Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40 #include <linux/user-return-notifier.h>
41 #include <linux/srcu.h>
42 #include <linux/slab.h>
43 #include <linux/perf_event.h>
44 #include <trace/events/kvm.h>
45
46 #define CREATE_TRACE_POINTS
47 #include "trace.h"
48
49 #include <asm/debugreg.h>
50 #include <asm/uaccess.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <asm/mtrr.h>
54 #include <asm/mce.h>
55
56 #define MAX_IO_MSRS 256
57 #define CR0_RESERVED_BITS                                               \
58         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
59                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
60                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
61 #define CR4_RESERVED_BITS                                               \
62         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
63                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
64                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
65                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
66
67 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
68
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
71
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
78 #else
79 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
87                                     struct kvm_cpuid_entry2 __user *entries);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 int ignore_msrs = 0;
93 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 #define KVM_NR_SHARED_MSRS 16
96
97 struct kvm_shared_msrs_global {
98         int nr;
99         u32 msrs[KVM_NR_SHARED_MSRS];
100 };
101
102 struct kvm_shared_msrs {
103         struct user_return_notifier urn;
104         bool registered;
105         struct kvm_shared_msr_values {
106                 u64 host;
107                 u64 curr;
108         } values[KVM_NR_SHARED_MSRS];
109 };
110
111 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
112 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
113
114 struct kvm_stats_debugfs_item debugfs_entries[] = {
115         { "pf_fixed", VCPU_STAT(pf_fixed) },
116         { "pf_guest", VCPU_STAT(pf_guest) },
117         { "tlb_flush", VCPU_STAT(tlb_flush) },
118         { "invlpg", VCPU_STAT(invlpg) },
119         { "exits", VCPU_STAT(exits) },
120         { "io_exits", VCPU_STAT(io_exits) },
121         { "mmio_exits", VCPU_STAT(mmio_exits) },
122         { "signal_exits", VCPU_STAT(signal_exits) },
123         { "irq_window", VCPU_STAT(irq_window_exits) },
124         { "nmi_window", VCPU_STAT(nmi_window_exits) },
125         { "halt_exits", VCPU_STAT(halt_exits) },
126         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
127         { "hypercalls", VCPU_STAT(hypercalls) },
128         { "request_irq", VCPU_STAT(request_irq_exits) },
129         { "irq_exits", VCPU_STAT(irq_exits) },
130         { "host_state_reload", VCPU_STAT(host_state_reload) },
131         { "efer_reload", VCPU_STAT(efer_reload) },
132         { "fpu_reload", VCPU_STAT(fpu_reload) },
133         { "insn_emulation", VCPU_STAT(insn_emulation) },
134         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
135         { "irq_injections", VCPU_STAT(irq_injections) },
136         { "nmi_injections", VCPU_STAT(nmi_injections) },
137         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
138         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
139         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
140         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
141         { "mmu_flooded", VM_STAT(mmu_flooded) },
142         { "mmu_recycled", VM_STAT(mmu_recycled) },
143         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
144         { "mmu_unsync", VM_STAT(mmu_unsync) },
145         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
146         { "largepages", VM_STAT(lpages) },
147         { NULL }
148 };
149
150 static void kvm_on_user_return(struct user_return_notifier *urn)
151 {
152         unsigned slot;
153         struct kvm_shared_msrs *locals
154                 = container_of(urn, struct kvm_shared_msrs, urn);
155         struct kvm_shared_msr_values *values;
156
157         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
158                 values = &locals->values[slot];
159                 if (values->host != values->curr) {
160                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
161                         values->curr = values->host;
162                 }
163         }
164         locals->registered = false;
165         user_return_notifier_unregister(urn);
166 }
167
168 static void shared_msr_update(unsigned slot, u32 msr)
169 {
170         struct kvm_shared_msrs *smsr;
171         u64 value;
172
173         smsr = &__get_cpu_var(shared_msrs);
174         /* only read, and nobody should modify it at this time,
175          * so don't need lock */
176         if (slot >= shared_msrs_global.nr) {
177                 printk(KERN_ERR "kvm: invalid MSR slot!");
178                 return;
179         }
180         rdmsrl_safe(msr, &value);
181         smsr->values[slot].host = value;
182         smsr->values[slot].curr = value;
183 }
184
185 void kvm_define_shared_msr(unsigned slot, u32 msr)
186 {
187         if (slot >= shared_msrs_global.nr)
188                 shared_msrs_global.nr = slot + 1;
189         shared_msrs_global.msrs[slot] = msr;
190         /* we need ensured the shared_msr_global have been updated */
191         smp_wmb();
192 }
193 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
194
195 static void kvm_shared_msr_cpu_online(void)
196 {
197         unsigned i;
198
199         for (i = 0; i < shared_msrs_global.nr; ++i)
200                 shared_msr_update(i, shared_msrs_global.msrs[i]);
201 }
202
203 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
204 {
205         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
206
207         if (((value ^ smsr->values[slot].curr) & mask) == 0)
208                 return;
209         smsr->values[slot].curr = value;
210         wrmsrl(shared_msrs_global.msrs[slot], value);
211         if (!smsr->registered) {
212                 smsr->urn.on_user_return = kvm_on_user_return;
213                 user_return_notifier_register(&smsr->urn);
214                 smsr->registered = true;
215         }
216 }
217 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
218
219 static void drop_user_return_notifiers(void *ignore)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (smsr->registered)
224                 kvm_on_user_return(&smsr->urn);
225 }
226
227 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
228 {
229         if (irqchip_in_kernel(vcpu->kvm))
230                 return vcpu->arch.apic_base;
231         else
232                 return vcpu->arch.apic_base;
233 }
234 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
235
236 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
237 {
238         /* TODO: reserve bits check */
239         if (irqchip_in_kernel(vcpu->kvm))
240                 kvm_lapic_set_base(vcpu, data);
241         else
242                 vcpu->arch.apic_base = data;
243 }
244 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
245
246 #define EXCPT_BENIGN            0
247 #define EXCPT_CONTRIBUTORY      1
248 #define EXCPT_PF                2
249
250 static int exception_class(int vector)
251 {
252         switch (vector) {
253         case PF_VECTOR:
254                 return EXCPT_PF;
255         case DE_VECTOR:
256         case TS_VECTOR:
257         case NP_VECTOR:
258         case SS_VECTOR:
259         case GP_VECTOR:
260                 return EXCPT_CONTRIBUTORY;
261         default:
262                 break;
263         }
264         return EXCPT_BENIGN;
265 }
266
267 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
268                 unsigned nr, bool has_error, u32 error_code,
269                 bool reinject)
270 {
271         u32 prev_nr;
272         int class1, class2;
273
274         if (!vcpu->arch.exception.pending) {
275         queue:
276                 vcpu->arch.exception.pending = true;
277                 vcpu->arch.exception.has_error_code = has_error;
278                 vcpu->arch.exception.nr = nr;
279                 vcpu->arch.exception.error_code = error_code;
280                 vcpu->arch.exception.reinject = reinject;
281                 return;
282         }
283
284         /* to check exception */
285         prev_nr = vcpu->arch.exception.nr;
286         if (prev_nr == DF_VECTOR) {
287                 /* triple fault -> shutdown */
288                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
289                 return;
290         }
291         class1 = exception_class(prev_nr);
292         class2 = exception_class(nr);
293         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
294                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
295                 /* generate double fault per SDM Table 5-5 */
296                 vcpu->arch.exception.pending = true;
297                 vcpu->arch.exception.has_error_code = true;
298                 vcpu->arch.exception.nr = DF_VECTOR;
299                 vcpu->arch.exception.error_code = 0;
300         } else
301                 /* replace previous exception with a new one in a hope
302                    that instruction re-execution will regenerate lost
303                    exception */
304                 goto queue;
305 }
306
307 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
308 {
309         kvm_multiple_exception(vcpu, nr, false, 0, false);
310 }
311 EXPORT_SYMBOL_GPL(kvm_queue_exception);
312
313 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
314 {
315         kvm_multiple_exception(vcpu, nr, false, 0, true);
316 }
317 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
318
319 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
320                            u32 error_code)
321 {
322         ++vcpu->stat.pf_guest;
323         vcpu->arch.cr2 = addr;
324         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
325 }
326
327 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
328 {
329         vcpu->arch.nmi_pending = 1;
330 }
331 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
332
333 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
334 {
335         kvm_multiple_exception(vcpu, nr, true, error_code, false);
336 }
337 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
338
339 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
340 {
341         kvm_multiple_exception(vcpu, nr, true, error_code, true);
342 }
343 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
344
345 /*
346  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
347  * a #GP and return false.
348  */
349 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
350 {
351         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
352                 return true;
353         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
354         return false;
355 }
356 EXPORT_SYMBOL_GPL(kvm_require_cpl);
357
358 /*
359  * Load the pae pdptrs.  Return true is they are all valid.
360  */
361 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
362 {
363         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
364         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
365         int i;
366         int ret;
367         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
368
369         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
370                                   offset * sizeof(u64), sizeof(pdpte));
371         if (ret < 0) {
372                 ret = 0;
373                 goto out;
374         }
375         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
376                 if (is_present_gpte(pdpte[i]) &&
377                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
378                         ret = 0;
379                         goto out;
380                 }
381         }
382         ret = 1;
383
384         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
385         __set_bit(VCPU_EXREG_PDPTR,
386                   (unsigned long *)&vcpu->arch.regs_avail);
387         __set_bit(VCPU_EXREG_PDPTR,
388                   (unsigned long *)&vcpu->arch.regs_dirty);
389 out:
390
391         return ret;
392 }
393 EXPORT_SYMBOL_GPL(load_pdptrs);
394
395 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
396 {
397         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
398         bool changed = true;
399         int r;
400
401         if (is_long_mode(vcpu) || !is_pae(vcpu))
402                 return false;
403
404         if (!test_bit(VCPU_EXREG_PDPTR,
405                       (unsigned long *)&vcpu->arch.regs_avail))
406                 return true;
407
408         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
409         if (r < 0)
410                 goto out;
411         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
412 out:
413
414         return changed;
415 }
416
417 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
418 {
419         cr0 |= X86_CR0_ET;
420
421 #ifdef CONFIG_X86_64
422         if (cr0 & 0xffffffff00000000UL) {
423                 kvm_inject_gp(vcpu, 0);
424                 return;
425         }
426 #endif
427
428         cr0 &= ~CR0_RESERVED_BITS;
429
430         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
431                 kvm_inject_gp(vcpu, 0);
432                 return;
433         }
434
435         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
436                 kvm_inject_gp(vcpu, 0);
437                 return;
438         }
439
440         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
441 #ifdef CONFIG_X86_64
442                 if ((vcpu->arch.efer & EFER_LME)) {
443                         int cs_db, cs_l;
444
445                         if (!is_pae(vcpu)) {
446                                 kvm_inject_gp(vcpu, 0);
447                                 return;
448                         }
449                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
450                         if (cs_l) {
451                                 kvm_inject_gp(vcpu, 0);
452                                 return;
453
454                         }
455                 } else
456 #endif
457                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
458                         kvm_inject_gp(vcpu, 0);
459                         return;
460                 }
461
462         }
463
464         kvm_x86_ops->set_cr0(vcpu, cr0);
465
466         kvm_mmu_reset_context(vcpu);
467         return;
468 }
469 EXPORT_SYMBOL_GPL(kvm_set_cr0);
470
471 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
472 {
473         kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
474 }
475 EXPORT_SYMBOL_GPL(kvm_lmsw);
476
477 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
478 {
479         unsigned long old_cr4 = kvm_read_cr4(vcpu);
480         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
481
482         if (cr4 & CR4_RESERVED_BITS) {
483                 kvm_inject_gp(vcpu, 0);
484                 return;
485         }
486
487         if (is_long_mode(vcpu)) {
488                 if (!(cr4 & X86_CR4_PAE)) {
489                         kvm_inject_gp(vcpu, 0);
490                         return;
491                 }
492         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
493                    && ((cr4 ^ old_cr4) & pdptr_bits)
494                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
495                 kvm_inject_gp(vcpu, 0);
496                 return;
497         }
498
499         if (cr4 & X86_CR4_VMXE) {
500                 kvm_inject_gp(vcpu, 0);
501                 return;
502         }
503         kvm_x86_ops->set_cr4(vcpu, cr4);
504         vcpu->arch.cr4 = cr4;
505         kvm_mmu_reset_context(vcpu);
506 }
507 EXPORT_SYMBOL_GPL(kvm_set_cr4);
508
509 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
510 {
511         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
512                 kvm_mmu_sync_roots(vcpu);
513                 kvm_mmu_flush_tlb(vcpu);
514                 return;
515         }
516
517         if (is_long_mode(vcpu)) {
518                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
519                         kvm_inject_gp(vcpu, 0);
520                         return;
521                 }
522         } else {
523                 if (is_pae(vcpu)) {
524                         if (cr3 & CR3_PAE_RESERVED_BITS) {
525                                 kvm_inject_gp(vcpu, 0);
526                                 return;
527                         }
528                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
529                                 kvm_inject_gp(vcpu, 0);
530                                 return;
531                         }
532                 }
533                 /*
534                  * We don't check reserved bits in nonpae mode, because
535                  * this isn't enforced, and VMware depends on this.
536                  */
537         }
538
539         /*
540          * Does the new cr3 value map to physical memory? (Note, we
541          * catch an invalid cr3 even in real-mode, because it would
542          * cause trouble later on when we turn on paging anyway.)
543          *
544          * A real CPU would silently accept an invalid cr3 and would
545          * attempt to use it - with largely undefined (and often hard
546          * to debug) behavior on the guest side.
547          */
548         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
549                 kvm_inject_gp(vcpu, 0);
550         else {
551                 vcpu->arch.cr3 = cr3;
552                 vcpu->arch.mmu.new_cr3(vcpu);
553         }
554 }
555 EXPORT_SYMBOL_GPL(kvm_set_cr3);
556
557 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
558 {
559         if (cr8 & CR8_RESERVED_BITS) {
560                 kvm_inject_gp(vcpu, 0);
561                 return;
562         }
563         if (irqchip_in_kernel(vcpu->kvm))
564                 kvm_lapic_set_tpr(vcpu, cr8);
565         else
566                 vcpu->arch.cr8 = cr8;
567 }
568 EXPORT_SYMBOL_GPL(kvm_set_cr8);
569
570 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
571 {
572         if (irqchip_in_kernel(vcpu->kvm))
573                 return kvm_lapic_get_cr8(vcpu);
574         else
575                 return vcpu->arch.cr8;
576 }
577 EXPORT_SYMBOL_GPL(kvm_get_cr8);
578
579 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
580 {
581         switch (dr) {
582         case 0 ... 3:
583                 vcpu->arch.db[dr] = val;
584                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
585                         vcpu->arch.eff_db[dr] = val;
586                 break;
587         case 4:
588                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
589                         kvm_queue_exception(vcpu, UD_VECTOR);
590                         return 1;
591                 }
592                 /* fall through */
593         case 6:
594                 if (val & 0xffffffff00000000ULL) {
595                         kvm_inject_gp(vcpu, 0);
596                         return 1;
597                 }
598                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
599                 break;
600         case 5:
601                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
602                         kvm_queue_exception(vcpu, UD_VECTOR);
603                         return 1;
604                 }
605                 /* fall through */
606         default: /* 7 */
607                 if (val & 0xffffffff00000000ULL) {
608                         kvm_inject_gp(vcpu, 0);
609                         return 1;
610                 }
611                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
612                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
613                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
614                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
615                 }
616                 break;
617         }
618
619         return 0;
620 }
621 EXPORT_SYMBOL_GPL(kvm_set_dr);
622
623 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
624 {
625         switch (dr) {
626         case 0 ... 3:
627                 *val = vcpu->arch.db[dr];
628                 break;
629         case 4:
630                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
631                         kvm_queue_exception(vcpu, UD_VECTOR);
632                         return 1;
633                 }
634                 /* fall through */
635         case 6:
636                 *val = vcpu->arch.dr6;
637                 break;
638         case 5:
639                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
640                         kvm_queue_exception(vcpu, UD_VECTOR);
641                         return 1;
642                 }
643                 /* fall through */
644         default: /* 7 */
645                 *val = vcpu->arch.dr7;
646                 break;
647         }
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(kvm_get_dr);
652
653 static inline u32 bit(int bitno)
654 {
655         return 1 << (bitno & 31);
656 }
657
658 /*
659  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
660  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
661  *
662  * This list is modified at module load time to reflect the
663  * capabilities of the host cpu. This capabilities test skips MSRs that are
664  * kvm-specific. Those are put in the beginning of the list.
665  */
666
667 #define KVM_SAVE_MSRS_BEGIN     7
668 static u32 msrs_to_save[] = {
669         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
670         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
671         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
672         HV_X64_MSR_APIC_ASSIST_PAGE,
673         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
674         MSR_K6_STAR,
675 #ifdef CONFIG_X86_64
676         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
677 #endif
678         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
679 };
680
681 static unsigned num_msrs_to_save;
682
683 static u32 emulated_msrs[] = {
684         MSR_IA32_MISC_ENABLE,
685 };
686
687 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
688 {
689         if (efer & efer_reserved_bits)
690                 return 1;
691
692         if (is_paging(vcpu)
693             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
694                 return 1;
695
696         if (efer & EFER_FFXSR) {
697                 struct kvm_cpuid_entry2 *feat;
698
699                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
700                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
701                         return 1;
702         }
703
704         if (efer & EFER_SVME) {
705                 struct kvm_cpuid_entry2 *feat;
706
707                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
708                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
709                         return 1;
710         }
711
712         efer &= ~EFER_LMA;
713         efer |= vcpu->arch.efer & EFER_LMA;
714
715         kvm_x86_ops->set_efer(vcpu, efer);
716
717         vcpu->arch.efer = efer;
718
719         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
720         kvm_mmu_reset_context(vcpu);
721
722         return 0;
723 }
724
725 void kvm_enable_efer_bits(u64 mask)
726 {
727        efer_reserved_bits &= ~mask;
728 }
729 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
730
731
732 /*
733  * Writes msr value into into the appropriate "register".
734  * Returns 0 on success, non-0 otherwise.
735  * Assumes vcpu_load() was already called.
736  */
737 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
738 {
739         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
740 }
741
742 /*
743  * Adapt set_msr() to msr_io()'s calling convention
744  */
745 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
746 {
747         return kvm_set_msr(vcpu, index, *data);
748 }
749
750 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
751 {
752         int version;
753         int r;
754         struct pvclock_wall_clock wc;
755         struct timespec boot;
756
757         if (!wall_clock)
758                 return;
759
760         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
761         if (r)
762                 return;
763
764         if (version & 1)
765                 ++version;  /* first time write, random junk */
766
767         ++version;
768
769         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
770
771         /*
772          * The guest calculates current wall clock time by adding
773          * system time (updated by kvm_write_guest_time below) to the
774          * wall clock specified here.  guest system time equals host
775          * system time for us, thus we must fill in host boot time here.
776          */
777         getboottime(&boot);
778
779         wc.sec = boot.tv_sec;
780         wc.nsec = boot.tv_nsec;
781         wc.version = version;
782
783         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
784
785         version++;
786         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
787 }
788
789 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
790 {
791         uint32_t quotient, remainder;
792
793         /* Don't try to replace with do_div(), this one calculates
794          * "(dividend << 32) / divisor" */
795         __asm__ ( "divl %4"
796                   : "=a" (quotient), "=d" (remainder)
797                   : "0" (0), "1" (dividend), "r" (divisor) );
798         return quotient;
799 }
800
801 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
802 {
803         uint64_t nsecs = 1000000000LL;
804         int32_t  shift = 0;
805         uint64_t tps64;
806         uint32_t tps32;
807
808         tps64 = tsc_khz * 1000LL;
809         while (tps64 > nsecs*2) {
810                 tps64 >>= 1;
811                 shift--;
812         }
813
814         tps32 = (uint32_t)tps64;
815         while (tps32 <= (uint32_t)nsecs) {
816                 tps32 <<= 1;
817                 shift++;
818         }
819
820         hv_clock->tsc_shift = shift;
821         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
822
823         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
824                  __func__, tsc_khz, hv_clock->tsc_shift,
825                  hv_clock->tsc_to_system_mul);
826 }
827
828 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
829
830 static void kvm_write_guest_time(struct kvm_vcpu *v)
831 {
832         struct timespec ts;
833         unsigned long flags;
834         struct kvm_vcpu_arch *vcpu = &v->arch;
835         void *shared_kaddr;
836         unsigned long this_tsc_khz;
837
838         if ((!vcpu->time_page))
839                 return;
840
841         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
842         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
843                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
844                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
845         }
846         put_cpu_var(cpu_tsc_khz);
847
848         /* Keep irq disabled to prevent changes to the clock */
849         local_irq_save(flags);
850         kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
851         ktime_get_ts(&ts);
852         monotonic_to_bootbased(&ts);
853         local_irq_restore(flags);
854
855         /* With all the info we got, fill in the values */
856
857         vcpu->hv_clock.system_time = ts.tv_nsec +
858                                      (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
859
860         vcpu->hv_clock.flags = 0;
861
862         /*
863          * The interface expects us to write an even number signaling that the
864          * update is finished. Since the guest won't see the intermediate
865          * state, we just increase by 2 at the end.
866          */
867         vcpu->hv_clock.version += 2;
868
869         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
870
871         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
872                sizeof(vcpu->hv_clock));
873
874         kunmap_atomic(shared_kaddr, KM_USER0);
875
876         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
877 }
878
879 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
880 {
881         struct kvm_vcpu_arch *vcpu = &v->arch;
882
883         if (!vcpu->time_page)
884                 return 0;
885         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
886         return 1;
887 }
888
889 static bool msr_mtrr_valid(unsigned msr)
890 {
891         switch (msr) {
892         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
893         case MSR_MTRRfix64K_00000:
894         case MSR_MTRRfix16K_80000:
895         case MSR_MTRRfix16K_A0000:
896         case MSR_MTRRfix4K_C0000:
897         case MSR_MTRRfix4K_C8000:
898         case MSR_MTRRfix4K_D0000:
899         case MSR_MTRRfix4K_D8000:
900         case MSR_MTRRfix4K_E0000:
901         case MSR_MTRRfix4K_E8000:
902         case MSR_MTRRfix4K_F0000:
903         case MSR_MTRRfix4K_F8000:
904         case MSR_MTRRdefType:
905         case MSR_IA32_CR_PAT:
906                 return true;
907         case 0x2f8:
908                 return true;
909         }
910         return false;
911 }
912
913 static bool valid_pat_type(unsigned t)
914 {
915         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
916 }
917
918 static bool valid_mtrr_type(unsigned t)
919 {
920         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
921 }
922
923 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
924 {
925         int i;
926
927         if (!msr_mtrr_valid(msr))
928                 return false;
929
930         if (msr == MSR_IA32_CR_PAT) {
931                 for (i = 0; i < 8; i++)
932                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
933                                 return false;
934                 return true;
935         } else if (msr == MSR_MTRRdefType) {
936                 if (data & ~0xcff)
937                         return false;
938                 return valid_mtrr_type(data & 0xff);
939         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
940                 for (i = 0; i < 8 ; i++)
941                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
942                                 return false;
943                 return true;
944         }
945
946         /* variable MTRRs */
947         return valid_mtrr_type(data & 0xff);
948 }
949
950 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
951 {
952         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
953
954         if (!mtrr_valid(vcpu, msr, data))
955                 return 1;
956
957         if (msr == MSR_MTRRdefType) {
958                 vcpu->arch.mtrr_state.def_type = data;
959                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
960         } else if (msr == MSR_MTRRfix64K_00000)
961                 p[0] = data;
962         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
963                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
964         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
965                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
966         else if (msr == MSR_IA32_CR_PAT)
967                 vcpu->arch.pat = data;
968         else {  /* Variable MTRRs */
969                 int idx, is_mtrr_mask;
970                 u64 *pt;
971
972                 idx = (msr - 0x200) / 2;
973                 is_mtrr_mask = msr - 0x200 - 2 * idx;
974                 if (!is_mtrr_mask)
975                         pt =
976                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
977                 else
978                         pt =
979                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
980                 *pt = data;
981         }
982
983         kvm_mmu_reset_context(vcpu);
984         return 0;
985 }
986
987 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
988 {
989         u64 mcg_cap = vcpu->arch.mcg_cap;
990         unsigned bank_num = mcg_cap & 0xff;
991
992         switch (msr) {
993         case MSR_IA32_MCG_STATUS:
994                 vcpu->arch.mcg_status = data;
995                 break;
996         case MSR_IA32_MCG_CTL:
997                 if (!(mcg_cap & MCG_CTL_P))
998                         return 1;
999                 if (data != 0 && data != ~(u64)0)
1000                         return -1;
1001                 vcpu->arch.mcg_ctl = data;
1002                 break;
1003         default:
1004                 if (msr >= MSR_IA32_MC0_CTL &&
1005                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1006                         u32 offset = msr - MSR_IA32_MC0_CTL;
1007                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1008                          * some Linux kernels though clear bit 10 in bank 4 to
1009                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1010                          * this to avoid an uncatched #GP in the guest
1011                          */
1012                         if ((offset & 0x3) == 0 &&
1013                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1014                                 return -1;
1015                         vcpu->arch.mce_banks[offset] = data;
1016                         break;
1017                 }
1018                 return 1;
1019         }
1020         return 0;
1021 }
1022
1023 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1024 {
1025         struct kvm *kvm = vcpu->kvm;
1026         int lm = is_long_mode(vcpu);
1027         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1028                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1029         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1030                 : kvm->arch.xen_hvm_config.blob_size_32;
1031         u32 page_num = data & ~PAGE_MASK;
1032         u64 page_addr = data & PAGE_MASK;
1033         u8 *page;
1034         int r;
1035
1036         r = -E2BIG;
1037         if (page_num >= blob_size)
1038                 goto out;
1039         r = -ENOMEM;
1040         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1041         if (!page)
1042                 goto out;
1043         r = -EFAULT;
1044         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1045                 goto out_free;
1046         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1047                 goto out_free;
1048         r = 0;
1049 out_free:
1050         kfree(page);
1051 out:
1052         return r;
1053 }
1054
1055 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1056 {
1057         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1058 }
1059
1060 static bool kvm_hv_msr_partition_wide(u32 msr)
1061 {
1062         bool r = false;
1063         switch (msr) {
1064         case HV_X64_MSR_GUEST_OS_ID:
1065         case HV_X64_MSR_HYPERCALL:
1066                 r = true;
1067                 break;
1068         }
1069
1070         return r;
1071 }
1072
1073 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1074 {
1075         struct kvm *kvm = vcpu->kvm;
1076
1077         switch (msr) {
1078         case HV_X64_MSR_GUEST_OS_ID:
1079                 kvm->arch.hv_guest_os_id = data;
1080                 /* setting guest os id to zero disables hypercall page */
1081                 if (!kvm->arch.hv_guest_os_id)
1082                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1083                 break;
1084         case HV_X64_MSR_HYPERCALL: {
1085                 u64 gfn;
1086                 unsigned long addr;
1087                 u8 instructions[4];
1088
1089                 /* if guest os id is not set hypercall should remain disabled */
1090                 if (!kvm->arch.hv_guest_os_id)
1091                         break;
1092                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1093                         kvm->arch.hv_hypercall = data;
1094                         break;
1095                 }
1096                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1097                 addr = gfn_to_hva(kvm, gfn);
1098                 if (kvm_is_error_hva(addr))
1099                         return 1;
1100                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1101                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1102                 if (copy_to_user((void __user *)addr, instructions, 4))
1103                         return 1;
1104                 kvm->arch.hv_hypercall = data;
1105                 break;
1106         }
1107         default:
1108                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1109                           "data 0x%llx\n", msr, data);
1110                 return 1;
1111         }
1112         return 0;
1113 }
1114
1115 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1116 {
1117         switch (msr) {
1118         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1119                 unsigned long addr;
1120
1121                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1122                         vcpu->arch.hv_vapic = data;
1123                         break;
1124                 }
1125                 addr = gfn_to_hva(vcpu->kvm, data >>
1126                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1127                 if (kvm_is_error_hva(addr))
1128                         return 1;
1129                 if (clear_user((void __user *)addr, PAGE_SIZE))
1130                         return 1;
1131                 vcpu->arch.hv_vapic = data;
1132                 break;
1133         }
1134         case HV_X64_MSR_EOI:
1135                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1136         case HV_X64_MSR_ICR:
1137                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1138         case HV_X64_MSR_TPR:
1139                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1140         default:
1141                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1142                           "data 0x%llx\n", msr, data);
1143                 return 1;
1144         }
1145
1146         return 0;
1147 }
1148
1149 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1150 {
1151         switch (msr) {
1152         case MSR_EFER:
1153                 return set_efer(vcpu, data);
1154         case MSR_K7_HWCR:
1155                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1156                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1157                 if (data != 0) {
1158                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1159                                 data);
1160                         return 1;
1161                 }
1162                 break;
1163         case MSR_FAM10H_MMIO_CONF_BASE:
1164                 if (data != 0) {
1165                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1166                                 "0x%llx\n", data);
1167                         return 1;
1168                 }
1169                 break;
1170         case MSR_AMD64_NB_CFG:
1171                 break;
1172         case MSR_IA32_DEBUGCTLMSR:
1173                 if (!data) {
1174                         /* We support the non-activated case already */
1175                         break;
1176                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1177                         /* Values other than LBR and BTF are vendor-specific,
1178                            thus reserved and should throw a #GP */
1179                         return 1;
1180                 }
1181                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1182                         __func__, data);
1183                 break;
1184         case MSR_IA32_UCODE_REV:
1185         case MSR_IA32_UCODE_WRITE:
1186         case MSR_VM_HSAVE_PA:
1187         case MSR_AMD64_PATCH_LOADER:
1188                 break;
1189         case 0x200 ... 0x2ff:
1190                 return set_msr_mtrr(vcpu, msr, data);
1191         case MSR_IA32_APICBASE:
1192                 kvm_set_apic_base(vcpu, data);
1193                 break;
1194         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1195                 return kvm_x2apic_msr_write(vcpu, msr, data);
1196         case MSR_IA32_MISC_ENABLE:
1197                 vcpu->arch.ia32_misc_enable_msr = data;
1198                 break;
1199         case MSR_KVM_WALL_CLOCK_NEW:
1200         case MSR_KVM_WALL_CLOCK:
1201                 vcpu->kvm->arch.wall_clock = data;
1202                 kvm_write_wall_clock(vcpu->kvm, data);
1203                 break;
1204         case MSR_KVM_SYSTEM_TIME_NEW:
1205         case MSR_KVM_SYSTEM_TIME: {
1206                 if (vcpu->arch.time_page) {
1207                         kvm_release_page_dirty(vcpu->arch.time_page);
1208                         vcpu->arch.time_page = NULL;
1209                 }
1210
1211                 vcpu->arch.time = data;
1212
1213                 /* we verify if the enable bit is set... */
1214                 if (!(data & 1))
1215                         break;
1216
1217                 /* ...but clean it before doing the actual write */
1218                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1219
1220                 vcpu->arch.time_page =
1221                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1222
1223                 if (is_error_page(vcpu->arch.time_page)) {
1224                         kvm_release_page_clean(vcpu->arch.time_page);
1225                         vcpu->arch.time_page = NULL;
1226                 }
1227
1228                 kvm_request_guest_time_update(vcpu);
1229                 break;
1230         }
1231         case MSR_IA32_MCG_CTL:
1232         case MSR_IA32_MCG_STATUS:
1233         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1234                 return set_msr_mce(vcpu, msr, data);
1235
1236         /* Performance counters are not protected by a CPUID bit,
1237          * so we should check all of them in the generic path for the sake of
1238          * cross vendor migration.
1239          * Writing a zero into the event select MSRs disables them,
1240          * which we perfectly emulate ;-). Any other value should be at least
1241          * reported, some guests depend on them.
1242          */
1243         case MSR_P6_EVNTSEL0:
1244         case MSR_P6_EVNTSEL1:
1245         case MSR_K7_EVNTSEL0:
1246         case MSR_K7_EVNTSEL1:
1247         case MSR_K7_EVNTSEL2:
1248         case MSR_K7_EVNTSEL3:
1249                 if (data != 0)
1250                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1251                                 "0x%x data 0x%llx\n", msr, data);
1252                 break;
1253         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1254          * so we ignore writes to make it happy.
1255          */
1256         case MSR_P6_PERFCTR0:
1257         case MSR_P6_PERFCTR1:
1258         case MSR_K7_PERFCTR0:
1259         case MSR_K7_PERFCTR1:
1260         case MSR_K7_PERFCTR2:
1261         case MSR_K7_PERFCTR3:
1262                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1263                         "0x%x data 0x%llx\n", msr, data);
1264                 break;
1265         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1266                 if (kvm_hv_msr_partition_wide(msr)) {
1267                         int r;
1268                         mutex_lock(&vcpu->kvm->lock);
1269                         r = set_msr_hyperv_pw(vcpu, msr, data);
1270                         mutex_unlock(&vcpu->kvm->lock);
1271                         return r;
1272                 } else
1273                         return set_msr_hyperv(vcpu, msr, data);
1274                 break;
1275         default:
1276                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1277                         return xen_hvm_config(vcpu, data);
1278                 if (!ignore_msrs) {
1279                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1280                                 msr, data);
1281                         return 1;
1282                 } else {
1283                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1284                                 msr, data);
1285                         break;
1286                 }
1287         }
1288         return 0;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1291
1292
1293 /*
1294  * Reads an msr value (of 'msr_index') into 'pdata'.
1295  * Returns 0 on success, non-0 otherwise.
1296  * Assumes vcpu_load() was already called.
1297  */
1298 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1299 {
1300         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1301 }
1302
1303 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1304 {
1305         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1306
1307         if (!msr_mtrr_valid(msr))
1308                 return 1;
1309
1310         if (msr == MSR_MTRRdefType)
1311                 *pdata = vcpu->arch.mtrr_state.def_type +
1312                          (vcpu->arch.mtrr_state.enabled << 10);
1313         else if (msr == MSR_MTRRfix64K_00000)
1314                 *pdata = p[0];
1315         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1316                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1317         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1318                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1319         else if (msr == MSR_IA32_CR_PAT)
1320                 *pdata = vcpu->arch.pat;
1321         else {  /* Variable MTRRs */
1322                 int idx, is_mtrr_mask;
1323                 u64 *pt;
1324
1325                 idx = (msr - 0x200) / 2;
1326                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1327                 if (!is_mtrr_mask)
1328                         pt =
1329                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1330                 else
1331                         pt =
1332                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1333                 *pdata = *pt;
1334         }
1335
1336         return 0;
1337 }
1338
1339 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1340 {
1341         u64 data;
1342         u64 mcg_cap = vcpu->arch.mcg_cap;
1343         unsigned bank_num = mcg_cap & 0xff;
1344
1345         switch (msr) {
1346         case MSR_IA32_P5_MC_ADDR:
1347         case MSR_IA32_P5_MC_TYPE:
1348                 data = 0;
1349                 break;
1350         case MSR_IA32_MCG_CAP:
1351                 data = vcpu->arch.mcg_cap;
1352                 break;
1353         case MSR_IA32_MCG_CTL:
1354                 if (!(mcg_cap & MCG_CTL_P))
1355                         return 1;
1356                 data = vcpu->arch.mcg_ctl;
1357                 break;
1358         case MSR_IA32_MCG_STATUS:
1359                 data = vcpu->arch.mcg_status;
1360                 break;
1361         default:
1362                 if (msr >= MSR_IA32_MC0_CTL &&
1363                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1364                         u32 offset = msr - MSR_IA32_MC0_CTL;
1365                         data = vcpu->arch.mce_banks[offset];
1366                         break;
1367                 }
1368                 return 1;
1369         }
1370         *pdata = data;
1371         return 0;
1372 }
1373
1374 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1375 {
1376         u64 data = 0;
1377         struct kvm *kvm = vcpu->kvm;
1378
1379         switch (msr) {
1380         case HV_X64_MSR_GUEST_OS_ID:
1381                 data = kvm->arch.hv_guest_os_id;
1382                 break;
1383         case HV_X64_MSR_HYPERCALL:
1384                 data = kvm->arch.hv_hypercall;
1385                 break;
1386         default:
1387                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1388                 return 1;
1389         }
1390
1391         *pdata = data;
1392         return 0;
1393 }
1394
1395 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1396 {
1397         u64 data = 0;
1398
1399         switch (msr) {
1400         case HV_X64_MSR_VP_INDEX: {
1401                 int r;
1402                 struct kvm_vcpu *v;
1403                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1404                         if (v == vcpu)
1405                                 data = r;
1406                 break;
1407         }
1408         case HV_X64_MSR_EOI:
1409                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1410         case HV_X64_MSR_ICR:
1411                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1412         case HV_X64_MSR_TPR:
1413                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1414         default:
1415                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1416                 return 1;
1417         }
1418         *pdata = data;
1419         return 0;
1420 }
1421
1422 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1423 {
1424         u64 data;
1425
1426         switch (msr) {
1427         case MSR_IA32_PLATFORM_ID:
1428         case MSR_IA32_UCODE_REV:
1429         case MSR_IA32_EBL_CR_POWERON:
1430         case MSR_IA32_DEBUGCTLMSR:
1431         case MSR_IA32_LASTBRANCHFROMIP:
1432         case MSR_IA32_LASTBRANCHTOIP:
1433         case MSR_IA32_LASTINTFROMIP:
1434         case MSR_IA32_LASTINTTOIP:
1435         case MSR_K8_SYSCFG:
1436         case MSR_K7_HWCR:
1437         case MSR_VM_HSAVE_PA:
1438         case MSR_P6_PERFCTR0:
1439         case MSR_P6_PERFCTR1:
1440         case MSR_P6_EVNTSEL0:
1441         case MSR_P6_EVNTSEL1:
1442         case MSR_K7_EVNTSEL0:
1443         case MSR_K7_PERFCTR0:
1444         case MSR_K8_INT_PENDING_MSG:
1445         case MSR_AMD64_NB_CFG:
1446         case MSR_FAM10H_MMIO_CONF_BASE:
1447                 data = 0;
1448                 break;
1449         case MSR_MTRRcap:
1450                 data = 0x500 | KVM_NR_VAR_MTRR;
1451                 break;
1452         case 0x200 ... 0x2ff:
1453                 return get_msr_mtrr(vcpu, msr, pdata);
1454         case 0xcd: /* fsb frequency */
1455                 data = 3;
1456                 break;
1457         case MSR_IA32_APICBASE:
1458                 data = kvm_get_apic_base(vcpu);
1459                 break;
1460         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1461                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1462                 break;
1463         case MSR_IA32_MISC_ENABLE:
1464                 data = vcpu->arch.ia32_misc_enable_msr;
1465                 break;
1466         case MSR_IA32_PERF_STATUS:
1467                 /* TSC increment by tick */
1468                 data = 1000ULL;
1469                 /* CPU multiplier */
1470                 data |= (((uint64_t)4ULL) << 40);
1471                 break;
1472         case MSR_EFER:
1473                 data = vcpu->arch.efer;
1474                 break;
1475         case MSR_KVM_WALL_CLOCK:
1476         case MSR_KVM_WALL_CLOCK_NEW:
1477                 data = vcpu->kvm->arch.wall_clock;
1478                 break;
1479         case MSR_KVM_SYSTEM_TIME:
1480         case MSR_KVM_SYSTEM_TIME_NEW:
1481                 data = vcpu->arch.time;
1482                 break;
1483         case MSR_IA32_P5_MC_ADDR:
1484         case MSR_IA32_P5_MC_TYPE:
1485         case MSR_IA32_MCG_CAP:
1486         case MSR_IA32_MCG_CTL:
1487         case MSR_IA32_MCG_STATUS:
1488         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1489                 return get_msr_mce(vcpu, msr, pdata);
1490         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1491                 if (kvm_hv_msr_partition_wide(msr)) {
1492                         int r;
1493                         mutex_lock(&vcpu->kvm->lock);
1494                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1495                         mutex_unlock(&vcpu->kvm->lock);
1496                         return r;
1497                 } else
1498                         return get_msr_hyperv(vcpu, msr, pdata);
1499                 break;
1500         default:
1501                 if (!ignore_msrs) {
1502                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1503                         return 1;
1504                 } else {
1505                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1506                         data = 0;
1507                 }
1508                 break;
1509         }
1510         *pdata = data;
1511         return 0;
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1514
1515 /*
1516  * Read or write a bunch of msrs. All parameters are kernel addresses.
1517  *
1518  * @return number of msrs set successfully.
1519  */
1520 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1521                     struct kvm_msr_entry *entries,
1522                     int (*do_msr)(struct kvm_vcpu *vcpu,
1523                                   unsigned index, u64 *data))
1524 {
1525         int i, idx;
1526
1527         vcpu_load(vcpu);
1528
1529         idx = srcu_read_lock(&vcpu->kvm->srcu);
1530         for (i = 0; i < msrs->nmsrs; ++i)
1531                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1532                         break;
1533         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1534
1535         vcpu_put(vcpu);
1536
1537         return i;
1538 }
1539
1540 /*
1541  * Read or write a bunch of msrs. Parameters are user addresses.
1542  *
1543  * @return number of msrs set successfully.
1544  */
1545 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1546                   int (*do_msr)(struct kvm_vcpu *vcpu,
1547                                 unsigned index, u64 *data),
1548                   int writeback)
1549 {
1550         struct kvm_msrs msrs;
1551         struct kvm_msr_entry *entries;
1552         int r, n;
1553         unsigned size;
1554
1555         r = -EFAULT;
1556         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1557                 goto out;
1558
1559         r = -E2BIG;
1560         if (msrs.nmsrs >= MAX_IO_MSRS)
1561                 goto out;
1562
1563         r = -ENOMEM;
1564         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1565         entries = vmalloc(size);
1566         if (!entries)
1567                 goto out;
1568
1569         r = -EFAULT;
1570         if (copy_from_user(entries, user_msrs->entries, size))
1571                 goto out_free;
1572
1573         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1574         if (r < 0)
1575                 goto out_free;
1576
1577         r = -EFAULT;
1578         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1579                 goto out_free;
1580
1581         r = n;
1582
1583 out_free:
1584         vfree(entries);
1585 out:
1586         return r;
1587 }
1588
1589 int kvm_dev_ioctl_check_extension(long ext)
1590 {
1591         int r;
1592
1593         switch (ext) {
1594         case KVM_CAP_IRQCHIP:
1595         case KVM_CAP_HLT:
1596         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1597         case KVM_CAP_SET_TSS_ADDR:
1598         case KVM_CAP_EXT_CPUID:
1599         case KVM_CAP_CLOCKSOURCE:
1600         case KVM_CAP_PIT:
1601         case KVM_CAP_NOP_IO_DELAY:
1602         case KVM_CAP_MP_STATE:
1603         case KVM_CAP_SYNC_MMU:
1604         case KVM_CAP_REINJECT_CONTROL:
1605         case KVM_CAP_IRQ_INJECT_STATUS:
1606         case KVM_CAP_ASSIGN_DEV_IRQ:
1607         case KVM_CAP_IRQFD:
1608         case KVM_CAP_IOEVENTFD:
1609         case KVM_CAP_PIT2:
1610         case KVM_CAP_PIT_STATE2:
1611         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1612         case KVM_CAP_XEN_HVM:
1613         case KVM_CAP_ADJUST_CLOCK:
1614         case KVM_CAP_VCPU_EVENTS:
1615         case KVM_CAP_HYPERV:
1616         case KVM_CAP_HYPERV_VAPIC:
1617         case KVM_CAP_HYPERV_SPIN:
1618         case KVM_CAP_PCI_SEGMENT:
1619         case KVM_CAP_DEBUGREGS:
1620         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1621                 r = 1;
1622                 break;
1623         case KVM_CAP_COALESCED_MMIO:
1624                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1625                 break;
1626         case KVM_CAP_VAPIC:
1627                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1628                 break;
1629         case KVM_CAP_NR_VCPUS:
1630                 r = KVM_MAX_VCPUS;
1631                 break;
1632         case KVM_CAP_NR_MEMSLOTS:
1633                 r = KVM_MEMORY_SLOTS;
1634                 break;
1635         case KVM_CAP_PV_MMU:    /* obsolete */
1636                 r = 0;
1637                 break;
1638         case KVM_CAP_IOMMU:
1639                 r = iommu_found();
1640                 break;
1641         case KVM_CAP_MCE:
1642                 r = KVM_MAX_MCE_BANKS;
1643                 break;
1644         default:
1645                 r = 0;
1646                 break;
1647         }
1648         return r;
1649
1650 }
1651
1652 long kvm_arch_dev_ioctl(struct file *filp,
1653                         unsigned int ioctl, unsigned long arg)
1654 {
1655         void __user *argp = (void __user *)arg;
1656         long r;
1657
1658         switch (ioctl) {
1659         case KVM_GET_MSR_INDEX_LIST: {
1660                 struct kvm_msr_list __user *user_msr_list = argp;
1661                 struct kvm_msr_list msr_list;
1662                 unsigned n;
1663
1664                 r = -EFAULT;
1665                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1666                         goto out;
1667                 n = msr_list.nmsrs;
1668                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1669                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1670                         goto out;
1671                 r = -E2BIG;
1672                 if (n < msr_list.nmsrs)
1673                         goto out;
1674                 r = -EFAULT;
1675                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1676                                  num_msrs_to_save * sizeof(u32)))
1677                         goto out;
1678                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1679                                  &emulated_msrs,
1680                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1681                         goto out;
1682                 r = 0;
1683                 break;
1684         }
1685         case KVM_GET_SUPPORTED_CPUID: {
1686                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1687                 struct kvm_cpuid2 cpuid;
1688
1689                 r = -EFAULT;
1690                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1691                         goto out;
1692                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1693                                                       cpuid_arg->entries);
1694                 if (r)
1695                         goto out;
1696
1697                 r = -EFAULT;
1698                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1699                         goto out;
1700                 r = 0;
1701                 break;
1702         }
1703         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1704                 u64 mce_cap;
1705
1706                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1707                 r = -EFAULT;
1708                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1709                         goto out;
1710                 r = 0;
1711                 break;
1712         }
1713         default:
1714                 r = -EINVAL;
1715         }
1716 out:
1717         return r;
1718 }
1719
1720 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1721 {
1722         kvm_x86_ops->vcpu_load(vcpu, cpu);
1723         if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
1724                 unsigned long khz = cpufreq_quick_get(cpu);
1725                 if (!khz)
1726                         khz = tsc_khz;
1727                 per_cpu(cpu_tsc_khz, cpu) = khz;
1728         }
1729         kvm_request_guest_time_update(vcpu);
1730 }
1731
1732 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1733 {
1734         kvm_put_guest_fpu(vcpu);
1735         kvm_x86_ops->vcpu_put(vcpu);
1736 }
1737
1738 static int is_efer_nx(void)
1739 {
1740         unsigned long long efer = 0;
1741
1742         rdmsrl_safe(MSR_EFER, &efer);
1743         return efer & EFER_NX;
1744 }
1745
1746 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1747 {
1748         int i;
1749         struct kvm_cpuid_entry2 *e, *entry;
1750
1751         entry = NULL;
1752         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1753                 e = &vcpu->arch.cpuid_entries[i];
1754                 if (e->function == 0x80000001) {
1755                         entry = e;
1756                         break;
1757                 }
1758         }
1759         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1760                 entry->edx &= ~(1 << 20);
1761                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1762         }
1763 }
1764
1765 /* when an old userspace process fills a new kernel module */
1766 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1767                                     struct kvm_cpuid *cpuid,
1768                                     struct kvm_cpuid_entry __user *entries)
1769 {
1770         int r, i;
1771         struct kvm_cpuid_entry *cpuid_entries;
1772
1773         r = -E2BIG;
1774         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1775                 goto out;
1776         r = -ENOMEM;
1777         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1778         if (!cpuid_entries)
1779                 goto out;
1780         r = -EFAULT;
1781         if (copy_from_user(cpuid_entries, entries,
1782                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1783                 goto out_free;
1784         vcpu_load(vcpu);
1785         for (i = 0; i < cpuid->nent; i++) {
1786                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1787                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1788                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1789                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1790                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1791                 vcpu->arch.cpuid_entries[i].index = 0;
1792                 vcpu->arch.cpuid_entries[i].flags = 0;
1793                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1794                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1795                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1796         }
1797         vcpu->arch.cpuid_nent = cpuid->nent;
1798         cpuid_fix_nx_cap(vcpu);
1799         r = 0;
1800         kvm_apic_set_version(vcpu);
1801         kvm_x86_ops->cpuid_update(vcpu);
1802         vcpu_put(vcpu);
1803
1804 out_free:
1805         vfree(cpuid_entries);
1806 out:
1807         return r;
1808 }
1809
1810 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1811                                      struct kvm_cpuid2 *cpuid,
1812                                      struct kvm_cpuid_entry2 __user *entries)
1813 {
1814         int r;
1815
1816         r = -E2BIG;
1817         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1818                 goto out;
1819         r = -EFAULT;
1820         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1821                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1822                 goto out;
1823         vcpu_load(vcpu);
1824         vcpu->arch.cpuid_nent = cpuid->nent;
1825         kvm_apic_set_version(vcpu);
1826         kvm_x86_ops->cpuid_update(vcpu);
1827         vcpu_put(vcpu);
1828         return 0;
1829
1830 out:
1831         return r;
1832 }
1833
1834 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1835                                      struct kvm_cpuid2 *cpuid,
1836                                      struct kvm_cpuid_entry2 __user *entries)
1837 {
1838         int r;
1839
1840         vcpu_load(vcpu);
1841         r = -E2BIG;
1842         if (cpuid->nent < vcpu->arch.cpuid_nent)
1843                 goto out;
1844         r = -EFAULT;
1845         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1846                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1847                 goto out;
1848         return 0;
1849
1850 out:
1851         cpuid->nent = vcpu->arch.cpuid_nent;
1852         vcpu_put(vcpu);
1853         return r;
1854 }
1855
1856 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1857                            u32 index)
1858 {
1859         entry->function = function;
1860         entry->index = index;
1861         cpuid_count(entry->function, entry->index,
1862                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1863         entry->flags = 0;
1864 }
1865
1866 #define F(x) bit(X86_FEATURE_##x)
1867
1868 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1869                          u32 index, int *nent, int maxnent)
1870 {
1871         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1872 #ifdef CONFIG_X86_64
1873         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
1874                                 ? F(GBPAGES) : 0;
1875         unsigned f_lm = F(LM);
1876 #else
1877         unsigned f_gbpages = 0;
1878         unsigned f_lm = 0;
1879 #endif
1880         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
1881
1882         /* cpuid 1.edx */
1883         const u32 kvm_supported_word0_x86_features =
1884                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1885                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1886                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1887                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1888                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1889                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1890                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1891                 0 /* HTT, TM, Reserved, PBE */;
1892         /* cpuid 0x80000001.edx */
1893         const u32 kvm_supported_word1_x86_features =
1894                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1895                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1896                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1897                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1898                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1899                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1900                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
1901                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1902         /* cpuid 1.ecx */
1903         const u32 kvm_supported_word4_x86_features =
1904                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1905                 0 /* DS-CPL, VMX, SMX, EST */ |
1906                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1907                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1908                 0 /* Reserved, DCA */ | F(XMM4_1) |
1909                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
1910                 0 /* Reserved, XSAVE, OSXSAVE */;
1911         /* cpuid 0x80000001.ecx */
1912         const u32 kvm_supported_word6_x86_features =
1913                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1914                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1915                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1916                 0 /* SKINIT */ | 0 /* WDT */;
1917
1918         /* all calls to cpuid_count() should be made on the same cpu */
1919         get_cpu();
1920         do_cpuid_1_ent(entry, function, index);
1921         ++*nent;
1922
1923         switch (function) {
1924         case 0:
1925                 entry->eax = min(entry->eax, (u32)0xb);
1926                 break;
1927         case 1:
1928                 entry->edx &= kvm_supported_word0_x86_features;
1929                 entry->ecx &= kvm_supported_word4_x86_features;
1930                 /* we support x2apic emulation even if host does not support
1931                  * it since we emulate x2apic in software */
1932                 entry->ecx |= F(X2APIC);
1933                 break;
1934         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1935          * may return different values. This forces us to get_cpu() before
1936          * issuing the first command, and also to emulate this annoying behavior
1937          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1938         case 2: {
1939                 int t, times = entry->eax & 0xff;
1940
1941                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1942                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1943                 for (t = 1; t < times && *nent < maxnent; ++t) {
1944                         do_cpuid_1_ent(&entry[t], function, 0);
1945                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1946                         ++*nent;
1947                 }
1948                 break;
1949         }
1950         /* function 4 and 0xb have additional index. */
1951         case 4: {
1952                 int i, cache_type;
1953
1954                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1955                 /* read more entries until cache_type is zero */
1956                 for (i = 1; *nent < maxnent; ++i) {
1957                         cache_type = entry[i - 1].eax & 0x1f;
1958                         if (!cache_type)
1959                                 break;
1960                         do_cpuid_1_ent(&entry[i], function, i);
1961                         entry[i].flags |=
1962                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1963                         ++*nent;
1964                 }
1965                 break;
1966         }
1967         case 0xb: {
1968                 int i, level_type;
1969
1970                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1971                 /* read more entries until level_type is zero */
1972                 for (i = 1; *nent < maxnent; ++i) {
1973                         level_type = entry[i - 1].ecx & 0xff00;
1974                         if (!level_type)
1975                                 break;
1976                         do_cpuid_1_ent(&entry[i], function, i);
1977                         entry[i].flags |=
1978                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1979                         ++*nent;
1980                 }
1981                 break;
1982         }
1983         case KVM_CPUID_SIGNATURE: {
1984                 char signature[12] = "KVMKVMKVM\0\0";
1985                 u32 *sigptr = (u32 *)signature;
1986                 entry->eax = 0;
1987                 entry->ebx = sigptr[0];
1988                 entry->ecx = sigptr[1];
1989                 entry->edx = sigptr[2];
1990                 break;
1991         }
1992         case KVM_CPUID_FEATURES:
1993                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1994                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
1995                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
1996                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
1997                 entry->ebx = 0;
1998                 entry->ecx = 0;
1999                 entry->edx = 0;
2000                 break;
2001         case 0x80000000:
2002                 entry->eax = min(entry->eax, 0x8000001a);
2003                 break;
2004         case 0x80000001:
2005                 entry->edx &= kvm_supported_word1_x86_features;
2006                 entry->ecx &= kvm_supported_word6_x86_features;
2007                 break;
2008         }
2009
2010         kvm_x86_ops->set_supported_cpuid(function, entry);
2011
2012         put_cpu();
2013 }
2014
2015 #undef F
2016
2017 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2018                                      struct kvm_cpuid_entry2 __user *entries)
2019 {
2020         struct kvm_cpuid_entry2 *cpuid_entries;
2021         int limit, nent = 0, r = -E2BIG;
2022         u32 func;
2023
2024         if (cpuid->nent < 1)
2025                 goto out;
2026         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2027                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2028         r = -ENOMEM;
2029         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2030         if (!cpuid_entries)
2031                 goto out;
2032
2033         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2034         limit = cpuid_entries[0].eax;
2035         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2036                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2037                              &nent, cpuid->nent);
2038         r = -E2BIG;
2039         if (nent >= cpuid->nent)
2040                 goto out_free;
2041
2042         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2043         limit = cpuid_entries[nent - 1].eax;
2044         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2045                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2046                              &nent, cpuid->nent);
2047
2048
2049
2050         r = -E2BIG;
2051         if (nent >= cpuid->nent)
2052                 goto out_free;
2053
2054         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2055                      cpuid->nent);
2056
2057         r = -E2BIG;
2058         if (nent >= cpuid->nent)
2059                 goto out_free;
2060
2061         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2062                      cpuid->nent);
2063
2064         r = -E2BIG;
2065         if (nent >= cpuid->nent)
2066                 goto out_free;
2067
2068         r = -EFAULT;
2069         if (copy_to_user(entries, cpuid_entries,
2070                          nent * sizeof(struct kvm_cpuid_entry2)))
2071                 goto out_free;
2072         cpuid->nent = nent;
2073         r = 0;
2074
2075 out_free:
2076         vfree(cpuid_entries);
2077 out:
2078         return r;
2079 }
2080
2081 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2082                                     struct kvm_lapic_state *s)
2083 {
2084         vcpu_load(vcpu);
2085         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2086         vcpu_put(vcpu);
2087
2088         return 0;
2089 }
2090
2091 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2092                                     struct kvm_lapic_state *s)
2093 {
2094         vcpu_load(vcpu);
2095         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2096         kvm_apic_post_state_restore(vcpu);
2097         update_cr8_intercept(vcpu);
2098         vcpu_put(vcpu);
2099
2100         return 0;
2101 }
2102
2103 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2104                                     struct kvm_interrupt *irq)
2105 {
2106         if (irq->irq < 0 || irq->irq >= 256)
2107                 return -EINVAL;
2108         if (irqchip_in_kernel(vcpu->kvm))
2109                 return -ENXIO;
2110         vcpu_load(vcpu);
2111
2112         kvm_queue_interrupt(vcpu, irq->irq, false);
2113
2114         vcpu_put(vcpu);
2115
2116         return 0;
2117 }
2118
2119 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2120 {
2121         vcpu_load(vcpu);
2122         kvm_inject_nmi(vcpu);
2123         vcpu_put(vcpu);
2124
2125         return 0;
2126 }
2127
2128 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2129                                            struct kvm_tpr_access_ctl *tac)
2130 {
2131         if (tac->flags)
2132                 return -EINVAL;
2133         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2134         return 0;
2135 }
2136
2137 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2138                                         u64 mcg_cap)
2139 {
2140         int r;
2141         unsigned bank_num = mcg_cap & 0xff, bank;
2142
2143         vcpu_load(vcpu);
2144         r = -EINVAL;
2145         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2146                 goto out;
2147         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2148                 goto out;
2149         r = 0;
2150         vcpu->arch.mcg_cap = mcg_cap;
2151         /* Init IA32_MCG_CTL to all 1s */
2152         if (mcg_cap & MCG_CTL_P)
2153                 vcpu->arch.mcg_ctl = ~(u64)0;
2154         /* Init IA32_MCi_CTL to all 1s */
2155         for (bank = 0; bank < bank_num; bank++)
2156                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2157 out:
2158         vcpu_put(vcpu);
2159         return r;
2160 }
2161
2162 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2163                                       struct kvm_x86_mce *mce)
2164 {
2165         u64 mcg_cap = vcpu->arch.mcg_cap;
2166         unsigned bank_num = mcg_cap & 0xff;
2167         u64 *banks = vcpu->arch.mce_banks;
2168
2169         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2170                 return -EINVAL;
2171         /*
2172          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2173          * reporting is disabled
2174          */
2175         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2176             vcpu->arch.mcg_ctl != ~(u64)0)
2177                 return 0;
2178         banks += 4 * mce->bank;
2179         /*
2180          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2181          * reporting is disabled for the bank
2182          */
2183         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2184                 return 0;
2185         if (mce->status & MCI_STATUS_UC) {
2186                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2187                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2188                         printk(KERN_DEBUG "kvm: set_mce: "
2189                                "injects mce exception while "
2190                                "previous one is in progress!\n");
2191                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
2192                         return 0;
2193                 }
2194                 if (banks[1] & MCI_STATUS_VAL)
2195                         mce->status |= MCI_STATUS_OVER;
2196                 banks[2] = mce->addr;
2197                 banks[3] = mce->misc;
2198                 vcpu->arch.mcg_status = mce->mcg_status;
2199                 banks[1] = mce->status;
2200                 kvm_queue_exception(vcpu, MC_VECTOR);
2201         } else if (!(banks[1] & MCI_STATUS_VAL)
2202                    || !(banks[1] & MCI_STATUS_UC)) {
2203                 if (banks[1] & MCI_STATUS_VAL)
2204                         mce->status |= MCI_STATUS_OVER;
2205                 banks[2] = mce->addr;
2206                 banks[3] = mce->misc;
2207                 banks[1] = mce->status;
2208         } else
2209                 banks[1] |= MCI_STATUS_OVER;
2210         return 0;
2211 }
2212
2213 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2214                                                struct kvm_vcpu_events *events)
2215 {
2216         vcpu_load(vcpu);
2217
2218         events->exception.injected =
2219                 vcpu->arch.exception.pending &&
2220                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2221         events->exception.nr = vcpu->arch.exception.nr;
2222         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2223         events->exception.error_code = vcpu->arch.exception.error_code;
2224
2225         events->interrupt.injected =
2226                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2227         events->interrupt.nr = vcpu->arch.interrupt.nr;
2228         events->interrupt.soft = 0;
2229         events->interrupt.shadow =
2230                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2231                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2232
2233         events->nmi.injected = vcpu->arch.nmi_injected;
2234         events->nmi.pending = vcpu->arch.nmi_pending;
2235         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2236
2237         events->sipi_vector = vcpu->arch.sipi_vector;
2238
2239         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2240                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2241                          | KVM_VCPUEVENT_VALID_SHADOW);
2242
2243         vcpu_put(vcpu);
2244 }
2245
2246 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2247                                               struct kvm_vcpu_events *events)
2248 {
2249         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2250                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2251                               | KVM_VCPUEVENT_VALID_SHADOW))
2252                 return -EINVAL;
2253
2254         vcpu_load(vcpu);
2255
2256         vcpu->arch.exception.pending = events->exception.injected;
2257         vcpu->arch.exception.nr = events->exception.nr;
2258         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2259         vcpu->arch.exception.error_code = events->exception.error_code;
2260
2261         vcpu->arch.interrupt.pending = events->interrupt.injected;
2262         vcpu->arch.interrupt.nr = events->interrupt.nr;
2263         vcpu->arch.interrupt.soft = events->interrupt.soft;
2264         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2265                 kvm_pic_clear_isr_ack(vcpu->kvm);
2266         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2267                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2268                                                   events->interrupt.shadow);
2269
2270         vcpu->arch.nmi_injected = events->nmi.injected;
2271         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2272                 vcpu->arch.nmi_pending = events->nmi.pending;
2273         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2274
2275         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2276                 vcpu->arch.sipi_vector = events->sipi_vector;
2277
2278         vcpu_put(vcpu);
2279
2280         return 0;
2281 }
2282
2283 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2284                                              struct kvm_debugregs *dbgregs)
2285 {
2286         vcpu_load(vcpu);
2287
2288         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2289         dbgregs->dr6 = vcpu->arch.dr6;
2290         dbgregs->dr7 = vcpu->arch.dr7;
2291         dbgregs->flags = 0;
2292
2293         vcpu_put(vcpu);
2294 }
2295
2296 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2297                                             struct kvm_debugregs *dbgregs)
2298 {
2299         if (dbgregs->flags)
2300                 return -EINVAL;
2301
2302         vcpu_load(vcpu);
2303
2304         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2305         vcpu->arch.dr6 = dbgregs->dr6;
2306         vcpu->arch.dr7 = dbgregs->dr7;
2307
2308         vcpu_put(vcpu);
2309
2310         return 0;
2311 }
2312
2313 long kvm_arch_vcpu_ioctl(struct file *filp,
2314                          unsigned int ioctl, unsigned long arg)
2315 {
2316         struct kvm_vcpu *vcpu = filp->private_data;
2317         void __user *argp = (void __user *)arg;
2318         int r;
2319         struct kvm_lapic_state *lapic = NULL;
2320
2321         switch (ioctl) {
2322         case KVM_GET_LAPIC: {
2323                 r = -EINVAL;
2324                 if (!vcpu->arch.apic)
2325                         goto out;
2326                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2327
2328                 r = -ENOMEM;
2329                 if (!lapic)
2330                         goto out;
2331                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
2332                 if (r)
2333                         goto out;
2334                 r = -EFAULT;
2335                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
2336                         goto out;
2337                 r = 0;
2338                 break;
2339         }
2340         case KVM_SET_LAPIC: {
2341                 r = -EINVAL;
2342                 if (!vcpu->arch.apic)
2343                         goto out;
2344                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2345                 r = -ENOMEM;
2346                 if (!lapic)
2347                         goto out;
2348                 r = -EFAULT;
2349                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
2350                         goto out;
2351                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
2352                 if (r)
2353                         goto out;
2354                 r = 0;
2355                 break;
2356         }
2357         case KVM_INTERRUPT: {
2358                 struct kvm_interrupt irq;
2359
2360                 r = -EFAULT;
2361                 if (copy_from_user(&irq, argp, sizeof irq))
2362                         goto out;
2363                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2364                 if (r)
2365                         goto out;
2366                 r = 0;
2367                 break;
2368         }
2369         case KVM_NMI: {
2370                 r = kvm_vcpu_ioctl_nmi(vcpu);
2371                 if (r)
2372                         goto out;
2373                 r = 0;
2374                 break;
2375         }
2376         case KVM_SET_CPUID: {
2377                 struct kvm_cpuid __user *cpuid_arg = argp;
2378                 struct kvm_cpuid cpuid;
2379
2380                 r = -EFAULT;
2381                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2382                         goto out;
2383                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2384                 if (r)
2385                         goto out;
2386                 break;
2387         }
2388         case KVM_SET_CPUID2: {
2389                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2390                 struct kvm_cpuid2 cpuid;
2391
2392                 r = -EFAULT;
2393                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2394                         goto out;
2395                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2396                                               cpuid_arg->entries);
2397                 if (r)
2398                         goto out;
2399                 break;
2400         }
2401         case KVM_GET_CPUID2: {
2402                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2403                 struct kvm_cpuid2 cpuid;
2404
2405                 r = -EFAULT;
2406                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2407                         goto out;
2408                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2409                                               cpuid_arg->entries);
2410                 if (r)
2411                         goto out;
2412                 r = -EFAULT;
2413                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2414                         goto out;
2415                 r = 0;
2416                 break;
2417         }
2418         case KVM_GET_MSRS:
2419                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2420                 break;
2421         case KVM_SET_MSRS:
2422                 r = msr_io(vcpu, argp, do_set_msr, 0);
2423                 break;
2424         case KVM_TPR_ACCESS_REPORTING: {
2425                 struct kvm_tpr_access_ctl tac;
2426
2427                 r = -EFAULT;
2428                 if (copy_from_user(&tac, argp, sizeof tac))
2429                         goto out;
2430                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2431                 if (r)
2432                         goto out;
2433                 r = -EFAULT;
2434                 if (copy_to_user(argp, &tac, sizeof tac))
2435                         goto out;
2436                 r = 0;
2437                 break;
2438         };
2439         case KVM_SET_VAPIC_ADDR: {
2440                 struct kvm_vapic_addr va;
2441
2442                 r = -EINVAL;
2443                 if (!irqchip_in_kernel(vcpu->kvm))
2444                         goto out;
2445                 r = -EFAULT;
2446                 if (copy_from_user(&va, argp, sizeof va))
2447                         goto out;
2448                 r = 0;
2449                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2450                 break;
2451         }
2452         case KVM_X86_SETUP_MCE: {
2453                 u64 mcg_cap;
2454
2455                 r = -EFAULT;
2456                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2457                         goto out;
2458                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2459                 break;
2460         }
2461         case KVM_X86_SET_MCE: {
2462                 struct kvm_x86_mce mce;
2463
2464                 r = -EFAULT;
2465                 if (copy_from_user(&mce, argp, sizeof mce))
2466                         goto out;
2467                 vcpu_load(vcpu);
2468                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2469                 vcpu_put(vcpu);
2470                 break;
2471         }
2472         case KVM_GET_VCPU_EVENTS: {
2473                 struct kvm_vcpu_events events;
2474
2475                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2476
2477                 r = -EFAULT;
2478                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2479                         break;
2480                 r = 0;
2481                 break;
2482         }
2483         case KVM_SET_VCPU_EVENTS: {
2484                 struct kvm_vcpu_events events;
2485
2486                 r = -EFAULT;
2487                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2488                         break;
2489
2490                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2491                 break;
2492         }
2493         case KVM_GET_DEBUGREGS: {
2494                 struct kvm_debugregs dbgregs;
2495
2496                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2497
2498                 r = -EFAULT;
2499                 if (copy_to_user(argp, &dbgregs,
2500                                  sizeof(struct kvm_debugregs)))
2501                         break;
2502                 r = 0;
2503                 break;
2504         }
2505         case KVM_SET_DEBUGREGS: {
2506                 struct kvm_debugregs dbgregs;
2507
2508                 r = -EFAULT;
2509                 if (copy_from_user(&dbgregs, argp,
2510                                    sizeof(struct kvm_debugregs)))
2511                         break;
2512
2513                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2514                 break;
2515         }
2516         default:
2517                 r = -EINVAL;
2518         }
2519 out:
2520         kfree(lapic);
2521         return r;
2522 }
2523
2524 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2525 {
2526         int ret;
2527
2528         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2529                 return -1;
2530         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2531         return ret;
2532 }
2533
2534 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2535                                               u64 ident_addr)
2536 {
2537         kvm->arch.ept_identity_map_addr = ident_addr;
2538         return 0;
2539 }
2540
2541 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2542                                           u32 kvm_nr_mmu_pages)
2543 {
2544         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2545                 return -EINVAL;
2546
2547         mutex_lock(&kvm->slots_lock);
2548         spin_lock(&kvm->mmu_lock);
2549
2550         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2551         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2552
2553         spin_unlock(&kvm->mmu_lock);
2554         mutex_unlock(&kvm->slots_lock);
2555         return 0;
2556 }
2557
2558 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2559 {
2560         return kvm->arch.n_alloc_mmu_pages;
2561 }
2562
2563 gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
2564 {
2565         int i;
2566         struct kvm_mem_alias *alias;
2567         struct kvm_mem_aliases *aliases;
2568
2569         aliases = kvm_aliases(kvm);
2570
2571         for (i = 0; i < aliases->naliases; ++i) {
2572                 alias = &aliases->aliases[i];
2573                 if (alias->flags & KVM_ALIAS_INVALID)
2574                         continue;
2575                 if (gfn >= alias->base_gfn
2576                     && gfn < alias->base_gfn + alias->npages)
2577                         return alias->target_gfn + gfn - alias->base_gfn;
2578         }
2579         return gfn;
2580 }
2581
2582 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
2583 {
2584         int i;
2585         struct kvm_mem_alias *alias;
2586         struct kvm_mem_aliases *aliases;
2587
2588         aliases = kvm_aliases(kvm);
2589
2590         for (i = 0; i < aliases->naliases; ++i) {
2591                 alias = &aliases->aliases[i];
2592                 if (gfn >= alias->base_gfn
2593                     && gfn < alias->base_gfn + alias->npages)
2594                         return alias->target_gfn + gfn - alias->base_gfn;
2595         }
2596         return gfn;
2597 }
2598
2599 /*
2600  * Set a new alias region.  Aliases map a portion of physical memory into
2601  * another portion.  This is useful for memory windows, for example the PC
2602  * VGA region.
2603  */
2604 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
2605                                          struct kvm_memory_alias *alias)
2606 {
2607         int r, n;
2608         struct kvm_mem_alias *p;
2609         struct kvm_mem_aliases *aliases, *old_aliases;
2610
2611         r = -EINVAL;
2612         /* General sanity checks */
2613         if (alias->memory_size & (PAGE_SIZE - 1))
2614                 goto out;
2615         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
2616                 goto out;
2617         if (alias->slot >= KVM_ALIAS_SLOTS)
2618                 goto out;
2619         if (alias->guest_phys_addr + alias->memory_size
2620             < alias->guest_phys_addr)
2621                 goto out;
2622         if (alias->target_phys_addr + alias->memory_size
2623             < alias->target_phys_addr)
2624                 goto out;
2625
2626         r = -ENOMEM;
2627         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2628         if (!aliases)
2629                 goto out;
2630
2631         mutex_lock(&kvm->slots_lock);
2632
2633         /* invalidate any gfn reference in case of deletion/shrinking */
2634         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2635         aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
2636         old_aliases = kvm->arch.aliases;
2637         rcu_assign_pointer(kvm->arch.aliases, aliases);
2638         synchronize_srcu_expedited(&kvm->srcu);
2639         kvm_mmu_zap_all(kvm);
2640         kfree(old_aliases);
2641
2642         r = -ENOMEM;
2643         aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
2644         if (!aliases)
2645                 goto out_unlock;
2646
2647         memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
2648
2649         p = &aliases->aliases[alias->slot];
2650         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
2651         p->npages = alias->memory_size >> PAGE_SHIFT;
2652         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
2653         p->flags &= ~(KVM_ALIAS_INVALID);
2654
2655         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
2656                 if (aliases->aliases[n - 1].npages)
2657                         break;
2658         aliases->naliases = n;
2659
2660         old_aliases = kvm->arch.aliases;
2661         rcu_assign_pointer(kvm->arch.aliases, aliases);
2662         synchronize_srcu_expedited(&kvm->srcu);
2663         kfree(old_aliases);
2664         r = 0;
2665
2666 out_unlock:
2667         mutex_unlock(&kvm->slots_lock);
2668 out:
2669         return r;
2670 }
2671
2672 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2673 {
2674         int r;
2675
2676         r = 0;
2677         switch (chip->chip_id) {
2678         case KVM_IRQCHIP_PIC_MASTER:
2679                 memcpy(&chip->chip.pic,
2680                         &pic_irqchip(kvm)->pics[0],
2681                         sizeof(struct kvm_pic_state));
2682                 break;
2683         case KVM_IRQCHIP_PIC_SLAVE:
2684                 memcpy(&chip->chip.pic,
2685                         &pic_irqchip(kvm)->pics[1],
2686                         sizeof(struct kvm_pic_state));
2687                 break;
2688         case KVM_IRQCHIP_IOAPIC:
2689                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2690                 break;
2691         default:
2692                 r = -EINVAL;
2693                 break;
2694         }
2695         return r;
2696 }
2697
2698 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2699 {
2700         int r;
2701
2702         r = 0;
2703         switch (chip->chip_id) {
2704         case KVM_IRQCHIP_PIC_MASTER:
2705                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2706                 memcpy(&pic_irqchip(kvm)->pics[0],
2707                         &chip->chip.pic,
2708                         sizeof(struct kvm_pic_state));
2709                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2710                 break;
2711         case KVM_IRQCHIP_PIC_SLAVE:
2712                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2713                 memcpy(&pic_irqchip(kvm)->pics[1],
2714                         &chip->chip.pic,
2715                         sizeof(struct kvm_pic_state));
2716                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2717                 break;
2718         case KVM_IRQCHIP_IOAPIC:
2719                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2720                 break;
2721         default:
2722                 r = -EINVAL;
2723                 break;
2724         }
2725         kvm_pic_update_irq(pic_irqchip(kvm));
2726         return r;
2727 }
2728
2729 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2730 {
2731         int r = 0;
2732
2733         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2734         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2735         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2736         return r;
2737 }
2738
2739 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2740 {
2741         int r = 0;
2742
2743         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2744         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2745         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2746         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2747         return r;
2748 }
2749
2750 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2751 {
2752         int r = 0;
2753
2754         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2755         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2756                 sizeof(ps->channels));
2757         ps->flags = kvm->arch.vpit->pit_state.flags;
2758         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2759         return r;
2760 }
2761
2762 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2763 {
2764         int r = 0, start = 0;
2765         u32 prev_legacy, cur_legacy;
2766         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2767         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2768         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2769         if (!prev_legacy && cur_legacy)
2770                 start = 1;
2771         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2772                sizeof(kvm->arch.vpit->pit_state.channels));
2773         kvm->arch.vpit->pit_state.flags = ps->flags;
2774         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2775         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2776         return r;
2777 }
2778
2779 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2780                                  struct kvm_reinject_control *control)
2781 {
2782         if (!kvm->arch.vpit)
2783                 return -ENXIO;
2784         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2785         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2786         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2787         return 0;
2788 }
2789
2790 /*
2791  * Get (and clear) the dirty memory log for a memory slot.
2792  */
2793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2794                                       struct kvm_dirty_log *log)
2795 {
2796         int r, i;
2797         struct kvm_memory_slot *memslot;
2798         unsigned long n;
2799         unsigned long is_dirty = 0;
2800         unsigned long *dirty_bitmap = NULL;
2801
2802         mutex_lock(&kvm->slots_lock);
2803
2804         r = -EINVAL;
2805         if (log->slot >= KVM_MEMORY_SLOTS)
2806                 goto out;
2807
2808         memslot = &kvm->memslots->memslots[log->slot];
2809         r = -ENOENT;
2810         if (!memslot->dirty_bitmap)
2811                 goto out;
2812
2813         n = kvm_dirty_bitmap_bytes(memslot);
2814
2815         r = -ENOMEM;
2816         dirty_bitmap = vmalloc(n);
2817         if (!dirty_bitmap)
2818                 goto out;
2819         memset(dirty_bitmap, 0, n);
2820
2821         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2822                 is_dirty = memslot->dirty_bitmap[i];
2823
2824         /* If nothing is dirty, don't bother messing with page tables. */
2825         if (is_dirty) {
2826                 struct kvm_memslots *slots, *old_slots;
2827
2828                 spin_lock(&kvm->mmu_lock);
2829                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
2830                 spin_unlock(&kvm->mmu_lock);
2831
2832                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2833                 if (!slots)
2834                         goto out_free;
2835
2836                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2837                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2838
2839                 old_slots = kvm->memslots;
2840                 rcu_assign_pointer(kvm->memslots, slots);
2841                 synchronize_srcu_expedited(&kvm->srcu);
2842                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
2843                 kfree(old_slots);
2844         }
2845
2846         r = 0;
2847         if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
2848                 r = -EFAULT;
2849 out_free:
2850         vfree(dirty_bitmap);
2851 out:
2852         mutex_unlock(&kvm->slots_lock);
2853         return r;
2854 }
2855
2856 long kvm_arch_vm_ioctl(struct file *filp,
2857                        unsigned int ioctl, unsigned long arg)
2858 {
2859         struct kvm *kvm = filp->private_data;
2860         void __user *argp = (void __user *)arg;
2861         int r = -ENOTTY;
2862         /*
2863          * This union makes it completely explicit to gcc-3.x
2864          * that these two variables' stack usage should be
2865          * combined, not added together.
2866          */
2867         union {
2868                 struct kvm_pit_state ps;
2869                 struct kvm_pit_state2 ps2;
2870                 struct kvm_memory_alias alias;
2871                 struct kvm_pit_config pit_config;
2872         } u;
2873
2874         switch (ioctl) {
2875         case KVM_SET_TSS_ADDR:
2876                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
2877                 if (r < 0)
2878                         goto out;
2879                 break;
2880         case KVM_SET_IDENTITY_MAP_ADDR: {
2881                 u64 ident_addr;
2882
2883                 r = -EFAULT;
2884                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
2885                         goto out;
2886                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
2887                 if (r < 0)
2888                         goto out;
2889                 break;
2890         }
2891         case KVM_SET_MEMORY_REGION: {
2892                 struct kvm_memory_region kvm_mem;
2893                 struct kvm_userspace_memory_region kvm_userspace_mem;
2894
2895                 r = -EFAULT;
2896                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2897                         goto out;
2898                 kvm_userspace_mem.slot = kvm_mem.slot;
2899                 kvm_userspace_mem.flags = kvm_mem.flags;
2900                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
2901                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
2902                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
2903                 if (r)
2904                         goto out;
2905                 break;
2906         }
2907         case KVM_SET_NR_MMU_PAGES:
2908                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
2909                 if (r)
2910                         goto out;
2911                 break;
2912         case KVM_GET_NR_MMU_PAGES:
2913                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
2914                 break;
2915         case KVM_SET_MEMORY_ALIAS:
2916                 r = -EFAULT;
2917                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
2918                         goto out;
2919                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
2920                 if (r)
2921                         goto out;
2922                 break;
2923         case KVM_CREATE_IRQCHIP: {
2924                 struct kvm_pic *vpic;
2925
2926                 mutex_lock(&kvm->lock);
2927                 r = -EEXIST;
2928                 if (kvm->arch.vpic)
2929                         goto create_irqchip_unlock;
2930                 r = -ENOMEM;
2931                 vpic = kvm_create_pic(kvm);
2932                 if (vpic) {
2933                         r = kvm_ioapic_init(kvm);
2934                         if (r) {
2935                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
2936                                                           &vpic->dev);
2937                                 kfree(vpic);
2938                                 goto create_irqchip_unlock;
2939                         }
2940                 } else
2941                         goto create_irqchip_unlock;
2942                 smp_wmb();
2943                 kvm->arch.vpic = vpic;
2944                 smp_wmb();
2945                 r = kvm_setup_default_irq_routing(kvm);
2946                 if (r) {
2947                         mutex_lock(&kvm->irq_lock);
2948                         kvm_ioapic_destroy(kvm);
2949                         kvm_destroy_pic(kvm);
2950                         mutex_unlock(&kvm->irq_lock);
2951                 }
2952         create_irqchip_unlock:
2953                 mutex_unlock(&kvm->lock);
2954                 break;
2955         }
2956         case KVM_CREATE_PIT:
2957                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
2958                 goto create_pit;
2959         case KVM_CREATE_PIT2:
2960                 r = -EFAULT;
2961                 if (copy_from_user(&u.pit_config, argp,
2962                                    sizeof(struct kvm_pit_config)))
2963                         goto out;
2964         create_pit:
2965                 mutex_lock(&kvm->slots_lock);
2966                 r = -EEXIST;
2967                 if (kvm->arch.vpit)
2968                         goto create_pit_unlock;
2969                 r = -ENOMEM;
2970                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
2971                 if (kvm->arch.vpit)
2972                         r = 0;
2973         create_pit_unlock:
2974                 mutex_unlock(&kvm->slots_lock);
2975                 break;
2976         case KVM_IRQ_LINE_STATUS:
2977         case KVM_IRQ_LINE: {
2978                 struct kvm_irq_level irq_event;
2979
2980                 r = -EFAULT;
2981                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2982                         goto out;
2983                 r = -ENXIO;
2984                 if (irqchip_in_kernel(kvm)) {
2985                         __s32 status;
2986                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2987                                         irq_event.irq, irq_event.level);
2988                         if (ioctl == KVM_IRQ_LINE_STATUS) {
2989                                 r = -EFAULT;
2990                                 irq_event.status = status;
2991                                 if (copy_to_user(argp, &irq_event,
2992                                                         sizeof irq_event))
2993                                         goto out;
2994                         }
2995                         r = 0;
2996                 }
2997                 break;
2998         }
2999         case KVM_GET_IRQCHIP: {
3000                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3001                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3002
3003                 r = -ENOMEM;
3004                 if (!chip)
3005                         goto out;
3006                 r = -EFAULT;
3007                 if (copy_from_user(chip, argp, sizeof *chip))
3008                         goto get_irqchip_out;
3009                 r = -ENXIO;
3010                 if (!irqchip_in_kernel(kvm))
3011                         goto get_irqchip_out;
3012                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3013                 if (r)
3014                         goto get_irqchip_out;
3015                 r = -EFAULT;
3016                 if (copy_to_user(argp, chip, sizeof *chip))
3017                         goto get_irqchip_out;
3018                 r = 0;
3019         get_irqchip_out:
3020                 kfree(chip);
3021                 if (r)
3022                         goto out;
3023                 break;
3024         }
3025         case KVM_SET_IRQCHIP: {
3026                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3027                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3028
3029                 r = -ENOMEM;
3030                 if (!chip)
3031                         goto out;
3032                 r = -EFAULT;
3033                 if (copy_from_user(chip, argp, sizeof *chip))
3034                         goto set_irqchip_out;
3035                 r = -ENXIO;
3036                 if (!irqchip_in_kernel(kvm))
3037                         goto set_irqchip_out;
3038                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3039                 if (r)
3040                         goto set_irqchip_out;
3041                 r = 0;
3042         set_irqchip_out:
3043                 kfree(chip);
3044                 if (r)
3045                         goto out;
3046                 break;
3047         }
3048         case KVM_GET_PIT: {
3049                 r = -EFAULT;
3050                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3051                         goto out;
3052                 r = -ENXIO;
3053                 if (!kvm->arch.vpit)
3054                         goto out;
3055                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3056                 if (r)
3057                         goto out;
3058                 r = -EFAULT;
3059                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3060                         goto out;
3061                 r = 0;
3062                 break;
3063         }
3064         case KVM_SET_PIT: {
3065                 r = -EFAULT;
3066                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3067                         goto out;
3068                 r = -ENXIO;
3069                 if (!kvm->arch.vpit)
3070                         goto out;
3071                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3072                 if (r)
3073                         goto out;
3074                 r = 0;
3075                 break;
3076         }
3077         case KVM_GET_PIT2: {
3078                 r = -ENXIO;
3079                 if (!kvm->arch.vpit)
3080                         goto out;
3081                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3082                 if (r)
3083                         goto out;
3084                 r = -EFAULT;
3085                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3086                         goto out;
3087                 r = 0;
3088                 break;
3089         }
3090         case KVM_SET_PIT2: {
3091                 r = -EFAULT;
3092                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3093                         goto out;
3094                 r = -ENXIO;
3095                 if (!kvm->arch.vpit)
3096                         goto out;
3097                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3098                 if (r)
3099                         goto out;
3100                 r = 0;
3101                 break;
3102         }
3103         case KVM_REINJECT_CONTROL: {
3104                 struct kvm_reinject_control control;
3105                 r =  -EFAULT;
3106                 if (copy_from_user(&control, argp, sizeof(control)))
3107                         goto out;
3108                 r = kvm_vm_ioctl_reinject(kvm, &control);
3109                 if (r)
3110                         goto out;
3111                 r = 0;
3112                 break;
3113         }
3114         case KVM_XEN_HVM_CONFIG: {
3115                 r = -EFAULT;
3116                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3117                                    sizeof(struct kvm_xen_hvm_config)))
3118                         goto out;
3119                 r = -EINVAL;
3120                 if (kvm->arch.xen_hvm_config.flags)
3121                         goto out;
3122                 r = 0;
3123                 break;
3124         }
3125         case KVM_SET_CLOCK: {
3126                 struct timespec now;
3127                 struct kvm_clock_data user_ns;
3128                 u64 now_ns;
3129                 s64 delta;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3133                         goto out;
3134
3135                 r = -EINVAL;
3136                 if (user_ns.flags)
3137                         goto out;
3138
3139                 r = 0;
3140                 ktime_get_ts(&now);
3141                 now_ns = timespec_to_ns(&now);
3142                 delta = user_ns.clock - now_ns;
3143                 kvm->arch.kvmclock_offset = delta;
3144                 break;
3145         }
3146         case KVM_GET_CLOCK: {
3147                 struct timespec now;
3148                 struct kvm_clock_data user_ns;
3149                 u64 now_ns;
3150
3151                 ktime_get_ts(&now);
3152                 now_ns = timespec_to_ns(&now);
3153                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3154                 user_ns.flags = 0;
3155
3156                 r = -EFAULT;
3157                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3158                         goto out;
3159                 r = 0;
3160                 break;
3161         }
3162
3163         default:
3164                 ;
3165         }
3166 out:
3167         return r;
3168 }
3169
3170 static void kvm_init_msr_list(void)
3171 {
3172         u32 dummy[2];
3173         unsigned i, j;
3174
3175         /* skip the first msrs in the list. KVM-specific */
3176         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3177                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3178                         continue;
3179                 if (j < i)
3180                         msrs_to_save[j] = msrs_to_save[i];
3181                 j++;
3182         }
3183         num_msrs_to_save = j;
3184 }
3185
3186 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3187                            const void *v)
3188 {
3189         if (vcpu->arch.apic &&
3190             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3191                 return 0;
3192
3193         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3194 }
3195
3196 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3197 {
3198         if (vcpu->arch.apic &&
3199             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3200                 return 0;
3201
3202         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3203 }
3204
3205 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3206                         struct kvm_segment *var, int seg)
3207 {
3208         kvm_x86_ops->set_segment(vcpu, var, seg);
3209 }
3210
3211 void kvm_get_segment(struct kvm_vcpu *vcpu,
3212                      struct kvm_segment *var, int seg)
3213 {
3214         kvm_x86_ops->get_segment(vcpu, var, seg);
3215 }
3216
3217 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3218 {
3219         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3220         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3221 }
3222
3223  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3224 {
3225         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3226         access |= PFERR_FETCH_MASK;
3227         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3228 }
3229
3230 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3231 {
3232         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3233         access |= PFERR_WRITE_MASK;
3234         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3235 }
3236
3237 /* uses this to access any guest's mapped memory without checking CPL */
3238 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3239 {
3240         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3241 }
3242
3243 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3244                                       struct kvm_vcpu *vcpu, u32 access,
3245                                       u32 *error)
3246 {
3247         void *data = val;
3248         int r = X86EMUL_CONTINUE;
3249
3250         while (bytes) {
3251                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3252                 unsigned offset = addr & (PAGE_SIZE-1);
3253                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3254                 int ret;
3255
3256                 if (gpa == UNMAPPED_GVA) {
3257                         r = X86EMUL_PROPAGATE_FAULT;
3258                         goto out;
3259                 }
3260                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3261                 if (ret < 0) {
3262                         r = X86EMUL_UNHANDLEABLE;
3263                         goto out;
3264                 }
3265
3266                 bytes -= toread;
3267                 data += toread;
3268                 addr += toread;
3269         }
3270 out:
3271         return r;
3272 }
3273
3274 /* used for instruction fetching */
3275 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3276                                 struct kvm_vcpu *vcpu, u32 *error)
3277 {
3278         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3279         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3280                                           access | PFERR_FETCH_MASK, error);
3281 }
3282
3283 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3284                                struct kvm_vcpu *vcpu, u32 *error)
3285 {
3286         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3287         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3288                                           error);
3289 }
3290
3291 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3292                                struct kvm_vcpu *vcpu, u32 *error)
3293 {
3294         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3295 }
3296
3297 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3298                                        unsigned int bytes,
3299                                        struct kvm_vcpu *vcpu,
3300                                        u32 *error)
3301 {
3302         void *data = val;
3303         int r = X86EMUL_CONTINUE;
3304
3305         while (bytes) {
3306                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3307                                                        PFERR_WRITE_MASK, error);
3308                 unsigned offset = addr & (PAGE_SIZE-1);
3309                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3310                 int ret;
3311
3312                 if (gpa == UNMAPPED_GVA) {
3313                         r = X86EMUL_PROPAGATE_FAULT;
3314                         goto out;
3315                 }
3316                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3317                 if (ret < 0) {
3318                         r = X86EMUL_UNHANDLEABLE;
3319                         goto out;
3320                 }
3321
3322                 bytes -= towrite;
3323                 data += towrite;
3324                 addr += towrite;
3325         }
3326 out:
3327         return r;
3328 }
3329
3330 static int emulator_read_emulated(unsigned long addr,
3331                                   void *val,
3332                                   unsigned int bytes,
3333                                   struct kvm_vcpu *vcpu)
3334 {
3335         gpa_t                 gpa;
3336         u32 error_code;
3337
3338         if (vcpu->mmio_read_completed) {
3339                 memcpy(val, vcpu->mmio_data, bytes);
3340                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3341                                vcpu->mmio_phys_addr, *(u64 *)val);
3342                 vcpu->mmio_read_completed = 0;
3343                 return X86EMUL_CONTINUE;
3344         }
3345
3346         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
3347
3348         if (gpa == UNMAPPED_GVA) {
3349                 kvm_inject_page_fault(vcpu, addr, error_code);
3350                 return X86EMUL_PROPAGATE_FAULT;
3351         }
3352
3353         /* For APIC access vmexit */
3354         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3355                 goto mmio;
3356
3357         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3358                                 == X86EMUL_CONTINUE)
3359                 return X86EMUL_CONTINUE;
3360
3361 mmio:
3362         /*
3363          * Is this MMIO handled locally?
3364          */
3365         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3366                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3367                 return X86EMUL_CONTINUE;
3368         }
3369
3370         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3371
3372         vcpu->mmio_needed = 1;
3373         vcpu->mmio_phys_addr = gpa;
3374         vcpu->mmio_size = bytes;
3375         vcpu->mmio_is_write = 0;
3376
3377         return X86EMUL_UNHANDLEABLE;
3378 }
3379
3380 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3381                           const void *val, int bytes)
3382 {
3383         int ret;
3384
3385         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3386         if (ret < 0)
3387                 return 0;
3388         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3389         return 1;
3390 }
3391
3392 static int emulator_write_emulated_onepage(unsigned long addr,
3393                                            const void *val,
3394                                            unsigned int bytes,
3395                                            struct kvm_vcpu *vcpu)
3396 {
3397         gpa_t                 gpa;
3398         u32 error_code;
3399
3400         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
3401
3402         if (gpa == UNMAPPED_GVA) {
3403                 kvm_inject_page_fault(vcpu, addr, error_code);
3404                 return X86EMUL_PROPAGATE_FAULT;
3405         }
3406
3407         /* For APIC access vmexit */
3408         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3409                 goto mmio;
3410
3411         if (emulator_write_phys(vcpu, gpa, val, bytes))
3412                 return X86EMUL_CONTINUE;
3413
3414 mmio:
3415         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3416         /*
3417          * Is this MMIO handled locally?
3418          */
3419         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3420                 return X86EMUL_CONTINUE;
3421
3422         vcpu->mmio_needed = 1;
3423         vcpu->mmio_phys_addr = gpa;
3424         vcpu->mmio_size = bytes;
3425         vcpu->mmio_is_write = 1;
3426         memcpy(vcpu->mmio_data, val, bytes);
3427
3428         return X86EMUL_CONTINUE;
3429 }
3430
3431 int emulator_write_emulated(unsigned long addr,
3432                             const void *val,
3433                             unsigned int bytes,
3434                             struct kvm_vcpu *vcpu)
3435 {
3436         /* Crossing a page boundary? */
3437         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3438                 int rc, now;
3439
3440                 now = -addr & ~PAGE_MASK;
3441                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
3442                 if (rc != X86EMUL_CONTINUE)
3443                         return rc;
3444                 addr += now;
3445                 val += now;
3446                 bytes -= now;
3447         }
3448         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
3449 }
3450 EXPORT_SYMBOL_GPL(emulator_write_emulated);
3451
3452 #define CMPXCHG_TYPE(t, ptr, old, new) \
3453         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3454
3455 #ifdef CONFIG_X86_64
3456 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3457 #else
3458 #  define CMPXCHG64(ptr, old, new) \
3459         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3460 #endif
3461
3462 static int emulator_cmpxchg_emulated(unsigned long addr,
3463                                      const void *old,
3464                                      const void *new,
3465                                      unsigned int bytes,
3466                                      struct kvm_vcpu *vcpu)
3467 {
3468         gpa_t gpa;
3469         struct page *page;
3470         char *kaddr;
3471         bool exchanged;
3472
3473         /* guests cmpxchg8b have to be emulated atomically */
3474         if (bytes > 8 || (bytes & (bytes - 1)))
3475                 goto emul_write;
3476
3477         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3478
3479         if (gpa == UNMAPPED_GVA ||
3480             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3481                 goto emul_write;
3482
3483         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3484                 goto emul_write;
3485
3486         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3487
3488         kaddr = kmap_atomic(page, KM_USER0);
3489         kaddr += offset_in_page(gpa);
3490         switch (bytes) {
3491         case 1:
3492                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3493                 break;
3494         case 2:
3495                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3496                 break;
3497         case 4:
3498                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3499                 break;
3500         case 8:
3501                 exchanged = CMPXCHG64(kaddr, old, new);
3502                 break;
3503         default:
3504                 BUG();
3505         }
3506         kunmap_atomic(kaddr, KM_USER0);
3507         kvm_release_page_dirty(page);
3508
3509         if (!exchanged)
3510                 return X86EMUL_CMPXCHG_FAILED;
3511
3512         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3513
3514         return X86EMUL_CONTINUE;
3515
3516 emul_write:
3517         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3518
3519         return emulator_write_emulated(addr, new, bytes, vcpu);
3520 }
3521
3522 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3523 {
3524         /* TODO: String I/O for in kernel device */
3525         int r;
3526
3527         if (vcpu->arch.pio.in)
3528                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3529                                     vcpu->arch.pio.size, pd);
3530         else
3531                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3532                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3533                                      pd);
3534         return r;
3535 }
3536
3537
3538 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3539                              unsigned int count, struct kvm_vcpu *vcpu)
3540 {
3541         if (vcpu->arch.pio.count)
3542                 goto data_avail;
3543
3544         trace_kvm_pio(1, port, size, 1);
3545
3546         vcpu->arch.pio.port = port;
3547         vcpu->arch.pio.in = 1;
3548         vcpu->arch.pio.count  = count;
3549         vcpu->arch.pio.size = size;
3550
3551         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3552         data_avail:
3553                 memcpy(val, vcpu->arch.pio_data, size * count);
3554                 vcpu->arch.pio.count = 0;
3555                 return 1;
3556         }
3557
3558         vcpu->run->exit_reason = KVM_EXIT_IO;
3559         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3560         vcpu->run->io.size = size;
3561         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3562         vcpu->run->io.count = count;
3563         vcpu->run->io.port = port;
3564
3565         return 0;
3566 }
3567
3568 static int emulator_pio_out_emulated(int size, unsigned short port,
3569                               const void *val, unsigned int count,
3570                               struct kvm_vcpu *vcpu)
3571 {
3572         trace_kvm_pio(0, port, size, 1);
3573
3574         vcpu->arch.pio.port = port;
3575         vcpu->arch.pio.in = 0;
3576         vcpu->arch.pio.count = count;
3577         vcpu->arch.pio.size = size;
3578
3579         memcpy(vcpu->arch.pio_data, val, size * count);
3580
3581         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3582                 vcpu->arch.pio.count = 0;
3583                 return 1;
3584         }
3585
3586         vcpu->run->exit_reason = KVM_EXIT_IO;
3587         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3588         vcpu->run->io.size = size;
3589         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3590         vcpu->run->io.count = count;
3591         vcpu->run->io.port = port;
3592
3593         return 0;
3594 }
3595
3596 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3597 {
3598         return kvm_x86_ops->get_segment_base(vcpu, seg);
3599 }
3600
3601 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3602 {
3603         kvm_mmu_invlpg(vcpu, address);
3604         return X86EMUL_CONTINUE;
3605 }
3606
3607 int emulate_clts(struct kvm_vcpu *vcpu)
3608 {
3609         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3610         kvm_x86_ops->fpu_activate(vcpu);
3611         return X86EMUL_CONTINUE;
3612 }
3613
3614 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3615 {
3616         return kvm_get_dr(ctxt->vcpu, dr, dest);
3617 }
3618
3619 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3620 {
3621         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
3622
3623         return kvm_set_dr(ctxt->vcpu, dr, value & mask);
3624 }
3625
3626 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
3627 {
3628         u8 opcodes[4];
3629         unsigned long rip = kvm_rip_read(vcpu);
3630         unsigned long rip_linear;
3631
3632         if (!printk_ratelimit())
3633                 return;
3634
3635         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
3636
3637         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
3638
3639         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
3640                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
3641 }
3642 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
3643
3644 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3645 {
3646         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3647 }
3648
3649 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3650 {
3651         unsigned long value;
3652
3653         switch (cr) {
3654         case 0:
3655                 value = kvm_read_cr0(vcpu);
3656                 break;
3657         case 2:
3658                 value = vcpu->arch.cr2;
3659                 break;
3660         case 3:
3661                 value = vcpu->arch.cr3;
3662                 break;
3663         case 4:
3664                 value = kvm_read_cr4(vcpu);
3665                 break;
3666         case 8:
3667                 value = kvm_get_cr8(vcpu);
3668                 break;
3669         default:
3670                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3671                 return 0;
3672         }
3673
3674         return value;
3675 }
3676
3677 static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3678 {
3679         switch (cr) {
3680         case 0:
3681                 kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3682                 break;
3683         case 2:
3684                 vcpu->arch.cr2 = val;
3685                 break;
3686         case 3:
3687                 kvm_set_cr3(vcpu, val);
3688                 break;
3689         case 4:
3690                 kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3691                 break;
3692         case 8:
3693                 kvm_set_cr8(vcpu, val & 0xfUL);
3694                 break;
3695         default:
3696                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3697         }
3698 }
3699
3700 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3701 {
3702         return kvm_x86_ops->get_cpl(vcpu);
3703 }
3704
3705 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3706 {
3707         kvm_x86_ops->get_gdt(vcpu, dt);
3708 }
3709
3710 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3711                                            struct kvm_vcpu *vcpu)
3712 {
3713         struct kvm_segment var;
3714
3715         kvm_get_segment(vcpu, &var, seg);
3716
3717         if (var.unusable)
3718                 return false;
3719
3720         if (var.g)
3721                 var.limit >>= 12;
3722         set_desc_limit(desc, var.limit);
3723         set_desc_base(desc, (unsigned long)var.base);
3724         desc->type = var.type;
3725         desc->s = var.s;
3726         desc->dpl = var.dpl;
3727         desc->p = var.present;
3728         desc->avl = var.avl;
3729         desc->l = var.l;
3730         desc->d = var.db;
3731         desc->g = var.g;
3732
3733         return true;
3734 }
3735
3736 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3737                                            struct kvm_vcpu *vcpu)
3738 {
3739         struct kvm_segment var;
3740
3741         /* needed to preserve selector */
3742         kvm_get_segment(vcpu, &var, seg);
3743
3744         var.base = get_desc_base(desc);
3745         var.limit = get_desc_limit(desc);
3746         if (desc->g)
3747                 var.limit = (var.limit << 12) | 0xfff;
3748         var.type = desc->type;
3749         var.present = desc->p;
3750         var.dpl = desc->dpl;
3751         var.db = desc->d;
3752         var.s = desc->s;
3753         var.l = desc->l;
3754         var.g = desc->g;
3755         var.avl = desc->avl;
3756         var.present = desc->p;
3757         var.unusable = !var.present;
3758         var.padding = 0;
3759
3760         kvm_set_segment(vcpu, &var, seg);
3761         return;
3762 }
3763
3764 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3765 {
3766         struct kvm_segment kvm_seg;
3767
3768         kvm_get_segment(vcpu, &kvm_seg, seg);
3769         return kvm_seg.selector;
3770 }
3771
3772 static void emulator_set_segment_selector(u16 sel, int seg,
3773                                           struct kvm_vcpu *vcpu)
3774 {
3775         struct kvm_segment kvm_seg;
3776
3777         kvm_get_segment(vcpu, &kvm_seg, seg);
3778         kvm_seg.selector = sel;
3779         kvm_set_segment(vcpu, &kvm_seg, seg);
3780 }
3781
3782 static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
3783 {
3784         kvm_x86_ops->set_rflags(vcpu, rflags);
3785 }
3786
3787 static struct x86_emulate_ops emulate_ops = {
3788         .read_std            = kvm_read_guest_virt_system,
3789         .write_std           = kvm_write_guest_virt_system,
3790         .fetch               = kvm_fetch_guest_virt,
3791         .read_emulated       = emulator_read_emulated,
3792         .write_emulated      = emulator_write_emulated,
3793         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3794         .pio_in_emulated     = emulator_pio_in_emulated,
3795         .pio_out_emulated    = emulator_pio_out_emulated,
3796         .get_cached_descriptor = emulator_get_cached_descriptor,
3797         .set_cached_descriptor = emulator_set_cached_descriptor,
3798         .get_segment_selector = emulator_get_segment_selector,
3799         .set_segment_selector = emulator_set_segment_selector,
3800         .get_gdt             = emulator_get_gdt,
3801         .get_cr              = emulator_get_cr,
3802         .set_cr              = emulator_set_cr,
3803         .cpl                 = emulator_get_cpl,
3804         .set_rflags          = emulator_set_rflags,
3805 };
3806
3807 static void cache_all_regs(struct kvm_vcpu *vcpu)
3808 {
3809         kvm_register_read(vcpu, VCPU_REGS_RAX);
3810         kvm_register_read(vcpu, VCPU_REGS_RSP);
3811         kvm_register_read(vcpu, VCPU_REGS_RIP);
3812         vcpu->arch.regs_dirty = ~0;
3813 }
3814
3815 int emulate_instruction(struct kvm_vcpu *vcpu,
3816                         unsigned long cr2,
3817                         u16 error_code,
3818                         int emulation_type)
3819 {
3820         int r, shadow_mask;
3821         struct decode_cache *c;
3822         struct kvm_run *run = vcpu->run;
3823
3824         kvm_clear_exception_queue(vcpu);
3825         vcpu->arch.mmio_fault_cr2 = cr2;
3826         /*
3827          * TODO: fix emulate.c to use guest_read/write_register
3828          * instead of direct ->regs accesses, can save hundred cycles
3829          * on Intel for instructions that don't read/change RSP, for
3830          * for example.
3831          */
3832         cache_all_regs(vcpu);
3833
3834         vcpu->mmio_is_write = 0;
3835
3836         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
3837                 int cs_db, cs_l;
3838                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
3839
3840                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
3841                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
3842                 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
3843                 vcpu->arch.emulate_ctxt.mode =
3844                         (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
3845                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
3846                         ? X86EMUL_MODE_VM86 : cs_l
3847                         ? X86EMUL_MODE_PROT64 : cs_db
3848                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
3849
3850                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3851                 trace_kvm_emulate_insn_start(vcpu);
3852
3853                 /* Only allow emulation of specific instructions on #UD
3854                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
3855                 c = &vcpu->arch.emulate_ctxt.decode;
3856                 if (emulation_type & EMULTYPE_TRAP_UD) {
3857                         if (!c->twobyte)
3858                                 return EMULATE_FAIL;
3859                         switch (c->b) {
3860                         case 0x01: /* VMMCALL */
3861                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
3862                                         return EMULATE_FAIL;
3863                                 break;
3864                         case 0x34: /* sysenter */
3865                         case 0x35: /* sysexit */
3866                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3867                                         return EMULATE_FAIL;
3868                                 break;
3869                         case 0x05: /* syscall */
3870                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
3871                                         return EMULATE_FAIL;
3872                                 break;
3873                         default:
3874                                 return EMULATE_FAIL;
3875                         }
3876
3877                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
3878                                 return EMULATE_FAIL;
3879                 }
3880
3881                 ++vcpu->stat.insn_emulation;
3882                 if (r)  {
3883                         ++vcpu->stat.insn_emulation_fail;
3884                         trace_kvm_emulate_insn_failed(vcpu);
3885                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3886                                 return EMULATE_DONE;
3887                         return EMULATE_FAIL;
3888                 }
3889         }
3890
3891         if (emulation_type & EMULTYPE_SKIP) {
3892                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
3893                 return EMULATE_DONE;
3894         }
3895
3896 restart:
3897         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
3898         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
3899
3900         if (r == 0)
3901                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
3902
3903         if (vcpu->arch.pio.count) {
3904                 if (!vcpu->arch.pio.in)
3905                         vcpu->arch.pio.count = 0;
3906                 return EMULATE_DO_MMIO;
3907         }
3908
3909         if (r || vcpu->mmio_is_write) {
3910                 run->exit_reason = KVM_EXIT_MMIO;
3911                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
3912                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
3913                 run->mmio.len = vcpu->mmio_size;
3914                 run->mmio.is_write = vcpu->mmio_is_write;
3915         }
3916
3917         if (r) {
3918                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
3919                         goto done;
3920                 if (!vcpu->mmio_needed) {
3921                         ++vcpu->stat.insn_emulation_fail;
3922                         trace_kvm_emulate_insn_failed(vcpu);
3923                         kvm_report_emulation_failure(vcpu, "mmio");
3924                         return EMULATE_FAIL;
3925                 }
3926                 return EMULATE_DO_MMIO;
3927         }
3928
3929         if (vcpu->mmio_is_write) {
3930                 vcpu->mmio_needed = 0;
3931                 return EMULATE_DO_MMIO;
3932         }
3933
3934 done:
3935         if (vcpu->arch.exception.pending)
3936                 vcpu->arch.emulate_ctxt.restart = false;
3937
3938         if (vcpu->arch.emulate_ctxt.restart)
3939                 goto restart;
3940
3941         return EMULATE_DONE;
3942 }
3943 EXPORT_SYMBOL_GPL(emulate_instruction);
3944
3945 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
3946 {
3947         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
3948         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
3949         /* do not return to emulator after return from userspace */
3950         vcpu->arch.pio.count = 0;
3951         return ret;
3952 }
3953 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
3954
3955 static void bounce_off(void *info)
3956 {
3957         /* nothing */
3958 }
3959
3960 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
3961                                      void *data)
3962 {
3963         struct cpufreq_freqs *freq = data;
3964         struct kvm *kvm;
3965         struct kvm_vcpu *vcpu;
3966         int i, send_ipi = 0;
3967
3968         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
3969                 return 0;
3970         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
3971                 return 0;
3972         per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
3973
3974         spin_lock(&kvm_lock);
3975         list_for_each_entry(kvm, &vm_list, vm_list) {
3976                 kvm_for_each_vcpu(i, vcpu, kvm) {
3977                         if (vcpu->cpu != freq->cpu)
3978                                 continue;
3979                         if (!kvm_request_guest_time_update(vcpu))
3980                                 continue;
3981                         if (vcpu->cpu != smp_processor_id())
3982                                 send_ipi++;
3983                 }
3984         }
3985         spin_unlock(&kvm_lock);
3986
3987         if (freq->old < freq->new && send_ipi) {
3988                 /*
3989                  * We upscale the frequency.  Must make the guest
3990                  * doesn't see old kvmclock values while running with
3991                  * the new frequency, otherwise we risk the guest sees
3992                  * time go backwards.
3993                  *
3994                  * In case we update the frequency for another cpu
3995                  * (which might be in guest context) send an interrupt
3996                  * to kick the cpu out of guest context.  Next time
3997                  * guest context is entered kvmclock will be updated,
3998                  * so the guest will not see stale values.
3999                  */
4000                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
4001         }
4002         return 0;
4003 }
4004
4005 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4006         .notifier_call  = kvmclock_cpufreq_notifier
4007 };
4008
4009 static void kvm_timer_init(void)
4010 {
4011         int cpu;
4012
4013         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4014                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4015                                           CPUFREQ_TRANSITION_NOTIFIER);
4016                 for_each_online_cpu(cpu) {
4017                         unsigned long khz = cpufreq_get(cpu);
4018                         if (!khz)
4019                                 khz = tsc_khz;
4020                         per_cpu(cpu_tsc_khz, cpu) = khz;
4021                 }
4022         } else {
4023                 for_each_possible_cpu(cpu)
4024                         per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
4025         }
4026 }
4027
4028 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4029
4030 static int kvm_is_in_guest(void)
4031 {
4032         return percpu_read(current_vcpu) != NULL;
4033 }
4034
4035 static int kvm_is_user_mode(void)
4036 {
4037         int user_mode = 3;
4038
4039         if (percpu_read(current_vcpu))
4040                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4041
4042         return user_mode != 0;
4043 }
4044
4045 static unsigned long kvm_get_guest_ip(void)
4046 {
4047         unsigned long ip = 0;
4048
4049         if (percpu_read(current_vcpu))
4050                 ip = kvm_rip_read(percpu_read(current_vcpu));
4051
4052         return ip;
4053 }
4054
4055 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4056         .is_in_guest            = kvm_is_in_guest,
4057         .is_user_mode           = kvm_is_user_mode,
4058         .get_guest_ip           = kvm_get_guest_ip,
4059 };
4060
4061 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4062 {
4063         percpu_write(current_vcpu, vcpu);
4064 }
4065 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4066
4067 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4068 {
4069         percpu_write(current_vcpu, NULL);
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4072
4073 int kvm_arch_init(void *opaque)
4074 {
4075         int r;
4076         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4077
4078         if (kvm_x86_ops) {
4079                 printk(KERN_ERR "kvm: already loaded the other module\n");
4080                 r = -EEXIST;
4081                 goto out;
4082         }
4083
4084         if (!ops->cpu_has_kvm_support()) {
4085                 printk(KERN_ERR "kvm: no hardware support\n");
4086                 r = -EOPNOTSUPP;
4087                 goto out;
4088         }
4089         if (ops->disabled_by_bios()) {
4090                 printk(KERN_ERR "kvm: disabled by bios\n");
4091                 r = -EOPNOTSUPP;
4092                 goto out;
4093         }
4094
4095         r = kvm_mmu_module_init();
4096         if (r)
4097                 goto out;
4098
4099         kvm_init_msr_list();
4100
4101         kvm_x86_ops = ops;
4102         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4103         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4104         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4105                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4106
4107         kvm_timer_init();
4108
4109         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4110
4111         return 0;
4112
4113 out:
4114         return r;
4115 }
4116
4117 void kvm_arch_exit(void)
4118 {
4119         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4120
4121         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4122                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4123                                             CPUFREQ_TRANSITION_NOTIFIER);
4124         kvm_x86_ops = NULL;
4125         kvm_mmu_module_exit();
4126 }
4127
4128 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4129 {
4130         ++vcpu->stat.halt_exits;
4131         if (irqchip_in_kernel(vcpu->kvm)) {
4132                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4133                 return 1;
4134         } else {
4135                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4136                 return 0;
4137         }
4138 }
4139 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4140
4141 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4142                            unsigned long a1)
4143 {
4144         if (is_long_mode(vcpu))
4145                 return a0;
4146         else
4147                 return a0 | ((gpa_t)a1 << 32);
4148 }
4149
4150 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4151 {
4152         u64 param, ingpa, outgpa, ret;
4153         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4154         bool fast, longmode;
4155         int cs_db, cs_l;
4156
4157         /*
4158          * hypercall generates UD from non zero cpl and real mode
4159          * per HYPER-V spec
4160          */
4161         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4162                 kvm_queue_exception(vcpu, UD_VECTOR);
4163                 return 0;
4164         }
4165
4166         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4167         longmode = is_long_mode(vcpu) && cs_l == 1;
4168
4169         if (!longmode) {
4170                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4171                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4172                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4173                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4174                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4175                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4176         }
4177 #ifdef CONFIG_X86_64
4178         else {
4179                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4180                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4181                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4182         }
4183 #endif
4184
4185         code = param & 0xffff;
4186         fast = (param >> 16) & 0x1;
4187         rep_cnt = (param >> 32) & 0xfff;
4188         rep_idx = (param >> 48) & 0xfff;
4189
4190         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4191
4192         switch (code) {
4193         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4194                 kvm_vcpu_on_spin(vcpu);
4195                 break;
4196         default:
4197                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4198                 break;
4199         }
4200
4201         ret = res | (((u64)rep_done & 0xfff) << 32);
4202         if (longmode) {
4203                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4204         } else {
4205                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4206                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4207         }
4208
4209         return 1;
4210 }
4211
4212 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4213 {
4214         unsigned long nr, a0, a1, a2, a3, ret;
4215         int r = 1;
4216
4217         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4218                 return kvm_hv_hypercall(vcpu);
4219
4220         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4221         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4222         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4223         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4224         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4225
4226         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4227
4228         if (!is_long_mode(vcpu)) {
4229                 nr &= 0xFFFFFFFF;
4230                 a0 &= 0xFFFFFFFF;
4231                 a1 &= 0xFFFFFFFF;
4232                 a2 &= 0xFFFFFFFF;
4233                 a3 &= 0xFFFFFFFF;
4234         }
4235
4236         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4237                 ret = -KVM_EPERM;
4238                 goto out;
4239         }
4240
4241         switch (nr) {
4242         case KVM_HC_VAPIC_POLL_IRQ:
4243                 ret = 0;
4244                 break;
4245         case KVM_HC_MMU_OP:
4246                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4247                 break;
4248         default:
4249                 ret = -KVM_ENOSYS;
4250                 break;
4251         }
4252 out:
4253         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4254         ++vcpu->stat.hypercalls;
4255         return r;
4256 }
4257 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4258
4259 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4260 {
4261         char instruction[3];
4262         unsigned long rip = kvm_rip_read(vcpu);
4263
4264         /*
4265          * Blow out the MMU to ensure that no other VCPU has an active mapping
4266          * to ensure that the updated hypercall appears atomically across all
4267          * VCPUs.
4268          */
4269         kvm_mmu_zap_all(vcpu->kvm);
4270
4271         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4272
4273         return emulator_write_emulated(rip, instruction, 3, vcpu);
4274 }
4275
4276 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4277 {
4278         struct desc_ptr dt = { limit, base };
4279
4280         kvm_x86_ops->set_gdt(vcpu, &dt);
4281 }
4282
4283 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4284 {
4285         struct desc_ptr dt = { limit, base };
4286
4287         kvm_x86_ops->set_idt(vcpu, &dt);
4288 }
4289
4290 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4291 {
4292         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4293         int j, nent = vcpu->arch.cpuid_nent;
4294
4295         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4296         /* when no next entry is found, the current entry[i] is reselected */
4297         for (j = i + 1; ; j = (j + 1) % nent) {
4298                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4299                 if (ej->function == e->function) {
4300                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4301                         return j;
4302                 }
4303         }
4304         return 0; /* silence gcc, even though control never reaches here */
4305 }
4306
4307 /* find an entry with matching function, matching index (if needed), and that
4308  * should be read next (if it's stateful) */
4309 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4310         u32 function, u32 index)
4311 {
4312         if (e->function != function)
4313                 return 0;
4314         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4315                 return 0;
4316         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4317             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4318                 return 0;
4319         return 1;
4320 }
4321
4322 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4323                                               u32 function, u32 index)
4324 {
4325         int i;
4326         struct kvm_cpuid_entry2 *best = NULL;
4327
4328         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4329                 struct kvm_cpuid_entry2 *e;
4330
4331                 e = &vcpu->arch.cpuid_entries[i];
4332                 if (is_matching_cpuid_entry(e, function, index)) {
4333                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4334                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4335                         best = e;
4336                         break;
4337                 }
4338                 /*
4339                  * Both basic or both extended?
4340                  */
4341                 if (((e->function ^ function) & 0x80000000) == 0)
4342                         if (!best || e->function > best->function)
4343                                 best = e;
4344         }
4345         return best;
4346 }
4347 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4348
4349 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4350 {
4351         struct kvm_cpuid_entry2 *best;
4352
4353         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4354         if (!best || best->eax < 0x80000008)
4355                 goto not_found;
4356         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4357         if (best)
4358                 return best->eax & 0xff;
4359 not_found:
4360         return 36;
4361 }
4362
4363 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4364 {
4365         u32 function, index;
4366         struct kvm_cpuid_entry2 *best;
4367
4368         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4369         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4370         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4371         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4372         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4373         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4374         best = kvm_find_cpuid_entry(vcpu, function, index);
4375         if (best) {
4376                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4377                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4378                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4379                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4380         }
4381         kvm_x86_ops->skip_emulated_instruction(vcpu);
4382         trace_kvm_cpuid(function,
4383                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4384                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4385                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4386                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4387 }
4388 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4389
4390 /*
4391  * Check if userspace requested an interrupt window, and that the
4392  * interrupt window is open.
4393  *
4394  * No need to exit to userspace if we already have an interrupt queued.
4395  */
4396 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4397 {
4398         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4399                 vcpu->run->request_interrupt_window &&
4400                 kvm_arch_interrupt_allowed(vcpu));
4401 }
4402
4403 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4404 {
4405         struct kvm_run *kvm_run = vcpu->run;
4406
4407         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4408         kvm_run->cr8 = kvm_get_cr8(vcpu);
4409         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4410         if (irqchip_in_kernel(vcpu->kvm))
4411                 kvm_run->ready_for_interrupt_injection = 1;
4412         else
4413                 kvm_run->ready_for_interrupt_injection =
4414                         kvm_arch_interrupt_allowed(vcpu) &&
4415                         !kvm_cpu_has_interrupt(vcpu) &&
4416                         !kvm_event_needs_reinjection(vcpu);
4417 }
4418
4419 static void vapic_enter(struct kvm_vcpu *vcpu)
4420 {
4421         struct kvm_lapic *apic = vcpu->arch.apic;
4422         struct page *page;
4423
4424         if (!apic || !apic->vapic_addr)
4425                 return;
4426
4427         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4428
4429         vcpu->arch.apic->vapic_page = page;
4430 }
4431
4432 static void vapic_exit(struct kvm_vcpu *vcpu)
4433 {
4434         struct kvm_lapic *apic = vcpu->arch.apic;
4435         int idx;
4436
4437         if (!apic || !apic->vapic_addr)
4438                 return;
4439
4440         idx = srcu_read_lock(&vcpu->kvm->srcu);
4441         kvm_release_page_dirty(apic->vapic_page);
4442         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4443         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4444 }
4445
4446 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4447 {
4448         int max_irr, tpr;
4449
4450         if (!kvm_x86_ops->update_cr8_intercept)
4451                 return;
4452
4453         if (!vcpu->arch.apic)
4454                 return;
4455
4456         if (!vcpu->arch.apic->vapic_addr)
4457                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4458         else
4459                 max_irr = -1;
4460
4461         if (max_irr != -1)
4462                 max_irr >>= 4;
4463
4464         tpr = kvm_lapic_get_cr8(vcpu);
4465
4466         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4467 }
4468
4469 static void inject_pending_event(struct kvm_vcpu *vcpu)
4470 {
4471         /* try to reinject previous events if any */
4472         if (vcpu->arch.exception.pending) {
4473                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4474                                         vcpu->arch.exception.has_error_code,
4475                                         vcpu->arch.exception.error_code);
4476                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4477                                           vcpu->arch.exception.has_error_code,
4478                                           vcpu->arch.exception.error_code,
4479                                           vcpu->arch.exception.reinject);
4480                 return;
4481         }
4482
4483         if (vcpu->arch.nmi_injected) {
4484                 kvm_x86_ops->set_nmi(vcpu);
4485                 return;
4486         }
4487
4488         if (vcpu->arch.interrupt.pending) {
4489                 kvm_x86_ops->set_irq(vcpu);
4490                 return;
4491         }
4492
4493         /* try to inject new event if pending */
4494         if (vcpu->arch.nmi_pending) {
4495                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4496                         vcpu->arch.nmi_pending = false;
4497                         vcpu->arch.nmi_injected = true;
4498                         kvm_x86_ops->set_nmi(vcpu);
4499                 }
4500         } else if (kvm_cpu_has_interrupt(vcpu)) {
4501                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4502                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4503                                             false);
4504                         kvm_x86_ops->set_irq(vcpu);
4505                 }
4506         }
4507 }
4508
4509 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4510 {
4511         int r;
4512         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4513                 vcpu->run->request_interrupt_window;
4514
4515         if (vcpu->requests)
4516                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
4517                         kvm_mmu_unload(vcpu);
4518
4519         r = kvm_mmu_reload(vcpu);
4520         if (unlikely(r))
4521                 goto out;
4522
4523         if (vcpu->requests) {
4524                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
4525                         __kvm_migrate_timers(vcpu);
4526                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
4527                         kvm_write_guest_time(vcpu);
4528                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
4529                         kvm_mmu_sync_roots(vcpu);
4530                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
4531                         kvm_x86_ops->tlb_flush(vcpu);
4532                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
4533                                        &vcpu->requests)) {
4534                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4535                         r = 0;
4536                         goto out;
4537                 }
4538                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
4539                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4540                         r = 0;
4541                         goto out;
4542                 }
4543                 if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
4544                         vcpu->fpu_active = 0;
4545                         kvm_x86_ops->fpu_deactivate(vcpu);
4546                 }
4547         }
4548
4549         preempt_disable();
4550
4551         kvm_x86_ops->prepare_guest_switch(vcpu);
4552         if (vcpu->fpu_active)
4553                 kvm_load_guest_fpu(vcpu);
4554
4555         local_irq_disable();
4556
4557         clear_bit(KVM_REQ_KICK, &vcpu->requests);
4558         smp_mb__after_clear_bit();
4559
4560         if (vcpu->requests || need_resched() || signal_pending(current)) {
4561                 set_bit(KVM_REQ_KICK, &vcpu->requests);
4562                 local_irq_enable();
4563                 preempt_enable();
4564                 r = 1;
4565                 goto out;
4566         }
4567
4568         inject_pending_event(vcpu);
4569
4570         /* enable NMI/IRQ window open exits if needed */
4571         if (vcpu->arch.nmi_pending)
4572                 kvm_x86_ops->enable_nmi_window(vcpu);
4573         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4574                 kvm_x86_ops->enable_irq_window(vcpu);
4575
4576         if (kvm_lapic_enabled(vcpu)) {
4577                 update_cr8_intercept(vcpu);
4578                 kvm_lapic_sync_to_vapic(vcpu);
4579         }
4580
4581         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4582
4583         kvm_guest_enter();
4584
4585         if (unlikely(vcpu->arch.switch_db_regs)) {
4586                 set_debugreg(0, 7);
4587                 set_debugreg(vcpu->arch.eff_db[0], 0);
4588                 set_debugreg(vcpu->arch.eff_db[1], 1);
4589                 set_debugreg(vcpu->arch.eff_db[2], 2);
4590                 set_debugreg(vcpu->arch.eff_db[3], 3);
4591         }
4592
4593         trace_kvm_entry(vcpu->vcpu_id);
4594         kvm_x86_ops->run(vcpu);
4595
4596         /*
4597          * If the guest has used debug registers, at least dr7
4598          * will be disabled while returning to the host.
4599          * If we don't have active breakpoints in the host, we don't
4600          * care about the messed up debug address registers. But if
4601          * we have some of them active, restore the old state.
4602          */
4603         if (hw_breakpoint_active())
4604                 hw_breakpoint_restore();
4605
4606         set_bit(KVM_REQ_KICK, &vcpu->requests);
4607         local_irq_enable();
4608
4609         ++vcpu->stat.exits;
4610
4611         /*
4612          * We must have an instruction between local_irq_enable() and
4613          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4614          * the interrupt shadow.  The stat.exits increment will do nicely.
4615          * But we need to prevent reordering, hence this barrier():
4616          */
4617         barrier();
4618
4619         kvm_guest_exit();
4620
4621         preempt_enable();
4622
4623         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4624
4625         /*
4626          * Profile KVM exit RIPs:
4627          */
4628         if (unlikely(prof_on == KVM_PROFILING)) {
4629                 unsigned long rip = kvm_rip_read(vcpu);
4630                 profile_hit(KVM_PROFILING, (void *)rip);
4631         }
4632
4633
4634         kvm_lapic_sync_from_vapic(vcpu);
4635
4636         r = kvm_x86_ops->handle_exit(vcpu);
4637 out:
4638         return r;
4639 }
4640
4641
4642 static int __vcpu_run(struct kvm_vcpu *vcpu)
4643 {
4644         int r;
4645         struct kvm *kvm = vcpu->kvm;
4646
4647         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
4648                 pr_debug("vcpu %d received sipi with vector # %x\n",
4649                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
4650                 kvm_lapic_reset(vcpu);
4651                 r = kvm_arch_vcpu_reset(vcpu);
4652                 if (r)
4653                         return r;
4654                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4655         }
4656
4657         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4658         vapic_enter(vcpu);
4659
4660         r = 1;
4661         while (r > 0) {
4662                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
4663                         r = vcpu_enter_guest(vcpu);
4664                 else {
4665                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4666                         kvm_vcpu_block(vcpu);
4667                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4668                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
4669                         {
4670                                 switch(vcpu->arch.mp_state) {
4671                                 case KVM_MP_STATE_HALTED:
4672                                         vcpu->arch.mp_state =
4673                                                 KVM_MP_STATE_RUNNABLE;
4674                                 case KVM_MP_STATE_RUNNABLE:
4675                                         break;
4676                                 case KVM_MP_STATE_SIPI_RECEIVED:
4677                                 default:
4678                                         r = -EINTR;
4679                                         break;
4680                                 }
4681                         }
4682                 }
4683
4684                 if (r <= 0)
4685                         break;
4686
4687                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
4688                 if (kvm_cpu_has_pending_timer(vcpu))
4689                         kvm_inject_pending_timer_irqs(vcpu);
4690
4691                 if (dm_request_for_irq_injection(vcpu)) {
4692                         r = -EINTR;
4693                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4694                         ++vcpu->stat.request_irq_exits;
4695                 }
4696                 if (signal_pending(current)) {
4697                         r = -EINTR;
4698                         vcpu->run->exit_reason = KVM_EXIT_INTR;
4699                         ++vcpu->stat.signal_exits;
4700                 }
4701                 if (need_resched()) {
4702                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4703                         kvm_resched(vcpu);
4704                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
4705                 }
4706         }
4707
4708         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
4709
4710         vapic_exit(vcpu);
4711
4712         return r;
4713 }
4714
4715 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4716 {
4717         int r;
4718         sigset_t sigsaved;
4719
4720         vcpu_load(vcpu);
4721
4722         if (vcpu->sigset_active)
4723                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
4724
4725         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
4726                 kvm_vcpu_block(vcpu);
4727                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
4728                 r = -EAGAIN;
4729                 goto out;
4730         }
4731
4732         /* re-sync apic's tpr */
4733         if (!irqchip_in_kernel(vcpu->kvm))
4734                 kvm_set_cr8(vcpu, kvm_run->cr8);
4735
4736         if (vcpu->arch.pio.count || vcpu->mmio_needed ||
4737             vcpu->arch.emulate_ctxt.restart) {
4738                 if (vcpu->mmio_needed) {
4739                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
4740                         vcpu->mmio_read_completed = 1;
4741                         vcpu->mmio_needed = 0;
4742                 }
4743                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4744                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
4745                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4746                 if (r == EMULATE_DO_MMIO) {
4747                         r = 0;
4748                         goto out;
4749                 }
4750         }
4751         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
4752                 kvm_register_write(vcpu, VCPU_REGS_RAX,
4753                                      kvm_run->hypercall.ret);
4754
4755         r = __vcpu_run(vcpu);
4756
4757 out:
4758         post_kvm_run_save(vcpu);
4759         if (vcpu->sigset_active)
4760                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
4761
4762         vcpu_put(vcpu);
4763         return r;
4764 }
4765
4766 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4767 {
4768         vcpu_load(vcpu);
4769
4770         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
4771         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
4772         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
4773         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
4774         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
4775         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
4776         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
4777         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
4778 #ifdef CONFIG_X86_64
4779         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
4780         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
4781         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
4782         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
4783         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
4784         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
4785         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
4786         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
4787 #endif
4788
4789         regs->rip = kvm_rip_read(vcpu);
4790         regs->rflags = kvm_get_rflags(vcpu);
4791
4792         vcpu_put(vcpu);
4793
4794         return 0;
4795 }
4796
4797 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4798 {
4799         vcpu_load(vcpu);
4800
4801         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
4802         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
4803         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
4804         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
4805         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
4806         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
4807         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
4808         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
4809 #ifdef CONFIG_X86_64
4810         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
4811         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
4812         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
4813         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
4814         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
4815         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
4816         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
4817         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
4818 #endif
4819
4820         kvm_rip_write(vcpu, regs->rip);
4821         kvm_set_rflags(vcpu, regs->rflags);
4822
4823         vcpu->arch.exception.pending = false;
4824
4825         vcpu_put(vcpu);
4826
4827         return 0;
4828 }
4829
4830 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4831 {
4832         struct kvm_segment cs;
4833
4834         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
4835         *db = cs.db;
4836         *l = cs.l;
4837 }
4838 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
4839
4840 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4841                                   struct kvm_sregs *sregs)
4842 {
4843         struct desc_ptr dt;
4844
4845         vcpu_load(vcpu);
4846
4847         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4848         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4849         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4850         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4851         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4852         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4853
4854         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4855         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4856
4857         kvm_x86_ops->get_idt(vcpu, &dt);
4858         sregs->idt.limit = dt.size;
4859         sregs->idt.base = dt.address;
4860         kvm_x86_ops->get_gdt(vcpu, &dt);
4861         sregs->gdt.limit = dt.size;
4862         sregs->gdt.base = dt.address;
4863
4864         sregs->cr0 = kvm_read_cr0(vcpu);
4865         sregs->cr2 = vcpu->arch.cr2;
4866         sregs->cr3 = vcpu->arch.cr3;
4867         sregs->cr4 = kvm_read_cr4(vcpu);
4868         sregs->cr8 = kvm_get_cr8(vcpu);
4869         sregs->efer = vcpu->arch.efer;
4870         sregs->apic_base = kvm_get_apic_base(vcpu);
4871
4872         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
4873
4874         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
4875                 set_bit(vcpu->arch.interrupt.nr,
4876                         (unsigned long *)sregs->interrupt_bitmap);
4877
4878         vcpu_put(vcpu);
4879
4880         return 0;
4881 }
4882
4883 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4884                                     struct kvm_mp_state *mp_state)
4885 {
4886         vcpu_load(vcpu);
4887         mp_state->mp_state = vcpu->arch.mp_state;
4888         vcpu_put(vcpu);
4889         return 0;
4890 }
4891
4892 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4893                                     struct kvm_mp_state *mp_state)
4894 {
4895         vcpu_load(vcpu);
4896         vcpu->arch.mp_state = mp_state->mp_state;
4897         vcpu_put(vcpu);
4898         return 0;
4899 }
4900
4901 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
4902                     bool has_error_code, u32 error_code)
4903 {
4904         int cs_db, cs_l, ret;
4905         cache_all_regs(vcpu);
4906
4907         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4908
4909         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4910         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4911         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4912         vcpu->arch.emulate_ctxt.mode =
4913                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4914                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4915                 ? X86EMUL_MODE_VM86 : cs_l
4916                 ? X86EMUL_MODE_PROT64 : cs_db
4917                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4918
4919         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
4920                                    tss_selector, reason, has_error_code,
4921                                    error_code);
4922
4923         if (ret)
4924                 return EMULATE_FAIL;
4925
4926         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4927         return EMULATE_DONE;
4928 }
4929 EXPORT_SYMBOL_GPL(kvm_task_switch);
4930
4931 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4932                                   struct kvm_sregs *sregs)
4933 {
4934         int mmu_reset_needed = 0;
4935         int pending_vec, max_bits;
4936         struct desc_ptr dt;
4937
4938         vcpu_load(vcpu);
4939
4940         dt.size = sregs->idt.limit;
4941         dt.address = sregs->idt.base;
4942         kvm_x86_ops->set_idt(vcpu, &dt);
4943         dt.size = sregs->gdt.limit;
4944         dt.address = sregs->gdt.base;
4945         kvm_x86_ops->set_gdt(vcpu, &dt);
4946
4947         vcpu->arch.cr2 = sregs->cr2;
4948         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4949         vcpu->arch.cr3 = sregs->cr3;
4950
4951         kvm_set_cr8(vcpu, sregs->cr8);
4952
4953         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
4954         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4955         kvm_set_apic_base(vcpu, sregs->apic_base);
4956
4957         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
4958         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4959         vcpu->arch.cr0 = sregs->cr0;
4960
4961         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
4962         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4963         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
4964                 load_pdptrs(vcpu, vcpu->arch.cr3);
4965                 mmu_reset_needed = 1;
4966         }
4967
4968         if (mmu_reset_needed)
4969                 kvm_mmu_reset_context(vcpu);
4970
4971         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4972         pending_vec = find_first_bit(
4973                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4974         if (pending_vec < max_bits) {
4975                 kvm_queue_interrupt(vcpu, pending_vec, false);
4976                 pr_debug("Set back pending irq %d\n", pending_vec);
4977                 if (irqchip_in_kernel(vcpu->kvm))
4978                         kvm_pic_clear_isr_ack(vcpu->kvm);
4979         }
4980
4981         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4982         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4983         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4984         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4985         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4986         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4987
4988         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4989         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4990
4991         update_cr8_intercept(vcpu);
4992
4993         /* Older userspace won't unhalt the vcpu on reset. */
4994         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
4995             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4996             !is_protmode(vcpu))
4997                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4998
4999         vcpu_put(vcpu);
5000
5001         return 0;
5002 }
5003
5004 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5005                                         struct kvm_guest_debug *dbg)
5006 {
5007         unsigned long rflags;
5008         int i, r;
5009
5010         vcpu_load(vcpu);
5011
5012         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5013                 r = -EBUSY;
5014                 if (vcpu->arch.exception.pending)
5015                         goto unlock_out;
5016                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5017                         kvm_queue_exception(vcpu, DB_VECTOR);
5018                 else
5019                         kvm_queue_exception(vcpu, BP_VECTOR);
5020         }
5021
5022         /*
5023          * Read rflags as long as potentially injected trace flags are still
5024          * filtered out.
5025          */
5026         rflags = kvm_get_rflags(vcpu);
5027
5028         vcpu->guest_debug = dbg->control;
5029         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5030                 vcpu->guest_debug = 0;
5031
5032         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5033                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5034                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5035                 vcpu->arch.switch_db_regs =
5036                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5037         } else {
5038                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5039                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5040                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5041         }
5042
5043         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5044                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5045                         get_segment_base(vcpu, VCPU_SREG_CS);
5046
5047         /*
5048          * Trigger an rflags update that will inject or remove the trace
5049          * flags.
5050          */
5051         kvm_set_rflags(vcpu, rflags);
5052
5053         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5054
5055         r = 0;
5056
5057 unlock_out:
5058         vcpu_put(vcpu);
5059
5060         return r;
5061 }
5062
5063 /*
5064  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
5065  * we have asm/x86/processor.h
5066  */
5067 struct fxsave {
5068         u16     cwd;
5069         u16     swd;
5070         u16     twd;
5071         u16     fop;
5072         u64     rip;
5073         u64     rdp;
5074         u32     mxcsr;
5075         u32     mxcsr_mask;
5076         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
5077 #ifdef CONFIG_X86_64
5078         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
5079 #else
5080         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
5081 #endif
5082 };
5083
5084 /*
5085  * Translate a guest virtual address to a guest physical address.
5086  */
5087 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5088                                     struct kvm_translation *tr)
5089 {
5090         unsigned long vaddr = tr->linear_address;
5091         gpa_t gpa;
5092         int idx;
5093
5094         vcpu_load(vcpu);
5095         idx = srcu_read_lock(&vcpu->kvm->srcu);
5096         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5097         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5098         tr->physical_address = gpa;
5099         tr->valid = gpa != UNMAPPED_GVA;
5100         tr->writeable = 1;
5101         tr->usermode = 0;
5102         vcpu_put(vcpu);
5103
5104         return 0;
5105 }
5106
5107 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5108 {
5109         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5110
5111         vcpu_load(vcpu);
5112
5113         memcpy(fpu->fpr, fxsave->st_space, 128);
5114         fpu->fcw = fxsave->cwd;
5115         fpu->fsw = fxsave->swd;
5116         fpu->ftwx = fxsave->twd;
5117         fpu->last_opcode = fxsave->fop;
5118         fpu->last_ip = fxsave->rip;
5119         fpu->last_dp = fxsave->rdp;
5120         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5121
5122         vcpu_put(vcpu);
5123
5124         return 0;
5125 }
5126
5127 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5128 {
5129         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
5130
5131         vcpu_load(vcpu);
5132
5133         memcpy(fxsave->st_space, fpu->fpr, 128);
5134         fxsave->cwd = fpu->fcw;
5135         fxsave->swd = fpu->fsw;
5136         fxsave->twd = fpu->ftwx;
5137         fxsave->fop = fpu->last_opcode;
5138         fxsave->rip = fpu->last_ip;
5139         fxsave->rdp = fpu->last_dp;
5140         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5141
5142         vcpu_put(vcpu);
5143
5144         return 0;
5145 }
5146
5147 void fx_init(struct kvm_vcpu *vcpu)
5148 {
5149         unsigned after_mxcsr_mask;
5150
5151         /*
5152          * Touch the fpu the first time in non atomic context as if
5153          * this is the first fpu instruction the exception handler
5154          * will fire before the instruction returns and it'll have to
5155          * allocate ram with GFP_KERNEL.
5156          */
5157         if (!used_math())
5158                 kvm_fx_save(&vcpu->arch.host_fx_image);
5159
5160         /* Initialize guest FPU by resetting ours and saving into guest's */
5161         preempt_disable();
5162         kvm_fx_save(&vcpu->arch.host_fx_image);
5163         kvm_fx_finit();
5164         kvm_fx_save(&vcpu->arch.guest_fx_image);
5165         kvm_fx_restore(&vcpu->arch.host_fx_image);
5166         preempt_enable();
5167
5168         vcpu->arch.cr0 |= X86_CR0_ET;
5169         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
5170         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
5171         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
5172                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
5173 }
5174 EXPORT_SYMBOL_GPL(fx_init);
5175
5176 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5177 {
5178         if (vcpu->guest_fpu_loaded)
5179                 return;
5180
5181         vcpu->guest_fpu_loaded = 1;
5182         kvm_fx_save(&vcpu->arch.host_fx_image);
5183         kvm_fx_restore(&vcpu->arch.guest_fx_image);
5184         trace_kvm_fpu(1);
5185 }
5186
5187 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5188 {
5189         if (!vcpu->guest_fpu_loaded)
5190                 return;
5191
5192         vcpu->guest_fpu_loaded = 0;
5193         kvm_fx_save(&vcpu->arch.guest_fx_image);
5194         kvm_fx_restore(&vcpu->arch.host_fx_image);
5195         ++vcpu->stat.fpu_reload;
5196         set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
5197         trace_kvm_fpu(0);
5198 }
5199
5200 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5201 {
5202         if (vcpu->arch.time_page) {
5203                 kvm_release_page_dirty(vcpu->arch.time_page);
5204                 vcpu->arch.time_page = NULL;
5205         }
5206
5207         kvm_x86_ops->vcpu_free(vcpu);
5208 }
5209
5210 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5211                                                 unsigned int id)
5212 {
5213         return kvm_x86_ops->vcpu_create(kvm, id);
5214 }
5215
5216 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5217 {
5218         int r;
5219
5220         /* We do fxsave: this must be aligned. */
5221         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
5222
5223         vcpu->arch.mtrr_state.have_fixed = 1;
5224         vcpu_load(vcpu);
5225         r = kvm_arch_vcpu_reset(vcpu);
5226         if (r == 0)
5227                 r = kvm_mmu_setup(vcpu);
5228         vcpu_put(vcpu);
5229         if (r < 0)
5230                 goto free_vcpu;
5231
5232         return 0;
5233 free_vcpu:
5234         kvm_x86_ops->vcpu_free(vcpu);
5235         return r;
5236 }
5237
5238 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5239 {
5240         vcpu_load(vcpu);
5241         kvm_mmu_unload(vcpu);
5242         vcpu_put(vcpu);
5243
5244         kvm_x86_ops->vcpu_free(vcpu);
5245 }
5246
5247 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5248 {
5249         vcpu->arch.nmi_pending = false;
5250         vcpu->arch.nmi_injected = false;
5251
5252         vcpu->arch.switch_db_regs = 0;
5253         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5254         vcpu->arch.dr6 = DR6_FIXED_1;
5255         vcpu->arch.dr7 = DR7_FIXED_1;
5256
5257         return kvm_x86_ops->vcpu_reset(vcpu);
5258 }
5259
5260 int kvm_arch_hardware_enable(void *garbage)
5261 {
5262         /*
5263          * Since this may be called from a hotplug notifcation,
5264          * we can't get the CPU frequency directly.
5265          */
5266         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5267                 int cpu = raw_smp_processor_id();
5268                 per_cpu(cpu_tsc_khz, cpu) = 0;
5269         }
5270
5271         kvm_shared_msr_cpu_online();
5272
5273         return kvm_x86_ops->hardware_enable(garbage);
5274 }
5275
5276 void kvm_arch_hardware_disable(void *garbage)
5277 {
5278         kvm_x86_ops->hardware_disable(garbage);
5279         drop_user_return_notifiers(garbage);
5280 }
5281
5282 int kvm_arch_hardware_setup(void)
5283 {
5284         return kvm_x86_ops->hardware_setup();
5285 }
5286
5287 void kvm_arch_hardware_unsetup(void)
5288 {
5289         kvm_x86_ops->hardware_unsetup();
5290 }
5291
5292 void kvm_arch_check_processor_compat(void *rtn)
5293 {
5294         kvm_x86_ops->check_processor_compatibility(rtn);
5295 }
5296
5297 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5298 {
5299         struct page *page;
5300         struct kvm *kvm;
5301         int r;
5302
5303         BUG_ON(vcpu->kvm == NULL);
5304         kvm = vcpu->kvm;
5305
5306         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5307         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5308                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5309         else
5310                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5311
5312         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5313         if (!page) {
5314                 r = -ENOMEM;
5315                 goto fail;
5316         }
5317         vcpu->arch.pio_data = page_address(page);
5318
5319         r = kvm_mmu_create(vcpu);
5320         if (r < 0)
5321                 goto fail_free_pio_data;
5322
5323         if (irqchip_in_kernel(kvm)) {
5324                 r = kvm_create_lapic(vcpu);
5325                 if (r < 0)
5326                         goto fail_mmu_destroy;
5327         }
5328
5329         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5330                                        GFP_KERNEL);
5331         if (!vcpu->arch.mce_banks) {
5332                 r = -ENOMEM;
5333                 goto fail_free_lapic;
5334         }
5335         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5336
5337         return 0;
5338 fail_free_lapic:
5339         kvm_free_lapic(vcpu);
5340 fail_mmu_destroy:
5341         kvm_mmu_destroy(vcpu);
5342 fail_free_pio_data:
5343         free_page((unsigned long)vcpu->arch.pio_data);
5344 fail:
5345         return r;
5346 }
5347
5348 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5349 {
5350         int idx;
5351
5352         kfree(vcpu->arch.mce_banks);
5353         kvm_free_lapic(vcpu);
5354         idx = srcu_read_lock(&vcpu->kvm->srcu);
5355         kvm_mmu_destroy(vcpu);
5356         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5357         free_page((unsigned long)vcpu->arch.pio_data);
5358 }
5359
5360 struct  kvm *kvm_arch_create_vm(void)
5361 {
5362         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5363
5364         if (!kvm)
5365                 return ERR_PTR(-ENOMEM);
5366
5367         kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
5368         if (!kvm->arch.aliases) {
5369                 kfree(kvm);
5370                 return ERR_PTR(-ENOMEM);
5371         }
5372
5373         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5374         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5375
5376         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5377         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5378
5379         rdtscll(kvm->arch.vm_init_tsc);
5380
5381         return kvm;
5382 }
5383
5384 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5385 {
5386         vcpu_load(vcpu);
5387         kvm_mmu_unload(vcpu);
5388         vcpu_put(vcpu);
5389 }
5390
5391 static void kvm_free_vcpus(struct kvm *kvm)
5392 {
5393         unsigned int i;
5394         struct kvm_vcpu *vcpu;
5395
5396         /*
5397          * Unpin any mmu pages first.
5398          */
5399         kvm_for_each_vcpu(i, vcpu, kvm)
5400                 kvm_unload_vcpu_mmu(vcpu);
5401         kvm_for_each_vcpu(i, vcpu, kvm)
5402                 kvm_arch_vcpu_free(vcpu);
5403
5404         mutex_lock(&kvm->lock);
5405         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5406                 kvm->vcpus[i] = NULL;
5407
5408         atomic_set(&kvm->online_vcpus, 0);
5409         mutex_unlock(&kvm->lock);
5410 }
5411
5412 void kvm_arch_sync_events(struct kvm *kvm)
5413 {
5414         kvm_free_all_assigned_devices(kvm);
5415 }
5416
5417 void kvm_arch_destroy_vm(struct kvm *kvm)
5418 {
5419         kvm_iommu_unmap_guest(kvm);
5420         kvm_free_pit(kvm);
5421         kfree(kvm->arch.vpic);
5422         kfree(kvm->arch.vioapic);
5423         kvm_free_vcpus(kvm);
5424         kvm_free_physmem(kvm);
5425         if (kvm->arch.apic_access_page)
5426                 put_page(kvm->arch.apic_access_page);
5427         if (kvm->arch.ept_identity_pagetable)
5428                 put_page(kvm->arch.ept_identity_pagetable);
5429         cleanup_srcu_struct(&kvm->srcu);
5430         kfree(kvm->arch.aliases);
5431         kfree(kvm);
5432 }
5433
5434 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5435                                 struct kvm_memory_slot *memslot,
5436                                 struct kvm_memory_slot old,
5437                                 struct kvm_userspace_memory_region *mem,
5438                                 int user_alloc)
5439 {
5440         int npages = memslot->npages;
5441
5442         /*To keep backward compatibility with older userspace,
5443          *x86 needs to hanlde !user_alloc case.
5444          */
5445         if (!user_alloc) {
5446                 if (npages && !old.rmap) {
5447                         unsigned long userspace_addr;
5448
5449                         down_write(&current->mm->mmap_sem);
5450                         userspace_addr = do_mmap(NULL, 0,
5451                                                  npages * PAGE_SIZE,
5452                                                  PROT_READ | PROT_WRITE,
5453                                                  MAP_PRIVATE | MAP_ANONYMOUS,
5454                                                  0);
5455                         up_write(&current->mm->mmap_sem);
5456
5457                         if (IS_ERR((void *)userspace_addr))
5458                                 return PTR_ERR((void *)userspace_addr);
5459
5460                         memslot->userspace_addr = userspace_addr;
5461                 }
5462         }
5463
5464
5465         return 0;
5466 }
5467
5468 void kvm_arch_commit_memory_region(struct kvm *kvm,
5469                                 struct kvm_userspace_memory_region *mem,
5470                                 struct kvm_memory_slot old,
5471                                 int user_alloc)
5472 {
5473
5474         int npages = mem->memory_size >> PAGE_SHIFT;
5475
5476         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5477                 int ret;
5478
5479                 down_write(&current->mm->mmap_sem);
5480                 ret = do_munmap(current->mm, old.userspace_addr,
5481                                 old.npages * PAGE_SIZE);
5482                 up_write(&current->mm->mmap_sem);
5483                 if (ret < 0)
5484                         printk(KERN_WARNING
5485                                "kvm_vm_ioctl_set_memory_region: "
5486                                "failed to munmap memory\n");
5487         }
5488
5489         spin_lock(&kvm->mmu_lock);
5490         if (!kvm->arch.n_requested_mmu_pages) {
5491                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5492                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5493         }
5494
5495         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5496         spin_unlock(&kvm->mmu_lock);
5497 }
5498
5499 void kvm_arch_flush_shadow(struct kvm *kvm)
5500 {
5501         kvm_mmu_zap_all(kvm);
5502         kvm_reload_remote_mmus(kvm);
5503 }
5504
5505 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5506 {
5507         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5508                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5509                 || vcpu->arch.nmi_pending ||
5510                 (kvm_arch_interrupt_allowed(vcpu) &&
5511                  kvm_cpu_has_interrupt(vcpu));
5512 }
5513
5514 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5515 {
5516         int me;
5517         int cpu = vcpu->cpu;
5518
5519         if (waitqueue_active(&vcpu->wq)) {
5520                 wake_up_interruptible(&vcpu->wq);
5521                 ++vcpu->stat.halt_wakeup;
5522         }
5523
5524         me = get_cpu();
5525         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5526                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
5527                         smp_send_reschedule(cpu);
5528         put_cpu();
5529 }
5530
5531 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5532 {
5533         return kvm_x86_ops->interrupt_allowed(vcpu);
5534 }
5535
5536 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5537 {
5538         unsigned long current_rip = kvm_rip_read(vcpu) +
5539                 get_segment_base(vcpu, VCPU_SREG_CS);
5540
5541         return current_rip == linear_rip;
5542 }
5543 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5544
5545 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5546 {
5547         unsigned long rflags;
5548
5549         rflags = kvm_x86_ops->get_rflags(vcpu);
5550         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5551                 rflags &= ~X86_EFLAGS_TF;
5552         return rflags;
5553 }
5554 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5555
5556 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5557 {
5558         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5559             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5560                 rflags |= X86_EFLAGS_TF;
5561         kvm_x86_ops->set_rflags(vcpu, rflags);
5562 }
5563 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5564
5565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);