Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS                                               \
64         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS                                               \
68         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
70                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
71                           | X86_CR4_OSXSAVE \
72                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94                                     struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105         int nr;
106         u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110         struct user_return_notifier urn;
111         bool registered;
112         struct kvm_shared_msr_values {
113                 u64 host;
114                 u64 curr;
115         } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122         { "pf_fixed", VCPU_STAT(pf_fixed) },
123         { "pf_guest", VCPU_STAT(pf_guest) },
124         { "tlb_flush", VCPU_STAT(tlb_flush) },
125         { "invlpg", VCPU_STAT(invlpg) },
126         { "exits", VCPU_STAT(exits) },
127         { "io_exits", VCPU_STAT(io_exits) },
128         { "mmio_exits", VCPU_STAT(mmio_exits) },
129         { "signal_exits", VCPU_STAT(signal_exits) },
130         { "irq_window", VCPU_STAT(irq_window_exits) },
131         { "nmi_window", VCPU_STAT(nmi_window_exits) },
132         { "halt_exits", VCPU_STAT(halt_exits) },
133         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134         { "hypercalls", VCPU_STAT(hypercalls) },
135         { "request_irq", VCPU_STAT(request_irq_exits) },
136         { "irq_exits", VCPU_STAT(irq_exits) },
137         { "host_state_reload", VCPU_STAT(host_state_reload) },
138         { "efer_reload", VCPU_STAT(efer_reload) },
139         { "fpu_reload", VCPU_STAT(fpu_reload) },
140         { "insn_emulation", VCPU_STAT(insn_emulation) },
141         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142         { "irq_injections", VCPU_STAT(irq_injections) },
143         { "nmi_injections", VCPU_STAT(nmi_injections) },
144         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148         { "mmu_flooded", VM_STAT(mmu_flooded) },
149         { "mmu_recycled", VM_STAT(mmu_recycled) },
150         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151         { "mmu_unsync", VM_STAT(mmu_unsync) },
152         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153         { "largepages", VM_STAT(lpages) },
154         { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161         int i;
162         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163                 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168         unsigned slot;
169         struct kvm_shared_msrs *locals
170                 = container_of(urn, struct kvm_shared_msrs, urn);
171         struct kvm_shared_msr_values *values;
172
173         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174                 values = &locals->values[slot];
175                 if (values->host != values->curr) {
176                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
177                         values->curr = values->host;
178                 }
179         }
180         locals->registered = false;
181         user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186         struct kvm_shared_msrs *smsr;
187         u64 value;
188
189         smsr = &__get_cpu_var(shared_msrs);
190         /* only read, and nobody should modify it at this time,
191          * so don't need lock */
192         if (slot >= shared_msrs_global.nr) {
193                 printk(KERN_ERR "kvm: invalid MSR slot!");
194                 return;
195         }
196         rdmsrl_safe(msr, &value);
197         smsr->values[slot].host = value;
198         smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203         if (slot >= shared_msrs_global.nr)
204                 shared_msrs_global.nr = slot + 1;
205         shared_msrs_global.msrs[slot] = msr;
206         /* we need ensured the shared_msr_global have been updated */
207         smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213         unsigned i;
214
215         for (i = 0; i < shared_msrs_global.nr; ++i)
216                 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (((value ^ smsr->values[slot].curr) & mask) == 0)
224                 return;
225         smsr->values[slot].curr = value;
226         wrmsrl(shared_msrs_global.msrs[slot], value);
227         if (!smsr->registered) {
228                 smsr->urn.on_user_return = kvm_on_user_return;
229                 user_return_notifier_register(&smsr->urn);
230                 smsr->registered = true;
231         }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239         if (smsr->registered)
240                 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245         if (irqchip_in_kernel(vcpu->kvm))
246                 return vcpu->arch.apic_base;
247         else
248                 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254         /* TODO: reserve bits check */
255         if (irqchip_in_kernel(vcpu->kvm))
256                 kvm_lapic_set_base(vcpu, data);
257         else
258                 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
338 {
339         if (err)
340                 kvm_inject_gp(vcpu, 0);
341         else
342                 kvm_x86_ops->skip_emulated_instruction(vcpu);
343 }
344 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
345
346 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
347 {
348         ++vcpu->stat.pf_guest;
349         vcpu->arch.cr2 = fault->address;
350         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
351 }
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357         else
358                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363         kvm_make_request(KVM_REQ_EVENT, vcpu);
364         vcpu->arch.nmi_pending = 1;
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370         kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376         kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387                 return true;
388         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389         return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399                             gfn_t ngfn, void *data, int offset, int len,
400                             u32 access)
401 {
402         gfn_t real_gfn;
403         gpa_t ngpa;
404
405         ngpa     = gfn_to_gpa(ngfn);
406         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407         if (real_gfn == UNMAPPED_GVA)
408                 return -EFAULT;
409
410         real_gfn = gpa_to_gfn(real_gfn);
411
412         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417                                void *data, int offset, int len, u32 access)
418 {
419         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420                                        data, offset, len, access);
421 }
422
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430         int i;
431         int ret;
432         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435                                       offset * sizeof(u64), sizeof(pdpte),
436                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
437         if (ret < 0) {
438                 ret = 0;
439                 goto out;
440         }
441         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442                 if (is_present_gpte(pdpte[i]) &&
443                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444                         ret = 0;
445                         goto out;
446                 }
447         }
448         ret = 1;
449
450         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_avail);
453         __set_bit(VCPU_EXREG_PDPTR,
454                   (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464         bool changed = true;
465         int offset;
466         gfn_t gfn;
467         int r;
468
469         if (is_long_mode(vcpu) || !is_pae(vcpu))
470                 return false;
471
472         if (!test_bit(VCPU_EXREG_PDPTR,
473                       (unsigned long *)&vcpu->arch.regs_avail))
474                 return true;
475
476         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
480         if (r < 0)
481                 goto out;
482         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485         return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490         unsigned long old_cr0 = kvm_read_cr0(vcpu);
491         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492                                     X86_CR0_CD | X86_CR0_NW;
493
494         cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497         if (cr0 & 0xffffffff00000000UL)
498                 return 1;
499 #endif
500
501         cr0 &= ~CR0_RESERVED_BITS;
502
503         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504                 return 1;
505
506         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507                 return 1;
508
509         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511                 if ((vcpu->arch.efer & EFER_LME)) {
512                         int cs_db, cs_l;
513
514                         if (!is_pae(vcpu))
515                                 return 1;
516                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517                         if (cs_l)
518                                 return 1;
519                 } else
520 #endif
521                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522                                                  kvm_read_cr3(vcpu)))
523                         return 1;
524         }
525
526         kvm_x86_ops->set_cr0(vcpu, cr0);
527
528         if ((cr0 ^ old_cr0) & X86_CR0_PG)
529                 kvm_clear_async_pf_completion_queue(vcpu);
530
531         if ((cr0 ^ old_cr0) & update_bits)
532                 kvm_mmu_reset_context(vcpu);
533         return 0;
534 }
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
536
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 {
539         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
540 }
541 EXPORT_SYMBOL_GPL(kvm_lmsw);
542
543 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
544 {
545         u64 xcr0;
546
547         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
548         if (index != XCR_XFEATURE_ENABLED_MASK)
549                 return 1;
550         xcr0 = xcr;
551         if (kvm_x86_ops->get_cpl(vcpu) != 0)
552                 return 1;
553         if (!(xcr0 & XSTATE_FP))
554                 return 1;
555         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
556                 return 1;
557         if (xcr0 & ~host_xcr0)
558                 return 1;
559         vcpu->arch.xcr0 = xcr0;
560         vcpu->guest_xcr0_loaded = 0;
561         return 0;
562 }
563
564 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
565 {
566         if (__kvm_set_xcr(vcpu, index, xcr)) {
567                 kvm_inject_gp(vcpu, 0);
568                 return 1;
569         }
570         return 0;
571 }
572 EXPORT_SYMBOL_GPL(kvm_set_xcr);
573
574 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
580 }
581
582 static void update_cpuid(struct kvm_vcpu *vcpu)
583 {
584         struct kvm_cpuid_entry2 *best;
585
586         best = kvm_find_cpuid_entry(vcpu, 1, 0);
587         if (!best)
588                 return;
589
590         /* Update OSXSAVE bit */
591         if (cpu_has_xsave && best->function == 0x1) {
592                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
595         }
596 }
597
598 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
599 {
600         unsigned long old_cr4 = kvm_read_cr4(vcpu);
601         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
602
603         if (cr4 & CR4_RESERVED_BITS)
604                 return 1;
605
606         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
607                 return 1;
608
609         if (is_long_mode(vcpu)) {
610                 if (!(cr4 & X86_CR4_PAE))
611                         return 1;
612         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613                    && ((cr4 ^ old_cr4) & pdptr_bits)
614                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
615                                    kvm_read_cr3(vcpu)))
616                 return 1;
617
618         if (cr4 & X86_CR4_VMXE)
619                 return 1;
620
621         kvm_x86_ops->set_cr4(vcpu, cr4);
622
623         if ((cr4 ^ old_cr4) & pdptr_bits)
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
643                         return 1;
644         } else {
645                 if (is_pae(vcpu)) {
646                         if (cr3 & CR3_PAE_RESERVED_BITS)
647                                 return 1;
648                         if (is_paging(vcpu) &&
649                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650                                 return 1;
651                 }
652                 /*
653                  * We don't check reserved bits in nonpae mode, because
654                  * this isn't enforced, and VMware depends on this.
655                  */
656         }
657
658         /*
659          * Does the new cr3 value map to physical memory? (Note, we
660          * catch an invalid cr3 even in real-mode, because it would
661          * cause trouble later on when we turn on paging anyway.)
662          *
663          * A real CPU would silently accept an invalid cr3 and would
664          * attempt to use it - with largely undefined (and often hard
665          * to debug) behavior on the guest side.
666          */
667         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668                 return 1;
669         vcpu->arch.cr3 = cr3;
670         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671         vcpu->arch.mmu.new_cr3(vcpu);
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678         if (cr8 & CR8_RESERVED_BITS)
679                 return 1;
680         if (irqchip_in_kernel(vcpu->kvm))
681                 kvm_lapic_set_tpr(vcpu, cr8);
682         else
683                 vcpu->arch.cr8 = cr8;
684         return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690         if (irqchip_in_kernel(vcpu->kvm))
691                 return kvm_lapic_get_cr8(vcpu);
692         else
693                 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 {
699         switch (dr) {
700         case 0 ... 3:
701                 vcpu->arch.db[dr] = val;
702                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703                         vcpu->arch.eff_db[dr] = val;
704                 break;
705         case 4:
706                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
707                         return 1; /* #UD */
708                 /* fall through */
709         case 6:
710                 if (val & 0xffffffff00000000ULL)
711                         return -1; /* #GP */
712                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713                 break;
714         case 5:
715                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
716                         return 1; /* #UD */
717                 /* fall through */
718         default: /* 7 */
719                 if (val & 0xffffffff00000000ULL)
720                         return -1; /* #GP */
721                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725                 }
726                 break;
727         }
728
729         return 0;
730 }
731
732 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734         int res;
735
736         res = __kvm_set_dr(vcpu, dr, val);
737         if (res > 0)
738                 kvm_queue_exception(vcpu, UD_VECTOR);
739         else if (res < 0)
740                 kvm_inject_gp(vcpu, 0);
741
742         return res;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_dr);
745
746 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 {
748         switch (dr) {
749         case 0 ... 3:
750                 *val = vcpu->arch.db[dr];
751                 break;
752         case 4:
753                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754                         return 1;
755                 /* fall through */
756         case 6:
757                 *val = vcpu->arch.dr6;
758                 break;
759         case 5:
760                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761                         return 1;
762                 /* fall through */
763         default: /* 7 */
764                 *val = vcpu->arch.dr7;
765                 break;
766         }
767
768         return 0;
769 }
770
771 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773         if (_kvm_get_dr(vcpu, dr, val)) {
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_get_dr);
780
781 /*
782  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
783  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784  *
785  * This list is modified at module load time to reflect the
786  * capabilities of the host cpu. This capabilities test skips MSRs that are
787  * kvm-specific. Those are put in the beginning of the list.
788  */
789
790 #define KVM_SAVE_MSRS_BEGIN     8
791 static u32 msrs_to_save[] = {
792         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
797         MSR_STAR,
798 #ifdef CONFIG_X86_64
799         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
800 #endif
801         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
802 };
803
804 static unsigned num_msrs_to_save;
805
806 static u32 emulated_msrs[] = {
807         MSR_IA32_MISC_ENABLE,
808         MSR_IA32_MCG_STATUS,
809         MSR_IA32_MCG_CTL,
810 };
811
812 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 {
814         u64 old_efer = vcpu->arch.efer;
815
816         if (efer & efer_reserved_bits)
817                 return 1;
818
819         if (is_paging(vcpu)
820             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
821                 return 1;
822
823         if (efer & EFER_FFXSR) {
824                 struct kvm_cpuid_entry2 *feat;
825
826                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
828                         return 1;
829         }
830
831         if (efer & EFER_SVME) {
832                 struct kvm_cpuid_entry2 *feat;
833
834                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836                         return 1;
837         }
838
839         efer &= ~EFER_LMA;
840         efer |= vcpu->arch.efer & EFER_LMA;
841
842         kvm_x86_ops->set_efer(vcpu, efer);
843
844         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845
846         /* Update reserved bits */
847         if ((efer ^ old_efer) & EFER_NX)
848                 kvm_mmu_reset_context(vcpu);
849
850         return 0;
851 }
852
853 void kvm_enable_efer_bits(u64 mask)
854 {
855        efer_reserved_bits &= ~mask;
856 }
857 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
858
859
860 /*
861  * Writes msr value into into the appropriate "register".
862  * Returns 0 on success, non-0 otherwise.
863  * Assumes vcpu_load() was already called.
864  */
865 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 {
867         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
868 }
869
870 /*
871  * Adapt set_msr() to msr_io()'s calling convention
872  */
873 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 {
875         return kvm_set_msr(vcpu, index, *data);
876 }
877
878 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 {
880         int version;
881         int r;
882         struct pvclock_wall_clock wc;
883         struct timespec boot;
884
885         if (!wall_clock)
886                 return;
887
888         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889         if (r)
890                 return;
891
892         if (version & 1)
893                 ++version;  /* first time write, random junk */
894
895         ++version;
896
897         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898
899         /*
900          * The guest calculates current wall clock time by adding
901          * system time (updated by kvm_guest_time_update below) to the
902          * wall clock specified here.  guest system time equals host
903          * system time for us, thus we must fill in host boot time here.
904          */
905         getboottime(&boot);
906
907         wc.sec = boot.tv_sec;
908         wc.nsec = boot.tv_nsec;
909         wc.version = version;
910
911         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912
913         version++;
914         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915 }
916
917 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 {
919         uint32_t quotient, remainder;
920
921         /* Don't try to replace with do_div(), this one calculates
922          * "(dividend << 32) / divisor" */
923         __asm__ ( "divl %4"
924                   : "=a" (quotient), "=d" (remainder)
925                   : "0" (0), "1" (dividend), "r" (divisor) );
926         return quotient;
927 }
928
929 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930                                s8 *pshift, u32 *pmultiplier)
931 {
932         uint64_t scaled64;
933         int32_t  shift = 0;
934         uint64_t tps64;
935         uint32_t tps32;
936
937         tps64 = base_khz * 1000LL;
938         scaled64 = scaled_khz * 1000LL;
939         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940                 tps64 >>= 1;
941                 shift--;
942         }
943
944         tps32 = (uint32_t)tps64;
945         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
947                         scaled64 >>= 1;
948                 else
949                         tps32 <<= 1;
950                 shift++;
951         }
952
953         *pshift = shift;
954         *pmultiplier = div_frac(scaled64, tps32);
955
956         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
958 }
959
960 static inline u64 get_kernel_ns(void)
961 {
962         struct timespec ts;
963
964         WARN_ON(preemptible());
965         ktime_get_ts(&ts);
966         monotonic_to_bootbased(&ts);
967         return timespec_to_ns(&ts);
968 }
969
970 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971 unsigned long max_tsc_khz;
972
973 static inline int kvm_tsc_changes_freq(void)
974 {
975         int cpu = get_cpu();
976         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977                   cpufreq_quick_get(cpu) != 0;
978         put_cpu();
979         return ret;
980 }
981
982 static inline u64 nsec_to_cycles(u64 nsec)
983 {
984         u64 ret;
985
986         WARN_ON(preemptible());
987         if (kvm_tsc_changes_freq())
988                 printk_once(KERN_WARNING
989                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
990         ret = nsec * __this_cpu_read(cpu_tsc_khz);
991         do_div(ret, USEC_PER_SEC);
992         return ret;
993 }
994
995 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
996 {
997         /* Compute a scale to convert nanoseconds in TSC cycles */
998         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
999                            &kvm->arch.virtual_tsc_shift,
1000                            &kvm->arch.virtual_tsc_mult);
1001         kvm->arch.virtual_tsc_khz = this_tsc_khz;
1002 }
1003
1004 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1005 {
1006         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1007                                       vcpu->kvm->arch.virtual_tsc_mult,
1008                                       vcpu->kvm->arch.virtual_tsc_shift);
1009         tsc += vcpu->arch.last_tsc_write;
1010         return tsc;
1011 }
1012
1013 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1014 {
1015         struct kvm *kvm = vcpu->kvm;
1016         u64 offset, ns, elapsed;
1017         unsigned long flags;
1018         s64 sdiff;
1019
1020         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1021         offset = data - native_read_tsc();
1022         ns = get_kernel_ns();
1023         elapsed = ns - kvm->arch.last_tsc_nsec;
1024         sdiff = data - kvm->arch.last_tsc_write;
1025         if (sdiff < 0)
1026                 sdiff = -sdiff;
1027
1028         /*
1029          * Special case: close write to TSC within 5 seconds of
1030          * another CPU is interpreted as an attempt to synchronize
1031          * The 5 seconds is to accomodate host load / swapping as
1032          * well as any reset of TSC during the boot process.
1033          *
1034          * In that case, for a reliable TSC, we can match TSC offsets,
1035          * or make a best guest using elapsed value.
1036          */
1037         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1038             elapsed < 5ULL * NSEC_PER_SEC) {
1039                 if (!check_tsc_unstable()) {
1040                         offset = kvm->arch.last_tsc_offset;
1041                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1042                 } else {
1043                         u64 delta = nsec_to_cycles(elapsed);
1044                         offset += delta;
1045                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1046                 }
1047                 ns = kvm->arch.last_tsc_nsec;
1048         }
1049         kvm->arch.last_tsc_nsec = ns;
1050         kvm->arch.last_tsc_write = data;
1051         kvm->arch.last_tsc_offset = offset;
1052         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1053         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1054
1055         /* Reset of TSC must disable overshoot protection below */
1056         vcpu->arch.hv_clock.tsc_timestamp = 0;
1057         vcpu->arch.last_tsc_write = data;
1058         vcpu->arch.last_tsc_nsec = ns;
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1061
1062 static int kvm_guest_time_update(struct kvm_vcpu *v)
1063 {
1064         unsigned long flags;
1065         struct kvm_vcpu_arch *vcpu = &v->arch;
1066         void *shared_kaddr;
1067         unsigned long this_tsc_khz;
1068         s64 kernel_ns, max_kernel_ns;
1069         u64 tsc_timestamp;
1070
1071         /* Keep irq disabled to prevent changes to the clock */
1072         local_irq_save(flags);
1073         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1074         kernel_ns = get_kernel_ns();
1075         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1076
1077         if (unlikely(this_tsc_khz == 0)) {
1078                 local_irq_restore(flags);
1079                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1080                 return 1;
1081         }
1082
1083         /*
1084          * We may have to catch up the TSC to match elapsed wall clock
1085          * time for two reasons, even if kvmclock is used.
1086          *   1) CPU could have been running below the maximum TSC rate
1087          *   2) Broken TSC compensation resets the base at each VCPU
1088          *      entry to avoid unknown leaps of TSC even when running
1089          *      again on the same CPU.  This may cause apparent elapsed
1090          *      time to disappear, and the guest to stand still or run
1091          *      very slowly.
1092          */
1093         if (vcpu->tsc_catchup) {
1094                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1095                 if (tsc > tsc_timestamp) {
1096                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1097                         tsc_timestamp = tsc;
1098                 }
1099         }
1100
1101         local_irq_restore(flags);
1102
1103         if (!vcpu->time_page)
1104                 return 0;
1105
1106         /*
1107          * Time as measured by the TSC may go backwards when resetting the base
1108          * tsc_timestamp.  The reason for this is that the TSC resolution is
1109          * higher than the resolution of the other clock scales.  Thus, many
1110          * possible measurments of the TSC correspond to one measurement of any
1111          * other clock, and so a spread of values is possible.  This is not a
1112          * problem for the computation of the nanosecond clock; with TSC rates
1113          * around 1GHZ, there can only be a few cycles which correspond to one
1114          * nanosecond value, and any path through this code will inevitably
1115          * take longer than that.  However, with the kernel_ns value itself,
1116          * the precision may be much lower, down to HZ granularity.  If the
1117          * first sampling of TSC against kernel_ns ends in the low part of the
1118          * range, and the second in the high end of the range, we can get:
1119          *
1120          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1121          *
1122          * As the sampling errors potentially range in the thousands of cycles,
1123          * it is possible such a time value has already been observed by the
1124          * guest.  To protect against this, we must compute the system time as
1125          * observed by the guest and ensure the new system time is greater.
1126          */
1127         max_kernel_ns = 0;
1128         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1129                 max_kernel_ns = vcpu->last_guest_tsc -
1130                                 vcpu->hv_clock.tsc_timestamp;
1131                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1132                                     vcpu->hv_clock.tsc_to_system_mul,
1133                                     vcpu->hv_clock.tsc_shift);
1134                 max_kernel_ns += vcpu->last_kernel_ns;
1135         }
1136
1137         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1138                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1139                                    &vcpu->hv_clock.tsc_shift,
1140                                    &vcpu->hv_clock.tsc_to_system_mul);
1141                 vcpu->hw_tsc_khz = this_tsc_khz;
1142         }
1143
1144         if (max_kernel_ns > kernel_ns)
1145                 kernel_ns = max_kernel_ns;
1146
1147         /* With all the info we got, fill in the values */
1148         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1149         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1150         vcpu->last_kernel_ns = kernel_ns;
1151         vcpu->last_guest_tsc = tsc_timestamp;
1152         vcpu->hv_clock.flags = 0;
1153
1154         /*
1155          * The interface expects us to write an even number signaling that the
1156          * update is finished. Since the guest won't see the intermediate
1157          * state, we just increase by 2 at the end.
1158          */
1159         vcpu->hv_clock.version += 2;
1160
1161         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1162
1163         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1164                sizeof(vcpu->hv_clock));
1165
1166         kunmap_atomic(shared_kaddr, KM_USER0);
1167
1168         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1169         return 0;
1170 }
1171
1172 static bool msr_mtrr_valid(unsigned msr)
1173 {
1174         switch (msr) {
1175         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1176         case MSR_MTRRfix64K_00000:
1177         case MSR_MTRRfix16K_80000:
1178         case MSR_MTRRfix16K_A0000:
1179         case MSR_MTRRfix4K_C0000:
1180         case MSR_MTRRfix4K_C8000:
1181         case MSR_MTRRfix4K_D0000:
1182         case MSR_MTRRfix4K_D8000:
1183         case MSR_MTRRfix4K_E0000:
1184         case MSR_MTRRfix4K_E8000:
1185         case MSR_MTRRfix4K_F0000:
1186         case MSR_MTRRfix4K_F8000:
1187         case MSR_MTRRdefType:
1188         case MSR_IA32_CR_PAT:
1189                 return true;
1190         case 0x2f8:
1191                 return true;
1192         }
1193         return false;
1194 }
1195
1196 static bool valid_pat_type(unsigned t)
1197 {
1198         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1199 }
1200
1201 static bool valid_mtrr_type(unsigned t)
1202 {
1203         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1204 }
1205
1206 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1207 {
1208         int i;
1209
1210         if (!msr_mtrr_valid(msr))
1211                 return false;
1212
1213         if (msr == MSR_IA32_CR_PAT) {
1214                 for (i = 0; i < 8; i++)
1215                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1216                                 return false;
1217                 return true;
1218         } else if (msr == MSR_MTRRdefType) {
1219                 if (data & ~0xcff)
1220                         return false;
1221                 return valid_mtrr_type(data & 0xff);
1222         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1223                 for (i = 0; i < 8 ; i++)
1224                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1225                                 return false;
1226                 return true;
1227         }
1228
1229         /* variable MTRRs */
1230         return valid_mtrr_type(data & 0xff);
1231 }
1232
1233 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1236
1237         if (!mtrr_valid(vcpu, msr, data))
1238                 return 1;
1239
1240         if (msr == MSR_MTRRdefType) {
1241                 vcpu->arch.mtrr_state.def_type = data;
1242                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1243         } else if (msr == MSR_MTRRfix64K_00000)
1244                 p[0] = data;
1245         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1246                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1247         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1248                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1249         else if (msr == MSR_IA32_CR_PAT)
1250                 vcpu->arch.pat = data;
1251         else {  /* Variable MTRRs */
1252                 int idx, is_mtrr_mask;
1253                 u64 *pt;
1254
1255                 idx = (msr - 0x200) / 2;
1256                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1257                 if (!is_mtrr_mask)
1258                         pt =
1259                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1260                 else
1261                         pt =
1262                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1263                 *pt = data;
1264         }
1265
1266         kvm_mmu_reset_context(vcpu);
1267         return 0;
1268 }
1269
1270 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1271 {
1272         u64 mcg_cap = vcpu->arch.mcg_cap;
1273         unsigned bank_num = mcg_cap & 0xff;
1274
1275         switch (msr) {
1276         case MSR_IA32_MCG_STATUS:
1277                 vcpu->arch.mcg_status = data;
1278                 break;
1279         case MSR_IA32_MCG_CTL:
1280                 if (!(mcg_cap & MCG_CTL_P))
1281                         return 1;
1282                 if (data != 0 && data != ~(u64)0)
1283                         return -1;
1284                 vcpu->arch.mcg_ctl = data;
1285                 break;
1286         default:
1287                 if (msr >= MSR_IA32_MC0_CTL &&
1288                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1289                         u32 offset = msr - MSR_IA32_MC0_CTL;
1290                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1291                          * some Linux kernels though clear bit 10 in bank 4 to
1292                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1293                          * this to avoid an uncatched #GP in the guest
1294                          */
1295                         if ((offset & 0x3) == 0 &&
1296                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1297                                 return -1;
1298                         vcpu->arch.mce_banks[offset] = data;
1299                         break;
1300                 }
1301                 return 1;
1302         }
1303         return 0;
1304 }
1305
1306 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1307 {
1308         struct kvm *kvm = vcpu->kvm;
1309         int lm = is_long_mode(vcpu);
1310         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1311                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1312         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1313                 : kvm->arch.xen_hvm_config.blob_size_32;
1314         u32 page_num = data & ~PAGE_MASK;
1315         u64 page_addr = data & PAGE_MASK;
1316         u8 *page;
1317         int r;
1318
1319         r = -E2BIG;
1320         if (page_num >= blob_size)
1321                 goto out;
1322         r = -ENOMEM;
1323         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1324         if (!page)
1325                 goto out;
1326         r = -EFAULT;
1327         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1328                 goto out_free;
1329         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1330                 goto out_free;
1331         r = 0;
1332 out_free:
1333         kfree(page);
1334 out:
1335         return r;
1336 }
1337
1338 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1339 {
1340         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1341 }
1342
1343 static bool kvm_hv_msr_partition_wide(u32 msr)
1344 {
1345         bool r = false;
1346         switch (msr) {
1347         case HV_X64_MSR_GUEST_OS_ID:
1348         case HV_X64_MSR_HYPERCALL:
1349                 r = true;
1350                 break;
1351         }
1352
1353         return r;
1354 }
1355
1356 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1357 {
1358         struct kvm *kvm = vcpu->kvm;
1359
1360         switch (msr) {
1361         case HV_X64_MSR_GUEST_OS_ID:
1362                 kvm->arch.hv_guest_os_id = data;
1363                 /* setting guest os id to zero disables hypercall page */
1364                 if (!kvm->arch.hv_guest_os_id)
1365                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1366                 break;
1367         case HV_X64_MSR_HYPERCALL: {
1368                 u64 gfn;
1369                 unsigned long addr;
1370                 u8 instructions[4];
1371
1372                 /* if guest os id is not set hypercall should remain disabled */
1373                 if (!kvm->arch.hv_guest_os_id)
1374                         break;
1375                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1376                         kvm->arch.hv_hypercall = data;
1377                         break;
1378                 }
1379                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1380                 addr = gfn_to_hva(kvm, gfn);
1381                 if (kvm_is_error_hva(addr))
1382                         return 1;
1383                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1384                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1385                 if (copy_to_user((void __user *)addr, instructions, 4))
1386                         return 1;
1387                 kvm->arch.hv_hypercall = data;
1388                 break;
1389         }
1390         default:
1391                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1392                           "data 0x%llx\n", msr, data);
1393                 return 1;
1394         }
1395         return 0;
1396 }
1397
1398 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 {
1400         switch (msr) {
1401         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1402                 unsigned long addr;
1403
1404                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1405                         vcpu->arch.hv_vapic = data;
1406                         break;
1407                 }
1408                 addr = gfn_to_hva(vcpu->kvm, data >>
1409                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1410                 if (kvm_is_error_hva(addr))
1411                         return 1;
1412                 if (clear_user((void __user *)addr, PAGE_SIZE))
1413                         return 1;
1414                 vcpu->arch.hv_vapic = data;
1415                 break;
1416         }
1417         case HV_X64_MSR_EOI:
1418                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1419         case HV_X64_MSR_ICR:
1420                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1421         case HV_X64_MSR_TPR:
1422                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1423         default:
1424                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1425                           "data 0x%llx\n", msr, data);
1426                 return 1;
1427         }
1428
1429         return 0;
1430 }
1431
1432 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1433 {
1434         gpa_t gpa = data & ~0x3f;
1435
1436         /* Bits 2:5 are resrved, Should be zero */
1437         if (data & 0x3c)
1438                 return 1;
1439
1440         vcpu->arch.apf.msr_val = data;
1441
1442         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1443                 kvm_clear_async_pf_completion_queue(vcpu);
1444                 kvm_async_pf_hash_reset(vcpu);
1445                 return 0;
1446         }
1447
1448         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1449                 return 1;
1450
1451         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1452         kvm_async_pf_wakeup_all(vcpu);
1453         return 0;
1454 }
1455
1456 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1457 {
1458         switch (msr) {
1459         case MSR_EFER:
1460                 return set_efer(vcpu, data);
1461         case MSR_K7_HWCR:
1462                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1463                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1464                 if (data != 0) {
1465                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1466                                 data);
1467                         return 1;
1468                 }
1469                 break;
1470         case MSR_FAM10H_MMIO_CONF_BASE:
1471                 if (data != 0) {
1472                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1473                                 "0x%llx\n", data);
1474                         return 1;
1475                 }
1476                 break;
1477         case MSR_AMD64_NB_CFG:
1478                 break;
1479         case MSR_IA32_DEBUGCTLMSR:
1480                 if (!data) {
1481                         /* We support the non-activated case already */
1482                         break;
1483                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1484                         /* Values other than LBR and BTF are vendor-specific,
1485                            thus reserved and should throw a #GP */
1486                         return 1;
1487                 }
1488                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1489                         __func__, data);
1490                 break;
1491         case MSR_IA32_UCODE_REV:
1492         case MSR_IA32_UCODE_WRITE:
1493         case MSR_VM_HSAVE_PA:
1494         case MSR_AMD64_PATCH_LOADER:
1495                 break;
1496         case 0x200 ... 0x2ff:
1497                 return set_msr_mtrr(vcpu, msr, data);
1498         case MSR_IA32_APICBASE:
1499                 kvm_set_apic_base(vcpu, data);
1500                 break;
1501         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1502                 return kvm_x2apic_msr_write(vcpu, msr, data);
1503         case MSR_IA32_MISC_ENABLE:
1504                 vcpu->arch.ia32_misc_enable_msr = data;
1505                 break;
1506         case MSR_KVM_WALL_CLOCK_NEW:
1507         case MSR_KVM_WALL_CLOCK:
1508                 vcpu->kvm->arch.wall_clock = data;
1509                 kvm_write_wall_clock(vcpu->kvm, data);
1510                 break;
1511         case MSR_KVM_SYSTEM_TIME_NEW:
1512         case MSR_KVM_SYSTEM_TIME: {
1513                 if (vcpu->arch.time_page) {
1514                         kvm_release_page_dirty(vcpu->arch.time_page);
1515                         vcpu->arch.time_page = NULL;
1516                 }
1517
1518                 vcpu->arch.time = data;
1519                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1520
1521                 /* we verify if the enable bit is set... */
1522                 if (!(data & 1))
1523                         break;
1524
1525                 /* ...but clean it before doing the actual write */
1526                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1527
1528                 vcpu->arch.time_page =
1529                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1530
1531                 if (is_error_page(vcpu->arch.time_page)) {
1532                         kvm_release_page_clean(vcpu->arch.time_page);
1533                         vcpu->arch.time_page = NULL;
1534                 }
1535                 break;
1536         }
1537         case MSR_KVM_ASYNC_PF_EN:
1538                 if (kvm_pv_enable_async_pf(vcpu, data))
1539                         return 1;
1540                 break;
1541         case MSR_IA32_MCG_CTL:
1542         case MSR_IA32_MCG_STATUS:
1543         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1544                 return set_msr_mce(vcpu, msr, data);
1545
1546         /* Performance counters are not protected by a CPUID bit,
1547          * so we should check all of them in the generic path for the sake of
1548          * cross vendor migration.
1549          * Writing a zero into the event select MSRs disables them,
1550          * which we perfectly emulate ;-). Any other value should be at least
1551          * reported, some guests depend on them.
1552          */
1553         case MSR_P6_EVNTSEL0:
1554         case MSR_P6_EVNTSEL1:
1555         case MSR_K7_EVNTSEL0:
1556         case MSR_K7_EVNTSEL1:
1557         case MSR_K7_EVNTSEL2:
1558         case MSR_K7_EVNTSEL3:
1559                 if (data != 0)
1560                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1561                                 "0x%x data 0x%llx\n", msr, data);
1562                 break;
1563         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1564          * so we ignore writes to make it happy.
1565          */
1566         case MSR_P6_PERFCTR0:
1567         case MSR_P6_PERFCTR1:
1568         case MSR_K7_PERFCTR0:
1569         case MSR_K7_PERFCTR1:
1570         case MSR_K7_PERFCTR2:
1571         case MSR_K7_PERFCTR3:
1572                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1573                         "0x%x data 0x%llx\n", msr, data);
1574                 break;
1575         case MSR_K7_CLK_CTL:
1576                 /*
1577                  * Ignore all writes to this no longer documented MSR.
1578                  * Writes are only relevant for old K7 processors,
1579                  * all pre-dating SVM, but a recommended workaround from
1580                  * AMD for these chips. It is possible to speicify the
1581                  * affected processor models on the command line, hence
1582                  * the need to ignore the workaround.
1583                  */
1584                 break;
1585         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1586                 if (kvm_hv_msr_partition_wide(msr)) {
1587                         int r;
1588                         mutex_lock(&vcpu->kvm->lock);
1589                         r = set_msr_hyperv_pw(vcpu, msr, data);
1590                         mutex_unlock(&vcpu->kvm->lock);
1591                         return r;
1592                 } else
1593                         return set_msr_hyperv(vcpu, msr, data);
1594                 break;
1595         default:
1596                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1597                         return xen_hvm_config(vcpu, data);
1598                 if (!ignore_msrs) {
1599                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1600                                 msr, data);
1601                         return 1;
1602                 } else {
1603                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1604                                 msr, data);
1605                         break;
1606                 }
1607         }
1608         return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1611
1612
1613 /*
1614  * Reads an msr value (of 'msr_index') into 'pdata'.
1615  * Returns 0 on success, non-0 otherwise.
1616  * Assumes vcpu_load() was already called.
1617  */
1618 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1619 {
1620         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1621 }
1622
1623 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1624 {
1625         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1626
1627         if (!msr_mtrr_valid(msr))
1628                 return 1;
1629
1630         if (msr == MSR_MTRRdefType)
1631                 *pdata = vcpu->arch.mtrr_state.def_type +
1632                          (vcpu->arch.mtrr_state.enabled << 10);
1633         else if (msr == MSR_MTRRfix64K_00000)
1634                 *pdata = p[0];
1635         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1636                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1637         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1638                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1639         else if (msr == MSR_IA32_CR_PAT)
1640                 *pdata = vcpu->arch.pat;
1641         else {  /* Variable MTRRs */
1642                 int idx, is_mtrr_mask;
1643                 u64 *pt;
1644
1645                 idx = (msr - 0x200) / 2;
1646                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1647                 if (!is_mtrr_mask)
1648                         pt =
1649                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1650                 else
1651                         pt =
1652                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1653                 *pdata = *pt;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1660 {
1661         u64 data;
1662         u64 mcg_cap = vcpu->arch.mcg_cap;
1663         unsigned bank_num = mcg_cap & 0xff;
1664
1665         switch (msr) {
1666         case MSR_IA32_P5_MC_ADDR:
1667         case MSR_IA32_P5_MC_TYPE:
1668                 data = 0;
1669                 break;
1670         case MSR_IA32_MCG_CAP:
1671                 data = vcpu->arch.mcg_cap;
1672                 break;
1673         case MSR_IA32_MCG_CTL:
1674                 if (!(mcg_cap & MCG_CTL_P))
1675                         return 1;
1676                 data = vcpu->arch.mcg_ctl;
1677                 break;
1678         case MSR_IA32_MCG_STATUS:
1679                 data = vcpu->arch.mcg_status;
1680                 break;
1681         default:
1682                 if (msr >= MSR_IA32_MC0_CTL &&
1683                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1684                         u32 offset = msr - MSR_IA32_MC0_CTL;
1685                         data = vcpu->arch.mce_banks[offset];
1686                         break;
1687                 }
1688                 return 1;
1689         }
1690         *pdata = data;
1691         return 0;
1692 }
1693
1694 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1695 {
1696         u64 data = 0;
1697         struct kvm *kvm = vcpu->kvm;
1698
1699         switch (msr) {
1700         case HV_X64_MSR_GUEST_OS_ID:
1701                 data = kvm->arch.hv_guest_os_id;
1702                 break;
1703         case HV_X64_MSR_HYPERCALL:
1704                 data = kvm->arch.hv_hypercall;
1705                 break;
1706         default:
1707                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1708                 return 1;
1709         }
1710
1711         *pdata = data;
1712         return 0;
1713 }
1714
1715 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1716 {
1717         u64 data = 0;
1718
1719         switch (msr) {
1720         case HV_X64_MSR_VP_INDEX: {
1721                 int r;
1722                 struct kvm_vcpu *v;
1723                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1724                         if (v == vcpu)
1725                                 data = r;
1726                 break;
1727         }
1728         case HV_X64_MSR_EOI:
1729                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1730         case HV_X64_MSR_ICR:
1731                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1732         case HV_X64_MSR_TPR:
1733                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1734         default:
1735                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1736                 return 1;
1737         }
1738         *pdata = data;
1739         return 0;
1740 }
1741
1742 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1743 {
1744         u64 data;
1745
1746         switch (msr) {
1747         case MSR_IA32_PLATFORM_ID:
1748         case MSR_IA32_UCODE_REV:
1749         case MSR_IA32_EBL_CR_POWERON:
1750         case MSR_IA32_DEBUGCTLMSR:
1751         case MSR_IA32_LASTBRANCHFROMIP:
1752         case MSR_IA32_LASTBRANCHTOIP:
1753         case MSR_IA32_LASTINTFROMIP:
1754         case MSR_IA32_LASTINTTOIP:
1755         case MSR_K8_SYSCFG:
1756         case MSR_K7_HWCR:
1757         case MSR_VM_HSAVE_PA:
1758         case MSR_P6_PERFCTR0:
1759         case MSR_P6_PERFCTR1:
1760         case MSR_P6_EVNTSEL0:
1761         case MSR_P6_EVNTSEL1:
1762         case MSR_K7_EVNTSEL0:
1763         case MSR_K7_PERFCTR0:
1764         case MSR_K8_INT_PENDING_MSG:
1765         case MSR_AMD64_NB_CFG:
1766         case MSR_FAM10H_MMIO_CONF_BASE:
1767                 data = 0;
1768                 break;
1769         case MSR_MTRRcap:
1770                 data = 0x500 | KVM_NR_VAR_MTRR;
1771                 break;
1772         case 0x200 ... 0x2ff:
1773                 return get_msr_mtrr(vcpu, msr, pdata);
1774         case 0xcd: /* fsb frequency */
1775                 data = 3;
1776                 break;
1777                 /*
1778                  * MSR_EBC_FREQUENCY_ID
1779                  * Conservative value valid for even the basic CPU models.
1780                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1781                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1782                  * and 266MHz for model 3, or 4. Set Core Clock
1783                  * Frequency to System Bus Frequency Ratio to 1 (bits
1784                  * 31:24) even though these are only valid for CPU
1785                  * models > 2, however guests may end up dividing or
1786                  * multiplying by zero otherwise.
1787                  */
1788         case MSR_EBC_FREQUENCY_ID:
1789                 data = 1 << 24;
1790                 break;
1791         case MSR_IA32_APICBASE:
1792                 data = kvm_get_apic_base(vcpu);
1793                 break;
1794         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1795                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1796                 break;
1797         case MSR_IA32_MISC_ENABLE:
1798                 data = vcpu->arch.ia32_misc_enable_msr;
1799                 break;
1800         case MSR_IA32_PERF_STATUS:
1801                 /* TSC increment by tick */
1802                 data = 1000ULL;
1803                 /* CPU multiplier */
1804                 data |= (((uint64_t)4ULL) << 40);
1805                 break;
1806         case MSR_EFER:
1807                 data = vcpu->arch.efer;
1808                 break;
1809         case MSR_KVM_WALL_CLOCK:
1810         case MSR_KVM_WALL_CLOCK_NEW:
1811                 data = vcpu->kvm->arch.wall_clock;
1812                 break;
1813         case MSR_KVM_SYSTEM_TIME:
1814         case MSR_KVM_SYSTEM_TIME_NEW:
1815                 data = vcpu->arch.time;
1816                 break;
1817         case MSR_KVM_ASYNC_PF_EN:
1818                 data = vcpu->arch.apf.msr_val;
1819                 break;
1820         case MSR_IA32_P5_MC_ADDR:
1821         case MSR_IA32_P5_MC_TYPE:
1822         case MSR_IA32_MCG_CAP:
1823         case MSR_IA32_MCG_CTL:
1824         case MSR_IA32_MCG_STATUS:
1825         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1826                 return get_msr_mce(vcpu, msr, pdata);
1827         case MSR_K7_CLK_CTL:
1828                 /*
1829                  * Provide expected ramp-up count for K7. All other
1830                  * are set to zero, indicating minimum divisors for
1831                  * every field.
1832                  *
1833                  * This prevents guest kernels on AMD host with CPU
1834                  * type 6, model 8 and higher from exploding due to
1835                  * the rdmsr failing.
1836                  */
1837                 data = 0x20000000;
1838                 break;
1839         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1840                 if (kvm_hv_msr_partition_wide(msr)) {
1841                         int r;
1842                         mutex_lock(&vcpu->kvm->lock);
1843                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1844                         mutex_unlock(&vcpu->kvm->lock);
1845                         return r;
1846                 } else
1847                         return get_msr_hyperv(vcpu, msr, pdata);
1848                 break;
1849         default:
1850                 if (!ignore_msrs) {
1851                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1852                         return 1;
1853                 } else {
1854                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1855                         data = 0;
1856                 }
1857                 break;
1858         }
1859         *pdata = data;
1860         return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1863
1864 /*
1865  * Read or write a bunch of msrs. All parameters are kernel addresses.
1866  *
1867  * @return number of msrs set successfully.
1868  */
1869 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1870                     struct kvm_msr_entry *entries,
1871                     int (*do_msr)(struct kvm_vcpu *vcpu,
1872                                   unsigned index, u64 *data))
1873 {
1874         int i, idx;
1875
1876         idx = srcu_read_lock(&vcpu->kvm->srcu);
1877         for (i = 0; i < msrs->nmsrs; ++i)
1878                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1879                         break;
1880         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1881
1882         return i;
1883 }
1884
1885 /*
1886  * Read or write a bunch of msrs. Parameters are user addresses.
1887  *
1888  * @return number of msrs set successfully.
1889  */
1890 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1891                   int (*do_msr)(struct kvm_vcpu *vcpu,
1892                                 unsigned index, u64 *data),
1893                   int writeback)
1894 {
1895         struct kvm_msrs msrs;
1896         struct kvm_msr_entry *entries;
1897         int r, n;
1898         unsigned size;
1899
1900         r = -EFAULT;
1901         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1902                 goto out;
1903
1904         r = -E2BIG;
1905         if (msrs.nmsrs >= MAX_IO_MSRS)
1906                 goto out;
1907
1908         r = -ENOMEM;
1909         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1910         entries = kmalloc(size, GFP_KERNEL);
1911         if (!entries)
1912                 goto out;
1913
1914         r = -EFAULT;
1915         if (copy_from_user(entries, user_msrs->entries, size))
1916                 goto out_free;
1917
1918         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1919         if (r < 0)
1920                 goto out_free;
1921
1922         r = -EFAULT;
1923         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1924                 goto out_free;
1925
1926         r = n;
1927
1928 out_free:
1929         kfree(entries);
1930 out:
1931         return r;
1932 }
1933
1934 int kvm_dev_ioctl_check_extension(long ext)
1935 {
1936         int r;
1937
1938         switch (ext) {
1939         case KVM_CAP_IRQCHIP:
1940         case KVM_CAP_HLT:
1941         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1942         case KVM_CAP_SET_TSS_ADDR:
1943         case KVM_CAP_EXT_CPUID:
1944         case KVM_CAP_CLOCKSOURCE:
1945         case KVM_CAP_PIT:
1946         case KVM_CAP_NOP_IO_DELAY:
1947         case KVM_CAP_MP_STATE:
1948         case KVM_CAP_SYNC_MMU:
1949         case KVM_CAP_USER_NMI:
1950         case KVM_CAP_REINJECT_CONTROL:
1951         case KVM_CAP_IRQ_INJECT_STATUS:
1952         case KVM_CAP_ASSIGN_DEV_IRQ:
1953         case KVM_CAP_IRQFD:
1954         case KVM_CAP_IOEVENTFD:
1955         case KVM_CAP_PIT2:
1956         case KVM_CAP_PIT_STATE2:
1957         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1958         case KVM_CAP_XEN_HVM:
1959         case KVM_CAP_ADJUST_CLOCK:
1960         case KVM_CAP_VCPU_EVENTS:
1961         case KVM_CAP_HYPERV:
1962         case KVM_CAP_HYPERV_VAPIC:
1963         case KVM_CAP_HYPERV_SPIN:
1964         case KVM_CAP_PCI_SEGMENT:
1965         case KVM_CAP_DEBUGREGS:
1966         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1967         case KVM_CAP_XSAVE:
1968         case KVM_CAP_ASYNC_PF:
1969                 r = 1;
1970                 break;
1971         case KVM_CAP_COALESCED_MMIO:
1972                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1973                 break;
1974         case KVM_CAP_VAPIC:
1975                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1976                 break;
1977         case KVM_CAP_NR_VCPUS:
1978                 r = KVM_MAX_VCPUS;
1979                 break;
1980         case KVM_CAP_NR_MEMSLOTS:
1981                 r = KVM_MEMORY_SLOTS;
1982                 break;
1983         case KVM_CAP_PV_MMU:    /* obsolete */
1984                 r = 0;
1985                 break;
1986         case KVM_CAP_IOMMU:
1987                 r = iommu_found();
1988                 break;
1989         case KVM_CAP_MCE:
1990                 r = KVM_MAX_MCE_BANKS;
1991                 break;
1992         case KVM_CAP_XCRS:
1993                 r = cpu_has_xsave;
1994                 break;
1995         default:
1996                 r = 0;
1997                 break;
1998         }
1999         return r;
2000
2001 }
2002
2003 long kvm_arch_dev_ioctl(struct file *filp,
2004                         unsigned int ioctl, unsigned long arg)
2005 {
2006         void __user *argp = (void __user *)arg;
2007         long r;
2008
2009         switch (ioctl) {
2010         case KVM_GET_MSR_INDEX_LIST: {
2011                 struct kvm_msr_list __user *user_msr_list = argp;
2012                 struct kvm_msr_list msr_list;
2013                 unsigned n;
2014
2015                 r = -EFAULT;
2016                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2017                         goto out;
2018                 n = msr_list.nmsrs;
2019                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2020                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2021                         goto out;
2022                 r = -E2BIG;
2023                 if (n < msr_list.nmsrs)
2024                         goto out;
2025                 r = -EFAULT;
2026                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2027                                  num_msrs_to_save * sizeof(u32)))
2028                         goto out;
2029                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2030                                  &emulated_msrs,
2031                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2032                         goto out;
2033                 r = 0;
2034                 break;
2035         }
2036         case KVM_GET_SUPPORTED_CPUID: {
2037                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2038                 struct kvm_cpuid2 cpuid;
2039
2040                 r = -EFAULT;
2041                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2042                         goto out;
2043                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2044                                                       cpuid_arg->entries);
2045                 if (r)
2046                         goto out;
2047
2048                 r = -EFAULT;
2049                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2050                         goto out;
2051                 r = 0;
2052                 break;
2053         }
2054         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2055                 u64 mce_cap;
2056
2057                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2058                 r = -EFAULT;
2059                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2060                         goto out;
2061                 r = 0;
2062                 break;
2063         }
2064         default:
2065                 r = -EINVAL;
2066         }
2067 out:
2068         return r;
2069 }
2070
2071 static void wbinvd_ipi(void *garbage)
2072 {
2073         wbinvd();
2074 }
2075
2076 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2077 {
2078         return vcpu->kvm->arch.iommu_domain &&
2079                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2080 }
2081
2082 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2083 {
2084         /* Address WBINVD may be executed by guest */
2085         if (need_emulate_wbinvd(vcpu)) {
2086                 if (kvm_x86_ops->has_wbinvd_exit())
2087                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2088                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2089                         smp_call_function_single(vcpu->cpu,
2090                                         wbinvd_ipi, NULL, 1);
2091         }
2092
2093         kvm_x86_ops->vcpu_load(vcpu, cpu);
2094         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2095                 /* Make sure TSC doesn't go backwards */
2096                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2097                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2098                 if (tsc_delta < 0)
2099                         mark_tsc_unstable("KVM discovered backwards TSC");
2100                 if (check_tsc_unstable()) {
2101                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2102                         vcpu->arch.tsc_catchup = 1;
2103                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2104                 }
2105                 if (vcpu->cpu != cpu)
2106                         kvm_migrate_timers(vcpu);
2107                 vcpu->cpu = cpu;
2108         }
2109 }
2110
2111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2112 {
2113         kvm_x86_ops->vcpu_put(vcpu);
2114         kvm_put_guest_fpu(vcpu);
2115         vcpu->arch.last_host_tsc = native_read_tsc();
2116 }
2117
2118 static int is_efer_nx(void)
2119 {
2120         unsigned long long efer = 0;
2121
2122         rdmsrl_safe(MSR_EFER, &efer);
2123         return efer & EFER_NX;
2124 }
2125
2126 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2127 {
2128         int i;
2129         struct kvm_cpuid_entry2 *e, *entry;
2130
2131         entry = NULL;
2132         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2133                 e = &vcpu->arch.cpuid_entries[i];
2134                 if (e->function == 0x80000001) {
2135                         entry = e;
2136                         break;
2137                 }
2138         }
2139         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2140                 entry->edx &= ~(1 << 20);
2141                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2142         }
2143 }
2144
2145 /* when an old userspace process fills a new kernel module */
2146 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2147                                     struct kvm_cpuid *cpuid,
2148                                     struct kvm_cpuid_entry __user *entries)
2149 {
2150         int r, i;
2151         struct kvm_cpuid_entry *cpuid_entries;
2152
2153         r = -E2BIG;
2154         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2155                 goto out;
2156         r = -ENOMEM;
2157         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2158         if (!cpuid_entries)
2159                 goto out;
2160         r = -EFAULT;
2161         if (copy_from_user(cpuid_entries, entries,
2162                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2163                 goto out_free;
2164         for (i = 0; i < cpuid->nent; i++) {
2165                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2166                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2167                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2168                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2169                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2170                 vcpu->arch.cpuid_entries[i].index = 0;
2171                 vcpu->arch.cpuid_entries[i].flags = 0;
2172                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2173                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2174                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2175         }
2176         vcpu->arch.cpuid_nent = cpuid->nent;
2177         cpuid_fix_nx_cap(vcpu);
2178         r = 0;
2179         kvm_apic_set_version(vcpu);
2180         kvm_x86_ops->cpuid_update(vcpu);
2181         update_cpuid(vcpu);
2182
2183 out_free:
2184         vfree(cpuid_entries);
2185 out:
2186         return r;
2187 }
2188
2189 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2190                                      struct kvm_cpuid2 *cpuid,
2191                                      struct kvm_cpuid_entry2 __user *entries)
2192 {
2193         int r;
2194
2195         r = -E2BIG;
2196         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2197                 goto out;
2198         r = -EFAULT;
2199         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2200                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2201                 goto out;
2202         vcpu->arch.cpuid_nent = cpuid->nent;
2203         kvm_apic_set_version(vcpu);
2204         kvm_x86_ops->cpuid_update(vcpu);
2205         update_cpuid(vcpu);
2206         return 0;
2207
2208 out:
2209         return r;
2210 }
2211
2212 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2213                                      struct kvm_cpuid2 *cpuid,
2214                                      struct kvm_cpuid_entry2 __user *entries)
2215 {
2216         int r;
2217
2218         r = -E2BIG;
2219         if (cpuid->nent < vcpu->arch.cpuid_nent)
2220                 goto out;
2221         r = -EFAULT;
2222         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2223                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2224                 goto out;
2225         return 0;
2226
2227 out:
2228         cpuid->nent = vcpu->arch.cpuid_nent;
2229         return r;
2230 }
2231
2232 static void cpuid_mask(u32 *word, int wordnum)
2233 {
2234         *word &= boot_cpu_data.x86_capability[wordnum];
2235 }
2236
2237 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2238                            u32 index)
2239 {
2240         entry->function = function;
2241         entry->index = index;
2242         cpuid_count(entry->function, entry->index,
2243                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2244         entry->flags = 0;
2245 }
2246
2247 #define F(x) bit(X86_FEATURE_##x)
2248
2249 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2250                          u32 index, int *nent, int maxnent)
2251 {
2252         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2253 #ifdef CONFIG_X86_64
2254         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2255                                 ? F(GBPAGES) : 0;
2256         unsigned f_lm = F(LM);
2257 #else
2258         unsigned f_gbpages = 0;
2259         unsigned f_lm = 0;
2260 #endif
2261         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2262
2263         /* cpuid 1.edx */
2264         const u32 kvm_supported_word0_x86_features =
2265                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2266                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2267                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2268                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2269                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2270                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2271                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2272                 0 /* HTT, TM, Reserved, PBE */;
2273         /* cpuid 0x80000001.edx */
2274         const u32 kvm_supported_word1_x86_features =
2275                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2276                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2277                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2278                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2279                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2280                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2281                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2282                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2283         /* cpuid 1.ecx */
2284         const u32 kvm_supported_word4_x86_features =
2285                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2286                 0 /* DS-CPL, VMX, SMX, EST */ |
2287                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2288                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2289                 0 /* Reserved, DCA */ | F(XMM4_1) |
2290                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2291                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2292                 F(F16C);
2293         /* cpuid 0x80000001.ecx */
2294         const u32 kvm_supported_word6_x86_features =
2295                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2296                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2297                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2298                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2299
2300         /* all calls to cpuid_count() should be made on the same cpu */
2301         get_cpu();
2302         do_cpuid_1_ent(entry, function, index);
2303         ++*nent;
2304
2305         switch (function) {
2306         case 0:
2307                 entry->eax = min(entry->eax, (u32)0xd);
2308                 break;
2309         case 1:
2310                 entry->edx &= kvm_supported_word0_x86_features;
2311                 cpuid_mask(&entry->edx, 0);
2312                 entry->ecx &= kvm_supported_word4_x86_features;
2313                 cpuid_mask(&entry->ecx, 4);
2314                 /* we support x2apic emulation even if host does not support
2315                  * it since we emulate x2apic in software */
2316                 entry->ecx |= F(X2APIC);
2317                 break;
2318         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2319          * may return different values. This forces us to get_cpu() before
2320          * issuing the first command, and also to emulate this annoying behavior
2321          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2322         case 2: {
2323                 int t, times = entry->eax & 0xff;
2324
2325                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2326                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2327                 for (t = 1; t < times && *nent < maxnent; ++t) {
2328                         do_cpuid_1_ent(&entry[t], function, 0);
2329                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2330                         ++*nent;
2331                 }
2332                 break;
2333         }
2334         /* function 4 and 0xb have additional index. */
2335         case 4: {
2336                 int i, cache_type;
2337
2338                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2339                 /* read more entries until cache_type is zero */
2340                 for (i = 1; *nent < maxnent; ++i) {
2341                         cache_type = entry[i - 1].eax & 0x1f;
2342                         if (!cache_type)
2343                                 break;
2344                         do_cpuid_1_ent(&entry[i], function, i);
2345                         entry[i].flags |=
2346                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2347                         ++*nent;
2348                 }
2349                 break;
2350         }
2351         case 0xb: {
2352                 int i, level_type;
2353
2354                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2355                 /* read more entries until level_type is zero */
2356                 for (i = 1; *nent < maxnent; ++i) {
2357                         level_type = entry[i - 1].ecx & 0xff00;
2358                         if (!level_type)
2359                                 break;
2360                         do_cpuid_1_ent(&entry[i], function, i);
2361                         entry[i].flags |=
2362                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2363                         ++*nent;
2364                 }
2365                 break;
2366         }
2367         case 0xd: {
2368                 int i;
2369
2370                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2371                 for (i = 1; *nent < maxnent; ++i) {
2372                         if (entry[i - 1].eax == 0 && i != 2)
2373                                 break;
2374                         do_cpuid_1_ent(&entry[i], function, i);
2375                         entry[i].flags |=
2376                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2377                         ++*nent;
2378                 }
2379                 break;
2380         }
2381         case KVM_CPUID_SIGNATURE: {
2382                 char signature[12] = "KVMKVMKVM\0\0";
2383                 u32 *sigptr = (u32 *)signature;
2384                 entry->eax = 0;
2385                 entry->ebx = sigptr[0];
2386                 entry->ecx = sigptr[1];
2387                 entry->edx = sigptr[2];
2388                 break;
2389         }
2390         case KVM_CPUID_FEATURES:
2391                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2392                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2393                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2394                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2395                 entry->ebx = 0;
2396                 entry->ecx = 0;
2397                 entry->edx = 0;
2398                 break;
2399         case 0x80000000:
2400                 entry->eax = min(entry->eax, 0x8000001a);
2401                 break;
2402         case 0x80000001:
2403                 entry->edx &= kvm_supported_word1_x86_features;
2404                 cpuid_mask(&entry->edx, 1);
2405                 entry->ecx &= kvm_supported_word6_x86_features;
2406                 cpuid_mask(&entry->ecx, 6);
2407                 break;
2408         }
2409
2410         kvm_x86_ops->set_supported_cpuid(function, entry);
2411
2412         put_cpu();
2413 }
2414
2415 #undef F
2416
2417 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2418                                      struct kvm_cpuid_entry2 __user *entries)
2419 {
2420         struct kvm_cpuid_entry2 *cpuid_entries;
2421         int limit, nent = 0, r = -E2BIG;
2422         u32 func;
2423
2424         if (cpuid->nent < 1)
2425                 goto out;
2426         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2427                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2428         r = -ENOMEM;
2429         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2430         if (!cpuid_entries)
2431                 goto out;
2432
2433         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2434         limit = cpuid_entries[0].eax;
2435         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2436                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2437                              &nent, cpuid->nent);
2438         r = -E2BIG;
2439         if (nent >= cpuid->nent)
2440                 goto out_free;
2441
2442         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2443         limit = cpuid_entries[nent - 1].eax;
2444         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2445                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2446                              &nent, cpuid->nent);
2447
2448
2449
2450         r = -E2BIG;
2451         if (nent >= cpuid->nent)
2452                 goto out_free;
2453
2454         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2455                      cpuid->nent);
2456
2457         r = -E2BIG;
2458         if (nent >= cpuid->nent)
2459                 goto out_free;
2460
2461         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2462                      cpuid->nent);
2463
2464         r = -E2BIG;
2465         if (nent >= cpuid->nent)
2466                 goto out_free;
2467
2468         r = -EFAULT;
2469         if (copy_to_user(entries, cpuid_entries,
2470                          nent * sizeof(struct kvm_cpuid_entry2)))
2471                 goto out_free;
2472         cpuid->nent = nent;
2473         r = 0;
2474
2475 out_free:
2476         vfree(cpuid_entries);
2477 out:
2478         return r;
2479 }
2480
2481 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2482                                     struct kvm_lapic_state *s)
2483 {
2484         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2485
2486         return 0;
2487 }
2488
2489 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2490                                     struct kvm_lapic_state *s)
2491 {
2492         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2493         kvm_apic_post_state_restore(vcpu);
2494         update_cr8_intercept(vcpu);
2495
2496         return 0;
2497 }
2498
2499 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2500                                     struct kvm_interrupt *irq)
2501 {
2502         if (irq->irq < 0 || irq->irq >= 256)
2503                 return -EINVAL;
2504         if (irqchip_in_kernel(vcpu->kvm))
2505                 return -ENXIO;
2506
2507         kvm_queue_interrupt(vcpu, irq->irq, false);
2508         kvm_make_request(KVM_REQ_EVENT, vcpu);
2509
2510         return 0;
2511 }
2512
2513 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2514 {
2515         kvm_inject_nmi(vcpu);
2516
2517         return 0;
2518 }
2519
2520 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2521                                            struct kvm_tpr_access_ctl *tac)
2522 {
2523         if (tac->flags)
2524                 return -EINVAL;
2525         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2526         return 0;
2527 }
2528
2529 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2530                                         u64 mcg_cap)
2531 {
2532         int r;
2533         unsigned bank_num = mcg_cap & 0xff, bank;
2534
2535         r = -EINVAL;
2536         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2537                 goto out;
2538         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2539                 goto out;
2540         r = 0;
2541         vcpu->arch.mcg_cap = mcg_cap;
2542         /* Init IA32_MCG_CTL to all 1s */
2543         if (mcg_cap & MCG_CTL_P)
2544                 vcpu->arch.mcg_ctl = ~(u64)0;
2545         /* Init IA32_MCi_CTL to all 1s */
2546         for (bank = 0; bank < bank_num; bank++)
2547                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2548 out:
2549         return r;
2550 }
2551
2552 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2553                                       struct kvm_x86_mce *mce)
2554 {
2555         u64 mcg_cap = vcpu->arch.mcg_cap;
2556         unsigned bank_num = mcg_cap & 0xff;
2557         u64 *banks = vcpu->arch.mce_banks;
2558
2559         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2560                 return -EINVAL;
2561         /*
2562          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2563          * reporting is disabled
2564          */
2565         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2566             vcpu->arch.mcg_ctl != ~(u64)0)
2567                 return 0;
2568         banks += 4 * mce->bank;
2569         /*
2570          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2571          * reporting is disabled for the bank
2572          */
2573         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2574                 return 0;
2575         if (mce->status & MCI_STATUS_UC) {
2576                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2577                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2578                         printk(KERN_DEBUG "kvm: set_mce: "
2579                                "injects mce exception while "
2580                                "previous one is in progress!\n");
2581                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2582                         return 0;
2583                 }
2584                 if (banks[1] & MCI_STATUS_VAL)
2585                         mce->status |= MCI_STATUS_OVER;
2586                 banks[2] = mce->addr;
2587                 banks[3] = mce->misc;
2588                 vcpu->arch.mcg_status = mce->mcg_status;
2589                 banks[1] = mce->status;
2590                 kvm_queue_exception(vcpu, MC_VECTOR);
2591         } else if (!(banks[1] & MCI_STATUS_VAL)
2592                    || !(banks[1] & MCI_STATUS_UC)) {
2593                 if (banks[1] & MCI_STATUS_VAL)
2594                         mce->status |= MCI_STATUS_OVER;
2595                 banks[2] = mce->addr;
2596                 banks[3] = mce->misc;
2597                 banks[1] = mce->status;
2598         } else
2599                 banks[1] |= MCI_STATUS_OVER;
2600         return 0;
2601 }
2602
2603 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2604                                                struct kvm_vcpu_events *events)
2605 {
2606         events->exception.injected =
2607                 vcpu->arch.exception.pending &&
2608                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2609         events->exception.nr = vcpu->arch.exception.nr;
2610         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2611         events->exception.pad = 0;
2612         events->exception.error_code = vcpu->arch.exception.error_code;
2613
2614         events->interrupt.injected =
2615                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2616         events->interrupt.nr = vcpu->arch.interrupt.nr;
2617         events->interrupt.soft = 0;
2618         events->interrupt.shadow =
2619                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2620                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2621
2622         events->nmi.injected = vcpu->arch.nmi_injected;
2623         events->nmi.pending = vcpu->arch.nmi_pending;
2624         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2625         events->nmi.pad = 0;
2626
2627         events->sipi_vector = vcpu->arch.sipi_vector;
2628
2629         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2630                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2631                          | KVM_VCPUEVENT_VALID_SHADOW);
2632         memset(&events->reserved, 0, sizeof(events->reserved));
2633 }
2634
2635 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2636                                               struct kvm_vcpu_events *events)
2637 {
2638         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2639                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2640                               | KVM_VCPUEVENT_VALID_SHADOW))
2641                 return -EINVAL;
2642
2643         vcpu->arch.exception.pending = events->exception.injected;
2644         vcpu->arch.exception.nr = events->exception.nr;
2645         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2646         vcpu->arch.exception.error_code = events->exception.error_code;
2647
2648         vcpu->arch.interrupt.pending = events->interrupt.injected;
2649         vcpu->arch.interrupt.nr = events->interrupt.nr;
2650         vcpu->arch.interrupt.soft = events->interrupt.soft;
2651         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2652                 kvm_pic_clear_isr_ack(vcpu->kvm);
2653         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2654                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2655                                                   events->interrupt.shadow);
2656
2657         vcpu->arch.nmi_injected = events->nmi.injected;
2658         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2659                 vcpu->arch.nmi_pending = events->nmi.pending;
2660         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2661
2662         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2663                 vcpu->arch.sipi_vector = events->sipi_vector;
2664
2665         kvm_make_request(KVM_REQ_EVENT, vcpu);
2666
2667         return 0;
2668 }
2669
2670 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2671                                              struct kvm_debugregs *dbgregs)
2672 {
2673         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2674         dbgregs->dr6 = vcpu->arch.dr6;
2675         dbgregs->dr7 = vcpu->arch.dr7;
2676         dbgregs->flags = 0;
2677         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2678 }
2679
2680 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2681                                             struct kvm_debugregs *dbgregs)
2682 {
2683         if (dbgregs->flags)
2684                 return -EINVAL;
2685
2686         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2687         vcpu->arch.dr6 = dbgregs->dr6;
2688         vcpu->arch.dr7 = dbgregs->dr7;
2689
2690         return 0;
2691 }
2692
2693 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2694                                          struct kvm_xsave *guest_xsave)
2695 {
2696         if (cpu_has_xsave)
2697                 memcpy(guest_xsave->region,
2698                         &vcpu->arch.guest_fpu.state->xsave,
2699                         xstate_size);
2700         else {
2701                 memcpy(guest_xsave->region,
2702                         &vcpu->arch.guest_fpu.state->fxsave,
2703                         sizeof(struct i387_fxsave_struct));
2704                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2705                         XSTATE_FPSSE;
2706         }
2707 }
2708
2709 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2710                                         struct kvm_xsave *guest_xsave)
2711 {
2712         u64 xstate_bv =
2713                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2714
2715         if (cpu_has_xsave)
2716                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2717                         guest_xsave->region, xstate_size);
2718         else {
2719                 if (xstate_bv & ~XSTATE_FPSSE)
2720                         return -EINVAL;
2721                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2722                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2723         }
2724         return 0;
2725 }
2726
2727 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2728                                         struct kvm_xcrs *guest_xcrs)
2729 {
2730         if (!cpu_has_xsave) {
2731                 guest_xcrs->nr_xcrs = 0;
2732                 return;
2733         }
2734
2735         guest_xcrs->nr_xcrs = 1;
2736         guest_xcrs->flags = 0;
2737         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2738         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2739 }
2740
2741 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2742                                        struct kvm_xcrs *guest_xcrs)
2743 {
2744         int i, r = 0;
2745
2746         if (!cpu_has_xsave)
2747                 return -EINVAL;
2748
2749         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2750                 return -EINVAL;
2751
2752         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2753                 /* Only support XCR0 currently */
2754                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2755                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2756                                 guest_xcrs->xcrs[0].value);
2757                         break;
2758                 }
2759         if (r)
2760                 r = -EINVAL;
2761         return r;
2762 }
2763
2764 long kvm_arch_vcpu_ioctl(struct file *filp,
2765                          unsigned int ioctl, unsigned long arg)
2766 {
2767         struct kvm_vcpu *vcpu = filp->private_data;
2768         void __user *argp = (void __user *)arg;
2769         int r;
2770         union {
2771                 struct kvm_lapic_state *lapic;
2772                 struct kvm_xsave *xsave;
2773                 struct kvm_xcrs *xcrs;
2774                 void *buffer;
2775         } u;
2776
2777         u.buffer = NULL;
2778         switch (ioctl) {
2779         case KVM_GET_LAPIC: {
2780                 r = -EINVAL;
2781                 if (!vcpu->arch.apic)
2782                         goto out;
2783                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2784
2785                 r = -ENOMEM;
2786                 if (!u.lapic)
2787                         goto out;
2788                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2789                 if (r)
2790                         goto out;
2791                 r = -EFAULT;
2792                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2793                         goto out;
2794                 r = 0;
2795                 break;
2796         }
2797         case KVM_SET_LAPIC: {
2798                 r = -EINVAL;
2799                 if (!vcpu->arch.apic)
2800                         goto out;
2801                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2802                 r = -ENOMEM;
2803                 if (!u.lapic)
2804                         goto out;
2805                 r = -EFAULT;
2806                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2807                         goto out;
2808                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2809                 if (r)
2810                         goto out;
2811                 r = 0;
2812                 break;
2813         }
2814         case KVM_INTERRUPT: {
2815                 struct kvm_interrupt irq;
2816
2817                 r = -EFAULT;
2818                 if (copy_from_user(&irq, argp, sizeof irq))
2819                         goto out;
2820                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2821                 if (r)
2822                         goto out;
2823                 r = 0;
2824                 break;
2825         }
2826         case KVM_NMI: {
2827                 r = kvm_vcpu_ioctl_nmi(vcpu);
2828                 if (r)
2829                         goto out;
2830                 r = 0;
2831                 break;
2832         }
2833         case KVM_SET_CPUID: {
2834                 struct kvm_cpuid __user *cpuid_arg = argp;
2835                 struct kvm_cpuid cpuid;
2836
2837                 r = -EFAULT;
2838                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2839                         goto out;
2840                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2841                 if (r)
2842                         goto out;
2843                 break;
2844         }
2845         case KVM_SET_CPUID2: {
2846                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2847                 struct kvm_cpuid2 cpuid;
2848
2849                 r = -EFAULT;
2850                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2851                         goto out;
2852                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2853                                               cpuid_arg->entries);
2854                 if (r)
2855                         goto out;
2856                 break;
2857         }
2858         case KVM_GET_CPUID2: {
2859                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2860                 struct kvm_cpuid2 cpuid;
2861
2862                 r = -EFAULT;
2863                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2864                         goto out;
2865                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2866                                               cpuid_arg->entries);
2867                 if (r)
2868                         goto out;
2869                 r = -EFAULT;
2870                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2871                         goto out;
2872                 r = 0;
2873                 break;
2874         }
2875         case KVM_GET_MSRS:
2876                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2877                 break;
2878         case KVM_SET_MSRS:
2879                 r = msr_io(vcpu, argp, do_set_msr, 0);
2880                 break;
2881         case KVM_TPR_ACCESS_REPORTING: {
2882                 struct kvm_tpr_access_ctl tac;
2883
2884                 r = -EFAULT;
2885                 if (copy_from_user(&tac, argp, sizeof tac))
2886                         goto out;
2887                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2888                 if (r)
2889                         goto out;
2890                 r = -EFAULT;
2891                 if (copy_to_user(argp, &tac, sizeof tac))
2892                         goto out;
2893                 r = 0;
2894                 break;
2895         };
2896         case KVM_SET_VAPIC_ADDR: {
2897                 struct kvm_vapic_addr va;
2898
2899                 r = -EINVAL;
2900                 if (!irqchip_in_kernel(vcpu->kvm))
2901                         goto out;
2902                 r = -EFAULT;
2903                 if (copy_from_user(&va, argp, sizeof va))
2904                         goto out;
2905                 r = 0;
2906                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2907                 break;
2908         }
2909         case KVM_X86_SETUP_MCE: {
2910                 u64 mcg_cap;
2911
2912                 r = -EFAULT;
2913                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2914                         goto out;
2915                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2916                 break;
2917         }
2918         case KVM_X86_SET_MCE: {
2919                 struct kvm_x86_mce mce;
2920
2921                 r = -EFAULT;
2922                 if (copy_from_user(&mce, argp, sizeof mce))
2923                         goto out;
2924                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2925                 break;
2926         }
2927         case KVM_GET_VCPU_EVENTS: {
2928                 struct kvm_vcpu_events events;
2929
2930                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2931
2932                 r = -EFAULT;
2933                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2934                         break;
2935                 r = 0;
2936                 break;
2937         }
2938         case KVM_SET_VCPU_EVENTS: {
2939                 struct kvm_vcpu_events events;
2940
2941                 r = -EFAULT;
2942                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2943                         break;
2944
2945                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2946                 break;
2947         }
2948         case KVM_GET_DEBUGREGS: {
2949                 struct kvm_debugregs dbgregs;
2950
2951                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2952
2953                 r = -EFAULT;
2954                 if (copy_to_user(argp, &dbgregs,
2955                                  sizeof(struct kvm_debugregs)))
2956                         break;
2957                 r = 0;
2958                 break;
2959         }
2960         case KVM_SET_DEBUGREGS: {
2961                 struct kvm_debugregs dbgregs;
2962
2963                 r = -EFAULT;
2964                 if (copy_from_user(&dbgregs, argp,
2965                                    sizeof(struct kvm_debugregs)))
2966                         break;
2967
2968                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2969                 break;
2970         }
2971         case KVM_GET_XSAVE: {
2972                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2973                 r = -ENOMEM;
2974                 if (!u.xsave)
2975                         break;
2976
2977                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2978
2979                 r = -EFAULT;
2980                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2981                         break;
2982                 r = 0;
2983                 break;
2984         }
2985         case KVM_SET_XSAVE: {
2986                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2987                 r = -ENOMEM;
2988                 if (!u.xsave)
2989                         break;
2990
2991                 r = -EFAULT;
2992                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2993                         break;
2994
2995                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2996                 break;
2997         }
2998         case KVM_GET_XCRS: {
2999                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3000                 r = -ENOMEM;
3001                 if (!u.xcrs)
3002                         break;
3003
3004                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3005
3006                 r = -EFAULT;
3007                 if (copy_to_user(argp, u.xcrs,
3008                                  sizeof(struct kvm_xcrs)))
3009                         break;
3010                 r = 0;
3011                 break;
3012         }
3013         case KVM_SET_XCRS: {
3014                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3015                 r = -ENOMEM;
3016                 if (!u.xcrs)
3017                         break;
3018
3019                 r = -EFAULT;
3020                 if (copy_from_user(u.xcrs, argp,
3021                                    sizeof(struct kvm_xcrs)))
3022                         break;
3023
3024                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3025                 break;
3026         }
3027         default:
3028                 r = -EINVAL;
3029         }
3030 out:
3031         kfree(u.buffer);
3032         return r;
3033 }
3034
3035 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3036 {
3037         int ret;
3038
3039         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3040                 return -1;
3041         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3042         return ret;
3043 }
3044
3045 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3046                                               u64 ident_addr)
3047 {
3048         kvm->arch.ept_identity_map_addr = ident_addr;
3049         return 0;
3050 }
3051
3052 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3053                                           u32 kvm_nr_mmu_pages)
3054 {
3055         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3056                 return -EINVAL;
3057
3058         mutex_lock(&kvm->slots_lock);
3059         spin_lock(&kvm->mmu_lock);
3060
3061         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3062         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3063
3064         spin_unlock(&kvm->mmu_lock);
3065         mutex_unlock(&kvm->slots_lock);
3066         return 0;
3067 }
3068
3069 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3070 {
3071         return kvm->arch.n_max_mmu_pages;
3072 }
3073
3074 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3075 {
3076         int r;
3077
3078         r = 0;
3079         switch (chip->chip_id) {
3080         case KVM_IRQCHIP_PIC_MASTER:
3081                 memcpy(&chip->chip.pic,
3082                         &pic_irqchip(kvm)->pics[0],
3083                         sizeof(struct kvm_pic_state));
3084                 break;
3085         case KVM_IRQCHIP_PIC_SLAVE:
3086                 memcpy(&chip->chip.pic,
3087                         &pic_irqchip(kvm)->pics[1],
3088                         sizeof(struct kvm_pic_state));
3089                 break;
3090         case KVM_IRQCHIP_IOAPIC:
3091                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3092                 break;
3093         default:
3094                 r = -EINVAL;
3095                 break;
3096         }
3097         return r;
3098 }
3099
3100 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3101 {
3102         int r;
3103
3104         r = 0;
3105         switch (chip->chip_id) {
3106         case KVM_IRQCHIP_PIC_MASTER:
3107                 spin_lock(&pic_irqchip(kvm)->lock);
3108                 memcpy(&pic_irqchip(kvm)->pics[0],
3109                         &chip->chip.pic,
3110                         sizeof(struct kvm_pic_state));
3111                 spin_unlock(&pic_irqchip(kvm)->lock);
3112                 break;
3113         case KVM_IRQCHIP_PIC_SLAVE:
3114                 spin_lock(&pic_irqchip(kvm)->lock);
3115                 memcpy(&pic_irqchip(kvm)->pics[1],
3116                         &chip->chip.pic,
3117                         sizeof(struct kvm_pic_state));
3118                 spin_unlock(&pic_irqchip(kvm)->lock);
3119                 break;
3120         case KVM_IRQCHIP_IOAPIC:
3121                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3122                 break;
3123         default:
3124                 r = -EINVAL;
3125                 break;
3126         }
3127         kvm_pic_update_irq(pic_irqchip(kvm));
3128         return r;
3129 }
3130
3131 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3132 {
3133         int r = 0;
3134
3135         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3136         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3137         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3138         return r;
3139 }
3140
3141 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3142 {
3143         int r = 0;
3144
3145         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3146         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3147         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3148         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3149         return r;
3150 }
3151
3152 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3153 {
3154         int r = 0;
3155
3156         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3157         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3158                 sizeof(ps->channels));
3159         ps->flags = kvm->arch.vpit->pit_state.flags;
3160         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3161         memset(&ps->reserved, 0, sizeof(ps->reserved));
3162         return r;
3163 }
3164
3165 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3166 {
3167         int r = 0, start = 0;
3168         u32 prev_legacy, cur_legacy;
3169         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3170         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3171         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3172         if (!prev_legacy && cur_legacy)
3173                 start = 1;
3174         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3175                sizeof(kvm->arch.vpit->pit_state.channels));
3176         kvm->arch.vpit->pit_state.flags = ps->flags;
3177         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3178         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3179         return r;
3180 }
3181
3182 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3183                                  struct kvm_reinject_control *control)
3184 {
3185         if (!kvm->arch.vpit)
3186                 return -ENXIO;
3187         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3188         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3189         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3190         return 0;
3191 }
3192
3193 /*
3194  * Get (and clear) the dirty memory log for a memory slot.
3195  */
3196 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3197                                       struct kvm_dirty_log *log)
3198 {
3199         int r, i;
3200         struct kvm_memory_slot *memslot;
3201         unsigned long n;
3202         unsigned long is_dirty = 0;
3203
3204         mutex_lock(&kvm->slots_lock);
3205
3206         r = -EINVAL;
3207         if (log->slot >= KVM_MEMORY_SLOTS)
3208                 goto out;
3209
3210         memslot = &kvm->memslots->memslots[log->slot];
3211         r = -ENOENT;
3212         if (!memslot->dirty_bitmap)
3213                 goto out;
3214
3215         n = kvm_dirty_bitmap_bytes(memslot);
3216
3217         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3218                 is_dirty = memslot->dirty_bitmap[i];
3219
3220         /* If nothing is dirty, don't bother messing with page tables. */
3221         if (is_dirty) {
3222                 struct kvm_memslots *slots, *old_slots;
3223                 unsigned long *dirty_bitmap;
3224
3225                 dirty_bitmap = memslot->dirty_bitmap_head;
3226                 if (memslot->dirty_bitmap == dirty_bitmap)
3227                         dirty_bitmap += n / sizeof(long);
3228                 memset(dirty_bitmap, 0, n);
3229
3230                 r = -ENOMEM;
3231                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3232                 if (!slots)
3233                         goto out;
3234                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3235                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3236                 slots->generation++;
3237
3238                 old_slots = kvm->memslots;
3239                 rcu_assign_pointer(kvm->memslots, slots);
3240                 synchronize_srcu_expedited(&kvm->srcu);
3241                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3242                 kfree(old_slots);
3243
3244                 spin_lock(&kvm->mmu_lock);
3245                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3246                 spin_unlock(&kvm->mmu_lock);
3247
3248                 r = -EFAULT;
3249                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3250                         goto out;
3251         } else {
3252                 r = -EFAULT;
3253                 if (clear_user(log->dirty_bitmap, n))
3254                         goto out;
3255         }
3256
3257         r = 0;
3258 out:
3259         mutex_unlock(&kvm->slots_lock);
3260         return r;
3261 }
3262
3263 long kvm_arch_vm_ioctl(struct file *filp,
3264                        unsigned int ioctl, unsigned long arg)
3265 {
3266         struct kvm *kvm = filp->private_data;
3267         void __user *argp = (void __user *)arg;
3268         int r = -ENOTTY;
3269         /*
3270          * This union makes it completely explicit to gcc-3.x
3271          * that these two variables' stack usage should be
3272          * combined, not added together.
3273          */
3274         union {
3275                 struct kvm_pit_state ps;
3276                 struct kvm_pit_state2 ps2;
3277                 struct kvm_pit_config pit_config;
3278         } u;
3279
3280         switch (ioctl) {
3281         case KVM_SET_TSS_ADDR:
3282                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3283                 if (r < 0)
3284                         goto out;
3285                 break;
3286         case KVM_SET_IDENTITY_MAP_ADDR: {
3287                 u64 ident_addr;
3288
3289                 r = -EFAULT;
3290                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3291                         goto out;
3292                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3293                 if (r < 0)
3294                         goto out;
3295                 break;
3296         }
3297         case KVM_SET_NR_MMU_PAGES:
3298                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3299                 if (r)
3300                         goto out;
3301                 break;
3302         case KVM_GET_NR_MMU_PAGES:
3303                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3304                 break;
3305         case KVM_CREATE_IRQCHIP: {
3306                 struct kvm_pic *vpic;
3307
3308                 mutex_lock(&kvm->lock);
3309                 r = -EEXIST;
3310                 if (kvm->arch.vpic)
3311                         goto create_irqchip_unlock;
3312                 r = -ENOMEM;
3313                 vpic = kvm_create_pic(kvm);
3314                 if (vpic) {
3315                         r = kvm_ioapic_init(kvm);
3316                         if (r) {
3317                                 mutex_lock(&kvm->slots_lock);
3318                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3319                                                           &vpic->dev);
3320                                 mutex_unlock(&kvm->slots_lock);
3321                                 kfree(vpic);
3322                                 goto create_irqchip_unlock;
3323                         }
3324                 } else
3325                         goto create_irqchip_unlock;
3326                 smp_wmb();
3327                 kvm->arch.vpic = vpic;
3328                 smp_wmb();
3329                 r = kvm_setup_default_irq_routing(kvm);
3330                 if (r) {
3331                         mutex_lock(&kvm->slots_lock);
3332                         mutex_lock(&kvm->irq_lock);
3333                         kvm_ioapic_destroy(kvm);
3334                         kvm_destroy_pic(kvm);
3335                         mutex_unlock(&kvm->irq_lock);
3336                         mutex_unlock(&kvm->slots_lock);
3337                 }
3338         create_irqchip_unlock:
3339                 mutex_unlock(&kvm->lock);
3340                 break;
3341         }
3342         case KVM_CREATE_PIT:
3343                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3344                 goto create_pit;
3345         case KVM_CREATE_PIT2:
3346                 r = -EFAULT;
3347                 if (copy_from_user(&u.pit_config, argp,
3348                                    sizeof(struct kvm_pit_config)))
3349                         goto out;
3350         create_pit:
3351                 mutex_lock(&kvm->slots_lock);
3352                 r = -EEXIST;
3353                 if (kvm->arch.vpit)
3354                         goto create_pit_unlock;
3355                 r = -ENOMEM;
3356                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3357                 if (kvm->arch.vpit)
3358                         r = 0;
3359         create_pit_unlock:
3360                 mutex_unlock(&kvm->slots_lock);
3361                 break;
3362         case KVM_IRQ_LINE_STATUS:
3363         case KVM_IRQ_LINE: {
3364                 struct kvm_irq_level irq_event;
3365
3366                 r = -EFAULT;
3367                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3368                         goto out;
3369                 r = -ENXIO;
3370                 if (irqchip_in_kernel(kvm)) {
3371                         __s32 status;
3372                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3373                                         irq_event.irq, irq_event.level);
3374                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3375                                 r = -EFAULT;
3376                                 irq_event.status = status;
3377                                 if (copy_to_user(argp, &irq_event,
3378                                                         sizeof irq_event))
3379                                         goto out;
3380                         }
3381                         r = 0;
3382                 }
3383                 break;
3384         }
3385         case KVM_GET_IRQCHIP: {
3386                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3387                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3388
3389                 r = -ENOMEM;
3390                 if (!chip)
3391                         goto out;
3392                 r = -EFAULT;
3393                 if (copy_from_user(chip, argp, sizeof *chip))
3394                         goto get_irqchip_out;
3395                 r = -ENXIO;
3396                 if (!irqchip_in_kernel(kvm))
3397                         goto get_irqchip_out;
3398                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3399                 if (r)
3400                         goto get_irqchip_out;
3401                 r = -EFAULT;
3402                 if (copy_to_user(argp, chip, sizeof *chip))
3403                         goto get_irqchip_out;
3404                 r = 0;
3405         get_irqchip_out:
3406                 kfree(chip);
3407                 if (r)
3408                         goto out;
3409                 break;
3410         }
3411         case KVM_SET_IRQCHIP: {
3412                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3413                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3414
3415                 r = -ENOMEM;
3416                 if (!chip)
3417                         goto out;
3418                 r = -EFAULT;
3419                 if (copy_from_user(chip, argp, sizeof *chip))
3420                         goto set_irqchip_out;
3421                 r = -ENXIO;
3422                 if (!irqchip_in_kernel(kvm))
3423                         goto set_irqchip_out;
3424                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3425                 if (r)
3426                         goto set_irqchip_out;
3427                 r = 0;
3428         set_irqchip_out:
3429                 kfree(chip);
3430                 if (r)
3431                         goto out;
3432                 break;
3433         }
3434         case KVM_GET_PIT: {
3435                 r = -EFAULT;
3436                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3437                         goto out;
3438                 r = -ENXIO;
3439                 if (!kvm->arch.vpit)
3440                         goto out;
3441                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3442                 if (r)
3443                         goto out;
3444                 r = -EFAULT;
3445                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3446                         goto out;
3447                 r = 0;
3448                 break;
3449         }
3450         case KVM_SET_PIT: {
3451                 r = -EFAULT;
3452                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3453                         goto out;
3454                 r = -ENXIO;
3455                 if (!kvm->arch.vpit)
3456                         goto out;
3457                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3458                 if (r)
3459                         goto out;
3460                 r = 0;
3461                 break;
3462         }
3463         case KVM_GET_PIT2: {
3464                 r = -ENXIO;
3465                 if (!kvm->arch.vpit)
3466                         goto out;
3467                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3468                 if (r)
3469                         goto out;
3470                 r = -EFAULT;
3471                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3472                         goto out;
3473                 r = 0;
3474                 break;
3475         }
3476         case KVM_SET_PIT2: {
3477                 r = -EFAULT;
3478                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3479                         goto out;
3480                 r = -ENXIO;
3481                 if (!kvm->arch.vpit)
3482                         goto out;
3483                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3484                 if (r)
3485                         goto out;
3486                 r = 0;
3487                 break;
3488         }
3489         case KVM_REINJECT_CONTROL: {
3490                 struct kvm_reinject_control control;
3491                 r =  -EFAULT;
3492                 if (copy_from_user(&control, argp, sizeof(control)))
3493                         goto out;
3494                 r = kvm_vm_ioctl_reinject(kvm, &control);
3495                 if (r)
3496                         goto out;
3497                 r = 0;
3498                 break;
3499         }
3500         case KVM_XEN_HVM_CONFIG: {
3501                 r = -EFAULT;
3502                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3503                                    sizeof(struct kvm_xen_hvm_config)))
3504                         goto out;
3505                 r = -EINVAL;
3506                 if (kvm->arch.xen_hvm_config.flags)
3507                         goto out;
3508                 r = 0;
3509                 break;
3510         }
3511         case KVM_SET_CLOCK: {
3512                 struct kvm_clock_data user_ns;
3513                 u64 now_ns;
3514                 s64 delta;
3515
3516                 r = -EFAULT;
3517                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3518                         goto out;
3519
3520                 r = -EINVAL;
3521                 if (user_ns.flags)
3522                         goto out;
3523
3524                 r = 0;
3525                 local_irq_disable();
3526                 now_ns = get_kernel_ns();
3527                 delta = user_ns.clock - now_ns;
3528                 local_irq_enable();
3529                 kvm->arch.kvmclock_offset = delta;
3530                 break;
3531         }
3532         case KVM_GET_CLOCK: {
3533                 struct kvm_clock_data user_ns;
3534                 u64 now_ns;
3535
3536                 local_irq_disable();
3537                 now_ns = get_kernel_ns();
3538                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3539                 local_irq_enable();
3540                 user_ns.flags = 0;
3541                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3542
3543                 r = -EFAULT;
3544                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3545                         goto out;
3546                 r = 0;
3547                 break;
3548         }
3549
3550         default:
3551                 ;
3552         }
3553 out:
3554         return r;
3555 }
3556
3557 static void kvm_init_msr_list(void)
3558 {
3559         u32 dummy[2];
3560         unsigned i, j;
3561
3562         /* skip the first msrs in the list. KVM-specific */
3563         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3564                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3565                         continue;
3566                 if (j < i)
3567                         msrs_to_save[j] = msrs_to_save[i];
3568                 j++;
3569         }
3570         num_msrs_to_save = j;
3571 }
3572
3573 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3574                            const void *v)
3575 {
3576         if (vcpu->arch.apic &&
3577             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3578                 return 0;
3579
3580         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3581 }
3582
3583 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3584 {
3585         if (vcpu->arch.apic &&
3586             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3587                 return 0;
3588
3589         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3590 }
3591
3592 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3593                         struct kvm_segment *var, int seg)
3594 {
3595         kvm_x86_ops->set_segment(vcpu, var, seg);
3596 }
3597
3598 void kvm_get_segment(struct kvm_vcpu *vcpu,
3599                      struct kvm_segment *var, int seg)
3600 {
3601         kvm_x86_ops->get_segment(vcpu, var, seg);
3602 }
3603
3604 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3605 {
3606         return gpa;
3607 }
3608
3609 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3610 {
3611         gpa_t t_gpa;
3612         struct x86_exception exception;
3613
3614         BUG_ON(!mmu_is_nested(vcpu));
3615
3616         /* NPT walks are always user-walks */
3617         access |= PFERR_USER_MASK;
3618         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3619
3620         return t_gpa;
3621 }
3622
3623 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3624                               struct x86_exception *exception)
3625 {
3626         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3627         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3628 }
3629
3630  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3631                                 struct x86_exception *exception)
3632 {
3633         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3634         access |= PFERR_FETCH_MASK;
3635         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3636 }
3637
3638 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3639                                struct x86_exception *exception)
3640 {
3641         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3642         access |= PFERR_WRITE_MASK;
3643         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3644 }
3645
3646 /* uses this to access any guest's mapped memory without checking CPL */
3647 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3648                                 struct x86_exception *exception)
3649 {
3650         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3651 }
3652
3653 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3654                                       struct kvm_vcpu *vcpu, u32 access,
3655                                       struct x86_exception *exception)
3656 {
3657         void *data = val;
3658         int r = X86EMUL_CONTINUE;
3659
3660         while (bytes) {
3661                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3662                                                             exception);
3663                 unsigned offset = addr & (PAGE_SIZE-1);
3664                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3665                 int ret;
3666
3667                 if (gpa == UNMAPPED_GVA)
3668                         return X86EMUL_PROPAGATE_FAULT;
3669                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3670                 if (ret < 0) {
3671                         r = X86EMUL_IO_NEEDED;
3672                         goto out;
3673                 }
3674
3675                 bytes -= toread;
3676                 data += toread;
3677                 addr += toread;
3678         }
3679 out:
3680         return r;
3681 }
3682
3683 /* used for instruction fetching */
3684 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3685                                 struct kvm_vcpu *vcpu,
3686                                 struct x86_exception *exception)
3687 {
3688         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3689         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3690                                           access | PFERR_FETCH_MASK,
3691                                           exception);
3692 }
3693
3694 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3695                                struct kvm_vcpu *vcpu,
3696                                struct x86_exception *exception)
3697 {
3698         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3699         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3700                                           exception);
3701 }
3702
3703 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3704                                       struct kvm_vcpu *vcpu,
3705                                       struct x86_exception *exception)
3706 {
3707         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3708 }
3709
3710 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3711                                        unsigned int bytes,
3712                                        struct kvm_vcpu *vcpu,
3713                                        struct x86_exception *exception)
3714 {
3715         void *data = val;
3716         int r = X86EMUL_CONTINUE;
3717
3718         while (bytes) {
3719                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3720                                                              PFERR_WRITE_MASK,
3721                                                              exception);
3722                 unsigned offset = addr & (PAGE_SIZE-1);
3723                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3724                 int ret;
3725
3726                 if (gpa == UNMAPPED_GVA)
3727                         return X86EMUL_PROPAGATE_FAULT;
3728                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3729                 if (ret < 0) {
3730                         r = X86EMUL_IO_NEEDED;
3731                         goto out;
3732                 }
3733
3734                 bytes -= towrite;
3735                 data += towrite;
3736                 addr += towrite;
3737         }
3738 out:
3739         return r;
3740 }
3741
3742 static int emulator_read_emulated(unsigned long addr,
3743                                   void *val,
3744                                   unsigned int bytes,
3745                                   struct x86_exception *exception,
3746                                   struct kvm_vcpu *vcpu)
3747 {
3748         gpa_t                 gpa;
3749
3750         if (vcpu->mmio_read_completed) {
3751                 memcpy(val, vcpu->mmio_data, bytes);
3752                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3753                                vcpu->mmio_phys_addr, *(u64 *)val);
3754                 vcpu->mmio_read_completed = 0;
3755                 return X86EMUL_CONTINUE;
3756         }
3757
3758         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3759
3760         if (gpa == UNMAPPED_GVA)
3761                 return X86EMUL_PROPAGATE_FAULT;
3762
3763         /* For APIC access vmexit */
3764         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3765                 goto mmio;
3766
3767         if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3768             == X86EMUL_CONTINUE)
3769                 return X86EMUL_CONTINUE;
3770
3771 mmio:
3772         /*
3773          * Is this MMIO handled locally?
3774          */
3775         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3776                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3777                 return X86EMUL_CONTINUE;
3778         }
3779
3780         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3781
3782         vcpu->mmio_needed = 1;
3783         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3784         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3785         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3786         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3787
3788         return X86EMUL_IO_NEEDED;
3789 }
3790
3791 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3792                         const void *val, int bytes)
3793 {
3794         int ret;
3795
3796         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3797         if (ret < 0)
3798                 return 0;
3799         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3800         return 1;
3801 }
3802
3803 static int emulator_write_emulated_onepage(unsigned long addr,
3804                                            const void *val,
3805                                            unsigned int bytes,
3806                                            struct x86_exception *exception,
3807                                            struct kvm_vcpu *vcpu)
3808 {
3809         gpa_t                 gpa;
3810
3811         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3812
3813         if (gpa == UNMAPPED_GVA)
3814                 return X86EMUL_PROPAGATE_FAULT;
3815
3816         /* For APIC access vmexit */
3817         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3818                 goto mmio;
3819
3820         if (emulator_write_phys(vcpu, gpa, val, bytes))
3821                 return X86EMUL_CONTINUE;
3822
3823 mmio:
3824         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3825         /*
3826          * Is this MMIO handled locally?
3827          */
3828         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3829                 return X86EMUL_CONTINUE;
3830
3831         vcpu->mmio_needed = 1;
3832         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3833         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3834         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3835         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3836         memcpy(vcpu->run->mmio.data, val, bytes);
3837
3838         return X86EMUL_CONTINUE;
3839 }
3840
3841 int emulator_write_emulated(unsigned long addr,
3842                             const void *val,
3843                             unsigned int bytes,
3844                             struct x86_exception *exception,
3845                             struct kvm_vcpu *vcpu)
3846 {
3847         /* Crossing a page boundary? */
3848         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3849                 int rc, now;
3850
3851                 now = -addr & ~PAGE_MASK;
3852                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3853                                                      vcpu);
3854                 if (rc != X86EMUL_CONTINUE)
3855                         return rc;
3856                 addr += now;
3857                 val += now;
3858                 bytes -= now;
3859         }
3860         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3861                                                vcpu);
3862 }
3863
3864 #define CMPXCHG_TYPE(t, ptr, old, new) \
3865         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3866
3867 #ifdef CONFIG_X86_64
3868 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3869 #else
3870 #  define CMPXCHG64(ptr, old, new) \
3871         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3872 #endif
3873
3874 static int emulator_cmpxchg_emulated(unsigned long addr,
3875                                      const void *old,
3876                                      const void *new,
3877                                      unsigned int bytes,
3878                                      struct x86_exception *exception,
3879                                      struct kvm_vcpu *vcpu)
3880 {
3881         gpa_t gpa;
3882         struct page *page;
3883         char *kaddr;
3884         bool exchanged;
3885
3886         /* guests cmpxchg8b have to be emulated atomically */
3887         if (bytes > 8 || (bytes & (bytes - 1)))
3888                 goto emul_write;
3889
3890         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3891
3892         if (gpa == UNMAPPED_GVA ||
3893             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3894                 goto emul_write;
3895
3896         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3897                 goto emul_write;
3898
3899         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3900         if (is_error_page(page)) {
3901                 kvm_release_page_clean(page);
3902                 goto emul_write;
3903         }
3904
3905         kaddr = kmap_atomic(page, KM_USER0);
3906         kaddr += offset_in_page(gpa);
3907         switch (bytes) {
3908         case 1:
3909                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3910                 break;
3911         case 2:
3912                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3913                 break;
3914         case 4:
3915                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3916                 break;
3917         case 8:
3918                 exchanged = CMPXCHG64(kaddr, old, new);
3919                 break;
3920         default:
3921                 BUG();
3922         }
3923         kunmap_atomic(kaddr, KM_USER0);
3924         kvm_release_page_dirty(page);
3925
3926         if (!exchanged)
3927                 return X86EMUL_CMPXCHG_FAILED;
3928
3929         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3930
3931         return X86EMUL_CONTINUE;
3932
3933 emul_write:
3934         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3935
3936         return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3937 }
3938
3939 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3940 {
3941         /* TODO: String I/O for in kernel device */
3942         int r;
3943
3944         if (vcpu->arch.pio.in)
3945                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3946                                     vcpu->arch.pio.size, pd);
3947         else
3948                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3949                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3950                                      pd);
3951         return r;
3952 }
3953
3954
3955 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3956                              unsigned int count, struct kvm_vcpu *vcpu)
3957 {
3958         if (vcpu->arch.pio.count)
3959                 goto data_avail;
3960
3961         trace_kvm_pio(0, port, size, count);
3962
3963         vcpu->arch.pio.port = port;
3964         vcpu->arch.pio.in = 1;
3965         vcpu->arch.pio.count  = count;
3966         vcpu->arch.pio.size = size;
3967
3968         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3969         data_avail:
3970                 memcpy(val, vcpu->arch.pio_data, size * count);
3971                 vcpu->arch.pio.count = 0;
3972                 return 1;
3973         }
3974
3975         vcpu->run->exit_reason = KVM_EXIT_IO;
3976         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3977         vcpu->run->io.size = size;
3978         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3979         vcpu->run->io.count = count;
3980         vcpu->run->io.port = port;
3981
3982         return 0;
3983 }
3984
3985 static int emulator_pio_out_emulated(int size, unsigned short port,
3986                               const void *val, unsigned int count,
3987                               struct kvm_vcpu *vcpu)
3988 {
3989         trace_kvm_pio(1, port, size, count);
3990
3991         vcpu->arch.pio.port = port;
3992         vcpu->arch.pio.in = 0;
3993         vcpu->arch.pio.count = count;
3994         vcpu->arch.pio.size = size;
3995
3996         memcpy(vcpu->arch.pio_data, val, size * count);
3997
3998         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3999                 vcpu->arch.pio.count = 0;
4000                 return 1;
4001         }
4002
4003         vcpu->run->exit_reason = KVM_EXIT_IO;
4004         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4005         vcpu->run->io.size = size;
4006         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4007         vcpu->run->io.count = count;
4008         vcpu->run->io.port = port;
4009
4010         return 0;
4011 }
4012
4013 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4014 {
4015         return kvm_x86_ops->get_segment_base(vcpu, seg);
4016 }
4017
4018 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4019 {
4020         kvm_mmu_invlpg(vcpu, address);
4021         return X86EMUL_CONTINUE;
4022 }
4023
4024 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4025 {
4026         if (!need_emulate_wbinvd(vcpu))
4027                 return X86EMUL_CONTINUE;
4028
4029         if (kvm_x86_ops->has_wbinvd_exit()) {
4030                 int cpu = get_cpu();
4031
4032                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4033                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4034                                 wbinvd_ipi, NULL, 1);
4035                 put_cpu();
4036                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4037         } else
4038                 wbinvd();
4039         return X86EMUL_CONTINUE;
4040 }
4041 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4042
4043 int emulate_clts(struct kvm_vcpu *vcpu)
4044 {
4045         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4046         kvm_x86_ops->fpu_activate(vcpu);
4047         return X86EMUL_CONTINUE;
4048 }
4049
4050 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4051 {
4052         return _kvm_get_dr(vcpu, dr, dest);
4053 }
4054
4055 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4056 {
4057
4058         return __kvm_set_dr(vcpu, dr, value);
4059 }
4060
4061 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4062 {
4063         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4064 }
4065
4066 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4067 {
4068         unsigned long value;
4069
4070         switch (cr) {
4071         case 0:
4072                 value = kvm_read_cr0(vcpu);
4073                 break;
4074         case 2:
4075                 value = vcpu->arch.cr2;
4076                 break;
4077         case 3:
4078                 value = kvm_read_cr3(vcpu);
4079                 break;
4080         case 4:
4081                 value = kvm_read_cr4(vcpu);
4082                 break;
4083         case 8:
4084                 value = kvm_get_cr8(vcpu);
4085                 break;
4086         default:
4087                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4088                 return 0;
4089         }
4090
4091         return value;
4092 }
4093
4094 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4095 {
4096         int res = 0;
4097
4098         switch (cr) {
4099         case 0:
4100                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4101                 break;
4102         case 2:
4103                 vcpu->arch.cr2 = val;
4104                 break;
4105         case 3:
4106                 res = kvm_set_cr3(vcpu, val);
4107                 break;
4108         case 4:
4109                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4110                 break;
4111         case 8:
4112                 res = kvm_set_cr8(vcpu, val);
4113                 break;
4114         default:
4115                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4116                 res = -1;
4117         }
4118
4119         return res;
4120 }
4121
4122 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4123 {
4124         return kvm_x86_ops->get_cpl(vcpu);
4125 }
4126
4127 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4128 {
4129         kvm_x86_ops->get_gdt(vcpu, dt);
4130 }
4131
4132 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4133 {
4134         kvm_x86_ops->get_idt(vcpu, dt);
4135 }
4136
4137 static unsigned long emulator_get_cached_segment_base(int seg,
4138                                                       struct kvm_vcpu *vcpu)
4139 {
4140         return get_segment_base(vcpu, seg);
4141 }
4142
4143 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4144                                            struct kvm_vcpu *vcpu)
4145 {
4146         struct kvm_segment var;
4147
4148         kvm_get_segment(vcpu, &var, seg);
4149
4150         if (var.unusable)
4151                 return false;
4152
4153         if (var.g)
4154                 var.limit >>= 12;
4155         set_desc_limit(desc, var.limit);
4156         set_desc_base(desc, (unsigned long)var.base);
4157         desc->type = var.type;
4158         desc->s = var.s;
4159         desc->dpl = var.dpl;
4160         desc->p = var.present;
4161         desc->avl = var.avl;
4162         desc->l = var.l;
4163         desc->d = var.db;
4164         desc->g = var.g;
4165
4166         return true;
4167 }
4168
4169 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4170                                            struct kvm_vcpu *vcpu)
4171 {
4172         struct kvm_segment var;
4173
4174         /* needed to preserve selector */
4175         kvm_get_segment(vcpu, &var, seg);
4176
4177         var.base = get_desc_base(desc);
4178         var.limit = get_desc_limit(desc);
4179         if (desc->g)
4180                 var.limit = (var.limit << 12) | 0xfff;
4181         var.type = desc->type;
4182         var.present = desc->p;
4183         var.dpl = desc->dpl;
4184         var.db = desc->d;
4185         var.s = desc->s;
4186         var.l = desc->l;
4187         var.g = desc->g;
4188         var.avl = desc->avl;
4189         var.present = desc->p;
4190         var.unusable = !var.present;
4191         var.padding = 0;
4192
4193         kvm_set_segment(vcpu, &var, seg);
4194         return;
4195 }
4196
4197 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4198 {
4199         struct kvm_segment kvm_seg;
4200
4201         kvm_get_segment(vcpu, &kvm_seg, seg);
4202         return kvm_seg.selector;
4203 }
4204
4205 static void emulator_set_segment_selector(u16 sel, int seg,
4206                                           struct kvm_vcpu *vcpu)
4207 {
4208         struct kvm_segment kvm_seg;
4209
4210         kvm_get_segment(vcpu, &kvm_seg, seg);
4211         kvm_seg.selector = sel;
4212         kvm_set_segment(vcpu, &kvm_seg, seg);
4213 }
4214
4215 static struct x86_emulate_ops emulate_ops = {
4216         .read_std            = kvm_read_guest_virt_system,
4217         .write_std           = kvm_write_guest_virt_system,
4218         .fetch               = kvm_fetch_guest_virt,
4219         .read_emulated       = emulator_read_emulated,
4220         .write_emulated      = emulator_write_emulated,
4221         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4222         .pio_in_emulated     = emulator_pio_in_emulated,
4223         .pio_out_emulated    = emulator_pio_out_emulated,
4224         .get_cached_descriptor = emulator_get_cached_descriptor,
4225         .set_cached_descriptor = emulator_set_cached_descriptor,
4226         .get_segment_selector = emulator_get_segment_selector,
4227         .set_segment_selector = emulator_set_segment_selector,
4228         .get_cached_segment_base = emulator_get_cached_segment_base,
4229         .get_gdt             = emulator_get_gdt,
4230         .get_idt             = emulator_get_idt,
4231         .get_cr              = emulator_get_cr,
4232         .set_cr              = emulator_set_cr,
4233         .cpl                 = emulator_get_cpl,
4234         .get_dr              = emulator_get_dr,
4235         .set_dr              = emulator_set_dr,
4236         .set_msr             = kvm_set_msr,
4237         .get_msr             = kvm_get_msr,
4238 };
4239
4240 static void cache_all_regs(struct kvm_vcpu *vcpu)
4241 {
4242         kvm_register_read(vcpu, VCPU_REGS_RAX);
4243         kvm_register_read(vcpu, VCPU_REGS_RSP);
4244         kvm_register_read(vcpu, VCPU_REGS_RIP);
4245         vcpu->arch.regs_dirty = ~0;
4246 }
4247
4248 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4249 {
4250         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4251         /*
4252          * an sti; sti; sequence only disable interrupts for the first
4253          * instruction. So, if the last instruction, be it emulated or
4254          * not, left the system with the INT_STI flag enabled, it
4255          * means that the last instruction is an sti. We should not
4256          * leave the flag on in this case. The same goes for mov ss
4257          */
4258         if (!(int_shadow & mask))
4259                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4260 }
4261
4262 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4263 {
4264         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4265         if (ctxt->exception.vector == PF_VECTOR)
4266                 kvm_propagate_fault(vcpu, &ctxt->exception);
4267         else if (ctxt->exception.error_code_valid)
4268                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4269                                       ctxt->exception.error_code);
4270         else
4271                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4272 }
4273
4274 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4275 {
4276         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4277         int cs_db, cs_l;
4278
4279         cache_all_regs(vcpu);
4280
4281         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4282
4283         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4284         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4285         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4286         vcpu->arch.emulate_ctxt.mode =
4287                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4288                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4289                 ? X86EMUL_MODE_VM86 : cs_l
4290                 ? X86EMUL_MODE_PROT64 : cs_db
4291                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4292         memset(c, 0, sizeof(struct decode_cache));
4293         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4294 }
4295
4296 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4297 {
4298         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4299         int ret;
4300
4301         init_emulate_ctxt(vcpu);
4302
4303         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4304         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4305         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4306         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4307
4308         if (ret != X86EMUL_CONTINUE)
4309                 return EMULATE_FAIL;
4310
4311         vcpu->arch.emulate_ctxt.eip = c->eip;
4312         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4313         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4314         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4315
4316         if (irq == NMI_VECTOR)
4317                 vcpu->arch.nmi_pending = false;
4318         else
4319                 vcpu->arch.interrupt.pending = false;
4320
4321         return EMULATE_DONE;
4322 }
4323 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4324
4325 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4326 {
4327         int r = EMULATE_DONE;
4328
4329         ++vcpu->stat.insn_emulation_fail;
4330         trace_kvm_emulate_insn_failed(vcpu);
4331         if (!is_guest_mode(vcpu)) {
4332                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4333                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4334                 vcpu->run->internal.ndata = 0;
4335                 r = EMULATE_FAIL;
4336         }
4337         kvm_queue_exception(vcpu, UD_VECTOR);
4338
4339         return r;
4340 }
4341
4342 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4343 {
4344         gpa_t gpa;
4345
4346         if (tdp_enabled)
4347                 return false;
4348
4349         /*
4350          * if emulation was due to access to shadowed page table
4351          * and it failed try to unshadow page and re-entetr the
4352          * guest to let CPU execute the instruction.
4353          */
4354         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4355                 return true;
4356
4357         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4358
4359         if (gpa == UNMAPPED_GVA)
4360                 return true; /* let cpu generate fault */
4361
4362         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4363                 return true;
4364
4365         return false;
4366 }
4367
4368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4369                             unsigned long cr2,
4370                             int emulation_type,
4371                             void *insn,
4372                             int insn_len)
4373 {
4374         int r;
4375         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4376
4377         kvm_clear_exception_queue(vcpu);
4378         vcpu->arch.mmio_fault_cr2 = cr2;
4379         /*
4380          * TODO: fix emulate.c to use guest_read/write_register
4381          * instead of direct ->regs accesses, can save hundred cycles
4382          * on Intel for instructions that don't read/change RSP, for
4383          * for example.
4384          */
4385         cache_all_regs(vcpu);
4386
4387         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4388                 init_emulate_ctxt(vcpu);
4389                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4390                 vcpu->arch.emulate_ctxt.have_exception = false;
4391                 vcpu->arch.emulate_ctxt.perm_ok = false;
4392
4393                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4394                 if (r == X86EMUL_PROPAGATE_FAULT)
4395                         goto done;
4396
4397                 trace_kvm_emulate_insn_start(vcpu);
4398
4399                 /* Only allow emulation of specific instructions on #UD
4400                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4401                 if (emulation_type & EMULTYPE_TRAP_UD) {
4402                         if (!c->twobyte)
4403                                 return EMULATE_FAIL;
4404                         switch (c->b) {
4405                         case 0x01: /* VMMCALL */
4406                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4407                                         return EMULATE_FAIL;
4408                                 break;
4409                         case 0x34: /* sysenter */
4410                         case 0x35: /* sysexit */
4411                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4412                                         return EMULATE_FAIL;
4413                                 break;
4414                         case 0x05: /* syscall */
4415                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4416                                         return EMULATE_FAIL;
4417                                 break;
4418                         default:
4419                                 return EMULATE_FAIL;
4420                         }
4421
4422                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4423                                 return EMULATE_FAIL;
4424                 }
4425
4426                 ++vcpu->stat.insn_emulation;
4427                 if (r)  {
4428                         if (reexecute_instruction(vcpu, cr2))
4429                                 return EMULATE_DONE;
4430                         if (emulation_type & EMULTYPE_SKIP)
4431                                 return EMULATE_FAIL;
4432                         return handle_emulation_failure(vcpu);
4433                 }
4434         }
4435
4436         if (emulation_type & EMULTYPE_SKIP) {
4437                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4438                 return EMULATE_DONE;
4439         }
4440
4441         /* this is needed for vmware backdor interface to work since it
4442            changes registers values  during IO operation */
4443         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4444
4445 restart:
4446         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4447
4448         if (r == EMULATION_FAILED) {
4449                 if (reexecute_instruction(vcpu, cr2))
4450                         return EMULATE_DONE;
4451
4452                 return handle_emulation_failure(vcpu);
4453         }
4454
4455 done:
4456         if (vcpu->arch.emulate_ctxt.have_exception) {
4457                 inject_emulated_exception(vcpu);
4458                 r = EMULATE_DONE;
4459         } else if (vcpu->arch.pio.count) {
4460                 if (!vcpu->arch.pio.in)
4461                         vcpu->arch.pio.count = 0;
4462                 r = EMULATE_DO_MMIO;
4463         } else if (vcpu->mmio_needed) {
4464                 if (vcpu->mmio_is_write)
4465                         vcpu->mmio_needed = 0;
4466                 r = EMULATE_DO_MMIO;
4467         } else if (r == EMULATION_RESTART)
4468                 goto restart;
4469         else
4470                 r = EMULATE_DONE;
4471
4472         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4473         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4474         kvm_make_request(KVM_REQ_EVENT, vcpu);
4475         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4476         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4477
4478         return r;
4479 }
4480 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4481
4482 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4483 {
4484         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4485         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4486         /* do not return to emulator after return from userspace */
4487         vcpu->arch.pio.count = 0;
4488         return ret;
4489 }
4490 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4491
4492 static void tsc_bad(void *info)
4493 {
4494         __this_cpu_write(cpu_tsc_khz, 0);
4495 }
4496
4497 static void tsc_khz_changed(void *data)
4498 {
4499         struct cpufreq_freqs *freq = data;
4500         unsigned long khz = 0;
4501
4502         if (data)
4503                 khz = freq->new;
4504         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4505                 khz = cpufreq_quick_get(raw_smp_processor_id());
4506         if (!khz)
4507                 khz = tsc_khz;
4508         __this_cpu_write(cpu_tsc_khz, khz);
4509 }
4510
4511 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4512                                      void *data)
4513 {
4514         struct cpufreq_freqs *freq = data;
4515         struct kvm *kvm;
4516         struct kvm_vcpu *vcpu;
4517         int i, send_ipi = 0;
4518
4519         /*
4520          * We allow guests to temporarily run on slowing clocks,
4521          * provided we notify them after, or to run on accelerating
4522          * clocks, provided we notify them before.  Thus time never
4523          * goes backwards.
4524          *
4525          * However, we have a problem.  We can't atomically update
4526          * the frequency of a given CPU from this function; it is
4527          * merely a notifier, which can be called from any CPU.
4528          * Changing the TSC frequency at arbitrary points in time
4529          * requires a recomputation of local variables related to
4530          * the TSC for each VCPU.  We must flag these local variables
4531          * to be updated and be sure the update takes place with the
4532          * new frequency before any guests proceed.
4533          *
4534          * Unfortunately, the combination of hotplug CPU and frequency
4535          * change creates an intractable locking scenario; the order
4536          * of when these callouts happen is undefined with respect to
4537          * CPU hotplug, and they can race with each other.  As such,
4538          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4539          * undefined; you can actually have a CPU frequency change take
4540          * place in between the computation of X and the setting of the
4541          * variable.  To protect against this problem, all updates of
4542          * the per_cpu tsc_khz variable are done in an interrupt
4543          * protected IPI, and all callers wishing to update the value
4544          * must wait for a synchronous IPI to complete (which is trivial
4545          * if the caller is on the CPU already).  This establishes the
4546          * necessary total order on variable updates.
4547          *
4548          * Note that because a guest time update may take place
4549          * anytime after the setting of the VCPU's request bit, the
4550          * correct TSC value must be set before the request.  However,
4551          * to ensure the update actually makes it to any guest which
4552          * starts running in hardware virtualization between the set
4553          * and the acquisition of the spinlock, we must also ping the
4554          * CPU after setting the request bit.
4555          *
4556          */
4557
4558         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4559                 return 0;
4560         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4561                 return 0;
4562
4563         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4564
4565         spin_lock(&kvm_lock);
4566         list_for_each_entry(kvm, &vm_list, vm_list) {
4567                 kvm_for_each_vcpu(i, vcpu, kvm) {
4568                         if (vcpu->cpu != freq->cpu)
4569                                 continue;
4570                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4571                         if (vcpu->cpu != smp_processor_id())
4572                                 send_ipi = 1;
4573                 }
4574         }
4575         spin_unlock(&kvm_lock);
4576
4577         if (freq->old < freq->new && send_ipi) {
4578                 /*
4579                  * We upscale the frequency.  Must make the guest
4580                  * doesn't see old kvmclock values while running with
4581                  * the new frequency, otherwise we risk the guest sees
4582                  * time go backwards.
4583                  *
4584                  * In case we update the frequency for another cpu
4585                  * (which might be in guest context) send an interrupt
4586                  * to kick the cpu out of guest context.  Next time
4587                  * guest context is entered kvmclock will be updated,
4588                  * so the guest will not see stale values.
4589                  */
4590                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4591         }
4592         return 0;
4593 }
4594
4595 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4596         .notifier_call  = kvmclock_cpufreq_notifier
4597 };
4598
4599 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4600                                         unsigned long action, void *hcpu)
4601 {
4602         unsigned int cpu = (unsigned long)hcpu;
4603
4604         switch (action) {
4605                 case CPU_ONLINE:
4606                 case CPU_DOWN_FAILED:
4607                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4608                         break;
4609                 case CPU_DOWN_PREPARE:
4610                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4611                         break;
4612         }
4613         return NOTIFY_OK;
4614 }
4615
4616 static struct notifier_block kvmclock_cpu_notifier_block = {
4617         .notifier_call  = kvmclock_cpu_notifier,
4618         .priority = -INT_MAX
4619 };
4620
4621 static void kvm_timer_init(void)
4622 {
4623         int cpu;
4624
4625         max_tsc_khz = tsc_khz;
4626         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4627         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4628 #ifdef CONFIG_CPU_FREQ
4629                 struct cpufreq_policy policy;
4630                 memset(&policy, 0, sizeof(policy));
4631                 cpu = get_cpu();
4632                 cpufreq_get_policy(&policy, cpu);
4633                 if (policy.cpuinfo.max_freq)
4634                         max_tsc_khz = policy.cpuinfo.max_freq;
4635                 put_cpu();
4636 #endif
4637                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4638                                           CPUFREQ_TRANSITION_NOTIFIER);
4639         }
4640         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4641         for_each_online_cpu(cpu)
4642                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4643 }
4644
4645 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4646
4647 static int kvm_is_in_guest(void)
4648 {
4649         return percpu_read(current_vcpu) != NULL;
4650 }
4651
4652 static int kvm_is_user_mode(void)
4653 {
4654         int user_mode = 3;
4655
4656         if (percpu_read(current_vcpu))
4657                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4658
4659         return user_mode != 0;
4660 }
4661
4662 static unsigned long kvm_get_guest_ip(void)
4663 {
4664         unsigned long ip = 0;
4665
4666         if (percpu_read(current_vcpu))
4667                 ip = kvm_rip_read(percpu_read(current_vcpu));
4668
4669         return ip;
4670 }
4671
4672 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4673         .is_in_guest            = kvm_is_in_guest,
4674         .is_user_mode           = kvm_is_user_mode,
4675         .get_guest_ip           = kvm_get_guest_ip,
4676 };
4677
4678 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4679 {
4680         percpu_write(current_vcpu, vcpu);
4681 }
4682 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4683
4684 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4685 {
4686         percpu_write(current_vcpu, NULL);
4687 }
4688 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4689
4690 int kvm_arch_init(void *opaque)
4691 {
4692         int r;
4693         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4694
4695         if (kvm_x86_ops) {
4696                 printk(KERN_ERR "kvm: already loaded the other module\n");
4697                 r = -EEXIST;
4698                 goto out;
4699         }
4700
4701         if (!ops->cpu_has_kvm_support()) {
4702                 printk(KERN_ERR "kvm: no hardware support\n");
4703                 r = -EOPNOTSUPP;
4704                 goto out;
4705         }
4706         if (ops->disabled_by_bios()) {
4707                 printk(KERN_ERR "kvm: disabled by bios\n");
4708                 r = -EOPNOTSUPP;
4709                 goto out;
4710         }
4711
4712         r = kvm_mmu_module_init();
4713         if (r)
4714                 goto out;
4715
4716         kvm_init_msr_list();
4717
4718         kvm_x86_ops = ops;
4719         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4720         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4721                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4722
4723         kvm_timer_init();
4724
4725         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4726
4727         if (cpu_has_xsave)
4728                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4729
4730         return 0;
4731
4732 out:
4733         return r;
4734 }
4735
4736 void kvm_arch_exit(void)
4737 {
4738         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4739
4740         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4741                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4742                                             CPUFREQ_TRANSITION_NOTIFIER);
4743         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4744         kvm_x86_ops = NULL;
4745         kvm_mmu_module_exit();
4746 }
4747
4748 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4749 {
4750         ++vcpu->stat.halt_exits;
4751         if (irqchip_in_kernel(vcpu->kvm)) {
4752                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4753                 return 1;
4754         } else {
4755                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4756                 return 0;
4757         }
4758 }
4759 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4760
4761 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4762                            unsigned long a1)
4763 {
4764         if (is_long_mode(vcpu))
4765                 return a0;
4766         else
4767                 return a0 | ((gpa_t)a1 << 32);
4768 }
4769
4770 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4771 {
4772         u64 param, ingpa, outgpa, ret;
4773         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4774         bool fast, longmode;
4775         int cs_db, cs_l;
4776
4777         /*
4778          * hypercall generates UD from non zero cpl and real mode
4779          * per HYPER-V spec
4780          */
4781         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4782                 kvm_queue_exception(vcpu, UD_VECTOR);
4783                 return 0;
4784         }
4785
4786         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4787         longmode = is_long_mode(vcpu) && cs_l == 1;
4788
4789         if (!longmode) {
4790                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4791                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4792                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4793                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4794                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4795                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4796         }
4797 #ifdef CONFIG_X86_64
4798         else {
4799                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4800                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4801                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4802         }
4803 #endif
4804
4805         code = param & 0xffff;
4806         fast = (param >> 16) & 0x1;
4807         rep_cnt = (param >> 32) & 0xfff;
4808         rep_idx = (param >> 48) & 0xfff;
4809
4810         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4811
4812         switch (code) {
4813         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4814                 kvm_vcpu_on_spin(vcpu);
4815                 break;
4816         default:
4817                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4818                 break;
4819         }
4820
4821         ret = res | (((u64)rep_done & 0xfff) << 32);
4822         if (longmode) {
4823                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4824         } else {
4825                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4826                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4827         }
4828
4829         return 1;
4830 }
4831
4832 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4833 {
4834         unsigned long nr, a0, a1, a2, a3, ret;
4835         int r = 1;
4836
4837         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4838                 return kvm_hv_hypercall(vcpu);
4839
4840         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4841         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4842         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4843         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4844         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4845
4846         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4847
4848         if (!is_long_mode(vcpu)) {
4849                 nr &= 0xFFFFFFFF;
4850                 a0 &= 0xFFFFFFFF;
4851                 a1 &= 0xFFFFFFFF;
4852                 a2 &= 0xFFFFFFFF;
4853                 a3 &= 0xFFFFFFFF;
4854         }
4855
4856         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4857                 ret = -KVM_EPERM;
4858                 goto out;
4859         }
4860
4861         switch (nr) {
4862         case KVM_HC_VAPIC_POLL_IRQ:
4863                 ret = 0;
4864                 break;
4865         case KVM_HC_MMU_OP:
4866                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4867                 break;
4868         default:
4869                 ret = -KVM_ENOSYS;
4870                 break;
4871         }
4872 out:
4873         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4874         ++vcpu->stat.hypercalls;
4875         return r;
4876 }
4877 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4878
4879 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4880 {
4881         char instruction[3];
4882         unsigned long rip = kvm_rip_read(vcpu);
4883
4884         /*
4885          * Blow out the MMU to ensure that no other VCPU has an active mapping
4886          * to ensure that the updated hypercall appears atomically across all
4887          * VCPUs.
4888          */
4889         kvm_mmu_zap_all(vcpu->kvm);
4890
4891         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4892
4893         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4894 }
4895
4896 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4897 {
4898         struct desc_ptr dt = { limit, base };
4899
4900         kvm_x86_ops->set_gdt(vcpu, &dt);
4901 }
4902
4903 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4904 {
4905         struct desc_ptr dt = { limit, base };
4906
4907         kvm_x86_ops->set_idt(vcpu, &dt);
4908 }
4909
4910 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4911 {
4912         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4913         int j, nent = vcpu->arch.cpuid_nent;
4914
4915         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4916         /* when no next entry is found, the current entry[i] is reselected */
4917         for (j = i + 1; ; j = (j + 1) % nent) {
4918                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4919                 if (ej->function == e->function) {
4920                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4921                         return j;
4922                 }
4923         }
4924         return 0; /* silence gcc, even though control never reaches here */
4925 }
4926
4927 /* find an entry with matching function, matching index (if needed), and that
4928  * should be read next (if it's stateful) */
4929 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4930         u32 function, u32 index)
4931 {
4932         if (e->function != function)
4933                 return 0;
4934         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4935                 return 0;
4936         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4937             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4938                 return 0;
4939         return 1;
4940 }
4941
4942 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4943                                               u32 function, u32 index)
4944 {
4945         int i;
4946         struct kvm_cpuid_entry2 *best = NULL;
4947
4948         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4949                 struct kvm_cpuid_entry2 *e;
4950
4951                 e = &vcpu->arch.cpuid_entries[i];
4952                 if (is_matching_cpuid_entry(e, function, index)) {
4953                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4954                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4955                         best = e;
4956                         break;
4957                 }
4958                 /*
4959                  * Both basic or both extended?
4960                  */
4961                 if (((e->function ^ function) & 0x80000000) == 0)
4962                         if (!best || e->function > best->function)
4963                                 best = e;
4964         }
4965         return best;
4966 }
4967 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4968
4969 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4970 {
4971         struct kvm_cpuid_entry2 *best;
4972
4973         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4974         if (!best || best->eax < 0x80000008)
4975                 goto not_found;
4976         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4977         if (best)
4978                 return best->eax & 0xff;
4979 not_found:
4980         return 36;
4981 }
4982
4983 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4984 {
4985         u32 function, index;
4986         struct kvm_cpuid_entry2 *best;
4987
4988         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4989         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4990         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4991         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4992         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4993         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4994         best = kvm_find_cpuid_entry(vcpu, function, index);
4995         if (best) {
4996                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4997                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4998                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4999                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5000         }
5001         kvm_x86_ops->skip_emulated_instruction(vcpu);
5002         trace_kvm_cpuid(function,
5003                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5004                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5005                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5006                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5007 }
5008 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5009
5010 /*
5011  * Check if userspace requested an interrupt window, and that the
5012  * interrupt window is open.
5013  *
5014  * No need to exit to userspace if we already have an interrupt queued.
5015  */
5016 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5017 {
5018         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5019                 vcpu->run->request_interrupt_window &&
5020                 kvm_arch_interrupt_allowed(vcpu));
5021 }
5022
5023 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5024 {
5025         struct kvm_run *kvm_run = vcpu->run;
5026
5027         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5028         kvm_run->cr8 = kvm_get_cr8(vcpu);
5029         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5030         if (irqchip_in_kernel(vcpu->kvm))
5031                 kvm_run->ready_for_interrupt_injection = 1;
5032         else
5033                 kvm_run->ready_for_interrupt_injection =
5034                         kvm_arch_interrupt_allowed(vcpu) &&
5035                         !kvm_cpu_has_interrupt(vcpu) &&
5036                         !kvm_event_needs_reinjection(vcpu);
5037 }
5038
5039 static void vapic_enter(struct kvm_vcpu *vcpu)
5040 {
5041         struct kvm_lapic *apic = vcpu->arch.apic;
5042         struct page *page;
5043
5044         if (!apic || !apic->vapic_addr)
5045                 return;
5046
5047         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5048
5049         vcpu->arch.apic->vapic_page = page;
5050 }
5051
5052 static void vapic_exit(struct kvm_vcpu *vcpu)
5053 {
5054         struct kvm_lapic *apic = vcpu->arch.apic;
5055         int idx;
5056
5057         if (!apic || !apic->vapic_addr)
5058                 return;
5059
5060         idx = srcu_read_lock(&vcpu->kvm->srcu);
5061         kvm_release_page_dirty(apic->vapic_page);
5062         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5063         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5064 }
5065
5066 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5067 {
5068         int max_irr, tpr;
5069
5070         if (!kvm_x86_ops->update_cr8_intercept)
5071                 return;
5072
5073         if (!vcpu->arch.apic)
5074                 return;
5075
5076         if (!vcpu->arch.apic->vapic_addr)
5077                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5078         else
5079                 max_irr = -1;
5080
5081         if (max_irr != -1)
5082                 max_irr >>= 4;
5083
5084         tpr = kvm_lapic_get_cr8(vcpu);
5085
5086         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5087 }
5088
5089 static void inject_pending_event(struct kvm_vcpu *vcpu)
5090 {
5091         /* try to reinject previous events if any */
5092         if (vcpu->arch.exception.pending) {
5093                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5094                                         vcpu->arch.exception.has_error_code,
5095                                         vcpu->arch.exception.error_code);
5096                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5097                                           vcpu->arch.exception.has_error_code,
5098                                           vcpu->arch.exception.error_code,
5099                                           vcpu->arch.exception.reinject);
5100                 return;
5101         }
5102
5103         if (vcpu->arch.nmi_injected) {
5104                 kvm_x86_ops->set_nmi(vcpu);
5105                 return;
5106         }
5107
5108         if (vcpu->arch.interrupt.pending) {
5109                 kvm_x86_ops->set_irq(vcpu);
5110                 return;
5111         }
5112
5113         /* try to inject new event if pending */
5114         if (vcpu->arch.nmi_pending) {
5115                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5116                         vcpu->arch.nmi_pending = false;
5117                         vcpu->arch.nmi_injected = true;
5118                         kvm_x86_ops->set_nmi(vcpu);
5119                 }
5120         } else if (kvm_cpu_has_interrupt(vcpu)) {
5121                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5122                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5123                                             false);
5124                         kvm_x86_ops->set_irq(vcpu);
5125                 }
5126         }
5127 }
5128
5129 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5130 {
5131         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5132                         !vcpu->guest_xcr0_loaded) {
5133                 /* kvm_set_xcr() also depends on this */
5134                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5135                 vcpu->guest_xcr0_loaded = 1;
5136         }
5137 }
5138
5139 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5140 {
5141         if (vcpu->guest_xcr0_loaded) {
5142                 if (vcpu->arch.xcr0 != host_xcr0)
5143                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5144                 vcpu->guest_xcr0_loaded = 0;
5145         }
5146 }
5147
5148 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5149 {
5150         int r;
5151         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5152                 vcpu->run->request_interrupt_window;
5153
5154         if (vcpu->requests) {
5155                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5156                         kvm_mmu_unload(vcpu);
5157                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5158                         __kvm_migrate_timers(vcpu);
5159                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5160                         r = kvm_guest_time_update(vcpu);
5161                         if (unlikely(r))
5162                                 goto out;
5163                 }
5164                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5165                         kvm_mmu_sync_roots(vcpu);
5166                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5167                         kvm_x86_ops->tlb_flush(vcpu);
5168                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5169                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5170                         r = 0;
5171                         goto out;
5172                 }
5173                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5174                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5175                         r = 0;
5176                         goto out;
5177                 }
5178                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5179                         vcpu->fpu_active = 0;
5180                         kvm_x86_ops->fpu_deactivate(vcpu);
5181                 }
5182                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5183                         /* Page is swapped out. Do synthetic halt */
5184                         vcpu->arch.apf.halted = true;
5185                         r = 1;
5186                         goto out;
5187                 }
5188         }
5189
5190         r = kvm_mmu_reload(vcpu);
5191         if (unlikely(r))
5192                 goto out;
5193
5194         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5195                 inject_pending_event(vcpu);
5196
5197                 /* enable NMI/IRQ window open exits if needed */
5198                 if (vcpu->arch.nmi_pending)
5199                         kvm_x86_ops->enable_nmi_window(vcpu);
5200                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5201                         kvm_x86_ops->enable_irq_window(vcpu);
5202
5203                 if (kvm_lapic_enabled(vcpu)) {
5204                         update_cr8_intercept(vcpu);
5205                         kvm_lapic_sync_to_vapic(vcpu);
5206                 }
5207         }
5208
5209         preempt_disable();
5210
5211         kvm_x86_ops->prepare_guest_switch(vcpu);
5212         if (vcpu->fpu_active)
5213                 kvm_load_guest_fpu(vcpu);
5214         kvm_load_guest_xcr0(vcpu);
5215
5216         atomic_set(&vcpu->guest_mode, 1);
5217         smp_wmb();
5218
5219         local_irq_disable();
5220
5221         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5222             || need_resched() || signal_pending(current)) {
5223                 atomic_set(&vcpu->guest_mode, 0);
5224                 smp_wmb();
5225                 local_irq_enable();
5226                 preempt_enable();
5227                 kvm_x86_ops->cancel_injection(vcpu);
5228                 r = 1;
5229                 goto out;
5230         }
5231
5232         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5233
5234         kvm_guest_enter();
5235
5236         if (unlikely(vcpu->arch.switch_db_regs)) {
5237                 set_debugreg(0, 7);
5238                 set_debugreg(vcpu->arch.eff_db[0], 0);
5239                 set_debugreg(vcpu->arch.eff_db[1], 1);
5240                 set_debugreg(vcpu->arch.eff_db[2], 2);
5241                 set_debugreg(vcpu->arch.eff_db[3], 3);
5242         }
5243
5244         trace_kvm_entry(vcpu->vcpu_id);
5245         kvm_x86_ops->run(vcpu);
5246
5247         /*
5248          * If the guest has used debug registers, at least dr7
5249          * will be disabled while returning to the host.
5250          * If we don't have active breakpoints in the host, we don't
5251          * care about the messed up debug address registers. But if
5252          * we have some of them active, restore the old state.
5253          */
5254         if (hw_breakpoint_active())
5255                 hw_breakpoint_restore();
5256
5257         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5258
5259         atomic_set(&vcpu->guest_mode, 0);
5260         smp_wmb();
5261         local_irq_enable();
5262
5263         ++vcpu->stat.exits;
5264
5265         /*
5266          * We must have an instruction between local_irq_enable() and
5267          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5268          * the interrupt shadow.  The stat.exits increment will do nicely.
5269          * But we need to prevent reordering, hence this barrier():
5270          */
5271         barrier();
5272
5273         kvm_guest_exit();
5274
5275         preempt_enable();
5276
5277         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5278
5279         /*
5280          * Profile KVM exit RIPs:
5281          */
5282         if (unlikely(prof_on == KVM_PROFILING)) {
5283                 unsigned long rip = kvm_rip_read(vcpu);
5284                 profile_hit(KVM_PROFILING, (void *)rip);
5285         }
5286
5287
5288         kvm_lapic_sync_from_vapic(vcpu);
5289
5290         r = kvm_x86_ops->handle_exit(vcpu);
5291 out:
5292         return r;
5293 }
5294
5295
5296 static int __vcpu_run(struct kvm_vcpu *vcpu)
5297 {
5298         int r;
5299         struct kvm *kvm = vcpu->kvm;
5300
5301         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5302                 pr_debug("vcpu %d received sipi with vector # %x\n",
5303                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5304                 kvm_lapic_reset(vcpu);
5305                 r = kvm_arch_vcpu_reset(vcpu);
5306                 if (r)
5307                         return r;
5308                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5309         }
5310
5311         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5312         vapic_enter(vcpu);
5313
5314         r = 1;
5315         while (r > 0) {
5316                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5317                     !vcpu->arch.apf.halted)
5318                         r = vcpu_enter_guest(vcpu);
5319                 else {
5320                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5321                         kvm_vcpu_block(vcpu);
5322                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5323                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5324                         {
5325                                 switch(vcpu->arch.mp_state) {
5326                                 case KVM_MP_STATE_HALTED:
5327                                         vcpu->arch.mp_state =
5328                                                 KVM_MP_STATE_RUNNABLE;
5329                                 case KVM_MP_STATE_RUNNABLE:
5330                                         vcpu->arch.apf.halted = false;
5331                                         break;
5332                                 case KVM_MP_STATE_SIPI_RECEIVED:
5333                                 default:
5334                                         r = -EINTR;
5335                                         break;
5336                                 }
5337                         }
5338                 }
5339
5340                 if (r <= 0)
5341                         break;
5342
5343                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5344                 if (kvm_cpu_has_pending_timer(vcpu))
5345                         kvm_inject_pending_timer_irqs(vcpu);
5346
5347                 if (dm_request_for_irq_injection(vcpu)) {
5348                         r = -EINTR;
5349                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5350                         ++vcpu->stat.request_irq_exits;
5351                 }
5352
5353                 kvm_check_async_pf_completion(vcpu);
5354
5355                 if (signal_pending(current)) {
5356                         r = -EINTR;
5357                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5358                         ++vcpu->stat.signal_exits;
5359                 }
5360                 if (need_resched()) {
5361                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5362                         kvm_resched(vcpu);
5363                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5364                 }
5365         }
5366
5367         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5368
5369         vapic_exit(vcpu);
5370
5371         return r;
5372 }
5373
5374 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5375 {
5376         int r;
5377         sigset_t sigsaved;
5378
5379         if (!tsk_used_math(current) && init_fpu(current))
5380                 return -ENOMEM;
5381
5382         if (vcpu->sigset_active)
5383                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5384
5385         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5386                 kvm_vcpu_block(vcpu);
5387                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5388                 r = -EAGAIN;
5389                 goto out;
5390         }
5391
5392         /* re-sync apic's tpr */
5393         if (!irqchip_in_kernel(vcpu->kvm)) {
5394                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5395                         r = -EINVAL;
5396                         goto out;
5397                 }
5398         }
5399
5400         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5401                 if (vcpu->mmio_needed) {
5402                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5403                         vcpu->mmio_read_completed = 1;
5404                         vcpu->mmio_needed = 0;
5405                 }
5406                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5407                 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5408                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5409                 if (r != EMULATE_DONE) {
5410                         r = 0;
5411                         goto out;
5412                 }
5413         }
5414         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5415                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5416                                      kvm_run->hypercall.ret);
5417
5418         r = __vcpu_run(vcpu);
5419
5420 out:
5421         post_kvm_run_save(vcpu);
5422         if (vcpu->sigset_active)
5423                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5424
5425         return r;
5426 }
5427
5428 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5429 {
5430         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5431         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5432         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5433         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5434         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5435         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5436         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5437         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5438 #ifdef CONFIG_X86_64
5439         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5440         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5441         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5442         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5443         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5444         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5445         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5446         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5447 #endif
5448
5449         regs->rip = kvm_rip_read(vcpu);
5450         regs->rflags = kvm_get_rflags(vcpu);
5451
5452         return 0;
5453 }
5454
5455 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5456 {
5457         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5458         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5459         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5460         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5461         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5462         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5463         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5464         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5465 #ifdef CONFIG_X86_64
5466         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5467         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5468         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5469         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5470         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5471         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5472         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5473         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5474 #endif
5475
5476         kvm_rip_write(vcpu, regs->rip);
5477         kvm_set_rflags(vcpu, regs->rflags);
5478
5479         vcpu->arch.exception.pending = false;
5480
5481         kvm_make_request(KVM_REQ_EVENT, vcpu);
5482
5483         return 0;
5484 }
5485
5486 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5487 {
5488         struct kvm_segment cs;
5489
5490         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5491         *db = cs.db;
5492         *l = cs.l;
5493 }
5494 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5495
5496 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5497                                   struct kvm_sregs *sregs)
5498 {
5499         struct desc_ptr dt;
5500
5501         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5502         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5503         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5504         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5505         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5506         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5507
5508         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5509         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5510
5511         kvm_x86_ops->get_idt(vcpu, &dt);
5512         sregs->idt.limit = dt.size;
5513         sregs->idt.base = dt.address;
5514         kvm_x86_ops->get_gdt(vcpu, &dt);
5515         sregs->gdt.limit = dt.size;
5516         sregs->gdt.base = dt.address;
5517
5518         sregs->cr0 = kvm_read_cr0(vcpu);
5519         sregs->cr2 = vcpu->arch.cr2;
5520         sregs->cr3 = kvm_read_cr3(vcpu);
5521         sregs->cr4 = kvm_read_cr4(vcpu);
5522         sregs->cr8 = kvm_get_cr8(vcpu);
5523         sregs->efer = vcpu->arch.efer;
5524         sregs->apic_base = kvm_get_apic_base(vcpu);
5525
5526         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5527
5528         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5529                 set_bit(vcpu->arch.interrupt.nr,
5530                         (unsigned long *)sregs->interrupt_bitmap);
5531
5532         return 0;
5533 }
5534
5535 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5536                                     struct kvm_mp_state *mp_state)
5537 {
5538         mp_state->mp_state = vcpu->arch.mp_state;
5539         return 0;
5540 }
5541
5542 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5543                                     struct kvm_mp_state *mp_state)
5544 {
5545         vcpu->arch.mp_state = mp_state->mp_state;
5546         kvm_make_request(KVM_REQ_EVENT, vcpu);
5547         return 0;
5548 }
5549
5550 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5551                     bool has_error_code, u32 error_code)
5552 {
5553         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5554         int ret;
5555
5556         init_emulate_ctxt(vcpu);
5557
5558         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5559                                    tss_selector, reason, has_error_code,
5560                                    error_code);
5561
5562         if (ret)
5563                 return EMULATE_FAIL;
5564
5565         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5566         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5567         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5568         kvm_make_request(KVM_REQ_EVENT, vcpu);
5569         return EMULATE_DONE;
5570 }
5571 EXPORT_SYMBOL_GPL(kvm_task_switch);
5572
5573 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5574                                   struct kvm_sregs *sregs)
5575 {
5576         int mmu_reset_needed = 0;
5577         int pending_vec, max_bits;
5578         struct desc_ptr dt;
5579
5580         dt.size = sregs->idt.limit;
5581         dt.address = sregs->idt.base;
5582         kvm_x86_ops->set_idt(vcpu, &dt);
5583         dt.size = sregs->gdt.limit;
5584         dt.address = sregs->gdt.base;
5585         kvm_x86_ops->set_gdt(vcpu, &dt);
5586
5587         vcpu->arch.cr2 = sregs->cr2;
5588         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5589         vcpu->arch.cr3 = sregs->cr3;
5590         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5591
5592         kvm_set_cr8(vcpu, sregs->cr8);
5593
5594         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5595         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5596         kvm_set_apic_base(vcpu, sregs->apic_base);
5597
5598         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5599         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5600         vcpu->arch.cr0 = sregs->cr0;
5601
5602         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5603         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5604         if (sregs->cr4 & X86_CR4_OSXSAVE)
5605                 update_cpuid(vcpu);
5606         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5607                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5608                 mmu_reset_needed = 1;
5609         }
5610
5611         if (mmu_reset_needed)
5612                 kvm_mmu_reset_context(vcpu);
5613
5614         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5615         pending_vec = find_first_bit(
5616                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5617         if (pending_vec < max_bits) {
5618                 kvm_queue_interrupt(vcpu, pending_vec, false);
5619                 pr_debug("Set back pending irq %d\n", pending_vec);
5620                 if (irqchip_in_kernel(vcpu->kvm))
5621                         kvm_pic_clear_isr_ack(vcpu->kvm);
5622         }
5623
5624         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5625         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5626         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5627         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5628         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5629         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5630
5631         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5632         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5633
5634         update_cr8_intercept(vcpu);
5635
5636         /* Older userspace won't unhalt the vcpu on reset. */
5637         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5638             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5639             !is_protmode(vcpu))
5640                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5641
5642         kvm_make_request(KVM_REQ_EVENT, vcpu);
5643
5644         return 0;
5645 }
5646
5647 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5648                                         struct kvm_guest_debug *dbg)
5649 {
5650         unsigned long rflags;
5651         int i, r;
5652
5653         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5654                 r = -EBUSY;
5655                 if (vcpu->arch.exception.pending)
5656                         goto out;
5657                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5658                         kvm_queue_exception(vcpu, DB_VECTOR);
5659                 else
5660                         kvm_queue_exception(vcpu, BP_VECTOR);
5661         }
5662
5663         /*
5664          * Read rflags as long as potentially injected trace flags are still
5665          * filtered out.
5666          */
5667         rflags = kvm_get_rflags(vcpu);
5668
5669         vcpu->guest_debug = dbg->control;
5670         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5671                 vcpu->guest_debug = 0;
5672
5673         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5674                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5675                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5676                 vcpu->arch.switch_db_regs =
5677                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5678         } else {
5679                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5680                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5681                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5682         }
5683
5684         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5685                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5686                         get_segment_base(vcpu, VCPU_SREG_CS);
5687
5688         /*
5689          * Trigger an rflags update that will inject or remove the trace
5690          * flags.
5691          */
5692         kvm_set_rflags(vcpu, rflags);
5693
5694         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5695
5696         r = 0;
5697
5698 out:
5699
5700         return r;
5701 }
5702
5703 /*
5704  * Translate a guest virtual address to a guest physical address.
5705  */
5706 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5707                                     struct kvm_translation *tr)
5708 {
5709         unsigned long vaddr = tr->linear_address;
5710         gpa_t gpa;
5711         int idx;
5712
5713         idx = srcu_read_lock(&vcpu->kvm->srcu);
5714         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5715         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5716         tr->physical_address = gpa;
5717         tr->valid = gpa != UNMAPPED_GVA;
5718         tr->writeable = 1;
5719         tr->usermode = 0;
5720
5721         return 0;
5722 }
5723
5724 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5725 {
5726         struct i387_fxsave_struct *fxsave =
5727                         &vcpu->arch.guest_fpu.state->fxsave;
5728
5729         memcpy(fpu->fpr, fxsave->st_space, 128);
5730         fpu->fcw = fxsave->cwd;
5731         fpu->fsw = fxsave->swd;
5732         fpu->ftwx = fxsave->twd;
5733         fpu->last_opcode = fxsave->fop;
5734         fpu->last_ip = fxsave->rip;
5735         fpu->last_dp = fxsave->rdp;
5736         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5737
5738         return 0;
5739 }
5740
5741 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5742 {
5743         struct i387_fxsave_struct *fxsave =
5744                         &vcpu->arch.guest_fpu.state->fxsave;
5745
5746         memcpy(fxsave->st_space, fpu->fpr, 128);
5747         fxsave->cwd = fpu->fcw;
5748         fxsave->swd = fpu->fsw;
5749         fxsave->twd = fpu->ftwx;
5750         fxsave->fop = fpu->last_opcode;
5751         fxsave->rip = fpu->last_ip;
5752         fxsave->rdp = fpu->last_dp;
5753         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5754
5755         return 0;
5756 }
5757
5758 int fx_init(struct kvm_vcpu *vcpu)
5759 {
5760         int err;
5761
5762         err = fpu_alloc(&vcpu->arch.guest_fpu);
5763         if (err)
5764                 return err;
5765
5766         fpu_finit(&vcpu->arch.guest_fpu);
5767
5768         /*
5769          * Ensure guest xcr0 is valid for loading
5770          */
5771         vcpu->arch.xcr0 = XSTATE_FP;
5772
5773         vcpu->arch.cr0 |= X86_CR0_ET;
5774
5775         return 0;
5776 }
5777 EXPORT_SYMBOL_GPL(fx_init);
5778
5779 static void fx_free(struct kvm_vcpu *vcpu)
5780 {
5781         fpu_free(&vcpu->arch.guest_fpu);
5782 }
5783
5784 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5785 {
5786         if (vcpu->guest_fpu_loaded)
5787                 return;
5788
5789         /*
5790          * Restore all possible states in the guest,
5791          * and assume host would use all available bits.
5792          * Guest xcr0 would be loaded later.
5793          */
5794         kvm_put_guest_xcr0(vcpu);
5795         vcpu->guest_fpu_loaded = 1;
5796         unlazy_fpu(current);
5797         fpu_restore_checking(&vcpu->arch.guest_fpu);
5798         trace_kvm_fpu(1);
5799 }
5800
5801 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5802 {
5803         kvm_put_guest_xcr0(vcpu);
5804
5805         if (!vcpu->guest_fpu_loaded)
5806                 return;
5807
5808         vcpu->guest_fpu_loaded = 0;
5809         fpu_save_init(&vcpu->arch.guest_fpu);
5810         ++vcpu->stat.fpu_reload;
5811         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5812         trace_kvm_fpu(0);
5813 }
5814
5815 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5816 {
5817         if (vcpu->arch.time_page) {
5818                 kvm_release_page_dirty(vcpu->arch.time_page);
5819                 vcpu->arch.time_page = NULL;
5820         }
5821
5822         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5823         fx_free(vcpu);
5824         kvm_x86_ops->vcpu_free(vcpu);
5825 }
5826
5827 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5828                                                 unsigned int id)
5829 {
5830         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5831                 printk_once(KERN_WARNING
5832                 "kvm: SMP vm created on host with unstable TSC; "
5833                 "guest TSC will not be reliable\n");
5834         return kvm_x86_ops->vcpu_create(kvm, id);
5835 }
5836
5837 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5838 {
5839         int r;
5840
5841         vcpu->arch.mtrr_state.have_fixed = 1;
5842         vcpu_load(vcpu);
5843         r = kvm_arch_vcpu_reset(vcpu);
5844         if (r == 0)
5845                 r = kvm_mmu_setup(vcpu);
5846         vcpu_put(vcpu);
5847         if (r < 0)
5848                 goto free_vcpu;
5849
5850         return 0;
5851 free_vcpu:
5852         kvm_x86_ops->vcpu_free(vcpu);
5853         return r;
5854 }
5855
5856 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5857 {
5858         vcpu->arch.apf.msr_val = 0;
5859
5860         vcpu_load(vcpu);
5861         kvm_mmu_unload(vcpu);
5862         vcpu_put(vcpu);
5863
5864         fx_free(vcpu);
5865         kvm_x86_ops->vcpu_free(vcpu);
5866 }
5867
5868 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5869 {
5870         vcpu->arch.nmi_pending = false;
5871         vcpu->arch.nmi_injected = false;
5872
5873         vcpu->arch.switch_db_regs = 0;
5874         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5875         vcpu->arch.dr6 = DR6_FIXED_1;
5876         vcpu->arch.dr7 = DR7_FIXED_1;
5877
5878         kvm_make_request(KVM_REQ_EVENT, vcpu);
5879         vcpu->arch.apf.msr_val = 0;
5880
5881         kvm_clear_async_pf_completion_queue(vcpu);
5882         kvm_async_pf_hash_reset(vcpu);
5883         vcpu->arch.apf.halted = false;
5884
5885         return kvm_x86_ops->vcpu_reset(vcpu);
5886 }
5887
5888 int kvm_arch_hardware_enable(void *garbage)
5889 {
5890         struct kvm *kvm;
5891         struct kvm_vcpu *vcpu;
5892         int i;
5893
5894         kvm_shared_msr_cpu_online();
5895         list_for_each_entry(kvm, &vm_list, vm_list)
5896                 kvm_for_each_vcpu(i, vcpu, kvm)
5897                         if (vcpu->cpu == smp_processor_id())
5898                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5899         return kvm_x86_ops->hardware_enable(garbage);
5900 }
5901
5902 void kvm_arch_hardware_disable(void *garbage)
5903 {
5904         kvm_x86_ops->hardware_disable(garbage);
5905         drop_user_return_notifiers(garbage);
5906 }
5907
5908 int kvm_arch_hardware_setup(void)
5909 {
5910         return kvm_x86_ops->hardware_setup();
5911 }
5912
5913 void kvm_arch_hardware_unsetup(void)
5914 {
5915         kvm_x86_ops->hardware_unsetup();
5916 }
5917
5918 void kvm_arch_check_processor_compat(void *rtn)
5919 {
5920         kvm_x86_ops->check_processor_compatibility(rtn);
5921 }
5922
5923 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5924 {
5925         struct page *page;
5926         struct kvm *kvm;
5927         int r;
5928
5929         BUG_ON(vcpu->kvm == NULL);
5930         kvm = vcpu->kvm;
5931
5932         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5933         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5934         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5935         vcpu->arch.mmu.translate_gpa = translate_gpa;
5936         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5937         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5938                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5939         else
5940                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5941
5942         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5943         if (!page) {
5944                 r = -ENOMEM;
5945                 goto fail;
5946         }
5947         vcpu->arch.pio_data = page_address(page);
5948
5949         if (!kvm->arch.virtual_tsc_khz)
5950                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5951
5952         r = kvm_mmu_create(vcpu);
5953         if (r < 0)
5954                 goto fail_free_pio_data;
5955
5956         if (irqchip_in_kernel(kvm)) {
5957                 r = kvm_create_lapic(vcpu);
5958                 if (r < 0)
5959                         goto fail_mmu_destroy;
5960         }
5961
5962         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5963                                        GFP_KERNEL);
5964         if (!vcpu->arch.mce_banks) {
5965                 r = -ENOMEM;
5966                 goto fail_free_lapic;
5967         }
5968         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5969
5970         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5971                 goto fail_free_mce_banks;
5972
5973         kvm_async_pf_hash_reset(vcpu);
5974
5975         return 0;
5976 fail_free_mce_banks:
5977         kfree(vcpu->arch.mce_banks);
5978 fail_free_lapic:
5979         kvm_free_lapic(vcpu);
5980 fail_mmu_destroy:
5981         kvm_mmu_destroy(vcpu);
5982 fail_free_pio_data:
5983         free_page((unsigned long)vcpu->arch.pio_data);
5984 fail:
5985         return r;
5986 }
5987
5988 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5989 {
5990         int idx;
5991
5992         kfree(vcpu->arch.mce_banks);
5993         kvm_free_lapic(vcpu);
5994         idx = srcu_read_lock(&vcpu->kvm->srcu);
5995         kvm_mmu_destroy(vcpu);
5996         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5997         free_page((unsigned long)vcpu->arch.pio_data);
5998 }
5999
6000 int kvm_arch_init_vm(struct kvm *kvm)
6001 {
6002         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6003         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6004
6005         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6006         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6007
6008         spin_lock_init(&kvm->arch.tsc_write_lock);
6009
6010         return 0;
6011 }
6012
6013 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6014 {
6015         vcpu_load(vcpu);
6016         kvm_mmu_unload(vcpu);
6017         vcpu_put(vcpu);
6018 }
6019
6020 static void kvm_free_vcpus(struct kvm *kvm)
6021 {
6022         unsigned int i;
6023         struct kvm_vcpu *vcpu;
6024
6025         /*
6026          * Unpin any mmu pages first.
6027          */
6028         kvm_for_each_vcpu(i, vcpu, kvm) {
6029                 kvm_clear_async_pf_completion_queue(vcpu);
6030                 kvm_unload_vcpu_mmu(vcpu);
6031         }
6032         kvm_for_each_vcpu(i, vcpu, kvm)
6033                 kvm_arch_vcpu_free(vcpu);
6034
6035         mutex_lock(&kvm->lock);
6036         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6037                 kvm->vcpus[i] = NULL;
6038
6039         atomic_set(&kvm->online_vcpus, 0);
6040         mutex_unlock(&kvm->lock);
6041 }
6042
6043 void kvm_arch_sync_events(struct kvm *kvm)
6044 {
6045         kvm_free_all_assigned_devices(kvm);
6046         kvm_free_pit(kvm);
6047 }
6048
6049 void kvm_arch_destroy_vm(struct kvm *kvm)
6050 {
6051         kvm_iommu_unmap_guest(kvm);
6052         kfree(kvm->arch.vpic);
6053         kfree(kvm->arch.vioapic);
6054         kvm_free_vcpus(kvm);
6055         if (kvm->arch.apic_access_page)
6056                 put_page(kvm->arch.apic_access_page);
6057         if (kvm->arch.ept_identity_pagetable)
6058                 put_page(kvm->arch.ept_identity_pagetable);
6059 }
6060
6061 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6062                                 struct kvm_memory_slot *memslot,
6063                                 struct kvm_memory_slot old,
6064                                 struct kvm_userspace_memory_region *mem,
6065                                 int user_alloc)
6066 {
6067         int npages = memslot->npages;
6068         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6069
6070         /* Prevent internal slot pages from being moved by fork()/COW. */
6071         if (memslot->id >= KVM_MEMORY_SLOTS)
6072                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6073
6074         /*To keep backward compatibility with older userspace,
6075          *x86 needs to hanlde !user_alloc case.
6076          */
6077         if (!user_alloc) {
6078                 if (npages && !old.rmap) {
6079                         unsigned long userspace_addr;
6080
6081                         down_write(&current->mm->mmap_sem);
6082                         userspace_addr = do_mmap(NULL, 0,
6083                                                  npages * PAGE_SIZE,
6084                                                  PROT_READ | PROT_WRITE,
6085                                                  map_flags,
6086                                                  0);
6087                         up_write(&current->mm->mmap_sem);
6088
6089                         if (IS_ERR((void *)userspace_addr))
6090                                 return PTR_ERR((void *)userspace_addr);
6091
6092                         memslot->userspace_addr = userspace_addr;
6093                 }
6094         }
6095
6096
6097         return 0;
6098 }
6099
6100 void kvm_arch_commit_memory_region(struct kvm *kvm,
6101                                 struct kvm_userspace_memory_region *mem,
6102                                 struct kvm_memory_slot old,
6103                                 int user_alloc)
6104 {
6105
6106         int npages = mem->memory_size >> PAGE_SHIFT;
6107
6108         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6109                 int ret;
6110
6111                 down_write(&current->mm->mmap_sem);
6112                 ret = do_munmap(current->mm, old.userspace_addr,
6113                                 old.npages * PAGE_SIZE);
6114                 up_write(&current->mm->mmap_sem);
6115                 if (ret < 0)
6116                         printk(KERN_WARNING
6117                                "kvm_vm_ioctl_set_memory_region: "
6118                                "failed to munmap memory\n");
6119         }
6120
6121         spin_lock(&kvm->mmu_lock);
6122         if (!kvm->arch.n_requested_mmu_pages) {
6123                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6124                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6125         }
6126
6127         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6128         spin_unlock(&kvm->mmu_lock);
6129 }
6130
6131 void kvm_arch_flush_shadow(struct kvm *kvm)
6132 {
6133         kvm_mmu_zap_all(kvm);
6134         kvm_reload_remote_mmus(kvm);
6135 }
6136
6137 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6138 {
6139         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6140                 !vcpu->arch.apf.halted)
6141                 || !list_empty_careful(&vcpu->async_pf.done)
6142                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6143                 || vcpu->arch.nmi_pending ||
6144                 (kvm_arch_interrupt_allowed(vcpu) &&
6145                  kvm_cpu_has_interrupt(vcpu));
6146 }
6147
6148 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6149 {
6150         int me;
6151         int cpu = vcpu->cpu;
6152
6153         if (waitqueue_active(&vcpu->wq)) {
6154                 wake_up_interruptible(&vcpu->wq);
6155                 ++vcpu->stat.halt_wakeup;
6156         }
6157
6158         me = get_cpu();
6159         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6160                 if (atomic_xchg(&vcpu->guest_mode, 0))
6161                         smp_send_reschedule(cpu);
6162         put_cpu();
6163 }
6164
6165 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6166 {
6167         return kvm_x86_ops->interrupt_allowed(vcpu);
6168 }
6169
6170 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6171 {
6172         unsigned long current_rip = kvm_rip_read(vcpu) +
6173                 get_segment_base(vcpu, VCPU_SREG_CS);
6174
6175         return current_rip == linear_rip;
6176 }
6177 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6178
6179 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6180 {
6181         unsigned long rflags;
6182
6183         rflags = kvm_x86_ops->get_rflags(vcpu);
6184         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6185                 rflags &= ~X86_EFLAGS_TF;
6186         return rflags;
6187 }
6188 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6189
6190 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6191 {
6192         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6193             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6194                 rflags |= X86_EFLAGS_TF;
6195         kvm_x86_ops->set_rflags(vcpu, rflags);
6196         kvm_make_request(KVM_REQ_EVENT, vcpu);
6197 }
6198 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6199
6200 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6201 {
6202         int r;
6203
6204         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6205               is_error_page(work->page))
6206                 return;
6207
6208         r = kvm_mmu_reload(vcpu);
6209         if (unlikely(r))
6210                 return;
6211
6212         if (!vcpu->arch.mmu.direct_map &&
6213               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6214                 return;
6215
6216         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6217 }
6218
6219 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6220 {
6221         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6222 }
6223
6224 static inline u32 kvm_async_pf_next_probe(u32 key)
6225 {
6226         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6227 }
6228
6229 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6230 {
6231         u32 key = kvm_async_pf_hash_fn(gfn);
6232
6233         while (vcpu->arch.apf.gfns[key] != ~0)
6234                 key = kvm_async_pf_next_probe(key);
6235
6236         vcpu->arch.apf.gfns[key] = gfn;
6237 }
6238
6239 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6240 {
6241         int i;
6242         u32 key = kvm_async_pf_hash_fn(gfn);
6243
6244         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6245                      (vcpu->arch.apf.gfns[key] != gfn &&
6246                       vcpu->arch.apf.gfns[key] != ~0); i++)
6247                 key = kvm_async_pf_next_probe(key);
6248
6249         return key;
6250 }
6251
6252 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6253 {
6254         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6255 }
6256
6257 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6258 {
6259         u32 i, j, k;
6260
6261         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6262         while (true) {
6263                 vcpu->arch.apf.gfns[i] = ~0;
6264                 do {
6265                         j = kvm_async_pf_next_probe(j);
6266                         if (vcpu->arch.apf.gfns[j] == ~0)
6267                                 return;
6268                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6269                         /*
6270                          * k lies cyclically in ]i,j]
6271                          * |    i.k.j |
6272                          * |....j i.k.| or  |.k..j i...|
6273                          */
6274                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6275                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6276                 i = j;
6277         }
6278 }
6279
6280 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6281 {
6282
6283         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6284                                       sizeof(val));
6285 }
6286
6287 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6288                                      struct kvm_async_pf *work)
6289 {
6290         struct x86_exception fault;
6291
6292         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6293         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6294
6295         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6296             (vcpu->arch.apf.send_user_only &&
6297              kvm_x86_ops->get_cpl(vcpu) == 0))
6298                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6299         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6300                 fault.vector = PF_VECTOR;
6301                 fault.error_code_valid = true;
6302                 fault.error_code = 0;
6303                 fault.nested_page_fault = false;
6304                 fault.address = work->arch.token;
6305                 kvm_inject_page_fault(vcpu, &fault);
6306         }
6307 }
6308
6309 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6310                                  struct kvm_async_pf *work)
6311 {
6312         struct x86_exception fault;
6313
6314         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6315         if (is_error_page(work->page))
6316                 work->arch.token = ~0; /* broadcast wakeup */
6317         else
6318                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6319
6320         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6321             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6322                 fault.vector = PF_VECTOR;
6323                 fault.error_code_valid = true;
6324                 fault.error_code = 0;
6325                 fault.nested_page_fault = false;
6326                 fault.address = work->arch.token;
6327                 kvm_inject_page_fault(vcpu, &fault);
6328         }
6329         vcpu->arch.apf.halted = false;
6330 }
6331
6332 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6333 {
6334         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6335                 return true;
6336         else
6337                 return !kvm_event_needs_reinjection(vcpu) &&
6338                         kvm_x86_ops->interrupt_allowed(vcpu);
6339 }
6340
6341 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6342 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6343 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6344 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6345 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6346 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6347 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6348 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6349 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6350 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6351 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6352 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);