
1784         int is_dirty = 0;
1785
1786         down_write(&kvm->slots_lock);
1787
1788         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1789         if (r)
1790                 goto out;
1791
1792         /* If nothing is dirty, don't bother messing with page tables. */
1793         if (is_dirty) {
1794                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1795                 kvm_flush_remote_tlbs(kvm);
1796                 memslot = &kvm->memslots[log->slot];
1797                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1798                 memset(memslot->dirty_bitmap, 0, n);
1799         }
1800         r = 0;
1801 out:
1802         up_write(&kvm->slots_lock);
1803         return r;
1804 }
1805
1806 long kvm_arch_vm_ioctl(struct file *filp,
1807                        unsigned int ioctl, unsigned long arg)
1808 {
1809         struct kvm *kvm = filp->private_data;
1810         void __user *argp = (void __user *)arg;
1811         int r = -EINVAL;
1812         /*
1813          * This union makes it completely explicit to gcc-3.x
1814          * that these two variables' stack usage should be
1815          * combined, not added together.
1816          */
1817         union {
1818                 struct kvm_pit_state ps;
1819                 struct kvm_memory_alias alias;
1820         } u;
1821
1822         switch (ioctl) {
1823         case KVM_SET_TSS_ADDR:
1824                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1825                 if (r < 0)
1826                         goto out;
1827                 break;
1828         case KVM_SET_MEMORY_REGION: {
1829                 struct kvm_memory_region kvm_mem;
1830                 struct kvm_userspace_memory_region kvm_userspace_mem;
1831
1832                 r = -EFAULT;
1833                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1834                         goto out;
1835                 kvm_userspace_mem.slot = kvm_mem.slot;
1836                 kvm_userspace_mem.flags = kvm_mem.flags;
1837                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1838                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1839                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1840                 if (r)
1841                         goto out;
1842                 break;
1843         }
1844         case KVM_SET_NR_MMU_PAGES:
1845                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1846                 if (r)
1847                         goto out;
1848                 break;
1849         case KVM_GET_NR_MMU_PAGES:
1850                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1851                 break;
1852         case KVM_SET_MEMORY_ALIAS:
1853                 r = -EFAULT;
1854                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1855                         goto out;
1856                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1857                 if (r)
1858                         goto out;
1859                 break;
1860         case KVM_CREATE_IRQCHIP:
1861                 r = -ENOMEM;
1862                 kvm->arch.vpic = kvm_create_pic(kvm);
1863                 if (kvm->arch.vpic) {
1864                         r = kvm_ioapic_init(kvm);
1865                         if (r) {
1866                                 kfree(kvm->arch.vpic);
1867                                 kvm->arch.vpic = NULL;
1868                                 goto out;
1869                         }
1870                 } else
1871                         goto out;
1872                 r = kvm_setup_default_irq_routing(kvm);
1873                 if (r) {
1874                         kfree(kvm->arch.vpic);
1875                         kfree(kvm->arch.vioapic);
1876                         goto out;
1877                 }
1878                 break;
1879         case KVM_CREATE_PIT:
1880                 mutex_lock(&kvm->lock);
1881                 r = -EEXIST;
1882                 if (kvm->arch.vpit)
1883                         goto create_pit_unlock;
1884                 r = -ENOMEM;
1885                 kvm->arch.vpit = kvm_create_pit(kvm);
1886                 if (kvm->arch.vpit)
1887                         r = 0;
1888         create_pit_unlock:
1889                 mutex_unlock(&kvm->lock);
1890                 break;
1891         case KVM_IRQ_LINE_STATUS:
1892         case KVM_IRQ_LINE: {
1893                 struct kvm_irq_level irq_event;
1894
1895                 r = -EFAULT;
1896                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1897                         goto out;
1898                 if (irqchip_in_kernel(kvm)) {
1899                         __s32 status;
1900                         mutex_lock(&kvm->lock);
1901                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1902                                         irq_event.irq, irq_event.level);
1903                         mutex_unlock(&kvm->lock);
1904                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1905                                 irq_event.status = status;
1906                                 if (copy_to_user(argp, &irq_event,
1907                                                         sizeof irq_event))
1908                                         goto out;
1909                         }
1910                         r = 0;
1911                 }
1912                 break;
1913         }
1914         case KVM_GET_IRQCHIP: {
1915                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1916                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1917
1918                 r = -ENOMEM;
1919                 if (!chip)
1920                         goto out;
1921                 r = -EFAULT;
1922                 if (copy_from_user(chip, argp, sizeof *chip))
1923                         goto get_irqchip_out;
1924                 r = -ENXIO;
1925                 if (!irqchip_in_kernel(kvm))
1926                         goto get_irqchip_out;
1927                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1928                 if (r)
1929                         goto get_irqchip_out;
1930                 r = -EFAULT;
1931                 if (copy_to_user(argp, chip, sizeof *chip))
1932                         goto get_irqchip_out;
1933                 r = 0;
1934         get_irqchip_out:
1935                 kfree(chip);
1936                 if (r)
1937                         goto out;
1938                 break;
1939         }
1940         case KVM_SET_IRQCHIP: {
1941                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1942                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1943
1944                 r = -ENOMEM;
1945                 if (!chip)
1946                         goto out;
1947                 r = -EFAULT;
1948                 if (copy_from_user(chip, argp, sizeof *chip))
1949                         goto set_irqchip_out;
1950                 r = -ENXIO;
1951                 if (!irqchip_in_kernel(kvm))
1952                         goto set_irqchip_out;
1953                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1954                 if (r)
1955                         goto set_irqchip_out;
1956                 r = 0;
1957         set_irqchip_out:
1958                 kfree(chip);
1959                 if (r)
1960                         goto out;
1961                 break;
1962         }
1963         case KVM_GET_PIT: {
1964                 r = -EFAULT;
1965                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1966                         goto out;
1967                 r = -ENXIO;
1968                 if (!kvm->arch.vpit)
1969                         goto out;
1970                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1971                 if (r)
1972                         goto out;
1973                 r = -EFAULT;
1974                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1975                         goto out;
1976                 r = 0;
1977                 break;
1978         }
1979         case KVM_SET_PIT: {
1980                 r = -EFAULT;
1981                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1982                         goto out;
1983                 r = -ENXIO;
1984                 if (!kvm->arch.vpit)
1985                         goto out;
1986                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1987                 if (r)
1988                         goto out;
1989                 r = 0;
1990                 break;
1991         }
1992         case KVM_REINJECT_CONTROL: {
1993                 struct kvm_reinject_control control;
1994                 r =  -EFAULT;
1995                 if (copy_from_user(&control, argp, sizeof(control)))
1996                         goto out;
1997                 r = kvm_vm_ioctl_reinject(kvm, &control);
1998                 if (r)
1999                         goto out;
2000                 r = 0;
2001                 break;
2002         }
2003         default:
2004                 ;
2005         }
2006 out:
2007         return r;
2008 }
2009
2010 static void kvm_init_msr_list(void)
2011 {
2012         u32 dummy[2];
2013         unsigned i, j;
2014
2015         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2016                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2017                         continue;
2018                 if (j < i)
2019                         msrs_to_save[j] = msrs_to_save[i];
2020                 j++;
2021         }
2022         num_msrs_to_save = j;
2023 }
2024
2025 /*
2026  * Only apic need an MMIO device hook, so shortcut now..
2027  */
2028 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2029                                                 gpa_t addr, int len,
2030                                                 int is_write)
2031 {
2032         struct kvm_io_device *dev;
2033
2034         if (vcpu->arch.apic) {
2035                 dev = &vcpu->arch.apic->dev;
2036                 if (dev->in_range(dev, addr, len, is_write))
2037                         return dev;
2038         }
2039         return NULL;
2040 }
2041
2042
2043 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2044                                                 gpa_t addr, int len,
2045                                                 int is_write)
2046 {
2047         struct kvm_io_device *dev;
2048
2049         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2050         if (dev == NULL)
2051                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2052                                           is_write);
2053         return dev;
2054 }
2055
2056 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2057                                struct kvm_vcpu *vcpu)
2058 {
2059         void *data = val;
2060         int r = X86EMUL_CONTINUE;
2061
2062         while (bytes) {
2063                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2064                 unsigned offset = addr & (PAGE_SIZE-1);
2065                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2066                 int ret;
2067
2068                 if (gpa == UNMAPPED_GVA) {
2069                         r = X86EMUL_PROPAGATE_FAULT;
2070                         goto out;
2071                 }
2072                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2073                 if (ret < 0) {
2074                         r = X86EMUL_UNHANDLEABLE;
2075                         goto out;
2076                 }
2077
2078                 bytes -= toread;
2079                 data += toread;
2080                 addr += toread;
2081         }
2082 out:
2083         return r;
2084 }
2085
2086 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2087                                 struct kvm_vcpu *vcpu)
2088 {
2089         void *data = val;
2090         int r = X86EMUL_CONTINUE;
2091
2092         while (bytes) {
2093                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2094                 unsigned offset = addr & (PAGE_SIZE-1);
2095                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2096                 int ret;
2097
2098                 if (gpa == UNMAPPED_GVA) {
2099                         r = X86EMUL_PROPAGATE_FAULT;
2100                         goto out;
2101                 }
2102                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2103                 if (ret < 0) {
2104                         r = X86EMUL_UNHANDLEABLE;
2105                         goto out;
2106                 }
2107
2108                 bytes -= towrite;
2109                 data += towrite;
2110                 addr += towrite;
2111         }
2112 out:
2113         return r;
2114 }
2115
2116
2117 static int emulator_read_emulated(unsigned long addr,
2118                                   void *val,
2119                                   unsigned int bytes,
2120                                   struct kvm_vcpu *vcpu)
2121 {
2122         struct kvm_io_device *mmio_dev;
2123         gpa_t                 gpa;
2124
2125         if (vcpu->mmio_read_completed) {
2126                 memcpy(val, vcpu->mmio_data, bytes);
2127                 vcpu->mmio_read_completed = 0;
2128                 return X86EMUL_CONTINUE;
2129         }
2130
2131         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2132
2133         /* For APIC access vmexit */
2134         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2135                 goto mmio;
2136
2137         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2138                                 == X86EMUL_CONTINUE)
2139                 return X86EMUL_CONTINUE;
2140         if (gpa == UNMAPPED_GVA)
2141                 return X86EMUL_PROPAGATE_FAULT;
2142
2143 mmio:
2144         /*
2145          * Is this MMIO handled locally?
2146          */
2147         mutex_lock(&vcpu->kvm->lock);
2148         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2149         if (mmio_dev) {
2150                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2151                 mutex_unlock(&vcpu->kvm->lock);
2152                 return X86EMUL_CONTINUE;
2153         }
2154         mutex_unlock(&vcpu->kvm->lock);
2155
2156         vcpu->mmio_needed = 1;
2157         vcpu->mmio_phys_addr = gpa;
2158         vcpu->mmio_size = bytes;
2159         vcpu->mmio_is_write = 0;
2160
2161         return X86EMUL_UNHANDLEABLE;
2162 }
2163
2164 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2165                           const void *val, int bytes)
2166 {
2167         int ret;
2168
2169         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2170         if (ret < 0)
2171                 return 0;
2172         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2173         return 1;
2174 }
2175
2176 static int emulator_write_emulated_onepage(unsigned long addr,
2177                                            const void *val,
2178                                            unsigned int bytes,
2179                                            struct kvm_vcpu *vcpu)
2180 {
2181         struct kvm_io_device *mmio_dev;
2182         gpa_t                 gpa;
2183
2184         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2185
2186         if (gpa == UNMAPPED_GVA) {
2187                 kvm_inject_page_fault(vcpu, addr, 2);
2188                 return X86EMUL_PROPAGATE_FAULT;
2189         }
2190
2191         /* For APIC access vmexit */
2192         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2193                 goto mmio;
2194
2195         if (emulator_write_phys(vcpu, gpa, val, bytes))
2196                 return X86EMUL_CONTINUE;
2197
2198 mmio:
2199         /*
2200          * Is this MMIO handled locally?
2201          */
2202         mutex_lock(&vcpu->kvm->lock);
2203         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2204         if (mmio_dev) {
2205                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2206                 mutex_unlock(&vcpu->kvm->lock);
2207                 return X86EMUL_CONTINUE;
2208         }
2209         mutex_unlock(&vcpu->kvm->lock);
2210
2211         vcpu->mmio_needed = 1;
2212         vcpu->mmio_phys_addr = gpa;
2213         vcpu->mmio_size = bytes;
2214         vcpu->mmio_is_write = 1;
2215         memcpy(vcpu->mmio_data, val, bytes);
2216
2217         return X86EMUL_CONTINUE;
2218 }
2219
2220 int emulator_write_emulated(unsigned long addr,
2221                                    const void *val,
2222                                    unsigned int bytes,
2223                                    struct kvm_vcpu *vcpu)
2224 {
2225         /* Crossing a page boundary? */
2226         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2227                 int rc, now;
2228
2229                 now = -addr & ~PAGE_MASK;
2230                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2231                 if (rc != X86EMUL_CONTINUE)
2232                         return rc;
2233                 addr += now;
2234                 val += now;
2235                 bytes -= now;
2236         }
2237         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2238 }
2239 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2240
2241 static int emulator_cmpxchg_emulated(unsigned long addr,
2242                                      const void *old,
2243                                      const void *new,
2244                                      unsigned int bytes,
2245                                      struct kvm_vcpu *vcpu)
2246 {
2247         static int reported;
2248
2249         if (!reported) {
2250                 reported = 1;
2251                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2252         }
2253 #ifndef CONFIG_X86_64
2254         /* guests cmpxchg8b have to be emulated atomically */
2255         if (bytes == 8) {
2256                 gpa_t gpa;
2257                 struct page *page;
2258                 char *kaddr;
2259                 u64 val;
2260
2261                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2262
2263                 if (gpa == UNMAPPED_GVA ||
2264                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2265                         goto emul_write;
2266
2267                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2268                         goto emul_write;
2269
2270                 val = *(u64 *)new;
2271
2272                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2273
2274                 kaddr = kmap_atomic(page, KM_USER0);
2275                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2276                 kunmap_atomic(kaddr, KM_USER0);
2277                 kvm_release_page_dirty(page);
2278         }
2279 emul_write:
2280 #endif
2281
2282         return emulator_write_emulated(addr, new, bytes, vcpu);
2283 }
2284
2285 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2286 {
2287         return kvm_x86_ops->get_segment_base(vcpu, seg);
2288 }
2289
2290 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2291 {
2292         kvm_mmu_invlpg(vcpu, address);
2293         return X86EMUL_CONTINUE;
2294 }
2295
2296 int emulate_clts(struct kvm_vcpu *vcpu)
2297 {
2298         KVMTRACE_0D(CLTS, vcpu, handler);
2299         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2300         return X86EMUL_CONTINUE;
2301 }
2302
2303 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2304 {
2305         struct kvm_vcpu *vcpu = ctxt->vcpu;
2306
2307         switch (dr) {
2308         case 0 ... 3:
2309                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2310                 return X86EMUL_CONTINUE;
2311         default:
2312                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2313                 return X86EMUL_UNHANDLEABLE;
2314         }
2315 }
2316
2317 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2318 {
2319         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2320         int exception;
2321
2322         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2323         if (exception) {
2324                 /* FIXME: better handling */
2325                 return X86EMUL_UNHANDLEABLE;
2326         }
2327         return X86EMUL_CONTINUE;
2328 }
2329
2330 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2331 {
2332         u8 opcodes[4];
2333         unsigned long rip = kvm_rip_read(vcpu);
2334         unsigned long rip_linear;
2335
2336         if (!printk_ratelimit())
2337                 return;
2338
2339         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2340
2341         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2342
2343         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2344                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2347
2348 static struct x86_emulate_ops emulate_ops = {
2349         .read_std            = kvm_read_guest_virt,
2350         .read_emulated       = emulator_read_emulated,
2351         .write_emulated      = emulator_write_emulated,
2352         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2353 };
2354
2355 static void cache_all_regs(struct kvm_vcpu *vcpu)
2356 {
2357         kvm_register_read(vcpu, VCPU_REGS_RAX);
2358         kvm_register_read(vcpu, VCPU_REGS_RSP);
2359         kvm_register_read(vcpu, VCPU_REGS_RIP);
2360         vcpu->arch.regs_dirty = ~0;
2361 }
2362
2363 int emulate_instruction(struct kvm_vcpu *vcpu,
2364                         struct kvm_run *run,
2365                         unsigned long cr2,
2366                         u16 error_code,
2367                         int emulation_type)
2368 {
2369         int r;
2370         struct decode_cache *c;
2371
2372         kvm_clear_exception_queue(vcpu);
2373         vcpu->arch.mmio_fault_cr2 = cr2;
2374         /*
2375          * TODO: fix x86_emulate.c to use guest_read/write_register
2376          * instead of direct ->regs accesses, can save hundred cycles
2377          * on Intel for instructions that don't read/change RSP, for
2378          * for example.
2379          */
2380         cache_all_regs(vcpu);
2381
2382         vcpu->mmio_is_write = 0;
2383         vcpu->arch.pio.string = 0;
2384
2385         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2386                 int cs_db, cs_l;
2387                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2388
2389                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2390                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2391                 vcpu->arch.emulate_ctxt.mode =
2392                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2393                         ? X86EMUL_MODE_REAL : cs_l
2394                         ? X86EMUL_MODE_PROT64 : cs_db
2395                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2396
2397                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2398
2399                 /* Reject the instructions other than VMCALL/VMMCALL when
2400                  * try to emulate invalid opcode */
2401                 c = &vcpu->arch.emulate_ctxt.decode;
2402                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2403                     (!(c->twobyte && c->b == 0x01 &&
2404                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2405                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2406                         return EMULATE_FAIL;
2407
2408                 ++vcpu->stat.insn_emulation;
2409                 if (r)  {
2410                         ++vcpu->stat.insn_emulation_fail;
2411                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2412                                 return EMULATE_DONE;
2413                         return EMULATE_FAIL;
2414                 }
2415         }
2416
2417         if (emulation_type & EMULTYPE_SKIP) {
2418                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2419                 return EMULATE_DONE;
2420         }
2421
2422         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2423
2424         if (vcpu->arch.pio.string)
2425                 return EMULATE_DO_MMIO;
2426
2427         if ((r || vcpu->mmio_is_write) && run) {
2428                 run->exit_reason = KVM_EXIT_MMIO;
2429                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2430                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2431                 run->mmio.len = vcpu->mmio_size;
2432                 run->mmio.is_write = vcpu->mmio_is_write;
2433         }
2434
2435         if (r) {
2436                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2437                         return EMULATE_DONE;
2438                 if (!vcpu->mmio_needed) {
2439                         kvm_report_emulation_failure(vcpu, "mmio");
2440                         return EMULATE_FAIL;
2441                 }
2442                 return EMULATE_DO_MMIO;
2443         }
2444
2445         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2446
2447         if (vcpu->mmio_is_write) {
2448                 vcpu->mmio_needed = 0;
2449                 return EMULATE_DO_MMIO;
2450         }
2451
2452         return EMULATE_DONE;
2453 }
2454 EXPORT_SYMBOL_GPL(emulate_instruction);
2455
2456 static int pio_copy_data(struct kvm_vcpu *vcpu)
2457 {
2458         void *p = vcpu->arch.pio_data;
2459         gva_t q = vcpu->arch.pio.guest_gva;
2460         unsigned bytes;
2461         int ret;
2462
2463         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2464         if (vcpu->arch.pio.in)
2465                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2466         else
2467                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2468         return ret;
2469 }
2470
2471 int complete_pio(struct kvm_vcpu *vcpu)
2472 {
2473         struct kvm_pio_request *io = &vcpu->arch.pio;
2474         long delta;
2475         int r;
2476         unsigned long val;
2477
2478         if (!io->string) {
2479                 if (io->in) {
2480                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2481                         memcpy(&val, vcpu->arch.pio_data, io->size);
2482                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2483                 }
2484         } else {
2485                 if (io->in) {
2486                         r = pio_copy_data(vcpu);
2487                         if (r)
2488                                 return r;
2489                 }
2490
2491                 delta = 1;
2492                 if (io->rep) {
2493                         delta *= io->cur_count;
2494                         /*
2495                          * The size of the register should really depend on
2496                          * current address size.
2497                          */
2498                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2499                         val -= delta;
2500                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2501                 }
2502                 if (io->down)
2503                         delta = -delta;
2504                 delta *= io->size;
2505                 if (io->in) {
2506                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2507                         val += delta;
2508                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2509                 } else {
2510                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2511                         val += delta;
2512                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2513                 }
2514         }
2515
2516         io->count -= io->cur_count;
2517         io->cur_count = 0;
2518
2519         return 0;
2520 }
2521
2522 static void kernel_pio(struct kvm_io_device *pio_dev,
2523                        struct kvm_vcpu *vcpu,
2524                        void *pd)
2525 {
2526         /* TODO: String I/O for in kernel device */
2527
2528         mutex_lock(&vcpu->kvm->lock);
2529         if (vcpu->arch.pio.in)
2530                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2531                                   vcpu->arch.pio.size,
2532                                   pd);
2533         else
2534                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2535                                    vcpu->arch.pio.size,
2536                                    pd);
2537         mutex_unlock(&vcpu->kvm->lock);
2538 }
2539
2540 static void pio_string_write(struct kvm_io_device *pio_dev,
2541                              struct kvm_vcpu *vcpu)
2542 {
2543         struct kvm_pio_request *io = &vcpu->arch.pio;
2544         void *pd = vcpu->arch.pio_data;
2545         int i;
2546
2547         mutex_lock(&vcpu->kvm->lock);
2548         for (i = 0; i < io->cur_count; i++) {
2549                 kvm_iodevice_write(pio_dev, io->port,
2550                                    io->size,
2551                                    pd);
2552                 pd += io->size;
2553         }
2554         mutex_unlock(&vcpu->kvm->lock);
2555 }
2556
2557 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2558                                                gpa_t addr, int len,
2559                                                int is_write)
2560 {
2561         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2562 }
2563
2564 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2565                   int size, unsigned port)
2566 {
2567         struct kvm_io_device *pio_dev;
2568         unsigned long val;
2569
2570         vcpu->run->exit_reason = KVM_EXIT_IO;
2571         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2572         vcpu->run->io.size = vcpu->arch.pio.size = size;
2573         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2574         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2575         vcpu->run->io.port = vcpu->arch.pio.port = port;
2576         vcpu->arch.pio.in = in;
2577         vcpu->arch.pio.string = 0;
2578         vcpu->arch.pio.down = 0;
2579         vcpu->arch.pio.rep = 0;
2580
2581         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2582                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2583                             handler);
2584         else
2585                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2586                             handler);
2587
2588         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2589         memcpy(vcpu->arch.pio_data, &val, 4);
2590
2591         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2592         if (pio_dev) {
2593                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2594                 complete_pio(vcpu);
2595                 return 1;
2596         }
2597         return 0;
2598 }
2599 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2600
2601 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2602                   int size, unsigned long count, int down,
2603                   gva_t address, int rep, unsigned port)
2604 {
2605         unsigned now, in_page;
2606         int ret = 0;
2607         struct kvm_io_device *pio_dev;
2608
2609         vcpu->run->exit_reason = KVM_EXIT_IO;
2610         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2611         vcpu->run->io.size = vcpu->arch.pio.size = size;
2612         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2613         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2614         vcpu->run->io.port = vcpu->arch.pio.port = port;
2615         vcpu->arch.pio.in = in;
2616         vcpu->arch.pio.string = 1;
2617         vcpu->arch.pio.down = down;
2618         vcpu->arch.pio.rep = rep;
2619
2620         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2621                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2622                             handler);
2623         else
2624                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2625                             handler);
2626
2627         if (!count) {
2628                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2629                 return 1;
2630         }
2631
2632         if (!down)
2633                 in_page = PAGE_SIZE - offset_in_page(address);
2634         else
2635                 in_page = offset_in_page(address) + size;
2636         now = min(count, (unsigned long)in_page / size);
2637         if (!now)
2638                 now = 1;
2639         if (down) {
2640                 /*
2641                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2642                  */
2643                 pr_unimpl(vcpu, "guest string pio down\n");
2644                 kvm_inject_gp(vcpu, 0);
2645                 return 1;
2646         }
2647         vcpu->run->io.count = now;
2648         vcpu->arch.pio.cur_count = now;
2649
2650         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2651                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2652
2653         vcpu->arch.pio.guest_gva = address;
2654
2655         pio_dev = vcpu_find_pio_dev(vcpu, port,
2656                                     vcpu->arch.pio.cur_count,
2657                                     !vcpu->arch.pio.in);
2658         if (!vcpu->arch.pio.in) {
2659                 /* string PIO write */
2660                 ret = pio_copy_data(vcpu);
2661                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2662                         kvm_inject_gp(vcpu, 0);
2663                         return 1;
2664                 }
2665                 if (ret == 0 && pio_dev) {
2666                         pio_string_write(pio_dev, vcpu);
2667                         complete_pio(vcpu);
2668                         if (vcpu->arch.pio.count == 0)
2669                                 ret = 1;
2670                 }
2671         } else if (pio_dev)
2672                 pr_unimpl(vcpu, "no string pio read support yet, "
2673                        "port %x size %d count %ld\n",
2674                         port, size, count);
2675
2676         return ret;
2677 }
2678 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2679
2680 static void bounce_off(void *info)
2681 {
2682         /* nothing */
2683 }
2684
2685 static unsigned int  ref_freq;
2686 static unsigned long tsc_khz_ref;
2687
2688 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2689                                      void *data)
2690 {
2691         struct cpufreq_freqs *freq = data;
2692         struct kvm *kvm;
2693         struct kvm_vcpu *vcpu;
2694         int i, send_ipi = 0;
2695
2696         if (!ref_freq)
2697                 ref_freq = freq->old;
2698
2699         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2700                 return 0;
2701         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2702                 return 0;
2703         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2704
2705         spin_lock(&kvm_lock);
2706         list_for_each_entry(kvm, &vm_list, vm_list) {
2707                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2708                         vcpu = kvm->vcpus[i];
2709                         if (!vcpu)
2710                                 continue;
2711                         if (vcpu->cpu != freq->cpu)
2712                                 continue;
2713                         if (!kvm_request_guest_time_update(vcpu))
2714                                 continue;
2715                         if (vcpu->cpu != smp_processor_id())
2716                                 send_ipi++;
2717                 }
2718         }
2719         spin_unlock(&kvm_lock);
2720
2721         if (freq->old < freq->new && send_ipi) {
2722                 /*
2723                  * We upscale the frequency.  Must make the guest
2724                  * doesn't see old kvmclock values while running with
2725                  * the new frequency, otherwise we risk the guest sees
2726                  * time go backwards.
2727                  *
2728                  * In case we update the frequency for another cpu
2729                  * (which might be in guest context) send an interrupt
2730                  * to kick the cpu out of guest context.  Next time
2731                  * guest context is entered kvmclock will be updated,
2732                  * so the guest will not see stale values.
2733                  */
2734                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2735         }
2736         return 0;
2737 }
2738
2739 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2740         .notifier_call  = kvmclock_cpufreq_notifier
2741 };
2742
2743 int kvm_arch_init(void *opaque)
2744 {
2745         int r, cpu;
2746         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2747
2748         if (kvm_x86_ops) {
2749                 printk(KERN_ERR "kvm: already loaded the other module\n");
2750                 r = -EEXIST;
2751                 goto out;
2752         }
2753
2754         if (!ops->cpu_has_kvm_support()) {
2755                 printk(KERN_ERR "kvm: no hardware support\n");
2756                 r = -EOPNOTSUPP;
2757                 goto out;
2758         }
2759         if (ops->disabled_by_bios()) {
2760                 printk(KERN_ERR "kvm: disabled by bios\n");
2761                 r = -EOPNOTSUPP;
2762                 goto out;
2763         }
2764
2765         r = kvm_mmu_module_init();
2766         if (r)
2767                 goto out;
2768
2769         kvm_init_msr_list();
2770
2771         kvm_x86_ops = ops;
2772         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2773         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2774         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2775                         PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2776
2777         for_each_possible_cpu(cpu)
2778                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2779         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2780                 tsc_khz_ref = tsc_khz;
2781                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2782                                           CPUFREQ_TRANSITION_NOTIFIER);
2783         }
2784
2785         return 0;
2786
2787 out:
2788         return r;
2789 }
2790
2791 void kvm_arch_exit(void)
2792 {
2793         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2794                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2795                                             CPUFREQ_TRANSITION_NOTIFIER);
2796         kvm_x86_ops = NULL;
2797         kvm_mmu_module_exit();
2798 }
2799
2800 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2801 {
2802         ++vcpu->stat.halt_exits;
2803         KVMTRACE_0D(HLT, vcpu, handler);
2804         if (irqchip_in_kernel(vcpu->kvm)) {
2805                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2806                 return 1;
2807         } else {
2808                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2809                 return 0;
2810         }
2811 }
2812 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2813
2814 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2815                            unsigned long a1)
2816 {
2817         if (is_long_mode(vcpu))
2818                 return a0;
2819         else
2820                 return a0 | ((gpa_t)a1 << 32);
2821 }
2822
2823 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2824 {
2825         unsigned long nr, a0, a1, a2, a3, ret;
2826         int r = 1;
2827
2828         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2829         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2830         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2831         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2832         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2833
2834         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2835
2836         if (!is_long_mode(vcpu)) {
2837                 nr &= 0xFFFFFFFF;
2838                 a0 &= 0xFFFFFFFF;
2839                 a1 &= 0xFFFFFFFF;
2840                 a2 &= 0xFFFFFFFF;
2841                 a3 &= 0xFFFFFFFF;
2842         }
2843
2844         switch (nr) {
2845         case KVM_HC_VAPIC_POLL_IRQ:
2846                 ret = 0;
2847                 break;
2848         case KVM_HC_MMU_OP:
2849                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2850                 break;
2851         default:
2852                 ret = -KVM_ENOSYS;
2853                 break;
2854         }
2855         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2856         ++vcpu->stat.hypercalls;
2857         return r;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2860
2861 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2862 {
2863         char instruction[3];
2864         int ret = 0;
2865         unsigned long rip = kvm_rip_read(vcpu);
2866
2867
2868         /*
2869          * Blow out the MMU to ensure that no other VCPU has an active mapping
2870          * to ensure that the updated hypercall appears atomically across all
2871          * VCPUs.
2872          */
2873         kvm_mmu_zap_all(vcpu->kvm);
2874
2875         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2876         if (emulator_write_emulated(rip, instruction, 3, vcpu)
2877             != X86EMUL_CONTINUE)
2878                 ret = -EFAULT;
2879
2880         return ret;
2881 }
2882
2883 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2884 {
2885         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2886 }
2887
2888 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2889 {
2890         struct descriptor_table dt = { limit, base };
2891
2892         kvm_x86_ops->set_gdt(vcpu, &dt);
2893 }
2894
2895 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2896 {
2897         struct descriptor_table dt = { limit, base };
2898
2899         kvm_x86_ops->set_idt(vcpu, &dt);
2900 }
2901
2902 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2903                    unsigned long *rflags)
2904 {
2905         kvm_lmsw(vcpu, msw);
2906         *rflags = kvm_x86_ops->get_rflags(vcpu);
2907 }
2908
2909 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2910 {
2911         unsigned long value;
2912
2913         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2914         switch (cr) {
2915         case 0:
2916                 value = vcpu->arch.cr0;
2917                 break;
2918         case 2:
2919                 value = vcpu->arch.cr2;
2920                 break;
2921         case 3:
2922                 value = vcpu->arch.cr3;
2923                 break;
2924         case 4:
2925                 value = vcpu->arch.cr4;
2926                 break;
2927         case 8:
2928                 value = kvm_get_cr8(vcpu);
2929                 break;
2930         default:
2931                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2932                 return 0;
2933         }
2934         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2935                     (u32)((u64)value >> 32), handler);
2936
2937         return value;
2938 }
2939
2940 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2941                      unsigned long *rflags)
2942 {
2943         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2944                     (u32)((u64)val >> 32), handler);
2945
2946         switch (cr) {
2947         case 0:
2948                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2949                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2950                 break;
2951         case 2:
2952                 vcpu->arch.cr2 = val;
2953                 break;
2954         case 3:
2955                 kvm_set_cr3(vcpu, val);
2956                 break;
2957         case 4:
2958                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2959                 break;
2960         case 8:
2961                 kvm_set_cr8(vcpu, val & 0xfUL);
2962                 break;
2963         default:
2964                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2965         }
2966 }
2967
2968 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2969 {
2970         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2971         int j, nent = vcpu->arch.cpuid_nent;
2972
2973         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2974         /* when no next entry is found, the current entry[i] is reselected */
2975         for (j = i + 1; ; j = (j + 1) % nent) {
2976                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2977                 if (ej->function == e->function) {
2978                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2979                         return j;
2980                 }
2981         }
2982         return 0; /* silence gcc, even though control never reaches here */
2983 }
2984
2985 /* find an entry with matching function, matching index (if needed), and that
2986  * should be read next (if it's stateful) */
2987 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2988         u32 function, u32 index)
2989 {
2990         if (e->function != function)
2991                 return 0;
2992         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2993                 return 0;
2994         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2995             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2996                 return 0;
2997         return 1;
2998 }
2999
3000 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3001                                               u32 function, u32 index)
3002 {
3003         int i;
3004         struct kvm_cpuid_entry2 *best = NULL;
3005
3006         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3007                 struct kvm_cpuid_entry2 *e;
3008
3009                 e = &vcpu->arch.cpuid_entries[i];
3010                 if (is_matching_cpuid_entry(e, function, index)) {
3011                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3012                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3013                         best = e;
3014                         break;
3015                 }
3016                 /*
3017                  * Both basic or both extended?
3018                  */
3019                 if (((e->function ^ function) & 0x80000000) == 0)
3020                         if (!best || e->function > best->function)
3021                                 best = e;
3022         }
3023         return best;
3024 }
3025
3026 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3027 {
3028         struct kvm_cpuid_entry2 *best;
3029
3030         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3031         if (best)
3032                 return best->eax & 0xff;
3033         return 36;
3034 }
3035
3036 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3037 {
3038         u32 function, index;
3039         struct kvm_cpuid_entry2 *best;
3040
3041         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3042         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3043         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3044         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3045         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3046         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3047         best = kvm_find_cpuid_entry(vcpu, function, index);
3048         if (best) {
3049                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3050                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3051                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3052                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3053         }
3054         kvm_x86_ops->skip_emulated_instruction(vcpu);
3055         KVMTRACE_5D(CPUID, vcpu, function,
3056                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3057                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3058                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3059                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3060 }
3061 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3062
3063 /*
3064  * Check if userspace requested an interrupt window, and that the
3065  * interrupt window is open.
3066  *
3067  * No need to exit to userspace if we already have an interrupt queued.
3068  */
3069 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3070                                           struct kvm_run *kvm_run)
3071 {
3072         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3073                 kvm_run->request_interrupt_window &&
3074                 kvm_arch_interrupt_allowed(vcpu));
3075 }
3076
3077 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3078                               struct kvm_run *kvm_run)
3079 {
3080         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3081         kvm_run->cr8 = kvm_get_cr8(vcpu);
3082         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3083         if (irqchip_in_kernel(vcpu->kvm))
3084                 kvm_run->ready_for_interrupt_injection = 1;
3085         else
3086                 kvm_run->ready_for_interrupt_injection =
3087                                         (kvm_arch_interrupt_allowed(vcpu) &&
3088                                          !kvm_cpu_has_interrupt(vcpu));
3089 }
3090
3091 static void vapic_enter(struct kvm_vcpu *vcpu)
3092 {
3093         struct kvm_lapic *apic = vcpu->arch.apic;
3094         struct page *page;
3095
3096         if (!apic || !apic->vapic_addr)
3097                 return;
3098
3099         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3100
3101         vcpu->arch.apic->vapic_page = page;
3102 }
3103
3104 static void vapic_exit(struct kvm_vcpu *vcpu)
3105 {
3106         struct kvm_lapic *apic = vcpu->arch.apic;
3107
3108         if (!apic || !apic->vapic_addr)
3109                 return;
3110
3111         down_read(&vcpu->kvm->slots_lock);
3112         kvm_release_page_dirty(apic->vapic_page);
3113         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3114         up_read(&vcpu->kvm->slots_lock);
3115 }
3116
3117 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3118 {
3119         int max_irr, tpr;
3120
3121         if (!kvm_x86_ops->update_cr8_intercept)
3122                 return;
3123
3124         max_irr = kvm_lapic_find_highest_irr(vcpu);
3125
3126         if (max_irr != -1)
3127                 max_irr >>= 4;
3128
3129         tpr = kvm_lapic_get_cr8(vcpu);
3130
3131         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3132 }
3133
3134 static void inject_irq(struct kvm_vcpu *vcpu)
3135 {
3136         /* try to reinject previous events if any */
3137         if (vcpu->arch.nmi_injected) {
3138                 kvm_x86_ops->set_nmi(vcpu);
3139                 return;
3140         }
3141
3142         if (vcpu->arch.interrupt.pending) {
3143                 kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3144                 return;
3145         }
3146
3147         /* try to inject new event if pending */
3148         if (vcpu->arch.nmi_pending) {
3149                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3150                         vcpu->arch.nmi_pending = false;
3151                         vcpu->arch.nmi_injected = true;
3152                         kvm_x86_ops->set_nmi(vcpu);
3153                 }
3154         } else if (kvm_cpu_has_interrupt(vcpu)) {
3155                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3156                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
3157                         kvm_x86_ops->set_irq(vcpu, vcpu->arch.interrupt.nr);
3158                 }
3159         }
3160 }
3161
3162 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3163 {
3164         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3165                 kvm_run->request_interrupt_window;
3166
3167         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3168                 kvm_x86_ops->drop_interrupt_shadow(vcpu);
3169
3170         inject_irq(vcpu);
3171
3172         /* enable NMI/IRQ window open exits if needed */
3173         if (vcpu->arch.nmi_pending)
3174                 kvm_x86_ops->enable_nmi_window(vcpu);
3175         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3176                 kvm_x86_ops->enable_irq_window(vcpu);
3177 }
3178
3179 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3180 {
3181         int r;
3182
3183         if (vcpu->requests)
3184                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3185                         kvm_mmu_unload(vcpu);
3186
3187         r = kvm_mmu_reload(vcpu);
3188         if (unlikely(r))
3189                 goto out;
3190
3191         if (vcpu->requests) {
3192                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3193                         __kvm_migrate_timers(vcpu);
3194                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3195                         kvm_write_guest_time(vcpu);
3196                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3197                         kvm_mmu_sync_roots(vcpu);
3198                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3199                         kvm_x86_ops->tlb_flush(vcpu);
3200                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3201                                        &vcpu->requests)) {
3202                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3203                         r = 0;
3204                         goto out;
3205                 }
3206                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3207                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3208                         r = 0;
3209                         goto out;
3210                 }
3211         }
3212
3213         preempt_disable();
3214
3215         kvm_x86_ops->prepare_guest_switch(vcpu);
3216         kvm_load_guest_fpu(vcpu);
3217
3218         local_irq_disable();
3219
3220         if (vcpu->requests || need_resched() || signal_pending(current)) {
3221                 local_irq_enable();
3222                 preempt_enable();
3223                 r = 1;
3224                 goto out;
3225         }
3226
3227         vcpu->guest_mode = 1;
3228         /*
3229          * Make sure that guest_mode assignment won't happen after
3230          * testing the pending IRQ vector bitmap.
3231          */
3232         smp_wmb();
3233
3234         if (vcpu->arch.exception.pending)
3235                 __queue_exception(vcpu);
3236         else
3237                 inject_pending_irq(vcpu, kvm_run);
3238
3239         if (kvm_lapic_enabled(vcpu)) {
3240                 if (!vcpu->arch.apic->vapic_addr)
3241                         update_cr8_intercept(vcpu);
3242                 else
3243                         kvm_lapic_sync_to_vapic(vcpu);
3244         }
3245
3246         up_read(&vcpu->kvm->slots_lock);
3247
3248         kvm_guest_enter();
3249
3250         get_debugreg(vcpu->arch.host_dr6, 6);
3251         get_debugreg(vcpu->arch.host_dr7, 7);
3252         if (unlikely(vcpu->arch.switch_db_regs)) {
3253                 get_debugreg(vcpu->arch.host_db[0], 0);
3254                 get_debugreg(vcpu->arch.host_db[1], 1);
3255                 get_debugreg(vcpu->arch.host_db[2], 2);
3256                 get_debugreg(vcpu->arch.host_db[3], 3);
3257
3258                 set_debugreg(0, 7);
3259                 set_debugreg(vcpu->arch.eff_db[0], 0);
3260                 set_debugreg(vcpu->arch.eff_db[1], 1);
3261                 set_debugreg(vcpu->arch.eff_db[2], 2);
3262                 set_debugreg(vcpu->arch.eff_db[3], 3);
3263         }
3264
3265         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3266         kvm_x86_ops->run(vcpu, kvm_run);
3267
3268         if (unlikely(vcpu->arch.switch_db_regs)) {
3269                 set_debugreg(0, 7);
3270                 set_debugreg(vcpu->arch.host_db[0], 0);
3271                 set_debugreg(vcpu->arch.host_db[1], 1);
3272                 set_debugreg(vcpu->arch.host_db[2], 2);
3273                 set_debugreg(vcpu->arch.host_db[3], 3);
3274         }
3275         set_debugreg(vcpu->arch.host_dr6, 6);
3276         set_debugreg(vcpu->arch.host_dr7, 7);
3277
3278         vcpu->guest_mode = 0;
3279         local_irq_enable();
3280
3281         ++vcpu->stat.exits;
3282
3283         /*
3284          * We must have an instruction between local_irq_enable() and
3285          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3286          * the interrupt shadow.  The stat.exits increment will do nicely.
3287          * But we need to prevent reordering, hence this barrier():
3288          */
3289         barrier();
3290
3291         kvm_guest_exit();
3292
3293         preempt_enable();
3294
3295         down_read(&vcpu->kvm->slots_lock);
3296
3297         /*
3298          * Profile KVM exit RIPs:
3299          */
3300         if (unlikely(prof_on == KVM_PROFILING)) {
3301                 unsigned long rip = kvm_rip_read(vcpu);
3302                 profile_hit(KVM_PROFILING, (void *)rip);
3303         }
3304
3305
3306         kvm_lapic_sync_from_vapic(vcpu);
3307
3308         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3309 out:
3310         return r;
3311 }
3312
3313
3314 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3315 {
3316         int r;
3317
3318         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3319                 pr_debug("vcpu %d received sipi with vector # %x\n",
3320                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3321                 kvm_lapic_reset(vcpu);
3322                 r = kvm_arch_vcpu_reset(vcpu);
3323                 if (r)
3324                         return r;
3325                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3326         }
3327
3328         down_read(&vcpu->kvm->slots_lock);
3329         vapic_enter(vcpu);
3330
3331         r = 1;
3332         while (r > 0) {
3333                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3334                         r = vcpu_enter_guest(vcpu, kvm_run);
3335                 else {
3336                         up_read(&vcpu->kvm->slots_lock);
3337                         kvm_vcpu_block(vcpu);
3338                         down_read(&vcpu->kvm->slots_lock);
3339                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3340                         {
3341                                 switch(vcpu->arch.mp_state) {
3342                                 case KVM_MP_STATE_HALTED:
3343                                         vcpu->arch.mp_state =
3344                                                 KVM_MP_STATE_RUNNABLE;
3345                                 case KVM_MP_STATE_RUNNABLE:
3346                                         break;
3347                                 case KVM_MP_STATE_SIPI_RECEIVED:
3348                                 default:
3349                                         r = -EINTR;
3350                                         break;
3351                                 }
3352                         }
3353                 }
3354
3355                 if (r <= 0)
3356                         break;
3357
3358                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3359                 if (kvm_cpu_has_pending_timer(vcpu))
3360                         kvm_inject_pending_timer_irqs(vcpu);
3361
3362                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3363                         r = -EINTR;
3364                         kvm_run->exit_reason = KVM_EXIT_INTR;
3365                         ++vcpu->stat.request_irq_exits;
3366                 }
3367                 if (signal_pending(current)) {
3368                         r = -EINTR;
3369                         kvm_run->exit_reason = KVM_EXIT_INTR;
3370                         ++vcpu->stat.signal_exits;
3371                 }
3372                 if (need_resched()) {
3373                         up_read(&vcpu->kvm->slots_lock);
3374                         kvm_resched(vcpu);
3375                         down_read(&vcpu->kvm->slots_lock);
3376                 }
3377         }
3378
3379         up_read(&vcpu->kvm->slots_lock);
3380         post_kvm_run_save(vcpu, kvm_run);
3381
3382         vapic_exit(vcpu);
3383
3384         return r;
3385 }
3386
3387 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3388 {
3389         int r;
3390         sigset_t sigsaved;
3391
3392         vcpu_load(vcpu);
3393
3394         if (vcpu->sigset_active)
3395                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3396
3397         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3398                 kvm_vcpu_block(vcpu);
3399                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3400                 r = -EAGAIN;
3401                 goto out;
3402         }
3403
3404         /* re-sync apic's tpr */
3405         if (!irqchip_in_kernel(vcpu->kvm))
3406                 kvm_set_cr8(vcpu, kvm_run->cr8);
3407
3408         if (vcpu->arch.pio.cur_count) {
3409                 r = complete_pio(vcpu);
3410                 if (r)
3411                         goto out;
3412         }
3413 #if CONFIG_HAS_IOMEM
3414         if (vcpu->mmio_needed) {
3415                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3416                 vcpu->mmio_read_completed = 1;
3417                 vcpu->mmio_needed = 0;
3418
3419                 down_read(&vcpu->kvm->slots_lock);
3420                 r = emulate_instruction(vcpu, kvm_run,
3421                                         vcpu->arch.mmio_fault_cr2, 0,
3422                                         EMULTYPE_NO_DECODE);
3423                 up_read(&vcpu->kvm->slots_lock);
3424                 if (r == EMULATE_DO_MMIO) {
3425                         /*
3426                          * Read-modify-write.  Back to userspace.
3427                          */
3428                         r = 0;
3429                         goto out;
3430                 }
3431         }
3432 #endif
3433         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3434                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3435                                      kvm_run->hypercall.ret);
3436
3437         r = __vcpu_run(vcpu, kvm_run);
3438
3439 out:
3440         if (vcpu->sigset_active)
3441                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3442
3443         vcpu_put(vcpu);
3444         return r;
3445 }
3446
3447 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3448 {
3449         vcpu_load(vcpu);
3450
3451         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3452         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3453         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3454         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3455         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3456         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3457         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3458         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3459 #ifdef CONFIG_X86_64
3460         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3461         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3462         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3463         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3464         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3465         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3466         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3467         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3468 #endif
3469
3470         regs->rip = kvm_rip_read(vcpu);
3471         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3472
3473         /*
3474          * Don't leak debug flags in case they were set for guest debugging
3475          */
3476         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3477                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3478
3479         vcpu_put(vcpu);
3480
3481         return 0;
3482 }
3483
3484 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3485 {
3486         vcpu_load(vcpu);
3487
3488         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3489         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3490         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3491         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3492         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3493         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3494         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3495         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3496 #ifdef CONFIG_X86_64
3497         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3498         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3499         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3500         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3501         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3502         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3503         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3504         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3505
3506 #endif
3507
3508         kvm_rip_write(vcpu, regs->rip);
3509         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3510
3511
3512         vcpu->arch.exception.pending = false;
3513
3514         vcpu_put(vcpu);
3515
3516         return 0;
3517 }
3518
3519 void kvm_get_segment(struct kvm_vcpu *vcpu,
3520                      struct kvm_segment *var, int seg)
3521 {
3522         kvm_x86_ops->get_segment(vcpu, var, seg);
3523 }
3524
3525 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3526 {
3527         struct kvm_segment cs;
3528
3529         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3530         *db = cs.db;
3531         *l = cs.l;
3532 }
3533 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3534
3535 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3536                                   struct kvm_sregs *sregs)
3537 {
3538         struct descriptor_table dt;
3539
3540         vcpu_load(vcpu);
3541
3542         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3543         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3544         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3545         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3546         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3547         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3548
3549         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3550         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3551
3552         kvm_x86_ops->get_idt(vcpu, &dt);
3553         sregs->idt.limit = dt.limit;
3554         sregs->idt.base = dt.base;
3555         kvm_x86_ops->get_gdt(vcpu, &dt);
3556         sregs->gdt.limit = dt.limit;
3557         sregs->gdt.base = dt.base;
3558
3559         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3560         sregs->cr0 = vcpu->arch.cr0;
3561         sregs->cr2 = vcpu->arch.cr2;
3562         sregs->cr3 = vcpu->arch.cr3;
3563         sregs->cr4 = vcpu->arch.cr4;
3564         sregs->cr8 = kvm_get_cr8(vcpu);
3565         sregs->efer = vcpu->arch.shadow_efer;
3566         sregs->apic_base = kvm_get_apic_base(vcpu);
3567
3568         if (irqchip_in_kernel(vcpu->kvm))
3569                 memset(sregs->interrupt_bitmap, 0,
3570                        sizeof sregs->interrupt_bitmap);
3571         else
3572                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3573                        sizeof sregs->interrupt_bitmap);
3574
3575         if (vcpu->arch.interrupt.pending)
3576                 set_bit(vcpu->arch.interrupt.nr,
3577                         (unsigned long *)sregs->interrupt_bitmap);
3578
3579         vcpu_put(vcpu);
3580
3581         return 0;
3582 }
3583
3584 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3585                                     struct kvm_mp_state *mp_state)
3586 {
3587         vcpu_load(vcpu);
3588         mp_state->mp_state = vcpu->arch.mp_state;
3589         vcpu_put(vcpu);
3590         return 0;
3591 }
3592
3593 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3594                                     struct kvm_mp_state *mp_state)
3595 {
3596         vcpu_load(vcpu);
3597         vcpu->arch.mp_state = mp_state->mp_state;
3598         vcpu_put(vcpu);
3599         return 0;
3600 }
3601
3602 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3603                         struct kvm_segment *var, int seg)
3604 {
3605         kvm_x86_ops->set_segment(vcpu, var, seg);
3606 }
3607
3608 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3609                                    struct kvm_segment *kvm_desct)
3610 {
3611         kvm_desct->base = seg_desc->base0;
3612         kvm_desct->base |= seg_desc->base1 << 16;
3613         kvm_desct->base |= seg_desc->base2 << 24;
3614         kvm_desct->limit = seg_desc->limit0;
3615         kvm_desct->limit |= seg_desc->limit << 16;
3616         if (seg_desc->g) {
3617                 kvm_desct->limit <<= 12;
3618                 kvm_desct->limit |= 0xfff;
3619         }
3620         kvm_desct->selector = selector;
3621         kvm_desct->type = seg_desc->type;
3622         kvm_desct->present = seg_desc->p;
3623         kvm_desct->dpl = seg_desc->dpl;
3624         kvm_desct->db = seg_desc->d;
3625         kvm_desct->s = seg_desc->s;
3626         kvm_desct->l = seg_desc->l;
3627         kvm_desct->g = seg_desc->g;
3628         kvm_desct->avl = seg_desc->avl;
3629         if (!selector)
3630                 kvm_desct->unusable = 1;
3631         else
3632                 kvm_desct->unusable = 0;
3633         kvm_desct->padding = 0;
3634 }
3635
3636 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3637                                           u16 selector,
3638                                           struct descriptor_table *dtable)
3639 {
3640         if (selector & 1 << 2) {
3641                 struct kvm_segment kvm_seg;
3642
3643                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3644
3645                 if (kvm_seg.unusable)
3646                         dtable->limit = 0;
3647                 else
3648                         dtable->limit = kvm_seg.limit;
3649                 dtable->base = kvm_seg.base;
3650         }
3651         else
3652                 kvm_x86_ops->get_gdt(vcpu, dtable);
3653 }
3654
3655 /* allowed just for 8 bytes segments */
3656 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3657                                          struct desc_struct *seg_desc)
3658 {
3659         gpa_t gpa;
3660         struct descriptor_table dtable;
3661         u16 index = selector >> 3;
3662
3663         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3664
3665         if (dtable.limit < index * 8 + 7) {
3666                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3667                 return 1;
3668         }
3669         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3670         gpa += index * 8;
3671         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3672 }
3673
3674 /* allowed just for 8 bytes segments */
3675 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3676                                          struct desc_struct *seg_desc)
3677 {
3678         gpa_t gpa;
3679         struct descriptor_table dtable;
3680         u16 index = selector >> 3;
3681
3682         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3683
3684         if (dtable.limit < index * 8 + 7)
3685                 return 1;
3686         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3687         gpa += index * 8;
3688         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3689 }
3690
3691 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3692                              struct desc_struct *seg_desc)
3693 {
3694         u32 base_addr;
3695
3696         base_addr = seg_desc->base0;
3697         base_addr |= (seg_desc->base1 << 16);
3698         base_addr |= (seg_desc->base2 << 24);
3699
3700         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3701 }
3702
3703 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3704 {
3705         struct kvm_segment kvm_seg;
3706
3707         kvm_get_segment(vcpu, &kvm_seg, seg);
3708         return kvm_seg.selector;
3709 }
3710
3711 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3712                                                 u16 selector,
3713                                                 struct kvm_segment *kvm_seg)
3714 {
3715         struct desc_struct seg_desc;
3716
3717         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3718                 return 1;
3719         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3720         return 0;
3721 }
3722
3723 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3724 {
3725         struct kvm_segment segvar = {
3726                 .base = selector << 4,
3727                 .limit = 0xffff,
3728                 .selector = selector,
3729                 .type = 3,
3730                 .present = 1,
3731                 .dpl = 3,
3732                 .db = 0,
3733                 .s = 1,
3734                 .l = 0,
3735                 .g = 0,
3736                 .avl = 0,
3737                 .unusable = 0,
3738         };
3739         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3740         return 0;
3741 }
3742
3743 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3744                                 int type_bits, int seg)
3745 {
3746         struct kvm_segment kvm_seg;
3747
3748         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3749                 return kvm_load_realmode_segment(vcpu, selector, seg);
3750         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3751                 return 1;
3752         kvm_seg.type |= type_bits;
3753
3754         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3755             seg != VCPU_SREG_LDTR)
3756                 if (!kvm_seg.s)
3757                         kvm_seg.unusable = 1;
3758
3759         kvm_set_segment(vcpu, &kvm_seg, seg);
3760         return 0;
3761 }
3762
3763 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3764                                 struct tss_segment_32 *tss)
3765 {
3766         tss->cr3 = vcpu->arch.cr3;
3767         tss->eip = kvm_rip_read(vcpu);
3768         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3769         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3770         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3771         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3772         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3773         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3774         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3775         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3776         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3777         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3778         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3779         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3780         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3781         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3782         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3783         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3784 }
3785
3786 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3787                                   struct tss_segment_32 *tss)
3788 {
3789         kvm_set_cr3(vcpu, tss->cr3);
3790
3791         kvm_rip_write(vcpu, tss->eip);
3792         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3793
3794         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3795         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3796         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3797         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3798         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3799         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3800         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3801         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3802
3803         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3804                 return 1;
3805
3806         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3807                 return 1;
3808
3809         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3810                 return 1;
3811
3812         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3813                 return 1;
3814
3815         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3816                 return 1;
3817
3818         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3819                 return 1;
3820
3821         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3822                 return 1;
3823         return 0;
3824 }
3825
3826 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3827                                 struct tss_segment_16 *tss)
3828 {
3829         tss->ip = kvm_rip_read(vcpu);
3830         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3831         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3832         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3833         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3834         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3835         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3836         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3837         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3838         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3839
3840         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3841         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3842         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3843         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3844         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3845         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3846 }
3847
3848 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3849                                  struct tss_segment_16 *tss)
3850 {
3851         kvm_rip_write(vcpu, tss->ip);
3852         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3853         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3854         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3855         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3856         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3857         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3858         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3859         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3860         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3861
3862         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3863                 return 1;
3864
3865         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3866                 return 1;
3867
3868         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3869                 return 1;
3870
3871         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3872                 return 1;
3873
3874         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3875                 return 1;
3876         return 0;
3877 }
3878
3879 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3880                               u16 old_tss_sel, u32 old_tss_base,
3881                               struct desc_struct *nseg_desc)
3882 {
3883         struct tss_segment_16 tss_segment_16;
3884         int ret = 0;
3885
3886         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3887                            sizeof tss_segment_16))
3888                 goto out;
3889
3890         save_state_to_tss16(vcpu, &tss_segment_16);
3891
3892         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3893                             sizeof tss_segment_16))
3894                 goto out;
3895
3896         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3897                            &tss_segment_16, sizeof tss_segment_16))
3898                 goto out;
3899
3900         if (old_tss_sel != 0xffff) {
3901                 tss_segment_16.prev_task_link = old_tss_sel;
3902
3903                 if (kvm_write_guest(vcpu->kvm,
3904                                     get_tss_base_addr(vcpu, nseg_desc),
3905                                     &tss_segment_16.prev_task_link,
3906                                     sizeof tss_segment_16.prev_task_link))
3907                         goto out;
3908         }
3909
3910         if (load_state_from_tss16(vcpu, &tss_segment_16))
3911                 goto out;
3912
3913         ret = 1;
3914 out:
3915         return ret;
3916 }
3917
3918 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3919                        u16 old_tss_sel, u32 old_tss_base,
3920                        struct desc_struct *nseg_desc)
3921 {
3922         struct tss_segment_32 tss_segment_32;
3923         int ret = 0;
3924
3925         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3926                            sizeof tss_segment_32))
3927                 goto out;
3928
3929         save_state_to_tss32(vcpu, &tss_segment_32);
3930
3931         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3932                             sizeof tss_segment_32))
3933                 goto out;
3934
3935         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3936                            &tss_segment_32, sizeof tss_segment_32))
3937                 goto out;
3938
3939         if (old_tss_sel != 0xffff) {
3940                 tss_segment_32.prev_task_link = old_tss_sel;
3941
3942                 if (kvm_write_guest(vcpu->kvm,
3943                                     get_tss_base_addr(vcpu, nseg_desc),
3944                                     &tss_segment_32.prev_task_link,
3945                                     sizeof tss_segment_32.prev_task_link))
3946                         goto out;
3947         }
3948
3949         if (load_state_from_tss32(vcpu, &tss_segment_32))
3950                 goto out;
3951
3952         ret = 1;
3953 out:
3954         return ret;
3955 }
3956
3957 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3958 {
3959         struct kvm_segment tr_seg;
3960         struct desc_struct cseg_desc;
3961         struct desc_struct nseg_desc;
3962         int ret = 0;
3963         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3964         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3965
3966         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3967
3968         /* FIXME: Handle errors. Failure to read either TSS or their
3969          * descriptors should generate a pagefault.
3970          */
3971         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3972                 goto out;
3973
3974         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3975                 goto out;
3976
3977         if (reason != TASK_SWITCH_IRET) {
3978                 int cpl;
3979
3980                 cpl = kvm_x86_ops->get_cpl(vcpu);
3981                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3982                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3983                         return 1;
3984                 }
3985         }
3986
3987         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3988                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3989                 return 1;
3990         }
3991
3992         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3993                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3994                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3995         }
3996
3997         if (reason == TASK_SWITCH_IRET) {
3998                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3999                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4000         }
4001
4002         /* set back link to prev task only if NT bit is set in eflags
4003            note that old_tss_sel is not used afetr this point */
4004         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4005                 old_tss_sel = 0xffff;
4006
4007         /* set back link to prev task only if NT bit is set in eflags
4008            note that old_tss_sel is not used afetr this point */
4009         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4010                 old_tss_sel = 0xffff;
4011
4012         if (nseg_desc.type & 8)
4013                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4014                                          old_tss_base, &nseg_desc);
4015         else
4016                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4017                                          old_tss_base, &nseg_desc);
4018
4019         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4020                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4021                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4022         }
4023
4024         if (reason != TASK_SWITCH_IRET) {
4025                 nseg_desc.type |= (1 << 1);
4026                 save_guest_segment_descriptor(vcpu, tss_selector,
4027                                               &nseg_desc);
4028         }
4029
4030         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4031         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4032         tr_seg.type = 11;
4033         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4034 out:
4035         return ret;
4036 }
4037 EXPORT_SYMBOL_GPL(kvm_task_switch);
4038
4039 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4040                                   struct kvm_sregs *sregs)
4041 {
4042         int mmu_reset_needed = 0;
4043         int i, pending_vec, max_bits;
4044         struct descriptor_table dt;
4045
4046         vcpu_load(vcpu);
4047
4048         dt.limit = sregs->idt.limit;
4049         dt.base = sregs->idt.base;
4050         kvm_x86_ops->set_idt(vcpu, &dt);
4051         dt.limit = sregs->gdt.limit;
4052         dt.base = sregs->gdt.base;
4053         kvm_x86_ops->set_gdt(vcpu, &dt);
4054
4055         vcpu->arch.cr2 = sregs->cr2;
4056         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4057
4058         down_read(&vcpu->kvm->slots_lock);
4059         if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4060                 vcpu->arch.cr3 = sregs->cr3;
4061         else
4062                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4063         up_read(&vcpu->kvm->slots_lock);
4064
4065         kvm_set_cr8(vcpu, sregs->cr8);
4066
4067         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4068         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4069         kvm_set_apic_base(vcpu, sregs->apic_base);
4070
4071         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4072
4073         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4074         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4075         vcpu->arch.cr0 = sregs->cr0;
4076
4077         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4078         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4079         if (!is_long_mode(vcpu) && is_pae(vcpu))
4080                 load_pdptrs(vcpu, vcpu->arch.cr3);
4081
4082         if (mmu_reset_needed)
4083                 kvm_mmu_reset_context(vcpu);
4084
4085         if (!irqchip_in_kernel(vcpu->kvm)) {
4086                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
4087                        sizeof vcpu->arch.irq_pending);
4088                 vcpu->arch.irq_summary = 0;
4089                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
4090                         if (vcpu->arch.irq_pending[i])
4091                                 __set_bit(i, &vcpu->arch.irq_summary);
4092         } else {
4093                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4094                 pending_vec = find_first_bit(
4095                         (const unsigned long *)sregs->interrupt_bitmap,
4096                         max_bits);
4097                 /* Only pending external irq is handled here */
4098                 if (pending_vec < max_bits) {
4099                         kvm_queue_interrupt(vcpu, pending_vec);
4100                         pr_debug("Set back pending irq %d\n", pending_vec);
4101                 }
4102                 kvm_pic_clear_isr_ack(vcpu->kvm);
4103         }
4104
4105         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4106         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4107         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4108         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4109         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4110         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4111
4112         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4113         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4114
4115         /* Older userspace won't unhalt the vcpu on reset. */
4116         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4117             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4118             !(vcpu->arch.cr0 & X86_CR0_PE))
4119                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4120
4121         vcpu_put(vcpu);
4122
4123         return 0;
4124 }
4125
4126 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4127                                         struct kvm_guest_debug *dbg)
4128 {
4129         int i, r;
4130
4131         vcpu_load(vcpu);
4132
4133         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4134             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4135                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4136                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4137                 vcpu->arch.switch_db_regs =
4138                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4139         } else {
4140                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4141                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4142                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4143         }
4144
4145         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4146
4147         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4148                 kvm_queue_exception(vcpu, DB_VECTOR);
4149         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4150                 kvm_queue_exception(vcpu, BP_VECTOR);
4151
4152         vcpu_put(vcpu);
4153
4154         return r;
4155 }
4156
4157 /*
4158  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4159  * we have asm/x86/processor.h
4160  */
4161 struct fxsave {
4162         u16     cwd;
4163         u16     swd;
4164         u16     twd;
4165         u16     fop;
4166         u64     rip;
4167         u64     rdp;
4168         u32     mxcsr;
4169         u32     mxcsr_mask;
4170         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4171 #ifdef CONFIG_X86_64
4172         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4173 #else
4174         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4175 #endif
4176 };
4177
4178 /*
4179  * Translate a guest virtual address to a guest physical address.
4180  */
4181 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4182                                     struct kvm_translation *tr)
4183 {
4184         unsigned long vaddr = tr->linear_address;
4185         gpa_t gpa;
4186
4187         vcpu_load(vcpu);
4188         down_read(&vcpu->kvm->slots_lock);
4189         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4190         up_read(&vcpu->kvm->slots_lock);
4191         tr->physical_address = gpa;
4192         tr->valid = gpa != UNMAPPED_GVA;
4193         tr->writeable = 1;
4194         tr->usermode = 0;
4195         vcpu_put(vcpu);
4196
4197         return 0;
4198 }
4199
4200 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4201 {
4202         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4203
4204         vcpu_load(vcpu);
4205
4206         memcpy(fpu->fpr, fxsave->st_space, 128);
4207         fpu->fcw = fxsave->cwd;
4208         fpu->fsw = fxsave->swd;
4209         fpu->ftwx = fxsave->twd;
4210         fpu->last_opcode = fxsave->fop;
4211         fpu->last_ip = fxsave->rip;
4212         fpu->last_dp = fxsave->rdp;
4213         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4214
4215         vcpu_put(vcpu);
4216
4217         return 0;
4218 }
4219
4220 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4221 {
4222         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4223
4224         vcpu_load(vcpu);
4225
4226         memcpy(fxsave->st_space, fpu->fpr, 128);
4227         fxsave->cwd = fpu->fcw;
4228         fxsave->swd = fpu->fsw;
4229         fxsave->twd = fpu->ftwx;
4230         fxsave->fop = fpu->last_opcode;
4231         fxsave->rip = fpu->last_ip;
4232         fxsave->rdp = fpu->last_dp;
4233         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4234
4235         vcpu_put(vcpu);
4236
4237         return 0;
4238 }
4239
4240 void fx_init(struct kvm_vcpu *vcpu)
4241 {
4242         unsigned after_mxcsr_mask;
4243
4244         /*
4245          * Touch the fpu the first time in non atomic context as if
4246          * this is the first fpu instruction the exception handler
4247          * will fire before the instruction returns and it'll have to
4248          * allocate ram with GFP_KERNEL.
4249          */
4250         if (!used_math())
4251                 kvm_fx_save(&vcpu->arch.host_fx_image);
4252
4253         /* Initialize guest FPU by resetting ours and saving into guest's */
4254         preempt_disable();
4255         kvm_fx_save(&vcpu->arch.host_fx_image);
4256         kvm_fx_finit();
4257         kvm_fx_save(&vcpu->arch.guest_fx_image);
4258         kvm_fx_restore(&vcpu->arch.host_fx_image);
4259         preempt_enable();
4260
4261         vcpu->arch.cr0 |= X86_CR0_ET;
4262         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4263         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4264         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4265                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4266 }
4267 EXPORT_SYMBOL_GPL(fx_init);
4268
4269 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4270 {
4271         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4272                 return;
4273
4274         vcpu->guest_fpu_loaded = 1;
4275         kvm_fx_save(&vcpu->arch.host_fx_image);
4276         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4277 }
4278 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4279
4280 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4281 {
4282         if (!vcpu->guest_fpu_loaded)
4283                 return;
4284
4285         vcpu->guest_fpu_loaded = 0;
4286         kvm_fx_save(&vcpu->arch.guest_fx_image);
4287         kvm_fx_restore(&vcpu->arch.host_fx_image);
4288         ++vcpu->stat.fpu_reload;
4289 }
4290 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4291
4292 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4293 {
4294         if (vcpu->arch.time_page) {
4295                 kvm_release_page_dirty(vcpu->arch.time_page);
4296                 vcpu->arch.time_page = NULL;
4297         }
4298
4299         kvm_x86_ops->vcpu_free(vcpu);
4300 }
4301
4302 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4303                                                 unsigned int id)
4304 {
4305         return kvm_x86_ops->vcpu_create(kvm, id);
4306 }
4307
4308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4309 {
4310         int r;
4311
4312         /* We do fxsave: this must be aligned. */
4313         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4314
4315         vcpu->arch.mtrr_state.have_fixed = 1;
4316         vcpu_load(vcpu);
4317         r = kvm_arch_vcpu_reset(vcpu);
4318         if (r == 0)
4319                 r = kvm_mmu_setup(vcpu);
4320         vcpu_put(vcpu);
4321         if (r < 0)
4322                 goto free_vcpu;
4323
4324         return 0;
4325 free_vcpu:
4326         kvm_x86_ops->vcpu_free(vcpu);
4327         return r;
4328 }
4329
4330 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4331 {
4332         vcpu_load(vcpu);
4333         kvm_mmu_unload(vcpu);
4334         vcpu_put(vcpu);
4335
4336         kvm_x86_ops->vcpu_free(vcpu);
4337 }
4338
4339 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4340 {
4341         vcpu->arch.nmi_pending = false;
4342         vcpu->arch.nmi_injected = false;
4343
4344         vcpu->arch.switch_db_regs = 0;
4345         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4346         vcpu->arch.dr6 = DR6_FIXED_1;
4347         vcpu->arch.dr7 = DR7_FIXED_1;
4348
4349         return kvm_x86_ops->vcpu_reset(vcpu);
4350 }
4351
4352 void kvm_arch_hardware_enable(void *garbage)
4353 {
4354         kvm_x86_ops->hardware_enable(garbage);
4355 }
4356
4357 void kvm_arch_hardware_disable(void *garbage)
4358 {
4359         kvm_x86_ops->hardware_disable(garbage);
4360 }
4361
4362 int kvm_arch_hardware_setup(void)
4363 {
4364         return kvm_x86_ops->hardware_setup();
4365 }
4366
4367 void kvm_arch_hardware_unsetup(void)
4368 {
4369         kvm_x86_ops->hardware_unsetup();
4370 }
4371
4372 void kvm_arch_check_processor_compat(void *rtn)
4373 {
4374         kvm_x86_ops->check_processor_compatibility(rtn);
4375 }
4376
4377 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4378 {
4379         struct page *page;
4380         struct kvm *kvm;
4381         int r;
4382
4383         BUG_ON(vcpu->kvm == NULL);
4384         kvm = vcpu->kvm;
4385
4386         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4387         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4388                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4389         else
4390                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4391
4392         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4393         if (!page) {
4394                 r = -ENOMEM;
4395                 goto fail;
4396         }
4397         vcpu->arch.pio_data = page_address(page);
4398
4399         r = kvm_mmu_create(vcpu);
4400         if (r < 0)
4401                 goto fail_free_pio_data;
4402
4403         if (irqchip_in_kernel(kvm)) {
4404                 r = kvm_create_lapic(vcpu);
4405                 if (r < 0)
4406                         goto fail_mmu_destroy;
4407         }
4408
4409         return 0;
4410
4411 fail_mmu_destroy:
4412         kvm_mmu_destroy(vcpu);
4413 fail_free_pio_data:
4414         free_page((unsigned long)vcpu->arch.pio_data);
4415 fail:
4416         return r;
4417 }
4418
4419 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4420 {
4421         kvm_free_lapic(vcpu);
4422         down_read(&vcpu->kvm->slots_lock);
4423         kvm_mmu_destroy(vcpu);
4424         up_read(&vcpu->kvm->slots_lock);
4425         free_page((unsigned long)vcpu->arch.pio_data);
4426 }
4427
4428 struct  kvm *kvm_arch_create_vm(void)
4429 {
4430         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4431
4432         if (!kvm)
4433                 return ERR_PTR(-ENOMEM);
4434
4435         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4436         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4437
4438         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4439         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4440
4441         rdtscll(kvm->arch.vm_init_tsc);
4442
4443         return kvm;
4444 }
4445
4446 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4447 {
4448         vcpu_load(vcpu);
4449         kvm_mmu_unload(vcpu);
4450         vcpu_put(vcpu);
4451 }
4452
4453 static void kvm_free_vcpus(struct kvm *kvm)
4454 {
4455         unsigned int i;
4456
4457         /*
4458          * Unpin any mmu pages first.
4459          */
4460         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4461                 if (kvm->vcpus[i])
4462                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4463         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4464                 if (kvm->vcpus[i]) {
4465                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4466                         kvm->vcpus[i] = NULL;
4467                 }
4468         }
4469
4470 }
4471
4472 void kvm_arch_sync_events(struct kvm *kvm)
4473 {
4474         kvm_free_all_assigned_devices(kvm);
4475 }
4476
4477 void kvm_arch_destroy_vm(struct kvm *kvm)
4478 {
4479         kvm_iommu_unmap_guest(kvm);
4480         kvm_free_pit(kvm);
4481         kfree(kvm->arch.vpic);
4482         kfree(kvm->arch.vioapic);
4483         kvm_free_vcpus(kvm);
4484         kvm_free_physmem(kvm);
4485         if (kvm->arch.apic_access_page)
4486                 put_page(kvm->arch.apic_access_page);
4487         if (kvm->arch.ept_identity_pagetable)
4488                 put_page(kvm->arch.ept_identity_pagetable);
4489         kfree(kvm);
4490 }
4491
4492 int kvm_arch_set_memory_region(struct kvm *kvm,
4493                                 struct kvm_userspace_memory_region *mem,
4494                                 struct kvm_memory_slot old,
4495                                 int user_alloc)
4496 {
4497         int npages = mem->memory_size >> PAGE_SHIFT;
4498         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4499
4500         /*To keep backward compatibility with older userspace,
4501          *x86 needs to hanlde !user_alloc case.
4502          */
4503         if (!user_alloc) {
4504                 if (npages && !old.rmap) {
4505                         unsigned long userspace_addr;
4506
4507                         down_write(&current->mm->mmap_sem);
4508                         userspace_addr = do_mmap(NULL, 0,
4509                                                  npages * PAGE_SIZE,
4510                                                  PROT_READ | PROT_WRITE,
4511                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4512                                                  0);
4513                         up_write(&current->mm->mmap_sem);
4514
4515                         if (IS_ERR((void *)userspace_addr))
4516                                 return PTR_ERR((void *)userspace_addr);
4517
4518                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4519                         spin_lock(&kvm->mmu_lock);
4520                         memslot->userspace_addr = userspace_addr;
4521                         spin_unlock(&kvm->mmu_lock);
4522                 } else {
4523                         if (!old.user_alloc && old.rmap) {
4524                                 int ret;
4525
4526                                 down_write(&current->mm->mmap_sem);
4527                                 ret = do_munmap(current->mm, old.userspace_addr,
4528                                                 old.npages * PAGE_SIZE);
4529                                 up_write(&current->mm->mmap_sem);
4530                                 if (ret < 0)
4531                                         printk(KERN_WARNING
4532                                        "kvm_vm_ioctl_set_memory_region: "
4533                                        "failed to munmap memory\n");
4534                         }
4535                 }
4536         }
4537
4538         if (!kvm->arch.n_requested_mmu_pages) {
4539                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4540                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4541         }
4542
4543         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4544         kvm_flush_remote_tlbs(kvm);
4545
4546         return 0;
4547 }
4548
4549 void kvm_arch_flush_shadow(struct kvm *kvm)
4550 {
4551         kvm_mmu_zap_all(kvm);
4552 }
4553
4554 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4555 {
4556         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4557                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4558                || vcpu->arch.nmi_pending;
4559 }
4560
4561 static void vcpu_kick_intr(void *info)
4562 {
4563 #ifdef DEBUG
4564         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4565         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4566 #endif
4567 }
4568
4569 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4570 {
4571         int ipi_pcpu = vcpu->cpu;
4572         int cpu;
4573
4574         if (waitqueue_active(&vcpu->wq)) {
4575                 wake_up_interruptible(&vcpu->wq);
4576                 ++vcpu->stat.halt_wakeup;
4577         }
4578         /*
4579          * We may be called synchronously with irqs disabled in guest mode,
4580          * So need not to call smp_call_function_single() in that case.
4581          */
4582         cpu = get_cpu();
4583         if (vcpu->guest_mode && vcpu->cpu != cpu)
4584                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4585         put_cpu();
4586 }
4587
4588 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4589 {
4590         return kvm_x86_ops->interrupt_allowed(vcpu);
4591 }