Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
76         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK                                              \
78         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
80         (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON                                            \
82         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS                                      \
84         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
85          | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94  * ple_gap:    upper bound on the amount of time between two successive
95  *             executions of PAUSE in a loop. Also indicate if ple enabled.
96  *             According to test, this time is usually small than 41 cycles.
97  * ple_window: upper bound on the amount of time a guest is allowed to execute
98  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
99  *             less than 2^12 cycles
100  * Time is measured based on a counter that runs at the same rate as the TSC,
101  * refer SDM volume 3b section 21.6.13 & 22.1.3.
102  */
103 #define KVM_VMX_DEFAULT_PLE_GAP    41
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114         u32 revision_id;
115         u32 abort;
116         char data[0];
117 };
118
119 struct shared_msr_entry {
120         unsigned index;
121         u64 data;
122         u64 mask;
123 };
124
125 struct vcpu_vmx {
126         struct kvm_vcpu       vcpu;
127         struct list_head      local_vcpus_link;
128         unsigned long         host_rsp;
129         int                   launched;
130         u8                    fail;
131         u32                   exit_intr_info;
132         u32                   idt_vectoring_info;
133         struct shared_msr_entry *guest_msrs;
134         int                   nmsrs;
135         int                   save_nmsrs;
136 #ifdef CONFIG_X86_64
137         u64                   msr_host_kernel_gs_base;
138         u64                   msr_guest_kernel_gs_base;
139 #endif
140         struct vmcs          *vmcs;
141         struct msr_autoload {
142                 unsigned nr;
143                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
145         } msr_autoload;
146         struct {
147                 int           loaded;
148                 u16           fs_sel, gs_sel, ldt_sel;
149                 int           gs_ldt_reload_needed;
150                 int           fs_reload_needed;
151         } host_state;
152         struct {
153                 int vm86_active;
154                 ulong save_rflags;
155                 struct kvm_save_segment {
156                         u16 selector;
157                         unsigned long base;
158                         u32 limit;
159                         u32 ar;
160                 } tr, es, ds, fs, gs;
161         } rmode;
162         int vpid;
163         bool emulation_required;
164
165         /* Support for vnmi-less CPUs */
166         int soft_vnmi_blocked;
167         ktime_t entry_time;
168         s64 vnmi_blocked_time;
169         u32 exit_reason;
170
171         bool rdtscp_enabled;
172 };
173
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
175 {
176         return container_of(vcpu, struct vcpu_vmx, vcpu);
177 }
178
179 static int init_rmode(struct kvm *kvm);
180 static u64 construct_eptp(unsigned long root_hpa);
181 static void kvm_cpu_vmxon(u64 addr);
182 static void kvm_cpu_vmxoff(void);
183 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
184
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
189
190 static unsigned long *vmx_io_bitmap_a;
191 static unsigned long *vmx_io_bitmap_b;
192 static unsigned long *vmx_msr_bitmap_legacy;
193 static unsigned long *vmx_msr_bitmap_longmode;
194
195 static bool cpu_has_load_ia32_efer;
196
197 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
198 static DEFINE_SPINLOCK(vmx_vpid_lock);
199
200 static struct vmcs_config {
201         int size;
202         int order;
203         u32 revision_id;
204         u32 pin_based_exec_ctrl;
205         u32 cpu_based_exec_ctrl;
206         u32 cpu_based_2nd_exec_ctrl;
207         u32 vmexit_ctrl;
208         u32 vmentry_ctrl;
209 } vmcs_config;
210
211 static struct vmx_capability {
212         u32 ept;
213         u32 vpid;
214 } vmx_capability;
215
216 #define VMX_SEGMENT_FIELD(seg)                                  \
217         [VCPU_SREG_##seg] = {                                   \
218                 .selector = GUEST_##seg##_SELECTOR,             \
219                 .base = GUEST_##seg##_BASE,                     \
220                 .limit = GUEST_##seg##_LIMIT,                   \
221                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
222         }
223
224 static struct kvm_vmx_segment_field {
225         unsigned selector;
226         unsigned base;
227         unsigned limit;
228         unsigned ar_bytes;
229 } kvm_vmx_segment_fields[] = {
230         VMX_SEGMENT_FIELD(CS),
231         VMX_SEGMENT_FIELD(DS),
232         VMX_SEGMENT_FIELD(ES),
233         VMX_SEGMENT_FIELD(FS),
234         VMX_SEGMENT_FIELD(GS),
235         VMX_SEGMENT_FIELD(SS),
236         VMX_SEGMENT_FIELD(TR),
237         VMX_SEGMENT_FIELD(LDTR),
238 };
239
240 static u64 host_efer;
241
242 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
243
244 /*
245  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
246  * away by decrementing the array size.
247  */
248 static const u32 vmx_msr_index[] = {
249 #ifdef CONFIG_X86_64
250         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
251 #endif
252         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
253 };
254 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
255
256 static inline bool is_page_fault(u32 intr_info)
257 {
258         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
259                              INTR_INFO_VALID_MASK)) ==
260                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
261 }
262
263 static inline bool is_no_device(u32 intr_info)
264 {
265         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
266                              INTR_INFO_VALID_MASK)) ==
267                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
268 }
269
270 static inline bool is_invalid_opcode(u32 intr_info)
271 {
272         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
273                              INTR_INFO_VALID_MASK)) ==
274                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
275 }
276
277 static inline bool is_external_interrupt(u32 intr_info)
278 {
279         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
280                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
281 }
282
283 static inline bool is_machine_check(u32 intr_info)
284 {
285         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
286                              INTR_INFO_VALID_MASK)) ==
287                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
288 }
289
290 static inline bool cpu_has_vmx_msr_bitmap(void)
291 {
292         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
293 }
294
295 static inline bool cpu_has_vmx_tpr_shadow(void)
296 {
297         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
298 }
299
300 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
301 {
302         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
303 }
304
305 static inline bool cpu_has_secondary_exec_ctrls(void)
306 {
307         return vmcs_config.cpu_based_exec_ctrl &
308                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
309 }
310
311 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
312 {
313         return vmcs_config.cpu_based_2nd_exec_ctrl &
314                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
315 }
316
317 static inline bool cpu_has_vmx_flexpriority(void)
318 {
319         return cpu_has_vmx_tpr_shadow() &&
320                 cpu_has_vmx_virtualize_apic_accesses();
321 }
322
323 static inline bool cpu_has_vmx_ept_execute_only(void)
324 {
325         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
326 }
327
328 static inline bool cpu_has_vmx_eptp_uncacheable(void)
329 {
330         return vmx_capability.ept & VMX_EPTP_UC_BIT;
331 }
332
333 static inline bool cpu_has_vmx_eptp_writeback(void)
334 {
335         return vmx_capability.ept & VMX_EPTP_WB_BIT;
336 }
337
338 static inline bool cpu_has_vmx_ept_2m_page(void)
339 {
340         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
341 }
342
343 static inline bool cpu_has_vmx_ept_1g_page(void)
344 {
345         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
346 }
347
348 static inline bool cpu_has_vmx_ept_4levels(void)
349 {
350         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
351 }
352
353 static inline bool cpu_has_vmx_invept_individual_addr(void)
354 {
355         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
356 }
357
358 static inline bool cpu_has_vmx_invept_context(void)
359 {
360         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
361 }
362
363 static inline bool cpu_has_vmx_invept_global(void)
364 {
365         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
366 }
367
368 static inline bool cpu_has_vmx_invvpid_single(void)
369 {
370         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
371 }
372
373 static inline bool cpu_has_vmx_invvpid_global(void)
374 {
375         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
376 }
377
378 static inline bool cpu_has_vmx_ept(void)
379 {
380         return vmcs_config.cpu_based_2nd_exec_ctrl &
381                 SECONDARY_EXEC_ENABLE_EPT;
382 }
383
384 static inline bool cpu_has_vmx_unrestricted_guest(void)
385 {
386         return vmcs_config.cpu_based_2nd_exec_ctrl &
387                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
388 }
389
390 static inline bool cpu_has_vmx_ple(void)
391 {
392         return vmcs_config.cpu_based_2nd_exec_ctrl &
393                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
394 }
395
396 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
397 {
398         return flexpriority_enabled && irqchip_in_kernel(kvm);
399 }
400
401 static inline bool cpu_has_vmx_vpid(void)
402 {
403         return vmcs_config.cpu_based_2nd_exec_ctrl &
404                 SECONDARY_EXEC_ENABLE_VPID;
405 }
406
407 static inline bool cpu_has_vmx_rdtscp(void)
408 {
409         return vmcs_config.cpu_based_2nd_exec_ctrl &
410                 SECONDARY_EXEC_RDTSCP;
411 }
412
413 static inline bool cpu_has_virtual_nmis(void)
414 {
415         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
416 }
417
418 static inline bool cpu_has_vmx_wbinvd_exit(void)
419 {
420         return vmcs_config.cpu_based_2nd_exec_ctrl &
421                 SECONDARY_EXEC_WBINVD_EXITING;
422 }
423
424 static inline bool report_flexpriority(void)
425 {
426         return flexpriority_enabled;
427 }
428
429 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
430 {
431         int i;
432
433         for (i = 0; i < vmx->nmsrs; ++i)
434                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
435                         return i;
436         return -1;
437 }
438
439 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
440 {
441     struct {
442         u64 vpid : 16;
443         u64 rsvd : 48;
444         u64 gva;
445     } operand = { vpid, 0, gva };
446
447     asm volatile (__ex(ASM_VMX_INVVPID)
448                   /* CF==1 or ZF==1 --> rc = -1 */
449                   "; ja 1f ; ud2 ; 1:"
450                   : : "a"(&operand), "c"(ext) : "cc", "memory");
451 }
452
453 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
454 {
455         struct {
456                 u64 eptp, gpa;
457         } operand = {eptp, gpa};
458
459         asm volatile (__ex(ASM_VMX_INVEPT)
460                         /* CF==1 or ZF==1 --> rc = -1 */
461                         "; ja 1f ; ud2 ; 1:\n"
462                         : : "a" (&operand), "c" (ext) : "cc", "memory");
463 }
464
465 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
466 {
467         int i;
468
469         i = __find_msr_index(vmx, msr);
470         if (i >= 0)
471                 return &vmx->guest_msrs[i];
472         return NULL;
473 }
474
475 static void vmcs_clear(struct vmcs *vmcs)
476 {
477         u64 phys_addr = __pa(vmcs);
478         u8 error;
479
480         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
481                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
482                       : "cc", "memory");
483         if (error)
484                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
485                        vmcs, phys_addr);
486 }
487
488 static void vmcs_load(struct vmcs *vmcs)
489 {
490         u64 phys_addr = __pa(vmcs);
491         u8 error;
492
493         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
494                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
495                         : "cc", "memory");
496         if (error)
497                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
498                        vmcs, phys_addr);
499 }
500
501 static void __vcpu_clear(void *arg)
502 {
503         struct vcpu_vmx *vmx = arg;
504         int cpu = raw_smp_processor_id();
505
506         if (vmx->vcpu.cpu == cpu)
507                 vmcs_clear(vmx->vmcs);
508         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
509                 per_cpu(current_vmcs, cpu) = NULL;
510         list_del(&vmx->local_vcpus_link);
511         vmx->vcpu.cpu = -1;
512         vmx->launched = 0;
513 }
514
515 static void vcpu_clear(struct vcpu_vmx *vmx)
516 {
517         if (vmx->vcpu.cpu == -1)
518                 return;
519         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
520 }
521
522 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
523 {
524         if (vmx->vpid == 0)
525                 return;
526
527         if (cpu_has_vmx_invvpid_single())
528                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
529 }
530
531 static inline void vpid_sync_vcpu_global(void)
532 {
533         if (cpu_has_vmx_invvpid_global())
534                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
535 }
536
537 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
538 {
539         if (cpu_has_vmx_invvpid_single())
540                 vpid_sync_vcpu_single(vmx);
541         else
542                 vpid_sync_vcpu_global();
543 }
544
545 static inline void ept_sync_global(void)
546 {
547         if (cpu_has_vmx_invept_global())
548                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
549 }
550
551 static inline void ept_sync_context(u64 eptp)
552 {
553         if (enable_ept) {
554                 if (cpu_has_vmx_invept_context())
555                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
556                 else
557                         ept_sync_global();
558         }
559 }
560
561 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
562 {
563         if (enable_ept) {
564                 if (cpu_has_vmx_invept_individual_addr())
565                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
566                                         eptp, gpa);
567                 else
568                         ept_sync_context(eptp);
569         }
570 }
571
572 static unsigned long vmcs_readl(unsigned long field)
573 {
574         unsigned long value = 0;
575
576         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
577                       : "+a"(value) : "d"(field) : "cc");
578         return value;
579 }
580
581 static u16 vmcs_read16(unsigned long field)
582 {
583         return vmcs_readl(field);
584 }
585
586 static u32 vmcs_read32(unsigned long field)
587 {
588         return vmcs_readl(field);
589 }
590
591 static u64 vmcs_read64(unsigned long field)
592 {
593 #ifdef CONFIG_X86_64
594         return vmcs_readl(field);
595 #else
596         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
597 #endif
598 }
599
600 static noinline void vmwrite_error(unsigned long field, unsigned long value)
601 {
602         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
603                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
604         dump_stack();
605 }
606
607 static void vmcs_writel(unsigned long field, unsigned long value)
608 {
609         u8 error;
610
611         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
612                        : "=q"(error) : "a"(value), "d"(field) : "cc");
613         if (unlikely(error))
614                 vmwrite_error(field, value);
615 }
616
617 static void vmcs_write16(unsigned long field, u16 value)
618 {
619         vmcs_writel(field, value);
620 }
621
622 static void vmcs_write32(unsigned long field, u32 value)
623 {
624         vmcs_writel(field, value);
625 }
626
627 static void vmcs_write64(unsigned long field, u64 value)
628 {
629         vmcs_writel(field, value);
630 #ifndef CONFIG_X86_64
631         asm volatile ("");
632         vmcs_writel(field+1, value >> 32);
633 #endif
634 }
635
636 static void vmcs_clear_bits(unsigned long field, u32 mask)
637 {
638         vmcs_writel(field, vmcs_readl(field) & ~mask);
639 }
640
641 static void vmcs_set_bits(unsigned long field, u32 mask)
642 {
643         vmcs_writel(field, vmcs_readl(field) | mask);
644 }
645
646 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
647 {
648         u32 eb;
649
650         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
651              (1u << NM_VECTOR) | (1u << DB_VECTOR);
652         if ((vcpu->guest_debug &
653              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
654             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
655                 eb |= 1u << BP_VECTOR;
656         if (to_vmx(vcpu)->rmode.vm86_active)
657                 eb = ~0;
658         if (enable_ept)
659                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
660         if (vcpu->fpu_active)
661                 eb &= ~(1u << NM_VECTOR);
662         vmcs_write32(EXCEPTION_BITMAP, eb);
663 }
664
665 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
666 {
667         unsigned i;
668         struct msr_autoload *m = &vmx->msr_autoload;
669
670         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
671                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
672                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
673                 return;
674         }
675
676         for (i = 0; i < m->nr; ++i)
677                 if (m->guest[i].index == msr)
678                         break;
679
680         if (i == m->nr)
681                 return;
682         --m->nr;
683         m->guest[i] = m->guest[m->nr];
684         m->host[i] = m->host[m->nr];
685         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
686         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
687 }
688
689 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
690                                   u64 guest_val, u64 host_val)
691 {
692         unsigned i;
693         struct msr_autoload *m = &vmx->msr_autoload;
694
695         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
696                 vmcs_write64(GUEST_IA32_EFER, guest_val);
697                 vmcs_write64(HOST_IA32_EFER, host_val);
698                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
699                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
700                 return;
701         }
702
703         for (i = 0; i < m->nr; ++i)
704                 if (m->guest[i].index == msr)
705                         break;
706
707         if (i == m->nr) {
708                 ++m->nr;
709                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
710                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
711         }
712
713         m->guest[i].index = msr;
714         m->guest[i].value = guest_val;
715         m->host[i].index = msr;
716         m->host[i].value = host_val;
717 }
718
719 static void reload_tss(void)
720 {
721         /*
722          * VT restores TR but not its size.  Useless.
723          */
724         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
725         struct desc_struct *descs;
726
727         descs = (void *)gdt->address;
728         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
729         load_TR_desc();
730 }
731
732 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
733 {
734         u64 guest_efer;
735         u64 ignore_bits;
736
737         guest_efer = vmx->vcpu.arch.efer;
738
739         /*
740          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
741          * outside long mode
742          */
743         ignore_bits = EFER_NX | EFER_SCE;
744 #ifdef CONFIG_X86_64
745         ignore_bits |= EFER_LMA | EFER_LME;
746         /* SCE is meaningful only in long mode on Intel */
747         if (guest_efer & EFER_LMA)
748                 ignore_bits &= ~(u64)EFER_SCE;
749 #endif
750         guest_efer &= ~ignore_bits;
751         guest_efer |= host_efer & ignore_bits;
752         vmx->guest_msrs[efer_offset].data = guest_efer;
753         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
754
755         clear_atomic_switch_msr(vmx, MSR_EFER);
756         /* On ept, can't emulate nx, and must switch nx atomically */
757         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
758                 guest_efer = vmx->vcpu.arch.efer;
759                 if (!(guest_efer & EFER_LMA))
760                         guest_efer &= ~EFER_LME;
761                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
762                 return false;
763         }
764
765         return true;
766 }
767
768 static unsigned long segment_base(u16 selector)
769 {
770         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
771         struct desc_struct *d;
772         unsigned long table_base;
773         unsigned long v;
774
775         if (!(selector & ~3))
776                 return 0;
777
778         table_base = gdt->address;
779
780         if (selector & 4) {           /* from ldt */
781                 u16 ldt_selector = kvm_read_ldt();
782
783                 if (!(ldt_selector & ~3))
784                         return 0;
785
786                 table_base = segment_base(ldt_selector);
787         }
788         d = (struct desc_struct *)(table_base + (selector & ~7));
789         v = get_desc_base(d);
790 #ifdef CONFIG_X86_64
791        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
792                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
793 #endif
794         return v;
795 }
796
797 static inline unsigned long kvm_read_tr_base(void)
798 {
799         u16 tr;
800         asm("str %0" : "=g"(tr));
801         return segment_base(tr);
802 }
803
804 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
805 {
806         struct vcpu_vmx *vmx = to_vmx(vcpu);
807         int i;
808
809         if (vmx->host_state.loaded)
810                 return;
811
812         vmx->host_state.loaded = 1;
813         /*
814          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
815          * allow segment selectors with cpl > 0 or ti == 1.
816          */
817         vmx->host_state.ldt_sel = kvm_read_ldt();
818         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
819         savesegment(fs, vmx->host_state.fs_sel);
820         if (!(vmx->host_state.fs_sel & 7)) {
821                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
822                 vmx->host_state.fs_reload_needed = 0;
823         } else {
824                 vmcs_write16(HOST_FS_SELECTOR, 0);
825                 vmx->host_state.fs_reload_needed = 1;
826         }
827         savesegment(gs, vmx->host_state.gs_sel);
828         if (!(vmx->host_state.gs_sel & 7))
829                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
830         else {
831                 vmcs_write16(HOST_GS_SELECTOR, 0);
832                 vmx->host_state.gs_ldt_reload_needed = 1;
833         }
834
835 #ifdef CONFIG_X86_64
836         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
837         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
838 #else
839         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
840         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
841 #endif
842
843 #ifdef CONFIG_X86_64
844         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
845         if (is_long_mode(&vmx->vcpu))
846                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
847 #endif
848         for (i = 0; i < vmx->save_nmsrs; ++i)
849                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
850                                    vmx->guest_msrs[i].data,
851                                    vmx->guest_msrs[i].mask);
852 }
853
854 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
855 {
856         if (!vmx->host_state.loaded)
857                 return;
858
859         ++vmx->vcpu.stat.host_state_reload;
860         vmx->host_state.loaded = 0;
861 #ifdef CONFIG_X86_64
862         if (is_long_mode(&vmx->vcpu))
863                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
864 #endif
865         if (vmx->host_state.gs_ldt_reload_needed) {
866                 kvm_load_ldt(vmx->host_state.ldt_sel);
867 #ifdef CONFIG_X86_64
868                 load_gs_index(vmx->host_state.gs_sel);
869 #else
870                 loadsegment(gs, vmx->host_state.gs_sel);
871 #endif
872         }
873         if (vmx->host_state.fs_reload_needed)
874                 loadsegment(fs, vmx->host_state.fs_sel);
875         reload_tss();
876 #ifdef CONFIG_X86_64
877         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
878 #endif
879         if (current_thread_info()->status & TS_USEDFPU)
880                 clts();
881         load_gdt(&__get_cpu_var(host_gdt));
882 }
883
884 static void vmx_load_host_state(struct vcpu_vmx *vmx)
885 {
886         preempt_disable();
887         __vmx_load_host_state(vmx);
888         preempt_enable();
889 }
890
891 /*
892  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
893  * vcpu mutex is already taken.
894  */
895 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
896 {
897         struct vcpu_vmx *vmx = to_vmx(vcpu);
898         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
899
900         if (!vmm_exclusive)
901                 kvm_cpu_vmxon(phys_addr);
902         else if (vcpu->cpu != cpu)
903                 vcpu_clear(vmx);
904
905         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
906                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
907                 vmcs_load(vmx->vmcs);
908         }
909
910         if (vcpu->cpu != cpu) {
911                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912                 unsigned long sysenter_esp;
913
914                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
915                 local_irq_disable();
916                 list_add(&vmx->local_vcpus_link,
917                          &per_cpu(vcpus_on_cpu, cpu));
918                 local_irq_enable();
919
920                 /*
921                  * Linux uses per-cpu TSS and GDT, so set these when switching
922                  * processors.
923                  */
924                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
925                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
926
927                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
928                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
929         }
930 }
931
932 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
933 {
934         __vmx_load_host_state(to_vmx(vcpu));
935         if (!vmm_exclusive) {
936                 __vcpu_clear(to_vmx(vcpu));
937                 kvm_cpu_vmxoff();
938         }
939 }
940
941 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
942 {
943         ulong cr0;
944
945         if (vcpu->fpu_active)
946                 return;
947         vcpu->fpu_active = 1;
948         cr0 = vmcs_readl(GUEST_CR0);
949         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
950         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
951         vmcs_writel(GUEST_CR0, cr0);
952         update_exception_bitmap(vcpu);
953         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
954         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
955 }
956
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
958
959 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
960 {
961         vmx_decache_cr0_guest_bits(vcpu);
962         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
963         update_exception_bitmap(vcpu);
964         vcpu->arch.cr0_guest_owned_bits = 0;
965         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
966         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
967 }
968
969 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
970 {
971         unsigned long rflags, save_rflags;
972
973         rflags = vmcs_readl(GUEST_RFLAGS);
974         if (to_vmx(vcpu)->rmode.vm86_active) {
975                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
976                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
977                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
978         }
979         return rflags;
980 }
981
982 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
983 {
984         if (to_vmx(vcpu)->rmode.vm86_active) {
985                 to_vmx(vcpu)->rmode.save_rflags = rflags;
986                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
987         }
988         vmcs_writel(GUEST_RFLAGS, rflags);
989 }
990
991 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
992 {
993         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
994         int ret = 0;
995
996         if (interruptibility & GUEST_INTR_STATE_STI)
997                 ret |= KVM_X86_SHADOW_INT_STI;
998         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
999                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1000
1001         return ret & mask;
1002 }
1003
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1005 {
1006         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1007         u32 interruptibility = interruptibility_old;
1008
1009         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1010
1011         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1012                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1013         else if (mask & KVM_X86_SHADOW_INT_STI)
1014                 interruptibility |= GUEST_INTR_STATE_STI;
1015
1016         if ((interruptibility != interruptibility_old))
1017                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1018 }
1019
1020 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1021 {
1022         unsigned long rip;
1023
1024         rip = kvm_rip_read(vcpu);
1025         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1026         kvm_rip_write(vcpu, rip);
1027
1028         /* skipping an emulated instruction also counts */
1029         vmx_set_interrupt_shadow(vcpu, 0);
1030 }
1031
1032 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1033 {
1034         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1035          * explicitly skip the instruction because if the HLT state is set, then
1036          * the instruction is already executing and RIP has already been
1037          * advanced. */
1038         if (!yield_on_hlt &&
1039             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1040                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1041 }
1042
1043 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1044                                 bool has_error_code, u32 error_code,
1045                                 bool reinject)
1046 {
1047         struct vcpu_vmx *vmx = to_vmx(vcpu);
1048         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1049
1050         if (has_error_code) {
1051                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1052                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1053         }
1054
1055         if (vmx->rmode.vm86_active) {
1056                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1057                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1058                 return;
1059         }
1060
1061         if (kvm_exception_is_soft(nr)) {
1062                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1063                              vmx->vcpu.arch.event_exit_inst_len);
1064                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1065         } else
1066                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1067
1068         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1069         vmx_clear_hlt(vcpu);
1070 }
1071
1072 static bool vmx_rdtscp_supported(void)
1073 {
1074         return cpu_has_vmx_rdtscp();
1075 }
1076
1077 /*
1078  * Swap MSR entry in host/guest MSR entry array.
1079  */
1080 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1081 {
1082         struct shared_msr_entry tmp;
1083
1084         tmp = vmx->guest_msrs[to];
1085         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1086         vmx->guest_msrs[from] = tmp;
1087 }
1088
1089 /*
1090  * Set up the vmcs to automatically save and restore system
1091  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1092  * mode, as fiddling with msrs is very expensive.
1093  */
1094 static void setup_msrs(struct vcpu_vmx *vmx)
1095 {
1096         int save_nmsrs, index;
1097         unsigned long *msr_bitmap;
1098
1099         vmx_load_host_state(vmx);
1100         save_nmsrs = 0;
1101 #ifdef CONFIG_X86_64
1102         if (is_long_mode(&vmx->vcpu)) {
1103                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1104                 if (index >= 0)
1105                         move_msr_up(vmx, index, save_nmsrs++);
1106                 index = __find_msr_index(vmx, MSR_LSTAR);
1107                 if (index >= 0)
1108                         move_msr_up(vmx, index, save_nmsrs++);
1109                 index = __find_msr_index(vmx, MSR_CSTAR);
1110                 if (index >= 0)
1111                         move_msr_up(vmx, index, save_nmsrs++);
1112                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1113                 if (index >= 0 && vmx->rdtscp_enabled)
1114                         move_msr_up(vmx, index, save_nmsrs++);
1115                 /*
1116                  * MSR_STAR is only needed on long mode guests, and only
1117                  * if efer.sce is enabled.
1118                  */
1119                 index = __find_msr_index(vmx, MSR_STAR);
1120                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1121                         move_msr_up(vmx, index, save_nmsrs++);
1122         }
1123 #endif
1124         index = __find_msr_index(vmx, MSR_EFER);
1125         if (index >= 0 && update_transition_efer(vmx, index))
1126                 move_msr_up(vmx, index, save_nmsrs++);
1127
1128         vmx->save_nmsrs = save_nmsrs;
1129
1130         if (cpu_has_vmx_msr_bitmap()) {
1131                 if (is_long_mode(&vmx->vcpu))
1132                         msr_bitmap = vmx_msr_bitmap_longmode;
1133                 else
1134                         msr_bitmap = vmx_msr_bitmap_legacy;
1135
1136                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1137         }
1138 }
1139
1140 /*
1141  * reads and returns guest's timestamp counter "register"
1142  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1143  */
1144 static u64 guest_read_tsc(void)
1145 {
1146         u64 host_tsc, tsc_offset;
1147
1148         rdtscll(host_tsc);
1149         tsc_offset = vmcs_read64(TSC_OFFSET);
1150         return host_tsc + tsc_offset;
1151 }
1152
1153 /*
1154  * writes 'offset' into guest's timestamp counter offset register
1155  */
1156 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1157 {
1158         vmcs_write64(TSC_OFFSET, offset);
1159 }
1160
1161 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1162 {
1163         u64 offset = vmcs_read64(TSC_OFFSET);
1164         vmcs_write64(TSC_OFFSET, offset + adjustment);
1165 }
1166
1167 /*
1168  * Reads an msr value (of 'msr_index') into 'pdata'.
1169  * Returns 0 on success, non-0 otherwise.
1170  * Assumes vcpu_load() was already called.
1171  */
1172 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1173 {
1174         u64 data;
1175         struct shared_msr_entry *msr;
1176
1177         if (!pdata) {
1178                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1179                 return -EINVAL;
1180         }
1181
1182         switch (msr_index) {
1183 #ifdef CONFIG_X86_64
1184         case MSR_FS_BASE:
1185                 data = vmcs_readl(GUEST_FS_BASE);
1186                 break;
1187         case MSR_GS_BASE:
1188                 data = vmcs_readl(GUEST_GS_BASE);
1189                 break;
1190         case MSR_KERNEL_GS_BASE:
1191                 vmx_load_host_state(to_vmx(vcpu));
1192                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1193                 break;
1194 #endif
1195         case MSR_EFER:
1196                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1197         case MSR_IA32_TSC:
1198                 data = guest_read_tsc();
1199                 break;
1200         case MSR_IA32_SYSENTER_CS:
1201                 data = vmcs_read32(GUEST_SYSENTER_CS);
1202                 break;
1203         case MSR_IA32_SYSENTER_EIP:
1204                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1205                 break;
1206         case MSR_IA32_SYSENTER_ESP:
1207                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1208                 break;
1209         case MSR_TSC_AUX:
1210                 if (!to_vmx(vcpu)->rdtscp_enabled)
1211                         return 1;
1212                 /* Otherwise falls through */
1213         default:
1214                 vmx_load_host_state(to_vmx(vcpu));
1215                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1216                 if (msr) {
1217                         vmx_load_host_state(to_vmx(vcpu));
1218                         data = msr->data;
1219                         break;
1220                 }
1221                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1222         }
1223
1224         *pdata = data;
1225         return 0;
1226 }
1227
1228 /*
1229  * Writes msr value into into the appropriate "register".
1230  * Returns 0 on success, non-0 otherwise.
1231  * Assumes vcpu_load() was already called.
1232  */
1233 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1234 {
1235         struct vcpu_vmx *vmx = to_vmx(vcpu);
1236         struct shared_msr_entry *msr;
1237         int ret = 0;
1238
1239         switch (msr_index) {
1240         case MSR_EFER:
1241                 vmx_load_host_state(vmx);
1242                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1243                 break;
1244 #ifdef CONFIG_X86_64
1245         case MSR_FS_BASE:
1246                 vmcs_writel(GUEST_FS_BASE, data);
1247                 break;
1248         case MSR_GS_BASE:
1249                 vmcs_writel(GUEST_GS_BASE, data);
1250                 break;
1251         case MSR_KERNEL_GS_BASE:
1252                 vmx_load_host_state(vmx);
1253                 vmx->msr_guest_kernel_gs_base = data;
1254                 break;
1255 #endif
1256         case MSR_IA32_SYSENTER_CS:
1257                 vmcs_write32(GUEST_SYSENTER_CS, data);
1258                 break;
1259         case MSR_IA32_SYSENTER_EIP:
1260                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1261                 break;
1262         case MSR_IA32_SYSENTER_ESP:
1263                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1264                 break;
1265         case MSR_IA32_TSC:
1266                 kvm_write_tsc(vcpu, data);
1267                 break;
1268         case MSR_IA32_CR_PAT:
1269                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1270                         vmcs_write64(GUEST_IA32_PAT, data);
1271                         vcpu->arch.pat = data;
1272                         break;
1273                 }
1274                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1275                 break;
1276         case MSR_TSC_AUX:
1277                 if (!vmx->rdtscp_enabled)
1278                         return 1;
1279                 /* Check reserved bit, higher 32 bits should be zero */
1280                 if ((data >> 32) != 0)
1281                         return 1;
1282                 /* Otherwise falls through */
1283         default:
1284                 msr = find_msr_entry(vmx, msr_index);
1285                 if (msr) {
1286                         vmx_load_host_state(vmx);
1287                         msr->data = data;
1288                         break;
1289                 }
1290                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1291         }
1292
1293         return ret;
1294 }
1295
1296 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1297 {
1298         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1299         switch (reg) {
1300         case VCPU_REGS_RSP:
1301                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1302                 break;
1303         case VCPU_REGS_RIP:
1304                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1305                 break;
1306         case VCPU_EXREG_PDPTR:
1307                 if (enable_ept)
1308                         ept_save_pdptrs(vcpu);
1309                 break;
1310         default:
1311                 break;
1312         }
1313 }
1314
1315 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1316 {
1317         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1318                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1319         else
1320                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1321
1322         update_exception_bitmap(vcpu);
1323 }
1324
1325 static __init int cpu_has_kvm_support(void)
1326 {
1327         return cpu_has_vmx();
1328 }
1329
1330 static __init int vmx_disabled_by_bios(void)
1331 {
1332         u64 msr;
1333
1334         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1335         if (msr & FEATURE_CONTROL_LOCKED) {
1336                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1337                         && tboot_enabled())
1338                         return 1;
1339                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1340                         && !tboot_enabled()) {
1341                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1342                                 " activate TXT before enabling KVM\n");
1343                         return 1;
1344                 }
1345         }
1346
1347         return 0;
1348         /* locked but not enabled */
1349 }
1350
1351 static void kvm_cpu_vmxon(u64 addr)
1352 {
1353         asm volatile (ASM_VMX_VMXON_RAX
1354                         : : "a"(&addr), "m"(addr)
1355                         : "memory", "cc");
1356 }
1357
1358 static int hardware_enable(void *garbage)
1359 {
1360         int cpu = raw_smp_processor_id();
1361         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1362         u64 old, test_bits;
1363
1364         if (read_cr4() & X86_CR4_VMXE)
1365                 return -EBUSY;
1366
1367         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1368         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1369
1370         test_bits = FEATURE_CONTROL_LOCKED;
1371         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1372         if (tboot_enabled())
1373                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1374
1375         if ((old & test_bits) != test_bits) {
1376                 /* enable and lock */
1377                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1378         }
1379         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1380
1381         if (vmm_exclusive) {
1382                 kvm_cpu_vmxon(phys_addr);
1383                 ept_sync_global();
1384         }
1385
1386         store_gdt(&__get_cpu_var(host_gdt));
1387
1388         return 0;
1389 }
1390
1391 static void vmclear_local_vcpus(void)
1392 {
1393         int cpu = raw_smp_processor_id();
1394         struct vcpu_vmx *vmx, *n;
1395
1396         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1397                                  local_vcpus_link)
1398                 __vcpu_clear(vmx);
1399 }
1400
1401
1402 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1403  * tricks.
1404  */
1405 static void kvm_cpu_vmxoff(void)
1406 {
1407         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1408 }
1409
1410 static void hardware_disable(void *garbage)
1411 {
1412         if (vmm_exclusive) {
1413                 vmclear_local_vcpus();
1414                 kvm_cpu_vmxoff();
1415         }
1416         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1417 }
1418
1419 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1420                                       u32 msr, u32 *result)
1421 {
1422         u32 vmx_msr_low, vmx_msr_high;
1423         u32 ctl = ctl_min | ctl_opt;
1424
1425         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1426
1427         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1428         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1429
1430         /* Ensure minimum (required) set of control bits are supported. */
1431         if (ctl_min & ~ctl)
1432                 return -EIO;
1433
1434         *result = ctl;
1435         return 0;
1436 }
1437
1438 static __init bool allow_1_setting(u32 msr, u32 ctl)
1439 {
1440         u32 vmx_msr_low, vmx_msr_high;
1441
1442         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1443         return vmx_msr_high & ctl;
1444 }
1445
1446 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1447 {
1448         u32 vmx_msr_low, vmx_msr_high;
1449         u32 min, opt, min2, opt2;
1450         u32 _pin_based_exec_control = 0;
1451         u32 _cpu_based_exec_control = 0;
1452         u32 _cpu_based_2nd_exec_control = 0;
1453         u32 _vmexit_control = 0;
1454         u32 _vmentry_control = 0;
1455
1456         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1457         opt = PIN_BASED_VIRTUAL_NMIS;
1458         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1459                                 &_pin_based_exec_control) < 0)
1460                 return -EIO;
1461
1462         min =
1463 #ifdef CONFIG_X86_64
1464               CPU_BASED_CR8_LOAD_EXITING |
1465               CPU_BASED_CR8_STORE_EXITING |
1466 #endif
1467               CPU_BASED_CR3_LOAD_EXITING |
1468               CPU_BASED_CR3_STORE_EXITING |
1469               CPU_BASED_USE_IO_BITMAPS |
1470               CPU_BASED_MOV_DR_EXITING |
1471               CPU_BASED_USE_TSC_OFFSETING |
1472               CPU_BASED_MWAIT_EXITING |
1473               CPU_BASED_MONITOR_EXITING |
1474               CPU_BASED_INVLPG_EXITING;
1475
1476         if (yield_on_hlt)
1477                 min |= CPU_BASED_HLT_EXITING;
1478
1479         opt = CPU_BASED_TPR_SHADOW |
1480               CPU_BASED_USE_MSR_BITMAPS |
1481               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1482         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1483                                 &_cpu_based_exec_control) < 0)
1484                 return -EIO;
1485 #ifdef CONFIG_X86_64
1486         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1487                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1488                                            ~CPU_BASED_CR8_STORE_EXITING;
1489 #endif
1490         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1491                 min2 = 0;
1492                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1493                         SECONDARY_EXEC_WBINVD_EXITING |
1494                         SECONDARY_EXEC_ENABLE_VPID |
1495                         SECONDARY_EXEC_ENABLE_EPT |
1496                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1497                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1498                         SECONDARY_EXEC_RDTSCP;
1499                 if (adjust_vmx_controls(min2, opt2,
1500                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1501                                         &_cpu_based_2nd_exec_control) < 0)
1502                         return -EIO;
1503         }
1504 #ifndef CONFIG_X86_64
1505         if (!(_cpu_based_2nd_exec_control &
1506                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1507                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1508 #endif
1509         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1510                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1511                    enabled */
1512                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1513                                              CPU_BASED_CR3_STORE_EXITING |
1514                                              CPU_BASED_INVLPG_EXITING);
1515                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1516                       vmx_capability.ept, vmx_capability.vpid);
1517         }
1518
1519         min = 0;
1520 #ifdef CONFIG_X86_64
1521         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1522 #endif
1523         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1524         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1525                                 &_vmexit_control) < 0)
1526                 return -EIO;
1527
1528         min = 0;
1529         opt = VM_ENTRY_LOAD_IA32_PAT;
1530         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1531                                 &_vmentry_control) < 0)
1532                 return -EIO;
1533
1534         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1535
1536         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1537         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1538                 return -EIO;
1539
1540 #ifdef CONFIG_X86_64
1541         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1542         if (vmx_msr_high & (1u<<16))
1543                 return -EIO;
1544 #endif
1545
1546         /* Require Write-Back (WB) memory type for VMCS accesses. */
1547         if (((vmx_msr_high >> 18) & 15) != 6)
1548                 return -EIO;
1549
1550         vmcs_conf->size = vmx_msr_high & 0x1fff;
1551         vmcs_conf->order = get_order(vmcs_config.size);
1552         vmcs_conf->revision_id = vmx_msr_low;
1553
1554         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1555         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1556         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1557         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1558         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1559
1560         cpu_has_load_ia32_efer =
1561                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1562                                 VM_ENTRY_LOAD_IA32_EFER)
1563                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1564                                    VM_EXIT_LOAD_IA32_EFER);
1565
1566         return 0;
1567 }
1568
1569 static struct vmcs *alloc_vmcs_cpu(int cpu)
1570 {
1571         int node = cpu_to_node(cpu);
1572         struct page *pages;
1573         struct vmcs *vmcs;
1574
1575         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1576         if (!pages)
1577                 return NULL;
1578         vmcs = page_address(pages);
1579         memset(vmcs, 0, vmcs_config.size);
1580         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1581         return vmcs;
1582 }
1583
1584 static struct vmcs *alloc_vmcs(void)
1585 {
1586         return alloc_vmcs_cpu(raw_smp_processor_id());
1587 }
1588
1589 static void free_vmcs(struct vmcs *vmcs)
1590 {
1591         free_pages((unsigned long)vmcs, vmcs_config.order);
1592 }
1593
1594 static void free_kvm_area(void)
1595 {
1596         int cpu;
1597
1598         for_each_possible_cpu(cpu) {
1599                 free_vmcs(per_cpu(vmxarea, cpu));
1600                 per_cpu(vmxarea, cpu) = NULL;
1601         }
1602 }
1603
1604 static __init int alloc_kvm_area(void)
1605 {
1606         int cpu;
1607
1608         for_each_possible_cpu(cpu) {
1609                 struct vmcs *vmcs;
1610
1611                 vmcs = alloc_vmcs_cpu(cpu);
1612                 if (!vmcs) {
1613                         free_kvm_area();
1614                         return -ENOMEM;
1615                 }
1616
1617                 per_cpu(vmxarea, cpu) = vmcs;
1618         }
1619         return 0;
1620 }
1621
1622 static __init int hardware_setup(void)
1623 {
1624         if (setup_vmcs_config(&vmcs_config) < 0)
1625                 return -EIO;
1626
1627         if (boot_cpu_has(X86_FEATURE_NX))
1628                 kvm_enable_efer_bits(EFER_NX);
1629
1630         if (!cpu_has_vmx_vpid())
1631                 enable_vpid = 0;
1632
1633         if (!cpu_has_vmx_ept() ||
1634             !cpu_has_vmx_ept_4levels()) {
1635                 enable_ept = 0;
1636                 enable_unrestricted_guest = 0;
1637         }
1638
1639         if (!cpu_has_vmx_unrestricted_guest())
1640                 enable_unrestricted_guest = 0;
1641
1642         if (!cpu_has_vmx_flexpriority())
1643                 flexpriority_enabled = 0;
1644
1645         if (!cpu_has_vmx_tpr_shadow())
1646                 kvm_x86_ops->update_cr8_intercept = NULL;
1647
1648         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1649                 kvm_disable_largepages();
1650
1651         if (!cpu_has_vmx_ple())
1652                 ple_gap = 0;
1653
1654         return alloc_kvm_area();
1655 }
1656
1657 static __exit void hardware_unsetup(void)
1658 {
1659         free_kvm_area();
1660 }
1661
1662 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1663 {
1664         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1665
1666         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1667                 vmcs_write16(sf->selector, save->selector);
1668                 vmcs_writel(sf->base, save->base);
1669                 vmcs_write32(sf->limit, save->limit);
1670                 vmcs_write32(sf->ar_bytes, save->ar);
1671         } else {
1672                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1673                         << AR_DPL_SHIFT;
1674                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1675         }
1676 }
1677
1678 static void enter_pmode(struct kvm_vcpu *vcpu)
1679 {
1680         unsigned long flags;
1681         struct vcpu_vmx *vmx = to_vmx(vcpu);
1682
1683         vmx->emulation_required = 1;
1684         vmx->rmode.vm86_active = 0;
1685
1686         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1687         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1688         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1689
1690         flags = vmcs_readl(GUEST_RFLAGS);
1691         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1692         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1693         vmcs_writel(GUEST_RFLAGS, flags);
1694
1695         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1696                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1697
1698         update_exception_bitmap(vcpu);
1699
1700         if (emulate_invalid_guest_state)
1701                 return;
1702
1703         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1704         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1705         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1706         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1707
1708         vmcs_write16(GUEST_SS_SELECTOR, 0);
1709         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1710
1711         vmcs_write16(GUEST_CS_SELECTOR,
1712                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1713         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1714 }
1715
1716 static gva_t rmode_tss_base(struct kvm *kvm)
1717 {
1718         if (!kvm->arch.tss_addr) {
1719                 struct kvm_memslots *slots;
1720                 gfn_t base_gfn;
1721
1722                 slots = kvm_memslots(kvm);
1723                 base_gfn = slots->memslots[0].base_gfn +
1724                                  kvm->memslots->memslots[0].npages - 3;
1725                 return base_gfn << PAGE_SHIFT;
1726         }
1727         return kvm->arch.tss_addr;
1728 }
1729
1730 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1731 {
1732         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1733
1734         save->selector = vmcs_read16(sf->selector);
1735         save->base = vmcs_readl(sf->base);
1736         save->limit = vmcs_read32(sf->limit);
1737         save->ar = vmcs_read32(sf->ar_bytes);
1738         vmcs_write16(sf->selector, save->base >> 4);
1739         vmcs_write32(sf->base, save->base & 0xffff0);
1740         vmcs_write32(sf->limit, 0xffff);
1741         vmcs_write32(sf->ar_bytes, 0xf3);
1742         if (save->base & 0xf)
1743                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1744                             " aligned when entering protected mode (seg=%d)",
1745                             seg);
1746 }
1747
1748 static void enter_rmode(struct kvm_vcpu *vcpu)
1749 {
1750         unsigned long flags;
1751         struct vcpu_vmx *vmx = to_vmx(vcpu);
1752
1753         if (enable_unrestricted_guest)
1754                 return;
1755
1756         vmx->emulation_required = 1;
1757         vmx->rmode.vm86_active = 1;
1758
1759         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1760         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1761
1762         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1763         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1764
1765         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1766         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1767
1768         flags = vmcs_readl(GUEST_RFLAGS);
1769         vmx->rmode.save_rflags = flags;
1770
1771         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1772
1773         vmcs_writel(GUEST_RFLAGS, flags);
1774         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1775         update_exception_bitmap(vcpu);
1776
1777         if (emulate_invalid_guest_state)
1778                 goto continue_rmode;
1779
1780         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1781         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1782         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1783
1784         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1785         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1786         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1787                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1788         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1789
1790         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1791         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1792         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1793         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1794
1795 continue_rmode:
1796         kvm_mmu_reset_context(vcpu);
1797         init_rmode(vcpu->kvm);
1798 }
1799
1800 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1801 {
1802         struct vcpu_vmx *vmx = to_vmx(vcpu);
1803         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1804
1805         if (!msr)
1806                 return;
1807
1808         /*
1809          * Force kernel_gs_base reloading before EFER changes, as control
1810          * of this msr depends on is_long_mode().
1811          */
1812         vmx_load_host_state(to_vmx(vcpu));
1813         vcpu->arch.efer = efer;
1814         if (efer & EFER_LMA) {
1815                 vmcs_write32(VM_ENTRY_CONTROLS,
1816                              vmcs_read32(VM_ENTRY_CONTROLS) |
1817                              VM_ENTRY_IA32E_MODE);
1818                 msr->data = efer;
1819         } else {
1820                 vmcs_write32(VM_ENTRY_CONTROLS,
1821                              vmcs_read32(VM_ENTRY_CONTROLS) &
1822                              ~VM_ENTRY_IA32E_MODE);
1823
1824                 msr->data = efer & ~EFER_LME;
1825         }
1826         setup_msrs(vmx);
1827 }
1828
1829 #ifdef CONFIG_X86_64
1830
1831 static void enter_lmode(struct kvm_vcpu *vcpu)
1832 {
1833         u32 guest_tr_ar;
1834
1835         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1836         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1837                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1838                        __func__);
1839                 vmcs_write32(GUEST_TR_AR_BYTES,
1840                              (guest_tr_ar & ~AR_TYPE_MASK)
1841                              | AR_TYPE_BUSY_64_TSS);
1842         }
1843         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1844 }
1845
1846 static void exit_lmode(struct kvm_vcpu *vcpu)
1847 {
1848         vmcs_write32(VM_ENTRY_CONTROLS,
1849                      vmcs_read32(VM_ENTRY_CONTROLS)
1850                      & ~VM_ENTRY_IA32E_MODE);
1851         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1852 }
1853
1854 #endif
1855
1856 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1857 {
1858         vpid_sync_context(to_vmx(vcpu));
1859         if (enable_ept) {
1860                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1861                         return;
1862                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1863         }
1864 }
1865
1866 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1867 {
1868         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1869
1870         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1871         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1872 }
1873
1874 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1875 {
1876         if (enable_ept && is_paging(vcpu))
1877                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1878         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1879 }
1880
1881 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1882 {
1883         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1884
1885         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1886         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1887 }
1888
1889 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1890 {
1891         if (!test_bit(VCPU_EXREG_PDPTR,
1892                       (unsigned long *)&vcpu->arch.regs_dirty))
1893                 return;
1894
1895         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1896                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1897                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1898                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1899                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1900         }
1901 }
1902
1903 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1904 {
1905         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1906                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1907                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1908                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1909                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1910         }
1911
1912         __set_bit(VCPU_EXREG_PDPTR,
1913                   (unsigned long *)&vcpu->arch.regs_avail);
1914         __set_bit(VCPU_EXREG_PDPTR,
1915                   (unsigned long *)&vcpu->arch.regs_dirty);
1916 }
1917
1918 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1919
1920 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1921                                         unsigned long cr0,
1922                                         struct kvm_vcpu *vcpu)
1923 {
1924         vmx_decache_cr3(vcpu);
1925         if (!(cr0 & X86_CR0_PG)) {
1926                 /* From paging/starting to nonpaging */
1927                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1928                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1929                              (CPU_BASED_CR3_LOAD_EXITING |
1930                               CPU_BASED_CR3_STORE_EXITING));
1931                 vcpu->arch.cr0 = cr0;
1932                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1933         } else if (!is_paging(vcpu)) {
1934                 /* From nonpaging to paging */
1935                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1936                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1937                              ~(CPU_BASED_CR3_LOAD_EXITING |
1938                                CPU_BASED_CR3_STORE_EXITING));
1939                 vcpu->arch.cr0 = cr0;
1940                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1941         }
1942
1943         if (!(cr0 & X86_CR0_WP))
1944                 *hw_cr0 &= ~X86_CR0_WP;
1945 }
1946
1947 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1948 {
1949         struct vcpu_vmx *vmx = to_vmx(vcpu);
1950         unsigned long hw_cr0;
1951
1952         if (enable_unrestricted_guest)
1953                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1954                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1955         else
1956                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1957
1958         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1959                 enter_pmode(vcpu);
1960
1961         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1962                 enter_rmode(vcpu);
1963
1964 #ifdef CONFIG_X86_64
1965         if (vcpu->arch.efer & EFER_LME) {
1966                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1967                         enter_lmode(vcpu);
1968                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1969                         exit_lmode(vcpu);
1970         }
1971 #endif
1972
1973         if (enable_ept)
1974                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1975
1976         if (!vcpu->fpu_active)
1977                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1978
1979         vmcs_writel(CR0_READ_SHADOW, cr0);
1980         vmcs_writel(GUEST_CR0, hw_cr0);
1981         vcpu->arch.cr0 = cr0;
1982 }
1983
1984 static u64 construct_eptp(unsigned long root_hpa)
1985 {
1986         u64 eptp;
1987
1988         /* TODO write the value reading from MSR */
1989         eptp = VMX_EPT_DEFAULT_MT |
1990                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1991         eptp |= (root_hpa & PAGE_MASK);
1992
1993         return eptp;
1994 }
1995
1996 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1997 {
1998         unsigned long guest_cr3;
1999         u64 eptp;
2000
2001         guest_cr3 = cr3;
2002         if (enable_ept) {
2003                 eptp = construct_eptp(cr3);
2004                 vmcs_write64(EPT_POINTER, eptp);
2005                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2006                         vcpu->kvm->arch.ept_identity_map_addr;
2007                 ept_load_pdptrs(vcpu);
2008         }
2009
2010         vmx_flush_tlb(vcpu);
2011         vmcs_writel(GUEST_CR3, guest_cr3);
2012 }
2013
2014 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2015 {
2016         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2017                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2018
2019         vcpu->arch.cr4 = cr4;
2020         if (enable_ept) {
2021                 if (!is_paging(vcpu)) {
2022                         hw_cr4 &= ~X86_CR4_PAE;
2023                         hw_cr4 |= X86_CR4_PSE;
2024                 } else if (!(cr4 & X86_CR4_PAE)) {
2025                         hw_cr4 &= ~X86_CR4_PAE;
2026                 }
2027         }
2028
2029         vmcs_writel(CR4_READ_SHADOW, cr4);
2030         vmcs_writel(GUEST_CR4, hw_cr4);
2031 }
2032
2033 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2034 {
2035         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2036
2037         return vmcs_readl(sf->base);
2038 }
2039
2040 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2041                             struct kvm_segment *var, int seg)
2042 {
2043         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2044         u32 ar;
2045
2046         var->base = vmcs_readl(sf->base);
2047         var->limit = vmcs_read32(sf->limit);
2048         var->selector = vmcs_read16(sf->selector);
2049         ar = vmcs_read32(sf->ar_bytes);
2050         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2051                 ar = 0;
2052         var->type = ar & 15;
2053         var->s = (ar >> 4) & 1;
2054         var->dpl = (ar >> 5) & 3;
2055         var->present = (ar >> 7) & 1;
2056         var->avl = (ar >> 12) & 1;
2057         var->l = (ar >> 13) & 1;
2058         var->db = (ar >> 14) & 1;
2059         var->g = (ar >> 15) & 1;
2060         var->unusable = (ar >> 16) & 1;
2061 }
2062
2063 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2064 {
2065         if (!is_protmode(vcpu))
2066                 return 0;
2067
2068         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2069                 return 3;
2070
2071         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2072 }
2073
2074 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2075 {
2076         u32 ar;
2077
2078         if (var->unusable)
2079                 ar = 1 << 16;
2080         else {
2081                 ar = var->type & 15;
2082                 ar |= (var->s & 1) << 4;
2083                 ar |= (var->dpl & 3) << 5;
2084                 ar |= (var->present & 1) << 7;
2085                 ar |= (var->avl & 1) << 12;
2086                 ar |= (var->l & 1) << 13;
2087                 ar |= (var->db & 1) << 14;
2088                 ar |= (var->g & 1) << 15;
2089         }
2090         if (ar == 0) /* a 0 value means unusable */
2091                 ar = AR_UNUSABLE_MASK;
2092
2093         return ar;
2094 }
2095
2096 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2097                             struct kvm_segment *var, int seg)
2098 {
2099         struct vcpu_vmx *vmx = to_vmx(vcpu);
2100         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2101         u32 ar;
2102
2103         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2104                 vmx->rmode.tr.selector = var->selector;
2105                 vmx->rmode.tr.base = var->base;
2106                 vmx->rmode.tr.limit = var->limit;
2107                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2108                 return;
2109         }
2110         vmcs_writel(sf->base, var->base);
2111         vmcs_write32(sf->limit, var->limit);
2112         vmcs_write16(sf->selector, var->selector);
2113         if (vmx->rmode.vm86_active && var->s) {
2114                 /*
2115                  * Hack real-mode segments into vm86 compatibility.
2116                  */
2117                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2118                         vmcs_writel(sf->base, 0xf0000);
2119                 ar = 0xf3;
2120         } else
2121                 ar = vmx_segment_access_rights(var);
2122
2123         /*
2124          *   Fix the "Accessed" bit in AR field of segment registers for older
2125          * qemu binaries.
2126          *   IA32 arch specifies that at the time of processor reset the
2127          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2128          * is setting it to 0 in the usedland code. This causes invalid guest
2129          * state vmexit when "unrestricted guest" mode is turned on.
2130          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2131          * tree. Newer qemu binaries with that qemu fix would not need this
2132          * kvm hack.
2133          */
2134         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2135                 ar |= 0x1; /* Accessed */
2136
2137         vmcs_write32(sf->ar_bytes, ar);
2138 }
2139
2140 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2141 {
2142         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2143
2144         *db = (ar >> 14) & 1;
2145         *l = (ar >> 13) & 1;
2146 }
2147
2148 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2149 {
2150         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2151         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2152 }
2153
2154 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2155 {
2156         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2157         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2158 }
2159
2160 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2161 {
2162         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2163         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2164 }
2165
2166 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2167 {
2168         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2169         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2170 }
2171
2172 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2173 {
2174         struct kvm_segment var;
2175         u32 ar;
2176
2177         vmx_get_segment(vcpu, &var, seg);
2178         ar = vmx_segment_access_rights(&var);
2179
2180         if (var.base != (var.selector << 4))
2181                 return false;
2182         if (var.limit != 0xffff)
2183                 return false;
2184         if (ar != 0xf3)
2185                 return false;
2186
2187         return true;
2188 }
2189
2190 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2191 {
2192         struct kvm_segment cs;
2193         unsigned int cs_rpl;
2194
2195         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2196         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2197
2198         if (cs.unusable)
2199                 return false;
2200         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2201                 return false;
2202         if (!cs.s)
2203                 return false;
2204         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2205                 if (cs.dpl > cs_rpl)
2206                         return false;
2207         } else {
2208                 if (cs.dpl != cs_rpl)
2209                         return false;
2210         }
2211         if (!cs.present)
2212                 return false;
2213
2214         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2215         return true;
2216 }
2217
2218 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2219 {
2220         struct kvm_segment ss;
2221         unsigned int ss_rpl;
2222
2223         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2224         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2225
2226         if (ss.unusable)
2227                 return true;
2228         if (ss.type != 3 && ss.type != 7)
2229                 return false;
2230         if (!ss.s)
2231                 return false;
2232         if (ss.dpl != ss_rpl) /* DPL != RPL */
2233                 return false;
2234         if (!ss.present)
2235                 return false;
2236
2237         return true;
2238 }
2239
2240 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2241 {
2242         struct kvm_segment var;
2243         unsigned int rpl;
2244
2245         vmx_get_segment(vcpu, &var, seg);
2246         rpl = var.selector & SELECTOR_RPL_MASK;
2247
2248         if (var.unusable)
2249                 return true;
2250         if (!var.s)
2251                 return false;
2252         if (!var.present)
2253                 return false;
2254         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2255                 if (var.dpl < rpl) /* DPL < RPL */
2256                         return false;
2257         }
2258
2259         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2260          * rights flags
2261          */
2262         return true;
2263 }
2264
2265 static bool tr_valid(struct kvm_vcpu *vcpu)
2266 {
2267         struct kvm_segment tr;
2268
2269         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2270
2271         if (tr.unusable)
2272                 return false;
2273         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2274                 return false;
2275         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2276                 return false;
2277         if (!tr.present)
2278                 return false;
2279
2280         return true;
2281 }
2282
2283 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2284 {
2285         struct kvm_segment ldtr;
2286
2287         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2288
2289         if (ldtr.unusable)
2290                 return true;
2291         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2292                 return false;
2293         if (ldtr.type != 2)
2294                 return false;
2295         if (!ldtr.present)
2296                 return false;
2297
2298         return true;
2299 }
2300
2301 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2302 {
2303         struct kvm_segment cs, ss;
2304
2305         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2306         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2307
2308         return ((cs.selector & SELECTOR_RPL_MASK) ==
2309                  (ss.selector & SELECTOR_RPL_MASK));
2310 }
2311
2312 /*
2313  * Check if guest state is valid. Returns true if valid, false if
2314  * not.
2315  * We assume that registers are always usable
2316  */
2317 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2318 {
2319         /* real mode guest state checks */
2320         if (!is_protmode(vcpu)) {
2321                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2322                         return false;
2323                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2324                         return false;
2325                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2326                         return false;
2327                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2328                         return false;
2329                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2330                         return false;
2331                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2332                         return false;
2333         } else {
2334         /* protected mode guest state checks */
2335                 if (!cs_ss_rpl_check(vcpu))
2336                         return false;
2337                 if (!code_segment_valid(vcpu))
2338                         return false;
2339                 if (!stack_segment_valid(vcpu))
2340                         return false;
2341                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2342                         return false;
2343                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2344                         return false;
2345                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2346                         return false;
2347                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2348                         return false;
2349                 if (!tr_valid(vcpu))
2350                         return false;
2351                 if (!ldtr_valid(vcpu))
2352                         return false;
2353         }
2354         /* TODO:
2355          * - Add checks on RIP
2356          * - Add checks on RFLAGS
2357          */
2358
2359         return true;
2360 }
2361
2362 static int init_rmode_tss(struct kvm *kvm)
2363 {
2364         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2365         u16 data = 0;
2366         int ret = 0;
2367         int r;
2368
2369         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2370         if (r < 0)
2371                 goto out;
2372         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2373         r = kvm_write_guest_page(kvm, fn++, &data,
2374                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2375         if (r < 0)
2376                 goto out;
2377         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2378         if (r < 0)
2379                 goto out;
2380         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2381         if (r < 0)
2382                 goto out;
2383         data = ~0;
2384         r = kvm_write_guest_page(kvm, fn, &data,
2385                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2386                                  sizeof(u8));
2387         if (r < 0)
2388                 goto out;
2389
2390         ret = 1;
2391 out:
2392         return ret;
2393 }
2394
2395 static int init_rmode_identity_map(struct kvm *kvm)
2396 {
2397         int i, r, ret;
2398         pfn_t identity_map_pfn;
2399         u32 tmp;
2400
2401         if (!enable_ept)
2402                 return 1;
2403         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2404                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2405                         "haven't been allocated!\n");
2406                 return 0;
2407         }
2408         if (likely(kvm->arch.ept_identity_pagetable_done))
2409                 return 1;
2410         ret = 0;
2411         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2412         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2413         if (r < 0)
2414                 goto out;
2415         /* Set up identity-mapping pagetable for EPT in real mode */
2416         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2417                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2418                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2419                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2420                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2421                 if (r < 0)
2422                         goto out;
2423         }
2424         kvm->arch.ept_identity_pagetable_done = true;
2425         ret = 1;
2426 out:
2427         return ret;
2428 }
2429
2430 static void seg_setup(int seg)
2431 {
2432         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2433         unsigned int ar;
2434
2435         vmcs_write16(sf->selector, 0);
2436         vmcs_writel(sf->base, 0);
2437         vmcs_write32(sf->limit, 0xffff);
2438         if (enable_unrestricted_guest) {
2439                 ar = 0x93;
2440                 if (seg == VCPU_SREG_CS)
2441                         ar |= 0x08; /* code segment */
2442         } else
2443                 ar = 0xf3;
2444
2445         vmcs_write32(sf->ar_bytes, ar);
2446 }
2447
2448 static int alloc_apic_access_page(struct kvm *kvm)
2449 {
2450         struct kvm_userspace_memory_region kvm_userspace_mem;
2451         int r = 0;
2452
2453         mutex_lock(&kvm->slots_lock);
2454         if (kvm->arch.apic_access_page)
2455                 goto out;
2456         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2457         kvm_userspace_mem.flags = 0;
2458         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2459         kvm_userspace_mem.memory_size = PAGE_SIZE;
2460         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2461         if (r)
2462                 goto out;
2463
2464         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2465 out:
2466         mutex_unlock(&kvm->slots_lock);
2467         return r;
2468 }
2469
2470 static int alloc_identity_pagetable(struct kvm *kvm)
2471 {
2472         struct kvm_userspace_memory_region kvm_userspace_mem;
2473         int r = 0;
2474
2475         mutex_lock(&kvm->slots_lock);
2476         if (kvm->arch.ept_identity_pagetable)
2477                 goto out;
2478         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2479         kvm_userspace_mem.flags = 0;
2480         kvm_userspace_mem.guest_phys_addr =
2481                 kvm->arch.ept_identity_map_addr;
2482         kvm_userspace_mem.memory_size = PAGE_SIZE;
2483         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2484         if (r)
2485                 goto out;
2486
2487         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2488                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2489 out:
2490         mutex_unlock(&kvm->slots_lock);
2491         return r;
2492 }
2493
2494 static void allocate_vpid(struct vcpu_vmx *vmx)
2495 {
2496         int vpid;
2497
2498         vmx->vpid = 0;
2499         if (!enable_vpid)
2500                 return;
2501         spin_lock(&vmx_vpid_lock);
2502         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2503         if (vpid < VMX_NR_VPIDS) {
2504                 vmx->vpid = vpid;
2505                 __set_bit(vpid, vmx_vpid_bitmap);
2506         }
2507         spin_unlock(&vmx_vpid_lock);
2508 }
2509
2510 static void free_vpid(struct vcpu_vmx *vmx)
2511 {
2512         if (!enable_vpid)
2513                 return;
2514         spin_lock(&vmx_vpid_lock);
2515         if (vmx->vpid != 0)
2516                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2517         spin_unlock(&vmx_vpid_lock);
2518 }
2519
2520 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2521 {
2522         int f = sizeof(unsigned long);
2523
2524         if (!cpu_has_vmx_msr_bitmap())
2525                 return;
2526
2527         /*
2528          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2529          * have the write-low and read-high bitmap offsets the wrong way round.
2530          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2531          */
2532         if (msr <= 0x1fff) {
2533                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2534                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2535         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2536                 msr &= 0x1fff;
2537                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2538                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2539         }
2540 }
2541
2542 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2543 {
2544         if (!longmode_only)
2545                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2546         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2547 }
2548
2549 /*
2550  * Sets up the vmcs for emulated real mode.
2551  */
2552 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2553 {
2554         u32 host_sysenter_cs, msr_low, msr_high;
2555         u32 junk;
2556         u64 host_pat;
2557         unsigned long a;
2558         struct desc_ptr dt;
2559         int i;
2560         unsigned long kvm_vmx_return;
2561         u32 exec_control;
2562
2563         /* I/O */
2564         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2565         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2566
2567         if (cpu_has_vmx_msr_bitmap())
2568                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2569
2570         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2571
2572         /* Control */
2573         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2574                 vmcs_config.pin_based_exec_ctrl);
2575
2576         exec_control = vmcs_config.cpu_based_exec_ctrl;
2577         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2578                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2579 #ifdef CONFIG_X86_64
2580                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2581                                 CPU_BASED_CR8_LOAD_EXITING;
2582 #endif
2583         }
2584         if (!enable_ept)
2585                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2586                                 CPU_BASED_CR3_LOAD_EXITING  |
2587                                 CPU_BASED_INVLPG_EXITING;
2588         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2589
2590         if (cpu_has_secondary_exec_ctrls()) {
2591                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2592                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2593                         exec_control &=
2594                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2595                 if (vmx->vpid == 0)
2596                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2597                 if (!enable_ept) {
2598                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2599                         enable_unrestricted_guest = 0;
2600                 }
2601                 if (!enable_unrestricted_guest)
2602                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2603                 if (!ple_gap)
2604                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2605                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2606         }
2607
2608         if (ple_gap) {
2609                 vmcs_write32(PLE_GAP, ple_gap);
2610                 vmcs_write32(PLE_WINDOW, ple_window);
2611         }
2612
2613         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2614         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2615         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2616
2617         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2618         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2619         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2620
2621         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2622         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2623         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2624         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2625         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2626         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2627 #ifdef CONFIG_X86_64
2628         rdmsrl(MSR_FS_BASE, a);
2629         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2630         rdmsrl(MSR_GS_BASE, a);
2631         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2632 #else
2633         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2634         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2635 #endif
2636
2637         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2638
2639         native_store_idt(&dt);
2640         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2641
2642         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2643         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2644         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2645         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2646         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2647         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2648         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2649
2650         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2651         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2652         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2653         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2654         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2655         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2656
2657         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2658                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2659                 host_pat = msr_low | ((u64) msr_high << 32);
2660                 vmcs_write64(HOST_IA32_PAT, host_pat);
2661         }
2662         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2663                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2664                 host_pat = msr_low | ((u64) msr_high << 32);
2665                 /* Write the default value follow host pat */
2666                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2667                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2668                 vmx->vcpu.arch.pat = host_pat;
2669         }
2670
2671         for (i = 0; i < NR_VMX_MSR; ++i) {
2672                 u32 index = vmx_msr_index[i];
2673                 u32 data_low, data_high;
2674                 int j = vmx->nmsrs;
2675
2676                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2677                         continue;
2678                 if (wrmsr_safe(index, data_low, data_high) < 0)
2679                         continue;
2680                 vmx->guest_msrs[j].index = i;
2681                 vmx->guest_msrs[j].data = 0;
2682                 vmx->guest_msrs[j].mask = -1ull;
2683                 ++vmx->nmsrs;
2684         }
2685
2686         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2687
2688         /* 22.2.1, 20.8.1 */
2689         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2690
2691         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2692         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2693         if (enable_ept)
2694                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2695         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2696
2697         kvm_write_tsc(&vmx->vcpu, 0);
2698
2699         return 0;
2700 }
2701
2702 static int init_rmode(struct kvm *kvm)
2703 {
2704         int idx, ret = 0;
2705
2706         idx = srcu_read_lock(&kvm->srcu);
2707         if (!init_rmode_tss(kvm))
2708                 goto exit;
2709         if (!init_rmode_identity_map(kvm))
2710                 goto exit;
2711
2712         ret = 1;
2713 exit:
2714         srcu_read_unlock(&kvm->srcu, idx);
2715         return ret;
2716 }
2717
2718 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2719 {
2720         struct vcpu_vmx *vmx = to_vmx(vcpu);
2721         u64 msr;
2722         int ret;
2723
2724         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2725         if (!init_rmode(vmx->vcpu.kvm)) {
2726                 ret = -ENOMEM;
2727                 goto out;
2728         }
2729
2730         vmx->rmode.vm86_active = 0;
2731
2732         vmx->soft_vnmi_blocked = 0;
2733
2734         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2735         kvm_set_cr8(&vmx->vcpu, 0);
2736         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2737         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2738                 msr |= MSR_IA32_APICBASE_BSP;
2739         kvm_set_apic_base(&vmx->vcpu, msr);
2740
2741         ret = fx_init(&vmx->vcpu);
2742         if (ret != 0)
2743                 goto out;
2744
2745         seg_setup(VCPU_SREG_CS);
2746         /*
2747          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2748          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2749          */
2750         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2751                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2752                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2753         } else {
2754                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2755                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2756         }
2757
2758         seg_setup(VCPU_SREG_DS);
2759         seg_setup(VCPU_SREG_ES);
2760         seg_setup(VCPU_SREG_FS);
2761         seg_setup(VCPU_SREG_GS);
2762         seg_setup(VCPU_SREG_SS);
2763
2764         vmcs_write16(GUEST_TR_SELECTOR, 0);
2765         vmcs_writel(GUEST_TR_BASE, 0);
2766         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2767         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2768
2769         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2770         vmcs_writel(GUEST_LDTR_BASE, 0);
2771         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2772         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2773
2774         vmcs_write32(GUEST_SYSENTER_CS, 0);
2775         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2776         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2777
2778         vmcs_writel(GUEST_RFLAGS, 0x02);
2779         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2780                 kvm_rip_write(vcpu, 0xfff0);
2781         else
2782                 kvm_rip_write(vcpu, 0);
2783         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2784
2785         vmcs_writel(GUEST_DR7, 0x400);
2786
2787         vmcs_writel(GUEST_GDTR_BASE, 0);
2788         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2789
2790         vmcs_writel(GUEST_IDTR_BASE, 0);
2791         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2792
2793         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2794         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2795         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2796
2797         /* Special registers */
2798         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2799
2800         setup_msrs(vmx);
2801
2802         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2803
2804         if (cpu_has_vmx_tpr_shadow()) {
2805                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2806                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2807                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2808                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2809                 vmcs_write32(TPR_THRESHOLD, 0);
2810         }
2811
2812         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2813                 vmcs_write64(APIC_ACCESS_ADDR,
2814                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2815
2816         if (vmx->vpid != 0)
2817                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2818
2819         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2820         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2821         vmx_set_cr4(&vmx->vcpu, 0);
2822         vmx_set_efer(&vmx->vcpu, 0);
2823         vmx_fpu_activate(&vmx->vcpu);
2824         update_exception_bitmap(&vmx->vcpu);
2825
2826         vpid_sync_context(vmx);
2827
2828         ret = 0;
2829
2830         /* HACK: Don't enable emulation on guest boot/reset */
2831         vmx->emulation_required = 0;
2832
2833 out:
2834         return ret;
2835 }
2836
2837 static void enable_irq_window(struct kvm_vcpu *vcpu)
2838 {
2839         u32 cpu_based_vm_exec_control;
2840
2841         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2842         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2843         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2844 }
2845
2846 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2847 {
2848         u32 cpu_based_vm_exec_control;
2849
2850         if (!cpu_has_virtual_nmis()) {
2851                 enable_irq_window(vcpu);
2852                 return;
2853         }
2854
2855         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2856                 enable_irq_window(vcpu);
2857                 return;
2858         }
2859         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2860         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2861         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2862 }
2863
2864 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2865 {
2866         struct vcpu_vmx *vmx = to_vmx(vcpu);
2867         uint32_t intr;
2868         int irq = vcpu->arch.interrupt.nr;
2869
2870         trace_kvm_inj_virq(irq);
2871
2872         ++vcpu->stat.irq_injections;
2873         if (vmx->rmode.vm86_active) {
2874                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2875                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2876                 return;
2877         }
2878         intr = irq | INTR_INFO_VALID_MASK;
2879         if (vcpu->arch.interrupt.soft) {
2880                 intr |= INTR_TYPE_SOFT_INTR;
2881                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2882                              vmx->vcpu.arch.event_exit_inst_len);
2883         } else
2884                 intr |= INTR_TYPE_EXT_INTR;
2885         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2886         vmx_clear_hlt(vcpu);
2887 }
2888
2889 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2890 {
2891         struct vcpu_vmx *vmx = to_vmx(vcpu);
2892
2893         if (!cpu_has_virtual_nmis()) {
2894                 /*
2895                  * Tracking the NMI-blocked state in software is built upon
2896                  * finding the next open IRQ window. This, in turn, depends on
2897                  * well-behaving guests: They have to keep IRQs disabled at
2898                  * least as long as the NMI handler runs. Otherwise we may
2899                  * cause NMI nesting, maybe breaking the guest. But as this is
2900                  * highly unlikely, we can live with the residual risk.
2901                  */
2902                 vmx->soft_vnmi_blocked = 1;
2903                 vmx->vnmi_blocked_time = 0;
2904         }
2905
2906         ++vcpu->stat.nmi_injections;
2907         if (vmx->rmode.vm86_active) {
2908                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2909                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2910                 return;
2911         }
2912         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2913                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2914         vmx_clear_hlt(vcpu);
2915 }
2916
2917 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2918 {
2919         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2920                 return 0;
2921
2922         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2923                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2924                    | GUEST_INTR_STATE_NMI));
2925 }
2926
2927 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2928 {
2929         if (!cpu_has_virtual_nmis())
2930                 return to_vmx(vcpu)->soft_vnmi_blocked;
2931         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2932 }
2933
2934 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2935 {
2936         struct vcpu_vmx *vmx = to_vmx(vcpu);
2937
2938         if (!cpu_has_virtual_nmis()) {
2939                 if (vmx->soft_vnmi_blocked != masked) {
2940                         vmx->soft_vnmi_blocked = masked;
2941                         vmx->vnmi_blocked_time = 0;
2942                 }
2943         } else {
2944                 if (masked)
2945                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2946                                       GUEST_INTR_STATE_NMI);
2947                 else
2948                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2949                                         GUEST_INTR_STATE_NMI);
2950         }
2951 }
2952
2953 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2954 {
2955         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2956                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2957                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2958 }
2959
2960 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2961 {
2962         int ret;
2963         struct kvm_userspace_memory_region tss_mem = {
2964                 .slot = TSS_PRIVATE_MEMSLOT,
2965                 .guest_phys_addr = addr,
2966                 .memory_size = PAGE_SIZE * 3,
2967                 .flags = 0,
2968         };
2969
2970         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2971         if (ret)
2972                 return ret;
2973         kvm->arch.tss_addr = addr;
2974         return 0;
2975 }
2976
2977 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2978                                   int vec, u32 err_code)
2979 {
2980         /*
2981          * Instruction with address size override prefix opcode 0x67
2982          * Cause the #SS fault with 0 error code in VM86 mode.
2983          */
2984         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2985                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
2986                         return 1;
2987         /*
2988          * Forward all other exceptions that are valid in real mode.
2989          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2990          *        the required debugging infrastructure rework.
2991          */
2992         switch (vec) {
2993         case DB_VECTOR:
2994                 if (vcpu->guest_debug &
2995                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2996                         return 0;
2997                 kvm_queue_exception(vcpu, vec);
2998                 return 1;
2999         case BP_VECTOR:
3000                 /*
3001                  * Update instruction length as we may reinject the exception
3002                  * from user space while in guest debugging mode.
3003                  */
3004                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3005                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3006                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3007                         return 0;
3008                 /* fall through */
3009         case DE_VECTOR:
3010         case OF_VECTOR:
3011         case BR_VECTOR:
3012         case UD_VECTOR:
3013         case DF_VECTOR:
3014         case SS_VECTOR:
3015         case GP_VECTOR:
3016         case MF_VECTOR:
3017                 kvm_queue_exception(vcpu, vec);
3018                 return 1;
3019         }
3020         return 0;
3021 }
3022
3023 /*
3024  * Trigger machine check on the host. We assume all the MSRs are already set up
3025  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3026  * We pass a fake environment to the machine check handler because we want
3027  * the guest to be always treated like user space, no matter what context
3028  * it used internally.
3029  */
3030 static void kvm_machine_check(void)
3031 {
3032 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3033         struct pt_regs regs = {
3034                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3035                 .flags = X86_EFLAGS_IF,
3036         };
3037
3038         do_machine_check(&regs, 0);
3039 #endif
3040 }
3041
3042 static int handle_machine_check(struct kvm_vcpu *vcpu)
3043 {
3044         /* already handled by vcpu_run */
3045         return 1;
3046 }
3047
3048 static int handle_exception(struct kvm_vcpu *vcpu)
3049 {
3050         struct vcpu_vmx *vmx = to_vmx(vcpu);
3051         struct kvm_run *kvm_run = vcpu->run;
3052         u32 intr_info, ex_no, error_code;
3053         unsigned long cr2, rip, dr6;
3054         u32 vect_info;
3055         enum emulation_result er;
3056
3057         vect_info = vmx->idt_vectoring_info;
3058         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3059
3060         if (is_machine_check(intr_info))
3061                 return handle_machine_check(vcpu);
3062
3063         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3064             !is_page_fault(intr_info)) {
3065                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3066                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3067                 vcpu->run->internal.ndata = 2;
3068                 vcpu->run->internal.data[0] = vect_info;
3069                 vcpu->run->internal.data[1] = intr_info;
3070                 return 0;
3071         }
3072
3073         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3074                 return 1;  /* already handled by vmx_vcpu_run() */
3075
3076         if (is_no_device(intr_info)) {
3077                 vmx_fpu_activate(vcpu);
3078                 return 1;
3079         }
3080
3081         if (is_invalid_opcode(intr_info)) {
3082                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3083                 if (er != EMULATE_DONE)
3084                         kvm_queue_exception(vcpu, UD_VECTOR);
3085                 return 1;
3086         }
3087
3088         error_code = 0;
3089         rip = kvm_rip_read(vcpu);
3090         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3091                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3092         if (is_page_fault(intr_info)) {
3093                 /* EPT won't cause page fault directly */
3094                 if (enable_ept)
3095                         BUG();
3096                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3097                 trace_kvm_page_fault(cr2, error_code);
3098
3099                 if (kvm_event_needs_reinjection(vcpu))
3100                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3101                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3102         }
3103
3104         if (vmx->rmode.vm86_active &&
3105             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3106                                                                 error_code)) {
3107                 if (vcpu->arch.halt_request) {
3108                         vcpu->arch.halt_request = 0;
3109                         return kvm_emulate_halt(vcpu);
3110                 }
3111                 return 1;
3112         }
3113
3114         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3115         switch (ex_no) {
3116         case DB_VECTOR:
3117                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3118                 if (!(vcpu->guest_debug &
3119                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3120                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3121                         kvm_queue_exception(vcpu, DB_VECTOR);
3122                         return 1;
3123                 }
3124                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3125                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3126                 /* fall through */
3127         case BP_VECTOR:
3128                 /*
3129                  * Update instruction length as we may reinject #BP from
3130                  * user space while in guest debugging mode. Reading it for
3131                  * #DB as well causes no harm, it is not used in that case.
3132                  */
3133                 vmx->vcpu.arch.event_exit_inst_len =
3134                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3135                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3136                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3137                 kvm_run->debug.arch.exception = ex_no;
3138                 break;
3139         default:
3140                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3141                 kvm_run->ex.exception = ex_no;
3142                 kvm_run->ex.error_code = error_code;
3143                 break;
3144         }
3145         return 0;
3146 }
3147
3148 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3149 {
3150         ++vcpu->stat.irq_exits;
3151         return 1;
3152 }
3153
3154 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3155 {
3156         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3157         return 0;
3158 }
3159
3160 static int handle_io(struct kvm_vcpu *vcpu)
3161 {
3162         unsigned long exit_qualification;
3163         int size, in, string;
3164         unsigned port;
3165
3166         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3167         string = (exit_qualification & 16) != 0;
3168         in = (exit_qualification & 8) != 0;
3169
3170         ++vcpu->stat.io_exits;
3171
3172         if (string || in)
3173                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3174
3175         port = exit_qualification >> 16;
3176         size = (exit_qualification & 7) + 1;
3177         skip_emulated_instruction(vcpu);
3178
3179         return kvm_fast_pio_out(vcpu, size, port);
3180 }
3181
3182 static void
3183 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3184 {
3185         /*
3186          * Patch in the VMCALL instruction:
3187          */
3188         hypercall[0] = 0x0f;
3189         hypercall[1] = 0x01;
3190         hypercall[2] = 0xc1;
3191 }
3192
3193 static int handle_cr(struct kvm_vcpu *vcpu)
3194 {
3195         unsigned long exit_qualification, val;
3196         int cr;
3197         int reg;
3198         int err;
3199
3200         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3201         cr = exit_qualification & 15;
3202         reg = (exit_qualification >> 8) & 15;
3203         switch ((exit_qualification >> 4) & 3) {
3204         case 0: /* mov to cr */
3205                 val = kvm_register_read(vcpu, reg);
3206                 trace_kvm_cr_write(cr, val);
3207                 switch (cr) {
3208                 case 0:
3209                         err = kvm_set_cr0(vcpu, val);
3210                         kvm_complete_insn_gp(vcpu, err);
3211                         return 1;
3212                 case 3:
3213                         err = kvm_set_cr3(vcpu, val);
3214                         kvm_complete_insn_gp(vcpu, err);
3215                         return 1;
3216                 case 4:
3217                         err = kvm_set_cr4(vcpu, val);
3218                         kvm_complete_insn_gp(vcpu, err);
3219                         return 1;
3220                 case 8: {
3221                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3222                                 u8 cr8 = kvm_register_read(vcpu, reg);
3223                                 err = kvm_set_cr8(vcpu, cr8);
3224                                 kvm_complete_insn_gp(vcpu, err);
3225                                 if (irqchip_in_kernel(vcpu->kvm))
3226                                         return 1;
3227                                 if (cr8_prev <= cr8)
3228                                         return 1;
3229                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3230                                 return 0;
3231                         }
3232                 };
3233                 break;
3234         case 2: /* clts */
3235                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3236                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3237                 skip_emulated_instruction(vcpu);
3238                 vmx_fpu_activate(vcpu);
3239                 return 1;
3240         case 1: /*mov from cr*/
3241                 switch (cr) {
3242                 case 3:
3243                         val = kvm_read_cr3(vcpu);
3244                         kvm_register_write(vcpu, reg, val);
3245                         trace_kvm_cr_read(cr, val);
3246                         skip_emulated_instruction(vcpu);
3247                         return 1;
3248                 case 8:
3249                         val = kvm_get_cr8(vcpu);
3250                         kvm_register_write(vcpu, reg, val);
3251                         trace_kvm_cr_read(cr, val);
3252                         skip_emulated_instruction(vcpu);
3253                         return 1;
3254                 }
3255                 break;
3256         case 3: /* lmsw */
3257                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3258                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3259                 kvm_lmsw(vcpu, val);
3260
3261                 skip_emulated_instruction(vcpu);
3262                 return 1;
3263         default:
3264                 break;
3265         }
3266         vcpu->run->exit_reason = 0;
3267         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3268                (int)(exit_qualification >> 4) & 3, cr);
3269         return 0;
3270 }
3271
3272 static int handle_dr(struct kvm_vcpu *vcpu)
3273 {
3274         unsigned long exit_qualification;
3275         int dr, reg;
3276
3277         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3278         if (!kvm_require_cpl(vcpu, 0))
3279                 return 1;
3280         dr = vmcs_readl(GUEST_DR7);
3281         if (dr & DR7_GD) {
3282                 /*
3283                  * As the vm-exit takes precedence over the debug trap, we
3284                  * need to emulate the latter, either for the host or the
3285                  * guest debugging itself.
3286                  */
3287                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3288                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3289                         vcpu->run->debug.arch.dr7 = dr;
3290                         vcpu->run->debug.arch.pc =
3291                                 vmcs_readl(GUEST_CS_BASE) +
3292                                 vmcs_readl(GUEST_RIP);
3293                         vcpu->run->debug.arch.exception = DB_VECTOR;
3294                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3295                         return 0;
3296                 } else {
3297                         vcpu->arch.dr7 &= ~DR7_GD;
3298                         vcpu->arch.dr6 |= DR6_BD;
3299                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3300                         kvm_queue_exception(vcpu, DB_VECTOR);
3301                         return 1;
3302                 }
3303         }
3304
3305         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3306         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3307         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3308         if (exit_qualification & TYPE_MOV_FROM_DR) {
3309                 unsigned long val;
3310                 if (!kvm_get_dr(vcpu, dr, &val))
3311                         kvm_register_write(vcpu, reg, val);
3312         } else
3313                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3314         skip_emulated_instruction(vcpu);
3315         return 1;
3316 }
3317
3318 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3319 {
3320         vmcs_writel(GUEST_DR7, val);
3321 }
3322
3323 static int handle_cpuid(struct kvm_vcpu *vcpu)
3324 {
3325         kvm_emulate_cpuid(vcpu);
3326         return 1;
3327 }
3328
3329 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3330 {
3331         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3332         u64 data;
3333
3334         if (vmx_get_msr(vcpu, ecx, &data)) {
3335                 trace_kvm_msr_read_ex(ecx);
3336                 kvm_inject_gp(vcpu, 0);
3337                 return 1;
3338         }
3339
3340         trace_kvm_msr_read(ecx, data);
3341
3342         /* FIXME: handling of bits 32:63 of rax, rdx */
3343         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3344         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3345         skip_emulated_instruction(vcpu);
3346         return 1;
3347 }
3348
3349 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3350 {
3351         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3352         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3353                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3354
3355         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3356                 trace_kvm_msr_write_ex(ecx, data);
3357                 kvm_inject_gp(vcpu, 0);
3358                 return 1;
3359         }
3360
3361         trace_kvm_msr_write(ecx, data);
3362         skip_emulated_instruction(vcpu);
3363         return 1;
3364 }
3365
3366 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3367 {
3368         kvm_make_request(KVM_REQ_EVENT, vcpu);
3369         return 1;
3370 }
3371
3372 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3373 {
3374         u32 cpu_based_vm_exec_control;
3375
3376         /* clear pending irq */
3377         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3378         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3379         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3380
3381         kvm_make_request(KVM_REQ_EVENT, vcpu);
3382
3383         ++vcpu->stat.irq_window_exits;
3384
3385         /*
3386          * If the user space waits to inject interrupts, exit as soon as
3387          * possible
3388          */
3389         if (!irqchip_in_kernel(vcpu->kvm) &&
3390             vcpu->run->request_interrupt_window &&
3391             !kvm_cpu_has_interrupt(vcpu)) {
3392                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3393                 return 0;
3394         }
3395         return 1;
3396 }
3397
3398 static int handle_halt(struct kvm_vcpu *vcpu)
3399 {
3400         skip_emulated_instruction(vcpu);
3401         return kvm_emulate_halt(vcpu);
3402 }
3403
3404 static int handle_vmcall(struct kvm_vcpu *vcpu)
3405 {
3406         skip_emulated_instruction(vcpu);
3407         kvm_emulate_hypercall(vcpu);
3408         return 1;
3409 }
3410
3411 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3412 {
3413         kvm_queue_exception(vcpu, UD_VECTOR);
3414         return 1;
3415 }
3416
3417 static int handle_invd(struct kvm_vcpu *vcpu)
3418 {
3419         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3420 }
3421
3422 static int handle_invlpg(struct kvm_vcpu *vcpu)
3423 {
3424         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3425
3426         kvm_mmu_invlpg(vcpu, exit_qualification);
3427         skip_emulated_instruction(vcpu);
3428         return 1;
3429 }
3430
3431 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3432 {
3433         skip_emulated_instruction(vcpu);
3434         kvm_emulate_wbinvd(vcpu);
3435         return 1;
3436 }
3437
3438 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3439 {
3440         u64 new_bv = kvm_read_edx_eax(vcpu);
3441         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3442
3443         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3444                 skip_emulated_instruction(vcpu);
3445         return 1;
3446 }
3447
3448 static int handle_apic_access(struct kvm_vcpu *vcpu)
3449 {
3450         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3451 }
3452
3453 static int handle_task_switch(struct kvm_vcpu *vcpu)
3454 {
3455         struct vcpu_vmx *vmx = to_vmx(vcpu);
3456         unsigned long exit_qualification;
3457         bool has_error_code = false;
3458         u32 error_code = 0;
3459         u16 tss_selector;
3460         int reason, type, idt_v;
3461
3462         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3463         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3464
3465         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3466
3467         reason = (u32)exit_qualification >> 30;
3468         if (reason == TASK_SWITCH_GATE && idt_v) {
3469                 switch (type) {
3470                 case INTR_TYPE_NMI_INTR:
3471                         vcpu->arch.nmi_injected = false;
3472                         if (cpu_has_virtual_nmis())
3473                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3474                                               GUEST_INTR_STATE_NMI);
3475                         break;
3476                 case INTR_TYPE_EXT_INTR:
3477                 case INTR_TYPE_SOFT_INTR:
3478                         kvm_clear_interrupt_queue(vcpu);
3479                         break;
3480                 case INTR_TYPE_HARD_EXCEPTION:
3481                         if (vmx->idt_vectoring_info &
3482                             VECTORING_INFO_DELIVER_CODE_MASK) {
3483                                 has_error_code = true;
3484                                 error_code =
3485                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3486                         }
3487                         /* fall through */
3488                 case INTR_TYPE_SOFT_EXCEPTION:
3489                         kvm_clear_exception_queue(vcpu);
3490                         break;
3491                 default:
3492                         break;
3493                 }
3494         }
3495         tss_selector = exit_qualification;
3496
3497         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3498                        type != INTR_TYPE_EXT_INTR &&
3499                        type != INTR_TYPE_NMI_INTR))
3500                 skip_emulated_instruction(vcpu);
3501
3502         if (kvm_task_switch(vcpu, tss_selector, reason,
3503                                 has_error_code, error_code) == EMULATE_FAIL) {
3504                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3505                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3506                 vcpu->run->internal.ndata = 0;
3507                 return 0;
3508         }
3509
3510         /* clear all local breakpoint enable flags */
3511         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3512
3513         /*
3514          * TODO: What about debug traps on tss switch?
3515          *       Are we supposed to inject them and update dr6?
3516          */
3517
3518         return 1;
3519 }
3520
3521 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3522 {
3523         unsigned long exit_qualification;
3524         gpa_t gpa;
3525         int gla_validity;
3526
3527         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3528
3529         if (exit_qualification & (1 << 6)) {
3530                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3531                 return -EINVAL;
3532         }
3533
3534         gla_validity = (exit_qualification >> 7) & 0x3;
3535         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3536                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3537                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3538                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3539                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3540                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3541                         (long unsigned int)exit_qualification);
3542                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3543                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3544                 return 0;
3545         }
3546
3547         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3548         trace_kvm_page_fault(gpa, exit_qualification);
3549         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
3550 }
3551
3552 static u64 ept_rsvd_mask(u64 spte, int level)
3553 {
3554         int i;
3555         u64 mask = 0;
3556
3557         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3558                 mask |= (1ULL << i);
3559
3560         if (level > 2)
3561                 /* bits 7:3 reserved */
3562                 mask |= 0xf8;
3563         else if (level == 2) {
3564                 if (spte & (1ULL << 7))
3565                         /* 2MB ref, bits 20:12 reserved */
3566                         mask |= 0x1ff000;
3567                 else
3568                         /* bits 6:3 reserved */
3569                         mask |= 0x78;
3570         }
3571
3572         return mask;
3573 }
3574
3575 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3576                                        int level)
3577 {
3578         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3579
3580         /* 010b (write-only) */
3581         WARN_ON((spte & 0x7) == 0x2);
3582
3583         /* 110b (write/execute) */
3584         WARN_ON((spte & 0x7) == 0x6);
3585
3586         /* 100b (execute-only) and value not supported by logical processor */
3587         if (!cpu_has_vmx_ept_execute_only())
3588                 WARN_ON((spte & 0x7) == 0x4);
3589
3590         /* not 000b */
3591         if ((spte & 0x7)) {
3592                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3593
3594                 if (rsvd_bits != 0) {
3595                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3596                                          __func__, rsvd_bits);
3597                         WARN_ON(1);
3598                 }
3599
3600                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3601                         u64 ept_mem_type = (spte & 0x38) >> 3;
3602
3603                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3604                             ept_mem_type == 7) {
3605                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3606                                                 __func__, ept_mem_type);
3607                                 WARN_ON(1);
3608                         }
3609                 }
3610         }
3611 }
3612
3613 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3614 {
3615         u64 sptes[4];
3616         int nr_sptes, i;
3617         gpa_t gpa;
3618
3619         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3620
3621         printk(KERN_ERR "EPT: Misconfiguration.\n");
3622         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3623
3624         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3625
3626         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3627                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3628
3629         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3630         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3631
3632         return 0;
3633 }
3634
3635 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3636 {
3637         u32 cpu_based_vm_exec_control;
3638
3639         /* clear pending NMI */
3640         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3641         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3642         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3643         ++vcpu->stat.nmi_window_exits;
3644         kvm_make_request(KVM_REQ_EVENT, vcpu);
3645
3646         return 1;
3647 }
3648
3649 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3650 {
3651         struct vcpu_vmx *vmx = to_vmx(vcpu);
3652         enum emulation_result err = EMULATE_DONE;
3653         int ret = 1;
3654         u32 cpu_exec_ctrl;
3655         bool intr_window_requested;
3656
3657         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3658         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3659
3660         while (!guest_state_valid(vcpu)) {
3661                 if (intr_window_requested
3662                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3663                         return handle_interrupt_window(&vmx->vcpu);
3664
3665                 err = emulate_instruction(vcpu, 0);
3666
3667                 if (err == EMULATE_DO_MMIO) {
3668                         ret = 0;
3669                         goto out;
3670                 }
3671
3672                 if (err != EMULATE_DONE)
3673                         return 0;
3674
3675                 if (signal_pending(current))
3676                         goto out;
3677                 if (need_resched())
3678                         schedule();
3679         }
3680
3681         vmx->emulation_required = 0;
3682 out:
3683         return ret;
3684 }
3685
3686 /*
3687  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3688  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3689  */
3690 static int handle_pause(struct kvm_vcpu *vcpu)
3691 {
3692         skip_emulated_instruction(vcpu);
3693         kvm_vcpu_on_spin(vcpu);
3694
3695         return 1;
3696 }
3697
3698 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3699 {
3700         kvm_queue_exception(vcpu, UD_VECTOR);
3701         return 1;
3702 }
3703
3704 /*
3705  * The exit handlers return 1 if the exit was handled fully and guest execution
3706  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3707  * to be done to userspace and return 0.
3708  */
3709 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3710         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3711         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3712         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3713         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3714         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3715         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3716         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3717         [EXIT_REASON_CPUID]                   = handle_cpuid,
3718         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3719         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3720         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3721         [EXIT_REASON_HLT]                     = handle_halt,
3722         [EXIT_REASON_INVD]                    = handle_invd,
3723         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3724         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3725         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3726         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3727         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3728         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3729         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3730         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3731         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3732         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3733         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3734         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3735         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3736         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3737         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3738         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3739         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3740         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3741         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3742         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3743         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3744         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3745 };
3746
3747 static const int kvm_vmx_max_exit_handlers =
3748         ARRAY_SIZE(kvm_vmx_exit_handlers);
3749
3750 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3751 {
3752         *info1 = vmcs_readl(EXIT_QUALIFICATION);
3753         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
3754 }
3755
3756 /*
3757  * The guest has exited.  See if we can fix it or if we need userspace
3758  * assistance.
3759  */
3760 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3761 {
3762         struct vcpu_vmx *vmx = to_vmx(vcpu);
3763         u32 exit_reason = vmx->exit_reason;
3764         u32 vectoring_info = vmx->idt_vectoring_info;
3765
3766         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
3767
3768         /* If guest state is invalid, start emulating */
3769         if (vmx->emulation_required && emulate_invalid_guest_state)
3770                 return handle_invalid_guest_state(vcpu);
3771
3772         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3773                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3774                 vcpu->run->fail_entry.hardware_entry_failure_reason
3775                         = exit_reason;
3776                 return 0;
3777         }
3778
3779         if (unlikely(vmx->fail)) {
3780                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3781                 vcpu->run->fail_entry.hardware_entry_failure_reason
3782                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3783                 return 0;
3784         }
3785
3786         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3787                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3788                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3789                         exit_reason != EXIT_REASON_TASK_SWITCH))
3790                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3791                        "(0x%x) and exit reason is 0x%x\n",
3792                        __func__, vectoring_info, exit_reason);
3793
3794         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3795                 if (vmx_interrupt_allowed(vcpu)) {
3796                         vmx->soft_vnmi_blocked = 0;
3797                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3798                            vcpu->arch.nmi_pending) {
3799                         /*
3800                          * This CPU don't support us in finding the end of an
3801                          * NMI-blocked window if the guest runs with IRQs
3802                          * disabled. So we pull the trigger after 1 s of
3803                          * futile waiting, but inform the user about this.
3804                          */
3805                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3806                                "state on VCPU %d after 1 s timeout\n",
3807                                __func__, vcpu->vcpu_id);
3808                         vmx->soft_vnmi_blocked = 0;
3809                 }
3810         }
3811
3812         if (exit_reason < kvm_vmx_max_exit_handlers
3813             && kvm_vmx_exit_handlers[exit_reason])
3814                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3815         else {
3816                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3817                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3818         }
3819         return 0;
3820 }
3821
3822 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3823 {
3824         if (irr == -1 || tpr < irr) {
3825                 vmcs_write32(TPR_THRESHOLD, 0);
3826                 return;
3827         }
3828
3829         vmcs_write32(TPR_THRESHOLD, irr);
3830 }
3831
3832 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3833 {
3834         u32 exit_intr_info = vmx->exit_intr_info;
3835
3836         /* Handle machine checks before interrupts are enabled */
3837         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3838             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3839                 && is_machine_check(exit_intr_info)))
3840                 kvm_machine_check();
3841
3842         /* We need to handle NMIs before interrupts are enabled */
3843         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3844             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3845                 kvm_before_handle_nmi(&vmx->vcpu);
3846                 asm("int $2");
3847                 kvm_after_handle_nmi(&vmx->vcpu);
3848         }
3849 }
3850
3851 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3852 {
3853         u32 exit_intr_info = vmx->exit_intr_info;
3854         bool unblock_nmi;
3855         u8 vector;
3856         bool idtv_info_valid;
3857
3858         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3859
3860         if (cpu_has_virtual_nmis()) {
3861                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3862                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3863                 /*
3864                  * SDM 3: 27.7.1.2 (September 2008)
3865                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3866                  * a guest IRET fault.
3867                  * SDM 3: 23.2.2 (September 2008)
3868                  * Bit 12 is undefined in any of the following cases:
3869                  *  If the VM exit sets the valid bit in the IDT-vectoring
3870                  *   information field.
3871                  *  If the VM exit is due to a double fault.
3872                  */
3873                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3874                     vector != DF_VECTOR && !idtv_info_valid)
3875                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3876                                       GUEST_INTR_STATE_NMI);
3877         } else if (unlikely(vmx->soft_vnmi_blocked))
3878                 vmx->vnmi_blocked_time +=
3879                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3880 }
3881
3882 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3883                                       u32 idt_vectoring_info,
3884                                       int instr_len_field,
3885                                       int error_code_field)
3886 {
3887         u8 vector;
3888         int type;
3889         bool idtv_info_valid;
3890
3891         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3892
3893         vmx->vcpu.arch.nmi_injected = false;
3894         kvm_clear_exception_queue(&vmx->vcpu);
3895         kvm_clear_interrupt_queue(&vmx->vcpu);
3896
3897         if (!idtv_info_valid)
3898                 return;
3899
3900         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3901
3902         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3903         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3904
3905         switch (type) {
3906         case INTR_TYPE_NMI_INTR:
3907                 vmx->vcpu.arch.nmi_injected = true;
3908                 /*
3909                  * SDM 3: 27.7.1.2 (September 2008)
3910                  * Clear bit "block by NMI" before VM entry if a NMI
3911                  * delivery faulted.
3912                  */
3913                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3914                                 GUEST_INTR_STATE_NMI);
3915                 break;
3916         case INTR_TYPE_SOFT_EXCEPTION:
3917                 vmx->vcpu.arch.event_exit_inst_len =
3918                         vmcs_read32(instr_len_field);
3919                 /* fall through */
3920         case INTR_TYPE_HARD_EXCEPTION:
3921                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3922                         u32 err = vmcs_read32(error_code_field);
3923                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3924                 } else
3925                         kvm_queue_exception(&vmx->vcpu, vector);
3926                 break;
3927         case INTR_TYPE_SOFT_INTR:
3928                 vmx->vcpu.arch.event_exit_inst_len =
3929                         vmcs_read32(instr_len_field);
3930                 /* fall through */
3931         case INTR_TYPE_EXT_INTR:
3932                 kvm_queue_interrupt(&vmx->vcpu, vector,
3933                         type == INTR_TYPE_SOFT_INTR);
3934                 break;
3935         default:
3936                 break;
3937         }
3938 }
3939
3940 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3941 {
3942         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
3943                                   VM_EXIT_INSTRUCTION_LEN,
3944                                   IDT_VECTORING_ERROR_CODE);
3945 }
3946
3947 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
3948 {
3949         __vmx_complete_interrupts(to_vmx(vcpu),
3950                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
3951                                   VM_ENTRY_INSTRUCTION_LEN,
3952                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
3953
3954         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
3955 }
3956
3957 #ifdef CONFIG_X86_64
3958 #define R "r"
3959 #define Q "q"
3960 #else
3961 #define R "e"
3962 #define Q "l"
3963 #endif
3964
3965 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3966 {
3967         struct vcpu_vmx *vmx = to_vmx(vcpu);
3968
3969         /* Record the guest's net vcpu time for enforced NMI injections. */
3970         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3971                 vmx->entry_time = ktime_get();
3972
3973         /* Don't enter VMX if guest state is invalid, let the exit handler
3974            start emulation until we arrive back to a valid state */
3975         if (vmx->emulation_required && emulate_invalid_guest_state)
3976                 return;
3977
3978         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3979                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3980         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3981                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3982
3983         /* When single-stepping over STI and MOV SS, we must clear the
3984          * corresponding interruptibility bits in the guest state. Otherwise
3985          * vmentry fails as it then expects bit 14 (BS) in pending debug
3986          * exceptions being set, but that's not correct for the guest debugging
3987          * case. */
3988         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3989                 vmx_set_interrupt_shadow(vcpu, 0);
3990
3991         asm(
3992                 /* Store host registers */
3993                 "push %%"R"dx; push %%"R"bp;"
3994                 "push %%"R"cx \n\t"
3995                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3996                 "je 1f \n\t"
3997                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3998                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3999                 "1: \n\t"
4000                 /* Reload cr2 if changed */
4001                 "mov %c[cr2](%0), %%"R"ax \n\t"
4002                 "mov %%cr2, %%"R"dx \n\t"
4003                 "cmp %%"R"ax, %%"R"dx \n\t"
4004                 "je 2f \n\t"
4005                 "mov %%"R"ax, %%cr2 \n\t"
4006                 "2: \n\t"
4007                 /* Check if vmlaunch of vmresume is needed */
4008                 "cmpl $0, %c[launched](%0) \n\t"
4009                 /* Load guest registers.  Don't clobber flags. */
4010                 "mov %c[rax](%0), %%"R"ax \n\t"
4011                 "mov %c[rbx](%0), %%"R"bx \n\t"
4012                 "mov %c[rdx](%0), %%"R"dx \n\t"
4013                 "mov %c[rsi](%0), %%"R"si \n\t"
4014                 "mov %c[rdi](%0), %%"R"di \n\t"
4015                 "mov %c[rbp](%0), %%"R"bp \n\t"
4016 #ifdef CONFIG_X86_64
4017                 "mov %c[r8](%0),  %%r8  \n\t"
4018                 "mov %c[r9](%0),  %%r9  \n\t"
4019                 "mov %c[r10](%0), %%r10 \n\t"
4020                 "mov %c[r11](%0), %%r11 \n\t"
4021                 "mov %c[r12](%0), %%r12 \n\t"
4022                 "mov %c[r13](%0), %%r13 \n\t"
4023                 "mov %c[r14](%0), %%r14 \n\t"
4024                 "mov %c[r15](%0), %%r15 \n\t"
4025 #endif
4026                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
4027
4028                 /* Enter guest mode */
4029                 "jne .Llaunched \n\t"
4030                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
4031                 "jmp .Lkvm_vmx_return \n\t"
4032                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
4033                 ".Lkvm_vmx_return: "
4034                 /* Save guest registers, load host registers, keep flags */
4035                 "xchg %0,     (%%"R"sp) \n\t"
4036                 "mov %%"R"ax, %c[rax](%0) \n\t"
4037                 "mov %%"R"bx, %c[rbx](%0) \n\t"
4038                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
4039                 "mov %%"R"dx, %c[rdx](%0) \n\t"
4040                 "mov %%"R"si, %c[rsi](%0) \n\t"
4041                 "mov %%"R"di, %c[rdi](%0) \n\t"
4042                 "mov %%"R"bp, %c[rbp](%0) \n\t"
4043 #ifdef CONFIG_X86_64
4044                 "mov %%r8,  %c[r8](%0) \n\t"
4045                 "mov %%r9,  %c[r9](%0) \n\t"
4046                 "mov %%r10, %c[r10](%0) \n\t"
4047                 "mov %%r11, %c[r11](%0) \n\t"
4048                 "mov %%r12, %c[r12](%0) \n\t"
4049                 "mov %%r13, %c[r13](%0) \n\t"
4050                 "mov %%r14, %c[r14](%0) \n\t"
4051                 "mov %%r15, %c[r15](%0) \n\t"
4052 #endif
4053                 "mov %%cr2, %%"R"ax   \n\t"
4054                 "mov %%"R"ax, %c[cr2](%0) \n\t"
4055
4056                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
4057                 "setbe %c[fail](%0) \n\t"
4058               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
4059                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
4060                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
4061                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
4062                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
4063                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
4064                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
4065                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
4066                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
4067                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
4068                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
4069 #ifdef CONFIG_X86_64
4070                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
4071                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
4072                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
4073                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4074                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4075                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4076                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4077                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4078 #endif
4079                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
4080               : "cc", "memory"
4081                 , R"ax", R"bx", R"di", R"si"
4082 #ifdef CONFIG_X86_64
4083                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4084 #endif
4085               );
4086
4087         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4088                                   | (1 << VCPU_EXREG_PDPTR)
4089                                   | (1 << VCPU_EXREG_CR3));
4090         vcpu->arch.regs_dirty = 0;
4091
4092         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4093
4094         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4095         vmx->launched = 1;
4096
4097         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4098         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4099
4100         vmx_complete_atomic_exit(vmx);
4101         vmx_recover_nmi_blocking(vmx);
4102         vmx_complete_interrupts(vmx);
4103 }
4104
4105 #undef R
4106 #undef Q
4107
4108 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4109 {
4110         struct vcpu_vmx *vmx = to_vmx(vcpu);
4111
4112         if (vmx->vmcs) {
4113                 vcpu_clear(vmx);
4114                 free_vmcs(vmx->vmcs);
4115                 vmx->vmcs = NULL;
4116         }
4117 }
4118
4119 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4120 {
4121         struct vcpu_vmx *vmx = to_vmx(vcpu);
4122
4123         free_vpid(vmx);
4124         vmx_free_vmcs(vcpu);
4125         kfree(vmx->guest_msrs);
4126         kvm_vcpu_uninit(vcpu);
4127         kmem_cache_free(kvm_vcpu_cache, vmx);
4128 }
4129
4130 static inline void vmcs_init(struct vmcs *vmcs)
4131 {
4132         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4133
4134         if (!vmm_exclusive)
4135                 kvm_cpu_vmxon(phys_addr);
4136
4137         vmcs_clear(vmcs);
4138
4139         if (!vmm_exclusive)
4140                 kvm_cpu_vmxoff();
4141 }
4142
4143 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4144 {
4145         int err;
4146         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4147         int cpu;
4148
4149         if (!vmx)
4150                 return ERR_PTR(-ENOMEM);
4151
4152         allocate_vpid(vmx);
4153
4154         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4155         if (err)
4156                 goto free_vcpu;
4157
4158         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4159         if (!vmx->guest_msrs) {
4160                 err = -ENOMEM;
4161                 goto uninit_vcpu;
4162         }
4163
4164         vmx->vmcs = alloc_vmcs();
4165         if (!vmx->vmcs)
4166                 goto free_msrs;
4167
4168         vmcs_init(vmx->vmcs);
4169
4170         cpu = get_cpu();
4171         vmx_vcpu_load(&vmx->vcpu, cpu);
4172         vmx->vcpu.cpu = cpu;
4173         err = vmx_vcpu_setup(vmx);
4174         vmx_vcpu_put(&vmx->vcpu);
4175         put_cpu();
4176         if (err)
4177                 goto free_vmcs;
4178         if (vm_need_virtualize_apic_accesses(kvm))
4179                 if (alloc_apic_access_page(kvm) != 0)
4180                         goto free_vmcs;
4181
4182         if (enable_ept) {
4183                 if (!kvm->arch.ept_identity_map_addr)
4184                         kvm->arch.ept_identity_map_addr =
4185                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4186                 if (alloc_identity_pagetable(kvm) != 0)
4187                         goto free_vmcs;
4188         }
4189
4190         return &vmx->vcpu;
4191
4192 free_vmcs:
4193         free_vmcs(vmx->vmcs);
4194 free_msrs:
4195         kfree(vmx->guest_msrs);
4196 uninit_vcpu:
4197         kvm_vcpu_uninit(&vmx->vcpu);
4198 free_vcpu:
4199         free_vpid(vmx);
4200         kmem_cache_free(kvm_vcpu_cache, vmx);
4201         return ERR_PTR(err);
4202 }
4203
4204 static void __init vmx_check_processor_compat(void *rtn)
4205 {
4206         struct vmcs_config vmcs_conf;
4207
4208         *(int *)rtn = 0;
4209         if (setup_vmcs_config(&vmcs_conf) < 0)
4210                 *(int *)rtn = -EIO;
4211         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4212                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4213                                 smp_processor_id());
4214                 *(int *)rtn = -EIO;
4215         }
4216 }
4217
4218 static int get_ept_level(void)
4219 {
4220         return VMX_EPT_DEFAULT_GAW + 1;
4221 }
4222
4223 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4224 {
4225         u64 ret;
4226
4227         /* For VT-d and EPT combination
4228          * 1. MMIO: always map as UC
4229          * 2. EPT with VT-d:
4230          *   a. VT-d without snooping control feature: can't guarantee the
4231          *      result, try to trust guest.
4232          *   b. VT-d with snooping control feature: snooping control feature of
4233          *      VT-d engine can guarantee the cache correctness. Just set it
4234          *      to WB to keep consistent with host. So the same as item 3.
4235          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4236          *    consistent with host MTRR
4237          */
4238         if (is_mmio)
4239                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4240         else if (vcpu->kvm->arch.iommu_domain &&
4241                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4242                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4243                       VMX_EPT_MT_EPTE_SHIFT;
4244         else
4245                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4246                         | VMX_EPT_IPAT_BIT;
4247
4248         return ret;
4249 }
4250
4251 #define _ER(x) { EXIT_REASON_##x, #x }
4252
4253 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4254         _ER(EXCEPTION_NMI),
4255         _ER(EXTERNAL_INTERRUPT),
4256         _ER(TRIPLE_FAULT),
4257         _ER(PENDING_INTERRUPT),
4258         _ER(NMI_WINDOW),
4259         _ER(TASK_SWITCH),
4260         _ER(CPUID),
4261         _ER(HLT),
4262         _ER(INVLPG),
4263         _ER(RDPMC),
4264         _ER(RDTSC),
4265         _ER(VMCALL),
4266         _ER(VMCLEAR),
4267         _ER(VMLAUNCH),
4268         _ER(VMPTRLD),
4269         _ER(VMPTRST),
4270         _ER(VMREAD),
4271         _ER(VMRESUME),
4272         _ER(VMWRITE),
4273         _ER(VMOFF),
4274         _ER(VMON),
4275         _ER(CR_ACCESS),
4276         _ER(DR_ACCESS),
4277         _ER(IO_INSTRUCTION),
4278         _ER(MSR_READ),
4279         _ER(MSR_WRITE),
4280         _ER(MWAIT_INSTRUCTION),
4281         _ER(MONITOR_INSTRUCTION),
4282         _ER(PAUSE_INSTRUCTION),
4283         _ER(MCE_DURING_VMENTRY),
4284         _ER(TPR_BELOW_THRESHOLD),
4285         _ER(APIC_ACCESS),
4286         _ER(EPT_VIOLATION),
4287         _ER(EPT_MISCONFIG),
4288         _ER(WBINVD),
4289         { -1, NULL }
4290 };
4291
4292 #undef _ER
4293
4294 static int vmx_get_lpage_level(void)
4295 {
4296         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4297                 return PT_DIRECTORY_LEVEL;
4298         else
4299                 /* For shadow and EPT supported 1GB page */
4300                 return PT_PDPE_LEVEL;
4301 }
4302
4303 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4304 {
4305         struct kvm_cpuid_entry2 *best;
4306         struct vcpu_vmx *vmx = to_vmx(vcpu);
4307         u32 exec_control;
4308
4309         vmx->rdtscp_enabled = false;
4310         if (vmx_rdtscp_supported()) {
4311                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4312                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4313                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4314                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4315                                 vmx->rdtscp_enabled = true;
4316                         else {
4317                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4318                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4319                                                 exec_control);
4320                         }
4321                 }
4322         }
4323 }
4324
4325 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4326 {
4327 }
4328
4329 static struct kvm_x86_ops vmx_x86_ops = {
4330         .cpu_has_kvm_support = cpu_has_kvm_support,
4331         .disabled_by_bios = vmx_disabled_by_bios,
4332         .hardware_setup = hardware_setup,
4333         .hardware_unsetup = hardware_unsetup,
4334         .check_processor_compatibility = vmx_check_processor_compat,
4335         .hardware_enable = hardware_enable,
4336         .hardware_disable = hardware_disable,
4337         .cpu_has_accelerated_tpr = report_flexpriority,
4338
4339         .vcpu_create = vmx_create_vcpu,
4340         .vcpu_free = vmx_free_vcpu,
4341         .vcpu_reset = vmx_vcpu_reset,
4342
4343         .prepare_guest_switch = vmx_save_host_state,
4344         .vcpu_load = vmx_vcpu_load,
4345         .vcpu_put = vmx_vcpu_put,
4346
4347         .set_guest_debug = set_guest_debug,
4348         .get_msr = vmx_get_msr,
4349         .set_msr = vmx_set_msr,
4350         .get_segment_base = vmx_get_segment_base,
4351         .get_segment = vmx_get_segment,
4352         .set_segment = vmx_set_segment,
4353         .get_cpl = vmx_get_cpl,
4354         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4355         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4356         .decache_cr3 = vmx_decache_cr3,
4357         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4358         .set_cr0 = vmx_set_cr0,
4359         .set_cr3 = vmx_set_cr3,
4360         .set_cr4 = vmx_set_cr4,
4361         .set_efer = vmx_set_efer,
4362         .get_idt = vmx_get_idt,
4363         .set_idt = vmx_set_idt,
4364         .get_gdt = vmx_get_gdt,
4365         .set_gdt = vmx_set_gdt,
4366         .set_dr7 = vmx_set_dr7,
4367         .cache_reg = vmx_cache_reg,
4368         .get_rflags = vmx_get_rflags,
4369         .set_rflags = vmx_set_rflags,
4370         .fpu_activate = vmx_fpu_activate,
4371         .fpu_deactivate = vmx_fpu_deactivate,
4372
4373         .tlb_flush = vmx_flush_tlb,
4374
4375         .run = vmx_vcpu_run,
4376         .handle_exit = vmx_handle_exit,
4377         .skip_emulated_instruction = skip_emulated_instruction,
4378         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4379         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4380         .patch_hypercall = vmx_patch_hypercall,
4381         .set_irq = vmx_inject_irq,
4382         .set_nmi = vmx_inject_nmi,
4383         .queue_exception = vmx_queue_exception,
4384         .cancel_injection = vmx_cancel_injection,
4385         .interrupt_allowed = vmx_interrupt_allowed,
4386         .nmi_allowed = vmx_nmi_allowed,
4387         .get_nmi_mask = vmx_get_nmi_mask,
4388         .set_nmi_mask = vmx_set_nmi_mask,
4389         .enable_nmi_window = enable_nmi_window,
4390         .enable_irq_window = enable_irq_window,
4391         .update_cr8_intercept = update_cr8_intercept,
4392
4393         .set_tss_addr = vmx_set_tss_addr,
4394         .get_tdp_level = get_ept_level,
4395         .get_mt_mask = vmx_get_mt_mask,
4396
4397         .get_exit_info = vmx_get_exit_info,
4398         .exit_reasons_str = vmx_exit_reasons_str,
4399
4400         .get_lpage_level = vmx_get_lpage_level,
4401
4402         .cpuid_update = vmx_cpuid_update,
4403
4404         .rdtscp_supported = vmx_rdtscp_supported,
4405
4406         .set_supported_cpuid = vmx_set_supported_cpuid,
4407
4408         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4409
4410         .write_tsc_offset = vmx_write_tsc_offset,
4411         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4412
4413         .set_tdp_cr3 = vmx_set_cr3,
4414 };
4415
4416 static int __init vmx_init(void)
4417 {
4418         int r, i;
4419
4420         rdmsrl_safe(MSR_EFER, &host_efer);
4421
4422         for (i = 0; i < NR_VMX_MSR; ++i)
4423                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4424
4425         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4426         if (!vmx_io_bitmap_a)
4427                 return -ENOMEM;
4428
4429         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4430         if (!vmx_io_bitmap_b) {
4431                 r = -ENOMEM;
4432                 goto out;
4433         }
4434
4435         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4436         if (!vmx_msr_bitmap_legacy) {
4437                 r = -ENOMEM;
4438                 goto out1;
4439         }
4440
4441         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4442         if (!vmx_msr_bitmap_longmode) {
4443                 r = -ENOMEM;
4444                 goto out2;
4445         }
4446
4447         /*
4448          * Allow direct access to the PC debug port (it is often used for I/O
4449          * delays, but the vmexits simply slow things down).
4450          */
4451         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4452         clear_bit(0x80, vmx_io_bitmap_a);
4453
4454         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4455
4456         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4457         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4458
4459         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4460
4461         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4462                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4463         if (r)
4464                 goto out3;
4465
4466         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4467         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4468         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4469         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4470         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4471         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4472
4473         if (enable_ept) {
4474                 bypass_guest_pf = 0;
4475                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4476                                 VMX_EPT_EXECUTABLE_MASK);
4477                 kvm_enable_tdp();
4478         } else
4479                 kvm_disable_tdp();
4480
4481         if (bypass_guest_pf)
4482                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4483
4484         return 0;
4485
4486 out3:
4487         free_page((unsigned long)vmx_msr_bitmap_longmode);
4488 out2:
4489         free_page((unsigned long)vmx_msr_bitmap_legacy);
4490 out1:
4491         free_page((unsigned long)vmx_io_bitmap_b);
4492 out:
4493         free_page((unsigned long)vmx_io_bitmap_a);
4494         return r;
4495 }
4496
4497 static void __exit vmx_exit(void)
4498 {
4499         free_page((unsigned long)vmx_msr_bitmap_legacy);
4500         free_page((unsigned long)vmx_msr_bitmap_longmode);
4501         free_page((unsigned long)vmx_io_bitmap_b);
4502         free_page((unsigned long)vmx_io_bitmap_a);
4503
4504         kvm_exit();
4505 }
4506
4507 module_init(vmx_init)
4508 module_exit(vmx_exit)