Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         /*
422          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
423          * non-nested (L1) guest, it always points to vmcs01. For a nested
424          * guest (L2), it points to a different VMCS.
425          */
426         struct loaded_vmcs    vmcs01;
427         struct loaded_vmcs   *loaded_vmcs;
428         bool                  __launched; /* temporary, used in vmx_vcpu_run */
429         struct msr_autoload {
430                 unsigned nr;
431                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
432                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
433         } msr_autoload;
434         struct {
435                 int           loaded;
436                 u16           fs_sel, gs_sel, ldt_sel;
437 #ifdef CONFIG_X86_64
438                 u16           ds_sel, es_sel;
439 #endif
440                 int           gs_ldt_reload_needed;
441                 int           fs_reload_needed;
442         } host_state;
443         struct {
444                 int vm86_active;
445                 ulong save_rflags;
446                 struct kvm_segment segs[8];
447         } rmode;
448         struct {
449                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
450                 struct kvm_save_segment {
451                         u16 selector;
452                         unsigned long base;
453                         u32 limit;
454                         u32 ar;
455                 } seg[8];
456         } segment_cache;
457         int vpid;
458         bool emulation_required;
459
460         /* Support for vnmi-less CPUs */
461         int soft_vnmi_blocked;
462         ktime_t entry_time;
463         s64 vnmi_blocked_time;
464         u32 exit_reason;
465
466         bool rdtscp_enabled;
467
468         /* Posted interrupt descriptor */
469         struct pi_desc pi_desc;
470
471         /* Support for a guest hypervisor (nested VMX) */
472         struct nested_vmx nested;
473 };
474
475 enum segment_cache_field {
476         SEG_FIELD_SEL = 0,
477         SEG_FIELD_BASE = 1,
478         SEG_FIELD_LIMIT = 2,
479         SEG_FIELD_AR = 3,
480
481         SEG_FIELD_NR = 4
482 };
483
484 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
485 {
486         return container_of(vcpu, struct vcpu_vmx, vcpu);
487 }
488
489 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
490 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
491 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
492                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
493
494
495 static const unsigned long shadow_read_only_fields[] = {
496         /*
497          * We do NOT shadow fields that are modified when L0
498          * traps and emulates any vmx instruction (e.g. VMPTRLD,
499          * VMXON...) executed by L1.
500          * For example, VM_INSTRUCTION_ERROR is read
501          * by L1 if a vmx instruction fails (part of the error path).
502          * Note the code assumes this logic. If for some reason
503          * we start shadowing these fields then we need to
504          * force a shadow sync when L0 emulates vmx instructions
505          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
506          * by nested_vmx_failValid)
507          */
508         VM_EXIT_REASON,
509         VM_EXIT_INTR_INFO,
510         VM_EXIT_INSTRUCTION_LEN,
511         IDT_VECTORING_INFO_FIELD,
512         IDT_VECTORING_ERROR_CODE,
513         VM_EXIT_INTR_ERROR_CODE,
514         EXIT_QUALIFICATION,
515         GUEST_LINEAR_ADDRESS,
516         GUEST_PHYSICAL_ADDRESS
517 };
518 static const int max_shadow_read_only_fields =
519         ARRAY_SIZE(shadow_read_only_fields);
520
521 static const unsigned long shadow_read_write_fields[] = {
522         GUEST_RIP,
523         GUEST_RSP,
524         GUEST_CR0,
525         GUEST_CR3,
526         GUEST_CR4,
527         GUEST_INTERRUPTIBILITY_INFO,
528         GUEST_RFLAGS,
529         GUEST_CS_SELECTOR,
530         GUEST_CS_AR_BYTES,
531         GUEST_CS_LIMIT,
532         GUEST_CS_BASE,
533         GUEST_ES_BASE,
534         CR0_GUEST_HOST_MASK,
535         CR0_READ_SHADOW,
536         CR4_READ_SHADOW,
537         TSC_OFFSET,
538         EXCEPTION_BITMAP,
539         CPU_BASED_VM_EXEC_CONTROL,
540         VM_ENTRY_EXCEPTION_ERROR_CODE,
541         VM_ENTRY_INTR_INFO_FIELD,
542         VM_ENTRY_INSTRUCTION_LEN,
543         VM_ENTRY_EXCEPTION_ERROR_CODE,
544         HOST_FS_BASE,
545         HOST_GS_BASE,
546         HOST_FS_SELECTOR,
547         HOST_GS_SELECTOR
548 };
549 static const int max_shadow_read_write_fields =
550         ARRAY_SIZE(shadow_read_write_fields);
551
552 static const unsigned short vmcs_field_to_offset_table[] = {
553         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
554         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
555         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
556         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
557         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
558         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
559         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
560         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
561         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
562         FIELD(HOST_ES_SELECTOR, host_es_selector),
563         FIELD(HOST_CS_SELECTOR, host_cs_selector),
564         FIELD(HOST_SS_SELECTOR, host_ss_selector),
565         FIELD(HOST_DS_SELECTOR, host_ds_selector),
566         FIELD(HOST_FS_SELECTOR, host_fs_selector),
567         FIELD(HOST_GS_SELECTOR, host_gs_selector),
568         FIELD(HOST_TR_SELECTOR, host_tr_selector),
569         FIELD64(IO_BITMAP_A, io_bitmap_a),
570         FIELD64(IO_BITMAP_B, io_bitmap_b),
571         FIELD64(MSR_BITMAP, msr_bitmap),
572         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
573         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
574         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
575         FIELD64(TSC_OFFSET, tsc_offset),
576         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
577         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
578         FIELD64(EPT_POINTER, ept_pointer),
579         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
580         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
581         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
582         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
583         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
584         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
585         FIELD64(GUEST_PDPTR0, guest_pdptr0),
586         FIELD64(GUEST_PDPTR1, guest_pdptr1),
587         FIELD64(GUEST_PDPTR2, guest_pdptr2),
588         FIELD64(GUEST_PDPTR3, guest_pdptr3),
589         FIELD64(HOST_IA32_PAT, host_ia32_pat),
590         FIELD64(HOST_IA32_EFER, host_ia32_efer),
591         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
592         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
593         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
594         FIELD(EXCEPTION_BITMAP, exception_bitmap),
595         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
596         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
597         FIELD(CR3_TARGET_COUNT, cr3_target_count),
598         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
599         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
600         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
601         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
602         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
603         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
604         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
605         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
606         FIELD(TPR_THRESHOLD, tpr_threshold),
607         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
608         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
609         FIELD(VM_EXIT_REASON, vm_exit_reason),
610         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
611         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
612         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
613         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
614         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
615         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
616         FIELD(GUEST_ES_LIMIT, guest_es_limit),
617         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
618         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
619         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
620         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
621         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
622         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
623         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
624         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
625         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
626         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
627         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
628         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
629         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
630         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
631         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
632         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
633         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
634         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
635         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
636         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
637         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
638         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
639         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
640         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
641         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
642         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
643         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
644         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
645         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
646         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
647         FIELD(EXIT_QUALIFICATION, exit_qualification),
648         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
649         FIELD(GUEST_CR0, guest_cr0),
650         FIELD(GUEST_CR3, guest_cr3),
651         FIELD(GUEST_CR4, guest_cr4),
652         FIELD(GUEST_ES_BASE, guest_es_base),
653         FIELD(GUEST_CS_BASE, guest_cs_base),
654         FIELD(GUEST_SS_BASE, guest_ss_base),
655         FIELD(GUEST_DS_BASE, guest_ds_base),
656         FIELD(GUEST_FS_BASE, guest_fs_base),
657         FIELD(GUEST_GS_BASE, guest_gs_base),
658         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
659         FIELD(GUEST_TR_BASE, guest_tr_base),
660         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
661         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
662         FIELD(GUEST_DR7, guest_dr7),
663         FIELD(GUEST_RSP, guest_rsp),
664         FIELD(GUEST_RIP, guest_rip),
665         FIELD(GUEST_RFLAGS, guest_rflags),
666         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
667         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
668         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
669         FIELD(HOST_CR0, host_cr0),
670         FIELD(HOST_CR3, host_cr3),
671         FIELD(HOST_CR4, host_cr4),
672         FIELD(HOST_FS_BASE, host_fs_base),
673         FIELD(HOST_GS_BASE, host_gs_base),
674         FIELD(HOST_TR_BASE, host_tr_base),
675         FIELD(HOST_GDTR_BASE, host_gdtr_base),
676         FIELD(HOST_IDTR_BASE, host_idtr_base),
677         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
678         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
679         FIELD(HOST_RSP, host_rsp),
680         FIELD(HOST_RIP, host_rip),
681 };
682 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
683
684 static inline short vmcs_field_to_offset(unsigned long field)
685 {
686         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
687                 return -1;
688         return vmcs_field_to_offset_table[field];
689 }
690
691 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
692 {
693         return to_vmx(vcpu)->nested.current_vmcs12;
694 }
695
696 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
697 {
698         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
699         if (is_error_page(page))
700                 return NULL;
701
702         return page;
703 }
704
705 static void nested_release_page(struct page *page)
706 {
707         kvm_release_page_dirty(page);
708 }
709
710 static void nested_release_page_clean(struct page *page)
711 {
712         kvm_release_page_clean(page);
713 }
714
715 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
716 static u64 construct_eptp(unsigned long root_hpa);
717 static void kvm_cpu_vmxon(u64 addr);
718 static void kvm_cpu_vmxoff(void);
719 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
720 static void vmx_set_segment(struct kvm_vcpu *vcpu,
721                             struct kvm_segment *var, int seg);
722 static void vmx_get_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static bool guest_state_valid(struct kvm_vcpu *vcpu);
725 static u32 vmx_segment_access_rights(struct kvm_segment *var);
726 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
727 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
728 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
729
730 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
731 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
732 /*
733  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
734  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
735  */
736 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
737 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
738
739 static unsigned long *vmx_io_bitmap_a;
740 static unsigned long *vmx_io_bitmap_b;
741 static unsigned long *vmx_msr_bitmap_legacy;
742 static unsigned long *vmx_msr_bitmap_longmode;
743 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
744 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
745 static unsigned long *vmx_vmread_bitmap;
746 static unsigned long *vmx_vmwrite_bitmap;
747
748 static bool cpu_has_load_ia32_efer;
749 static bool cpu_has_load_perf_global_ctrl;
750
751 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
752 static DEFINE_SPINLOCK(vmx_vpid_lock);
753
754 static struct vmcs_config {
755         int size;
756         int order;
757         u32 revision_id;
758         u32 pin_based_exec_ctrl;
759         u32 cpu_based_exec_ctrl;
760         u32 cpu_based_2nd_exec_ctrl;
761         u32 vmexit_ctrl;
762         u32 vmentry_ctrl;
763 } vmcs_config;
764
765 static struct vmx_capability {
766         u32 ept;
767         u32 vpid;
768 } vmx_capability;
769
770 #define VMX_SEGMENT_FIELD(seg)                                  \
771         [VCPU_SREG_##seg] = {                                   \
772                 .selector = GUEST_##seg##_SELECTOR,             \
773                 .base = GUEST_##seg##_BASE,                     \
774                 .limit = GUEST_##seg##_LIMIT,                   \
775                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
776         }
777
778 static const struct kvm_vmx_segment_field {
779         unsigned selector;
780         unsigned base;
781         unsigned limit;
782         unsigned ar_bytes;
783 } kvm_vmx_segment_fields[] = {
784         VMX_SEGMENT_FIELD(CS),
785         VMX_SEGMENT_FIELD(DS),
786         VMX_SEGMENT_FIELD(ES),
787         VMX_SEGMENT_FIELD(FS),
788         VMX_SEGMENT_FIELD(GS),
789         VMX_SEGMENT_FIELD(SS),
790         VMX_SEGMENT_FIELD(TR),
791         VMX_SEGMENT_FIELD(LDTR),
792 };
793
794 static u64 host_efer;
795
796 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
797
798 /*
799  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
800  * away by decrementing the array size.
801  */
802 static const u32 vmx_msr_index[] = {
803 #ifdef CONFIG_X86_64
804         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
805 #endif
806         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
807 };
808 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
809
810 static inline bool is_page_fault(u32 intr_info)
811 {
812         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
813                              INTR_INFO_VALID_MASK)) ==
814                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
815 }
816
817 static inline bool is_no_device(u32 intr_info)
818 {
819         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
820                              INTR_INFO_VALID_MASK)) ==
821                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
822 }
823
824 static inline bool is_invalid_opcode(u32 intr_info)
825 {
826         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
827                              INTR_INFO_VALID_MASK)) ==
828                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
829 }
830
831 static inline bool is_external_interrupt(u32 intr_info)
832 {
833         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
834                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
835 }
836
837 static inline bool is_machine_check(u32 intr_info)
838 {
839         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
840                              INTR_INFO_VALID_MASK)) ==
841                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
842 }
843
844 static inline bool cpu_has_vmx_msr_bitmap(void)
845 {
846         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
847 }
848
849 static inline bool cpu_has_vmx_tpr_shadow(void)
850 {
851         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
852 }
853
854 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
855 {
856         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
857 }
858
859 static inline bool cpu_has_secondary_exec_ctrls(void)
860 {
861         return vmcs_config.cpu_based_exec_ctrl &
862                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
863 }
864
865 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
866 {
867         return vmcs_config.cpu_based_2nd_exec_ctrl &
868                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
869 }
870
871 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
872 {
873         return vmcs_config.cpu_based_2nd_exec_ctrl &
874                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
875 }
876
877 static inline bool cpu_has_vmx_apic_register_virt(void)
878 {
879         return vmcs_config.cpu_based_2nd_exec_ctrl &
880                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
881 }
882
883 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
884 {
885         return vmcs_config.cpu_based_2nd_exec_ctrl &
886                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
887 }
888
889 static inline bool cpu_has_vmx_posted_intr(void)
890 {
891         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
892 }
893
894 static inline bool cpu_has_vmx_apicv(void)
895 {
896         return cpu_has_vmx_apic_register_virt() &&
897                 cpu_has_vmx_virtual_intr_delivery() &&
898                 cpu_has_vmx_posted_intr();
899 }
900
901 static inline bool cpu_has_vmx_flexpriority(void)
902 {
903         return cpu_has_vmx_tpr_shadow() &&
904                 cpu_has_vmx_virtualize_apic_accesses();
905 }
906
907 static inline bool cpu_has_vmx_ept_execute_only(void)
908 {
909         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
910 }
911
912 static inline bool cpu_has_vmx_eptp_uncacheable(void)
913 {
914         return vmx_capability.ept & VMX_EPTP_UC_BIT;
915 }
916
917 static inline bool cpu_has_vmx_eptp_writeback(void)
918 {
919         return vmx_capability.ept & VMX_EPTP_WB_BIT;
920 }
921
922 static inline bool cpu_has_vmx_ept_2m_page(void)
923 {
924         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
925 }
926
927 static inline bool cpu_has_vmx_ept_1g_page(void)
928 {
929         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
930 }
931
932 static inline bool cpu_has_vmx_ept_4levels(void)
933 {
934         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
935 }
936
937 static inline bool cpu_has_vmx_ept_ad_bits(void)
938 {
939         return vmx_capability.ept & VMX_EPT_AD_BIT;
940 }
941
942 static inline bool cpu_has_vmx_invept_context(void)
943 {
944         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
945 }
946
947 static inline bool cpu_has_vmx_invept_global(void)
948 {
949         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
950 }
951
952 static inline bool cpu_has_vmx_invvpid_single(void)
953 {
954         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
955 }
956
957 static inline bool cpu_has_vmx_invvpid_global(void)
958 {
959         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
960 }
961
962 static inline bool cpu_has_vmx_ept(void)
963 {
964         return vmcs_config.cpu_based_2nd_exec_ctrl &
965                 SECONDARY_EXEC_ENABLE_EPT;
966 }
967
968 static inline bool cpu_has_vmx_unrestricted_guest(void)
969 {
970         return vmcs_config.cpu_based_2nd_exec_ctrl &
971                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
972 }
973
974 static inline bool cpu_has_vmx_ple(void)
975 {
976         return vmcs_config.cpu_based_2nd_exec_ctrl &
977                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
978 }
979
980 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
981 {
982         return flexpriority_enabled && irqchip_in_kernel(kvm);
983 }
984
985 static inline bool cpu_has_vmx_vpid(void)
986 {
987         return vmcs_config.cpu_based_2nd_exec_ctrl &
988                 SECONDARY_EXEC_ENABLE_VPID;
989 }
990
991 static inline bool cpu_has_vmx_rdtscp(void)
992 {
993         return vmcs_config.cpu_based_2nd_exec_ctrl &
994                 SECONDARY_EXEC_RDTSCP;
995 }
996
997 static inline bool cpu_has_vmx_invpcid(void)
998 {
999         return vmcs_config.cpu_based_2nd_exec_ctrl &
1000                 SECONDARY_EXEC_ENABLE_INVPCID;
1001 }
1002
1003 static inline bool cpu_has_virtual_nmis(void)
1004 {
1005         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1006 }
1007
1008 static inline bool cpu_has_vmx_wbinvd_exit(void)
1009 {
1010         return vmcs_config.cpu_based_2nd_exec_ctrl &
1011                 SECONDARY_EXEC_WBINVD_EXITING;
1012 }
1013
1014 static inline bool cpu_has_vmx_shadow_vmcs(void)
1015 {
1016         u64 vmx_msr;
1017         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1018         /* check if the cpu supports writing r/o exit information fields */
1019         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1020                 return false;
1021
1022         return vmcs_config.cpu_based_2nd_exec_ctrl &
1023                 SECONDARY_EXEC_SHADOW_VMCS;
1024 }
1025
1026 static inline bool report_flexpriority(void)
1027 {
1028         return flexpriority_enabled;
1029 }
1030
1031 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1032 {
1033         return vmcs12->cpu_based_vm_exec_control & bit;
1034 }
1035
1036 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1037 {
1038         return (vmcs12->cpu_based_vm_exec_control &
1039                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1040                 (vmcs12->secondary_vm_exec_control & bit);
1041 }
1042
1043 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1044 {
1045         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046 }
1047
1048 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1049 {
1050         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1051 }
1052
1053 static inline bool is_exception(u32 intr_info)
1054 {
1055         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1056                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1057 }
1058
1059 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1060 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1061                         struct vmcs12 *vmcs12,
1062                         u32 reason, unsigned long qualification);
1063
1064 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1065 {
1066         int i;
1067
1068         for (i = 0; i < vmx->nmsrs; ++i)
1069                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1070                         return i;
1071         return -1;
1072 }
1073
1074 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1075 {
1076     struct {
1077         u64 vpid : 16;
1078         u64 rsvd : 48;
1079         u64 gva;
1080     } operand = { vpid, 0, gva };
1081
1082     asm volatile (__ex(ASM_VMX_INVVPID)
1083                   /* CF==1 or ZF==1 --> rc = -1 */
1084                   "; ja 1f ; ud2 ; 1:"
1085                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1086 }
1087
1088 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1089 {
1090         struct {
1091                 u64 eptp, gpa;
1092         } operand = {eptp, gpa};
1093
1094         asm volatile (__ex(ASM_VMX_INVEPT)
1095                         /* CF==1 or ZF==1 --> rc = -1 */
1096                         "; ja 1f ; ud2 ; 1:\n"
1097                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1098 }
1099
1100 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1101 {
1102         int i;
1103
1104         i = __find_msr_index(vmx, msr);
1105         if (i >= 0)
1106                 return &vmx->guest_msrs[i];
1107         return NULL;
1108 }
1109
1110 static void vmcs_clear(struct vmcs *vmcs)
1111 {
1112         u64 phys_addr = __pa(vmcs);
1113         u8 error;
1114
1115         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1116                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1117                       : "cc", "memory");
1118         if (error)
1119                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1120                        vmcs, phys_addr);
1121 }
1122
1123 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1124 {
1125         vmcs_clear(loaded_vmcs->vmcs);
1126         loaded_vmcs->cpu = -1;
1127         loaded_vmcs->launched = 0;
1128 }
1129
1130 static void vmcs_load(struct vmcs *vmcs)
1131 {
1132         u64 phys_addr = __pa(vmcs);
1133         u8 error;
1134
1135         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1136                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1137                         : "cc", "memory");
1138         if (error)
1139                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1140                        vmcs, phys_addr);
1141 }
1142
1143 #ifdef CONFIG_KEXEC
1144 /*
1145  * This bitmap is used to indicate whether the vmclear
1146  * operation is enabled on all cpus. All disabled by
1147  * default.
1148  */
1149 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1150
1151 static inline void crash_enable_local_vmclear(int cpu)
1152 {
1153         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154 }
1155
1156 static inline void crash_disable_local_vmclear(int cpu)
1157 {
1158         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159 }
1160
1161 static inline int crash_local_vmclear_enabled(int cpu)
1162 {
1163         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1164 }
1165
1166 static void crash_vmclear_local_loaded_vmcss(void)
1167 {
1168         int cpu = raw_smp_processor_id();
1169         struct loaded_vmcs *v;
1170
1171         if (!crash_local_vmclear_enabled(cpu))
1172                 return;
1173
1174         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1175                             loaded_vmcss_on_cpu_link)
1176                 vmcs_clear(v->vmcs);
1177 }
1178 #else
1179 static inline void crash_enable_local_vmclear(int cpu) { }
1180 static inline void crash_disable_local_vmclear(int cpu) { }
1181 #endif /* CONFIG_KEXEC */
1182
1183 static void __loaded_vmcs_clear(void *arg)
1184 {
1185         struct loaded_vmcs *loaded_vmcs = arg;
1186         int cpu = raw_smp_processor_id();
1187
1188         if (loaded_vmcs->cpu != cpu)
1189                 return; /* vcpu migration can race with cpu offline */
1190         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1191                 per_cpu(current_vmcs, cpu) = NULL;
1192         crash_disable_local_vmclear(cpu);
1193         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1194
1195         /*
1196          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1197          * is before setting loaded_vmcs->vcpu to -1 which is done in
1198          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1199          * then adds the vmcs into percpu list before it is deleted.
1200          */
1201         smp_wmb();
1202
1203         loaded_vmcs_init(loaded_vmcs);
1204         crash_enable_local_vmclear(cpu);
1205 }
1206
1207 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1208 {
1209         int cpu = loaded_vmcs->cpu;
1210
1211         if (cpu != -1)
1212                 smp_call_function_single(cpu,
1213                          __loaded_vmcs_clear, loaded_vmcs, 1);
1214 }
1215
1216 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1217 {
1218         if (vmx->vpid == 0)
1219                 return;
1220
1221         if (cpu_has_vmx_invvpid_single())
1222                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1223 }
1224
1225 static inline void vpid_sync_vcpu_global(void)
1226 {
1227         if (cpu_has_vmx_invvpid_global())
1228                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1229 }
1230
1231 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1232 {
1233         if (cpu_has_vmx_invvpid_single())
1234                 vpid_sync_vcpu_single(vmx);
1235         else
1236                 vpid_sync_vcpu_global();
1237 }
1238
1239 static inline void ept_sync_global(void)
1240 {
1241         if (cpu_has_vmx_invept_global())
1242                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1243 }
1244
1245 static inline void ept_sync_context(u64 eptp)
1246 {
1247         if (enable_ept) {
1248                 if (cpu_has_vmx_invept_context())
1249                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1250                 else
1251                         ept_sync_global();
1252         }
1253 }
1254
1255 static __always_inline unsigned long vmcs_readl(unsigned long field)
1256 {
1257         unsigned long value;
1258
1259         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1260                       : "=a"(value) : "d"(field) : "cc");
1261         return value;
1262 }
1263
1264 static __always_inline u16 vmcs_read16(unsigned long field)
1265 {
1266         return vmcs_readl(field);
1267 }
1268
1269 static __always_inline u32 vmcs_read32(unsigned long field)
1270 {
1271         return vmcs_readl(field);
1272 }
1273
1274 static __always_inline u64 vmcs_read64(unsigned long field)
1275 {
1276 #ifdef CONFIG_X86_64
1277         return vmcs_readl(field);
1278 #else
1279         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1280 #endif
1281 }
1282
1283 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1284 {
1285         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1286                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1287         dump_stack();
1288 }
1289
1290 static void vmcs_writel(unsigned long field, unsigned long value)
1291 {
1292         u8 error;
1293
1294         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1295                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1296         if (unlikely(error))
1297                 vmwrite_error(field, value);
1298 }
1299
1300 static void vmcs_write16(unsigned long field, u16 value)
1301 {
1302         vmcs_writel(field, value);
1303 }
1304
1305 static void vmcs_write32(unsigned long field, u32 value)
1306 {
1307         vmcs_writel(field, value);
1308 }
1309
1310 static void vmcs_write64(unsigned long field, u64 value)
1311 {
1312         vmcs_writel(field, value);
1313 #ifndef CONFIG_X86_64
1314         asm volatile ("");
1315         vmcs_writel(field+1, value >> 32);
1316 #endif
1317 }
1318
1319 static void vmcs_clear_bits(unsigned long field, u32 mask)
1320 {
1321         vmcs_writel(field, vmcs_readl(field) & ~mask);
1322 }
1323
1324 static void vmcs_set_bits(unsigned long field, u32 mask)
1325 {
1326         vmcs_writel(field, vmcs_readl(field) | mask);
1327 }
1328
1329 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1330 {
1331         vmx->segment_cache.bitmask = 0;
1332 }
1333
1334 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1335                                        unsigned field)
1336 {
1337         bool ret;
1338         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1339
1340         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1341                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1342                 vmx->segment_cache.bitmask = 0;
1343         }
1344         ret = vmx->segment_cache.bitmask & mask;
1345         vmx->segment_cache.bitmask |= mask;
1346         return ret;
1347 }
1348
1349 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1350 {
1351         u16 *p = &vmx->segment_cache.seg[seg].selector;
1352
1353         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1354                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1355         return *p;
1356 }
1357
1358 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1359 {
1360         ulong *p = &vmx->segment_cache.seg[seg].base;
1361
1362         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1363                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1364         return *p;
1365 }
1366
1367 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1368 {
1369         u32 *p = &vmx->segment_cache.seg[seg].limit;
1370
1371         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1372                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1373         return *p;
1374 }
1375
1376 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1377 {
1378         u32 *p = &vmx->segment_cache.seg[seg].ar;
1379
1380         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1381                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1382         return *p;
1383 }
1384
1385 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1386 {
1387         u32 eb;
1388
1389         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1390              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1391         if ((vcpu->guest_debug &
1392              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1393             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1394                 eb |= 1u << BP_VECTOR;
1395         if (to_vmx(vcpu)->rmode.vm86_active)
1396                 eb = ~0;
1397         if (enable_ept)
1398                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1399         if (vcpu->fpu_active)
1400                 eb &= ~(1u << NM_VECTOR);
1401
1402         /* When we are running a nested L2 guest and L1 specified for it a
1403          * certain exception bitmap, we must trap the same exceptions and pass
1404          * them to L1. When running L2, we will only handle the exceptions
1405          * specified above if L1 did not want them.
1406          */
1407         if (is_guest_mode(vcpu))
1408                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1409
1410         vmcs_write32(EXCEPTION_BITMAP, eb);
1411 }
1412
1413 static void clear_atomic_switch_msr_special(unsigned long entry,
1414                 unsigned long exit)
1415 {
1416         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1417         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1418 }
1419
1420 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1421 {
1422         unsigned i;
1423         struct msr_autoload *m = &vmx->msr_autoload;
1424
1425         switch (msr) {
1426         case MSR_EFER:
1427                 if (cpu_has_load_ia32_efer) {
1428                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1429                                         VM_EXIT_LOAD_IA32_EFER);
1430                         return;
1431                 }
1432                 break;
1433         case MSR_CORE_PERF_GLOBAL_CTRL:
1434                 if (cpu_has_load_perf_global_ctrl) {
1435                         clear_atomic_switch_msr_special(
1436                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1437                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1438                         return;
1439                 }
1440                 break;
1441         }
1442
1443         for (i = 0; i < m->nr; ++i)
1444                 if (m->guest[i].index == msr)
1445                         break;
1446
1447         if (i == m->nr)
1448                 return;
1449         --m->nr;
1450         m->guest[i] = m->guest[m->nr];
1451         m->host[i] = m->host[m->nr];
1452         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1453         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1454 }
1455
1456 static void add_atomic_switch_msr_special(unsigned long entry,
1457                 unsigned long exit, unsigned long guest_val_vmcs,
1458                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1459 {
1460         vmcs_write64(guest_val_vmcs, guest_val);
1461         vmcs_write64(host_val_vmcs, host_val);
1462         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1463         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1464 }
1465
1466 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1467                                   u64 guest_val, u64 host_val)
1468 {
1469         unsigned i;
1470         struct msr_autoload *m = &vmx->msr_autoload;
1471
1472         switch (msr) {
1473         case MSR_EFER:
1474                 if (cpu_has_load_ia32_efer) {
1475                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1476                                         VM_EXIT_LOAD_IA32_EFER,
1477                                         GUEST_IA32_EFER,
1478                                         HOST_IA32_EFER,
1479                                         guest_val, host_val);
1480                         return;
1481                 }
1482                 break;
1483         case MSR_CORE_PERF_GLOBAL_CTRL:
1484                 if (cpu_has_load_perf_global_ctrl) {
1485                         add_atomic_switch_msr_special(
1486                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1487                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1488                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1489                                         HOST_IA32_PERF_GLOBAL_CTRL,
1490                                         guest_val, host_val);
1491                         return;
1492                 }
1493                 break;
1494         }
1495
1496         for (i = 0; i < m->nr; ++i)
1497                 if (m->guest[i].index == msr)
1498                         break;
1499
1500         if (i == NR_AUTOLOAD_MSRS) {
1501                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1502                                 "Can't add msr %x\n", msr);
1503                 return;
1504         } else if (i == m->nr) {
1505                 ++m->nr;
1506                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1507                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1508         }
1509
1510         m->guest[i].index = msr;
1511         m->guest[i].value = guest_val;
1512         m->host[i].index = msr;
1513         m->host[i].value = host_val;
1514 }
1515
1516 static void reload_tss(void)
1517 {
1518         /*
1519          * VT restores TR but not its size.  Useless.
1520          */
1521         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1522         struct desc_struct *descs;
1523
1524         descs = (void *)gdt->address;
1525         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1526         load_TR_desc();
1527 }
1528
1529 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1530 {
1531         u64 guest_efer;
1532         u64 ignore_bits;
1533
1534         guest_efer = vmx->vcpu.arch.efer;
1535
1536         /*
1537          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1538          * outside long mode
1539          */
1540         ignore_bits = EFER_NX | EFER_SCE;
1541 #ifdef CONFIG_X86_64
1542         ignore_bits |= EFER_LMA | EFER_LME;
1543         /* SCE is meaningful only in long mode on Intel */
1544         if (guest_efer & EFER_LMA)
1545                 ignore_bits &= ~(u64)EFER_SCE;
1546 #endif
1547         guest_efer &= ~ignore_bits;
1548         guest_efer |= host_efer & ignore_bits;
1549         vmx->guest_msrs[efer_offset].data = guest_efer;
1550         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1551
1552         clear_atomic_switch_msr(vmx, MSR_EFER);
1553         /* On ept, can't emulate nx, and must switch nx atomically */
1554         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1555                 guest_efer = vmx->vcpu.arch.efer;
1556                 if (!(guest_efer & EFER_LMA))
1557                         guest_efer &= ~EFER_LME;
1558                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1559                 return false;
1560         }
1561
1562         return true;
1563 }
1564
1565 static unsigned long segment_base(u16 selector)
1566 {
1567         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1568         struct desc_struct *d;
1569         unsigned long table_base;
1570         unsigned long v;
1571
1572         if (!(selector & ~3))
1573                 return 0;
1574
1575         table_base = gdt->address;
1576
1577         if (selector & 4) {           /* from ldt */
1578                 u16 ldt_selector = kvm_read_ldt();
1579
1580                 if (!(ldt_selector & ~3))
1581                         return 0;
1582
1583                 table_base = segment_base(ldt_selector);
1584         }
1585         d = (struct desc_struct *)(table_base + (selector & ~7));
1586         v = get_desc_base(d);
1587 #ifdef CONFIG_X86_64
1588        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1589                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1590 #endif
1591         return v;
1592 }
1593
1594 static inline unsigned long kvm_read_tr_base(void)
1595 {
1596         u16 tr;
1597         asm("str %0" : "=g"(tr));
1598         return segment_base(tr);
1599 }
1600
1601 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1602 {
1603         struct vcpu_vmx *vmx = to_vmx(vcpu);
1604         int i;
1605
1606         if (vmx->host_state.loaded)
1607                 return;
1608
1609         vmx->host_state.loaded = 1;
1610         /*
1611          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1612          * allow segment selectors with cpl > 0 or ti == 1.
1613          */
1614         vmx->host_state.ldt_sel = kvm_read_ldt();
1615         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1616         savesegment(fs, vmx->host_state.fs_sel);
1617         if (!(vmx->host_state.fs_sel & 7)) {
1618                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1619                 vmx->host_state.fs_reload_needed = 0;
1620         } else {
1621                 vmcs_write16(HOST_FS_SELECTOR, 0);
1622                 vmx->host_state.fs_reload_needed = 1;
1623         }
1624         savesegment(gs, vmx->host_state.gs_sel);
1625         if (!(vmx->host_state.gs_sel & 7))
1626                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1627         else {
1628                 vmcs_write16(HOST_GS_SELECTOR, 0);
1629                 vmx->host_state.gs_ldt_reload_needed = 1;
1630         }
1631
1632 #ifdef CONFIG_X86_64
1633         savesegment(ds, vmx->host_state.ds_sel);
1634         savesegment(es, vmx->host_state.es_sel);
1635 #endif
1636
1637 #ifdef CONFIG_X86_64
1638         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1639         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1640 #else
1641         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1642         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1643 #endif
1644
1645 #ifdef CONFIG_X86_64
1646         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1647         if (is_long_mode(&vmx->vcpu))
1648                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1649 #endif
1650         for (i = 0; i < vmx->save_nmsrs; ++i)
1651                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1652                                    vmx->guest_msrs[i].data,
1653                                    vmx->guest_msrs[i].mask);
1654 }
1655
1656 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1657 {
1658         if (!vmx->host_state.loaded)
1659                 return;
1660
1661         ++vmx->vcpu.stat.host_state_reload;
1662         vmx->host_state.loaded = 0;
1663 #ifdef CONFIG_X86_64
1664         if (is_long_mode(&vmx->vcpu))
1665                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1666 #endif
1667         if (vmx->host_state.gs_ldt_reload_needed) {
1668                 kvm_load_ldt(vmx->host_state.ldt_sel);
1669 #ifdef CONFIG_X86_64
1670                 load_gs_index(vmx->host_state.gs_sel);
1671 #else
1672                 loadsegment(gs, vmx->host_state.gs_sel);
1673 #endif
1674         }
1675         if (vmx->host_state.fs_reload_needed)
1676                 loadsegment(fs, vmx->host_state.fs_sel);
1677 #ifdef CONFIG_X86_64
1678         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1679                 loadsegment(ds, vmx->host_state.ds_sel);
1680                 loadsegment(es, vmx->host_state.es_sel);
1681         }
1682 #endif
1683         reload_tss();
1684 #ifdef CONFIG_X86_64
1685         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1686 #endif
1687         /*
1688          * If the FPU is not active (through the host task or
1689          * the guest vcpu), then restore the cr0.TS bit.
1690          */
1691         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1692                 stts();
1693         load_gdt(&__get_cpu_var(host_gdt));
1694 }
1695
1696 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1697 {
1698         preempt_disable();
1699         __vmx_load_host_state(vmx);
1700         preempt_enable();
1701 }
1702
1703 /*
1704  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1705  * vcpu mutex is already taken.
1706  */
1707 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1708 {
1709         struct vcpu_vmx *vmx = to_vmx(vcpu);
1710         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1711
1712         if (!vmm_exclusive)
1713                 kvm_cpu_vmxon(phys_addr);
1714         else if (vmx->loaded_vmcs->cpu != cpu)
1715                 loaded_vmcs_clear(vmx->loaded_vmcs);
1716
1717         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1718                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1719                 vmcs_load(vmx->loaded_vmcs->vmcs);
1720         }
1721
1722         if (vmx->loaded_vmcs->cpu != cpu) {
1723                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1724                 unsigned long sysenter_esp;
1725
1726                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1727                 local_irq_disable();
1728                 crash_disable_local_vmclear(cpu);
1729
1730                 /*
1731                  * Read loaded_vmcs->cpu should be before fetching
1732                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1733                  * See the comments in __loaded_vmcs_clear().
1734                  */
1735                 smp_rmb();
1736
1737                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1738                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1739                 crash_enable_local_vmclear(cpu);
1740                 local_irq_enable();
1741
1742                 /*
1743                  * Linux uses per-cpu TSS and GDT, so set these when switching
1744                  * processors.
1745                  */
1746                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1747                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1748
1749                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1750                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1751                 vmx->loaded_vmcs->cpu = cpu;
1752         }
1753 }
1754
1755 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1756 {
1757         __vmx_load_host_state(to_vmx(vcpu));
1758         if (!vmm_exclusive) {
1759                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1760                 vcpu->cpu = -1;
1761                 kvm_cpu_vmxoff();
1762         }
1763 }
1764
1765 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1766 {
1767         ulong cr0;
1768
1769         if (vcpu->fpu_active)
1770                 return;
1771         vcpu->fpu_active = 1;
1772         cr0 = vmcs_readl(GUEST_CR0);
1773         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1774         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1775         vmcs_writel(GUEST_CR0, cr0);
1776         update_exception_bitmap(vcpu);
1777         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1778         if (is_guest_mode(vcpu))
1779                 vcpu->arch.cr0_guest_owned_bits &=
1780                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1781         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1782 }
1783
1784 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1785
1786 /*
1787  * Return the cr0 value that a nested guest would read. This is a combination
1788  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1789  * its hypervisor (cr0_read_shadow).
1790  */
1791 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1792 {
1793         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1794                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1795 }
1796 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1797 {
1798         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1799                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1800 }
1801
1802 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1803 {
1804         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1805          * set this *before* calling this function.
1806          */
1807         vmx_decache_cr0_guest_bits(vcpu);
1808         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1809         update_exception_bitmap(vcpu);
1810         vcpu->arch.cr0_guest_owned_bits = 0;
1811         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1812         if (is_guest_mode(vcpu)) {
1813                 /*
1814                  * L1's specified read shadow might not contain the TS bit,
1815                  * so now that we turned on shadowing of this bit, we need to
1816                  * set this bit of the shadow. Like in nested_vmx_run we need
1817                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1818                  * up-to-date here because we just decached cr0.TS (and we'll
1819                  * only update vmcs12->guest_cr0 on nested exit).
1820                  */
1821                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1822                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1823                         (vcpu->arch.cr0 & X86_CR0_TS);
1824                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1825         } else
1826                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1827 }
1828
1829 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1830 {
1831         unsigned long rflags, save_rflags;
1832
1833         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1834                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1835                 rflags = vmcs_readl(GUEST_RFLAGS);
1836                 if (to_vmx(vcpu)->rmode.vm86_active) {
1837                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1838                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1839                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1840                 }
1841                 to_vmx(vcpu)->rflags = rflags;
1842         }
1843         return to_vmx(vcpu)->rflags;
1844 }
1845
1846 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1847 {
1848         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1849         to_vmx(vcpu)->rflags = rflags;
1850         if (to_vmx(vcpu)->rmode.vm86_active) {
1851                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1852                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1853         }
1854         vmcs_writel(GUEST_RFLAGS, rflags);
1855 }
1856
1857 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1858 {
1859         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1860         int ret = 0;
1861
1862         if (interruptibility & GUEST_INTR_STATE_STI)
1863                 ret |= KVM_X86_SHADOW_INT_STI;
1864         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1865                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1866
1867         return ret & mask;
1868 }
1869
1870 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1871 {
1872         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1873         u32 interruptibility = interruptibility_old;
1874
1875         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1876
1877         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1878                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1879         else if (mask & KVM_X86_SHADOW_INT_STI)
1880                 interruptibility |= GUEST_INTR_STATE_STI;
1881
1882         if ((interruptibility != interruptibility_old))
1883                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1884 }
1885
1886 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1887 {
1888         unsigned long rip;
1889
1890         rip = kvm_rip_read(vcpu);
1891         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1892         kvm_rip_write(vcpu, rip);
1893
1894         /* skipping an emulated instruction also counts */
1895         vmx_set_interrupt_shadow(vcpu, 0);
1896 }
1897
1898 /*
1899  * KVM wants to inject page-faults which it got to the guest. This function
1900  * checks whether in a nested guest, we need to inject them to L1 or L2.
1901  */
1902 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1903 {
1904         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1905
1906         if (!(vmcs12->exception_bitmap & (1u << nr)))
1907                 return 0;
1908
1909         nested_vmx_vmexit(vcpu);
1910         return 1;
1911 }
1912
1913 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1914                                 bool has_error_code, u32 error_code,
1915                                 bool reinject)
1916 {
1917         struct vcpu_vmx *vmx = to_vmx(vcpu);
1918         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1919
1920         if (!reinject && is_guest_mode(vcpu) &&
1921             nested_vmx_check_exception(vcpu, nr))
1922                 return;
1923
1924         if (has_error_code) {
1925                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1926                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1927         }
1928
1929         if (vmx->rmode.vm86_active) {
1930                 int inc_eip = 0;
1931                 if (kvm_exception_is_soft(nr))
1932                         inc_eip = vcpu->arch.event_exit_inst_len;
1933                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1934                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1935                 return;
1936         }
1937
1938         if (kvm_exception_is_soft(nr)) {
1939                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1940                              vmx->vcpu.arch.event_exit_inst_len);
1941                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1942         } else
1943                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1944
1945         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1946 }
1947
1948 static bool vmx_rdtscp_supported(void)
1949 {
1950         return cpu_has_vmx_rdtscp();
1951 }
1952
1953 static bool vmx_invpcid_supported(void)
1954 {
1955         return cpu_has_vmx_invpcid() && enable_ept;
1956 }
1957
1958 /*
1959  * Swap MSR entry in host/guest MSR entry array.
1960  */
1961 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1962 {
1963         struct shared_msr_entry tmp;
1964
1965         tmp = vmx->guest_msrs[to];
1966         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1967         vmx->guest_msrs[from] = tmp;
1968 }
1969
1970 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1971 {
1972         unsigned long *msr_bitmap;
1973
1974         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1975                 if (is_long_mode(vcpu))
1976                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1977                 else
1978                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1979         } else {
1980                 if (is_long_mode(vcpu))
1981                         msr_bitmap = vmx_msr_bitmap_longmode;
1982                 else
1983                         msr_bitmap = vmx_msr_bitmap_legacy;
1984         }
1985
1986         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1987 }
1988
1989 /*
1990  * Set up the vmcs to automatically save and restore system
1991  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1992  * mode, as fiddling with msrs is very expensive.
1993  */
1994 static void setup_msrs(struct vcpu_vmx *vmx)
1995 {
1996         int save_nmsrs, index;
1997
1998         save_nmsrs = 0;
1999 #ifdef CONFIG_X86_64
2000         if (is_long_mode(&vmx->vcpu)) {
2001                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2002                 if (index >= 0)
2003                         move_msr_up(vmx, index, save_nmsrs++);
2004                 index = __find_msr_index(vmx, MSR_LSTAR);
2005                 if (index >= 0)
2006                         move_msr_up(vmx, index, save_nmsrs++);
2007                 index = __find_msr_index(vmx, MSR_CSTAR);
2008                 if (index >= 0)
2009                         move_msr_up(vmx, index, save_nmsrs++);
2010                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2011                 if (index >= 0 && vmx->rdtscp_enabled)
2012                         move_msr_up(vmx, index, save_nmsrs++);
2013                 /*
2014                  * MSR_STAR is only needed on long mode guests, and only
2015                  * if efer.sce is enabled.
2016                  */
2017                 index = __find_msr_index(vmx, MSR_STAR);
2018                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2019                         move_msr_up(vmx, index, save_nmsrs++);
2020         }
2021 #endif
2022         index = __find_msr_index(vmx, MSR_EFER);
2023         if (index >= 0 && update_transition_efer(vmx, index))
2024                 move_msr_up(vmx, index, save_nmsrs++);
2025
2026         vmx->save_nmsrs = save_nmsrs;
2027
2028         if (cpu_has_vmx_msr_bitmap())
2029                 vmx_set_msr_bitmap(&vmx->vcpu);
2030 }
2031
2032 /*
2033  * reads and returns guest's timestamp counter "register"
2034  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2035  */
2036 static u64 guest_read_tsc(void)
2037 {
2038         u64 host_tsc, tsc_offset;
2039
2040         rdtscll(host_tsc);
2041         tsc_offset = vmcs_read64(TSC_OFFSET);
2042         return host_tsc + tsc_offset;
2043 }
2044
2045 /*
2046  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2047  * counter, even if a nested guest (L2) is currently running.
2048  */
2049 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2050 {
2051         u64 tsc_offset;
2052
2053         tsc_offset = is_guest_mode(vcpu) ?
2054                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2055                 vmcs_read64(TSC_OFFSET);
2056         return host_tsc + tsc_offset;
2057 }
2058
2059 /*
2060  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2061  * software catchup for faster rates on slower CPUs.
2062  */
2063 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2064 {
2065         if (!scale)
2066                 return;
2067
2068         if (user_tsc_khz > tsc_khz) {
2069                 vcpu->arch.tsc_catchup = 1;
2070                 vcpu->arch.tsc_always_catchup = 1;
2071         } else
2072                 WARN(1, "user requested TSC rate below hardware speed\n");
2073 }
2074
2075 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2076 {
2077         return vmcs_read64(TSC_OFFSET);
2078 }
2079
2080 /*
2081  * writes 'offset' into guest's timestamp counter offset register
2082  */
2083 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2084 {
2085         if (is_guest_mode(vcpu)) {
2086                 /*
2087                  * We're here if L1 chose not to trap WRMSR to TSC. According
2088                  * to the spec, this should set L1's TSC; The offset that L1
2089                  * set for L2 remains unchanged, and still needs to be added
2090                  * to the newly set TSC to get L2's TSC.
2091                  */
2092                 struct vmcs12 *vmcs12;
2093                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2094                 /* recalculate vmcs02.TSC_OFFSET: */
2095                 vmcs12 = get_vmcs12(vcpu);
2096                 vmcs_write64(TSC_OFFSET, offset +
2097                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2098                          vmcs12->tsc_offset : 0));
2099         } else {
2100                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2101                                            vmcs_read64(TSC_OFFSET), offset);
2102                 vmcs_write64(TSC_OFFSET, offset);
2103         }
2104 }
2105
2106 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2107 {
2108         u64 offset = vmcs_read64(TSC_OFFSET);
2109
2110         vmcs_write64(TSC_OFFSET, offset + adjustment);
2111         if (is_guest_mode(vcpu)) {
2112                 /* Even when running L2, the adjustment needs to apply to L1 */
2113                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2114         } else
2115                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2116                                            offset + adjustment);
2117 }
2118
2119 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2120 {
2121         return target_tsc - native_read_tsc();
2122 }
2123
2124 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2125 {
2126         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2127         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2128 }
2129
2130 /*
2131  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2132  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2133  * all guests if the "nested" module option is off, and can also be disabled
2134  * for a single guest by disabling its VMX cpuid bit.
2135  */
2136 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2137 {
2138         return nested && guest_cpuid_has_vmx(vcpu);
2139 }
2140
2141 /*
2142  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2143  * returned for the various VMX controls MSRs when nested VMX is enabled.
2144  * The same values should also be used to verify that vmcs12 control fields are
2145  * valid during nested entry from L1 to L2.
2146  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2147  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2148  * bit in the high half is on if the corresponding bit in the control field
2149  * may be on. See also vmx_control_verify().
2150  * TODO: allow these variables to be modified (downgraded) by module options
2151  * or other means.
2152  */
2153 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2154 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2155 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2156 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2157 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2158 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2159 static u32 nested_vmx_ept_caps;
2160 static __init void nested_vmx_setup_ctls_msrs(void)
2161 {
2162         /*
2163          * Note that as a general rule, the high half of the MSRs (bits in
2164          * the control fields which may be 1) should be initialized by the
2165          * intersection of the underlying hardware's MSR (i.e., features which
2166          * can be supported) and the list of features we want to expose -
2167          * because they are known to be properly supported in our code.
2168          * Also, usually, the low half of the MSRs (bits which must be 1) can
2169          * be set to 0, meaning that L1 may turn off any of these bits. The
2170          * reason is that if one of these bits is necessary, it will appear
2171          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2172          * fields of vmcs01 and vmcs02, will turn these bits off - and
2173          * nested_vmx_exit_handled() will not pass related exits to L1.
2174          * These rules have exceptions below.
2175          */
2176
2177         /* pin-based controls */
2178         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2179               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2180         /*
2181          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2182          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2183          */
2184         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2185         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2186                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2187                 PIN_BASED_VMX_PREEMPTION_TIMER;
2188         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2189
2190         /*
2191          * Exit controls
2192          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2193          * 17 must be 1.
2194          */
2195         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2196                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2197         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2198         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2199         nested_vmx_exit_ctls_high &=
2200 #ifdef CONFIG_X86_64
2201                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2202 #endif
2203                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2204                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2205         if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2206             !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2207                 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2208                 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2209         }
2210         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2211                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2212
2213         /* entry controls */
2214         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2215                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2216         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2217         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2218         nested_vmx_entry_ctls_high &=
2219 #ifdef CONFIG_X86_64
2220                 VM_ENTRY_IA32E_MODE |
2221 #endif
2222                 VM_ENTRY_LOAD_IA32_PAT;
2223         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2224                                        VM_ENTRY_LOAD_IA32_EFER);
2225
2226         /* cpu-based controls */
2227         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2228                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2229         nested_vmx_procbased_ctls_low = 0;
2230         nested_vmx_procbased_ctls_high &=
2231                 CPU_BASED_VIRTUAL_INTR_PENDING |
2232                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2233                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2234                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2235                 CPU_BASED_CR3_STORE_EXITING |
2236 #ifdef CONFIG_X86_64
2237                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2238 #endif
2239                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2240                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2241                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2242                 CPU_BASED_PAUSE_EXITING |
2243                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2244         /*
2245          * We can allow some features even when not supported by the
2246          * hardware. For example, L1 can specify an MSR bitmap - and we
2247          * can use it to avoid exits to L1 - even when L0 runs L2
2248          * without MSR bitmaps.
2249          */
2250         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2251
2252         /* secondary cpu-based controls */
2253         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2254                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2255         nested_vmx_secondary_ctls_low = 0;
2256         nested_vmx_secondary_ctls_high &=
2257                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2258                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2259                 SECONDARY_EXEC_WBINVD_EXITING;
2260
2261         if (enable_ept) {
2262                 /* nested EPT: emulate EPT also to L1 */
2263                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2264                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2265                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2266                          VMX_EPT_INVEPT_BIT;
2267                 nested_vmx_ept_caps &= vmx_capability.ept;
2268                 /*
2269                  * Since invept is completely emulated we support both global
2270                  * and context invalidation independent of what host cpu
2271                  * supports
2272                  */
2273                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2274                         VMX_EPT_EXTENT_CONTEXT_BIT;
2275         } else
2276                 nested_vmx_ept_caps = 0;
2277
2278         /* miscellaneous data */
2279         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2280         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2281                 VMX_MISC_SAVE_EFER_LMA;
2282         nested_vmx_misc_high = 0;
2283 }
2284
2285 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2286 {
2287         /*
2288          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2289          */
2290         return ((control & high) | low) == control;
2291 }
2292
2293 static inline u64 vmx_control_msr(u32 low, u32 high)
2294 {
2295         return low | ((u64)high << 32);
2296 }
2297
2298 /*
2299  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2300  * also let it use VMX-specific MSRs.
2301  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2302  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2303  * like all other MSRs).
2304  */
2305 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2306 {
2307         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2308                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2309                 /*
2310                  * According to the spec, processors which do not support VMX
2311                  * should throw a #GP(0) when VMX capability MSRs are read.
2312                  */
2313                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2314                 return 1;
2315         }
2316
2317         switch (msr_index) {
2318         case MSR_IA32_FEATURE_CONTROL:
2319                 if (nested_vmx_allowed(vcpu)) {
2320                         *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2321                         break;
2322                 }
2323                 return 0;
2324         case MSR_IA32_VMX_BASIC:
2325                 /*
2326                  * This MSR reports some information about VMX support. We
2327                  * should return information about the VMX we emulate for the
2328                  * guest, and the VMCS structure we give it - not about the
2329                  * VMX support of the underlying hardware.
2330                  */
2331                 *pdata = VMCS12_REVISION |
2332                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2333                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2334                 break;
2335         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2336         case MSR_IA32_VMX_PINBASED_CTLS:
2337                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2338                                         nested_vmx_pinbased_ctls_high);
2339                 break;
2340         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2341         case MSR_IA32_VMX_PROCBASED_CTLS:
2342                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2343                                         nested_vmx_procbased_ctls_high);
2344                 break;
2345         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2346         case MSR_IA32_VMX_EXIT_CTLS:
2347                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2348                                         nested_vmx_exit_ctls_high);
2349                 break;
2350         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2351         case MSR_IA32_VMX_ENTRY_CTLS:
2352                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2353                                         nested_vmx_entry_ctls_high);
2354                 break;
2355         case MSR_IA32_VMX_MISC:
2356                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2357                                          nested_vmx_misc_high);
2358                 break;
2359         /*
2360          * These MSRs specify bits which the guest must keep fixed (on or off)
2361          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2362          * We picked the standard core2 setting.
2363          */
2364 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2365 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2366         case MSR_IA32_VMX_CR0_FIXED0:
2367                 *pdata = VMXON_CR0_ALWAYSON;
2368                 break;
2369         case MSR_IA32_VMX_CR0_FIXED1:
2370                 *pdata = -1ULL;
2371                 break;
2372         case MSR_IA32_VMX_CR4_FIXED0:
2373                 *pdata = VMXON_CR4_ALWAYSON;
2374                 break;
2375         case MSR_IA32_VMX_CR4_FIXED1:
2376                 *pdata = -1ULL;
2377                 break;
2378         case MSR_IA32_VMX_VMCS_ENUM:
2379                 *pdata = 0x1f;
2380                 break;
2381         case MSR_IA32_VMX_PROCBASED_CTLS2:
2382                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2383                                         nested_vmx_secondary_ctls_high);
2384                 break;
2385         case MSR_IA32_VMX_EPT_VPID_CAP:
2386                 /* Currently, no nested vpid support */
2387                 *pdata = nested_vmx_ept_caps;
2388                 break;
2389         default:
2390                 return 0;
2391         }
2392
2393         return 1;
2394 }
2395
2396 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2397 {
2398         u32 msr_index = msr_info->index;
2399         u64 data = msr_info->data;
2400         bool host_initialized = msr_info->host_initiated;
2401
2402         if (!nested_vmx_allowed(vcpu))
2403                 return 0;
2404
2405         if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2406                 if (!host_initialized &&
2407                                 to_vmx(vcpu)->nested.msr_ia32_feature_control
2408                                 & FEATURE_CONTROL_LOCKED)
2409                         return 0;
2410                 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2411                 return 1;
2412         }
2413
2414         /*
2415          * No need to treat VMX capability MSRs specially: If we don't handle
2416          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2417          */
2418         return 0;
2419 }
2420
2421 /*
2422  * Reads an msr value (of 'msr_index') into 'pdata'.
2423  * Returns 0 on success, non-0 otherwise.
2424  * Assumes vcpu_load() was already called.
2425  */
2426 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2427 {
2428         u64 data;
2429         struct shared_msr_entry *msr;
2430
2431         if (!pdata) {
2432                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2433                 return -EINVAL;
2434         }
2435
2436         switch (msr_index) {
2437 #ifdef CONFIG_X86_64
2438         case MSR_FS_BASE:
2439                 data = vmcs_readl(GUEST_FS_BASE);
2440                 break;
2441         case MSR_GS_BASE:
2442                 data = vmcs_readl(GUEST_GS_BASE);
2443                 break;
2444         case MSR_KERNEL_GS_BASE:
2445                 vmx_load_host_state(to_vmx(vcpu));
2446                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2447                 break;
2448 #endif
2449         case MSR_EFER:
2450                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2451         case MSR_IA32_TSC:
2452                 data = guest_read_tsc();
2453                 break;
2454         case MSR_IA32_SYSENTER_CS:
2455                 data = vmcs_read32(GUEST_SYSENTER_CS);
2456                 break;
2457         case MSR_IA32_SYSENTER_EIP:
2458                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2459                 break;
2460         case MSR_IA32_SYSENTER_ESP:
2461                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2462                 break;
2463         case MSR_TSC_AUX:
2464                 if (!to_vmx(vcpu)->rdtscp_enabled)
2465                         return 1;
2466                 /* Otherwise falls through */
2467         default:
2468                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2469                         return 0;
2470                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2471                 if (msr) {
2472                         data = msr->data;
2473                         break;
2474                 }
2475                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2476         }
2477
2478         *pdata = data;
2479         return 0;
2480 }
2481
2482 /*
2483  * Writes msr value into into the appropriate "register".
2484  * Returns 0 on success, non-0 otherwise.
2485  * Assumes vcpu_load() was already called.
2486  */
2487 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2488 {
2489         struct vcpu_vmx *vmx = to_vmx(vcpu);
2490         struct shared_msr_entry *msr;
2491         int ret = 0;
2492         u32 msr_index = msr_info->index;
2493         u64 data = msr_info->data;
2494
2495         switch (msr_index) {
2496         case MSR_EFER:
2497                 ret = kvm_set_msr_common(vcpu, msr_info);
2498                 break;
2499 #ifdef CONFIG_X86_64
2500         case MSR_FS_BASE:
2501                 vmx_segment_cache_clear(vmx);
2502                 vmcs_writel(GUEST_FS_BASE, data);
2503                 break;
2504         case MSR_GS_BASE:
2505                 vmx_segment_cache_clear(vmx);
2506                 vmcs_writel(GUEST_GS_BASE, data);
2507                 break;
2508         case MSR_KERNEL_GS_BASE:
2509                 vmx_load_host_state(vmx);
2510                 vmx->msr_guest_kernel_gs_base = data;
2511                 break;
2512 #endif
2513         case MSR_IA32_SYSENTER_CS:
2514                 vmcs_write32(GUEST_SYSENTER_CS, data);
2515                 break;
2516         case MSR_IA32_SYSENTER_EIP:
2517                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2518                 break;
2519         case MSR_IA32_SYSENTER_ESP:
2520                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2521                 break;
2522         case MSR_IA32_TSC:
2523                 kvm_write_tsc(vcpu, msr_info);
2524                 break;
2525         case MSR_IA32_CR_PAT:
2526                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2527                         vmcs_write64(GUEST_IA32_PAT, data);
2528                         vcpu->arch.pat = data;
2529                         break;
2530                 }
2531                 ret = kvm_set_msr_common(vcpu, msr_info);
2532                 break;
2533         case MSR_IA32_TSC_ADJUST:
2534                 ret = kvm_set_msr_common(vcpu, msr_info);
2535                 break;
2536         case MSR_TSC_AUX:
2537                 if (!vmx->rdtscp_enabled)
2538                         return 1;
2539                 /* Check reserved bit, higher 32 bits should be zero */
2540                 if ((data >> 32) != 0)
2541                         return 1;
2542                 /* Otherwise falls through */
2543         default:
2544                 if (vmx_set_vmx_msr(vcpu, msr_info))
2545                         break;
2546                 msr = find_msr_entry(vmx, msr_index);
2547                 if (msr) {
2548                         msr->data = data;
2549                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2550                                 preempt_disable();
2551                                 kvm_set_shared_msr(msr->index, msr->data,
2552                                                    msr->mask);
2553                                 preempt_enable();
2554                         }
2555                         break;
2556                 }
2557                 ret = kvm_set_msr_common(vcpu, msr_info);
2558         }
2559
2560         return ret;
2561 }
2562
2563 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2564 {
2565         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2566         switch (reg) {
2567         case VCPU_REGS_RSP:
2568                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2569                 break;
2570         case VCPU_REGS_RIP:
2571                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2572                 break;
2573         case VCPU_EXREG_PDPTR:
2574                 if (enable_ept)
2575                         ept_save_pdptrs(vcpu);
2576                 break;
2577         default:
2578                 break;
2579         }
2580 }
2581
2582 static __init int cpu_has_kvm_support(void)
2583 {
2584         return cpu_has_vmx();
2585 }
2586
2587 static __init int vmx_disabled_by_bios(void)
2588 {
2589         u64 msr;
2590
2591         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2592         if (msr & FEATURE_CONTROL_LOCKED) {
2593                 /* launched w/ TXT and VMX disabled */
2594                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2595                         && tboot_enabled())
2596                         return 1;
2597                 /* launched w/o TXT and VMX only enabled w/ TXT */
2598                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2599                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2600                         && !tboot_enabled()) {
2601                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2602                                 "activate TXT before enabling KVM\n");
2603                         return 1;
2604                 }
2605                 /* launched w/o TXT and VMX disabled */
2606                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2607                         && !tboot_enabled())
2608                         return 1;
2609         }
2610
2611         return 0;
2612 }
2613
2614 static void kvm_cpu_vmxon(u64 addr)
2615 {
2616         asm volatile (ASM_VMX_VMXON_RAX
2617                         : : "a"(&addr), "m"(addr)
2618                         : "memory", "cc");
2619 }
2620
2621 static int hardware_enable(void *garbage)
2622 {
2623         int cpu = raw_smp_processor_id();
2624         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2625         u64 old, test_bits;
2626
2627         if (read_cr4() & X86_CR4_VMXE)
2628                 return -EBUSY;
2629
2630         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2631
2632         /*
2633          * Now we can enable the vmclear operation in kdump
2634          * since the loaded_vmcss_on_cpu list on this cpu
2635          * has been initialized.
2636          *
2637          * Though the cpu is not in VMX operation now, there
2638          * is no problem to enable the vmclear operation
2639          * for the loaded_vmcss_on_cpu list is empty!
2640          */
2641         crash_enable_local_vmclear(cpu);
2642
2643         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2644
2645         test_bits = FEATURE_CONTROL_LOCKED;
2646         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2647         if (tboot_enabled())
2648                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2649
2650         if ((old & test_bits) != test_bits) {
2651                 /* enable and lock */
2652                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2653         }
2654         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2655
2656         if (vmm_exclusive) {
2657                 kvm_cpu_vmxon(phys_addr);
2658                 ept_sync_global();
2659         }
2660
2661         native_store_gdt(&__get_cpu_var(host_gdt));
2662
2663         return 0;
2664 }
2665
2666 static void vmclear_local_loaded_vmcss(void)
2667 {
2668         int cpu = raw_smp_processor_id();
2669         struct loaded_vmcs *v, *n;
2670
2671         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2672                                  loaded_vmcss_on_cpu_link)
2673                 __loaded_vmcs_clear(v);
2674 }
2675
2676
2677 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2678  * tricks.
2679  */
2680 static void kvm_cpu_vmxoff(void)
2681 {
2682         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2683 }
2684
2685 static void hardware_disable(void *garbage)
2686 {
2687         if (vmm_exclusive) {
2688                 vmclear_local_loaded_vmcss();
2689                 kvm_cpu_vmxoff();
2690         }
2691         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2692 }
2693
2694 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2695                                       u32 msr, u32 *result)
2696 {
2697         u32 vmx_msr_low, vmx_msr_high;
2698         u32 ctl = ctl_min | ctl_opt;
2699
2700         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2701
2702         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2703         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2704
2705         /* Ensure minimum (required) set of control bits are supported. */
2706         if (ctl_min & ~ctl)
2707                 return -EIO;
2708
2709         *result = ctl;
2710         return 0;
2711 }
2712
2713 static __init bool allow_1_setting(u32 msr, u32 ctl)
2714 {
2715         u32 vmx_msr_low, vmx_msr_high;
2716
2717         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2718         return vmx_msr_high & ctl;
2719 }
2720
2721 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2722 {
2723         u32 vmx_msr_low, vmx_msr_high;
2724         u32 min, opt, min2, opt2;
2725         u32 _pin_based_exec_control = 0;
2726         u32 _cpu_based_exec_control = 0;
2727         u32 _cpu_based_2nd_exec_control = 0;
2728         u32 _vmexit_control = 0;
2729         u32 _vmentry_control = 0;
2730
2731         min = CPU_BASED_HLT_EXITING |
2732 #ifdef CONFIG_X86_64
2733               CPU_BASED_CR8_LOAD_EXITING |
2734               CPU_BASED_CR8_STORE_EXITING |
2735 #endif
2736               CPU_BASED_CR3_LOAD_EXITING |
2737               CPU_BASED_CR3_STORE_EXITING |
2738               CPU_BASED_USE_IO_BITMAPS |
2739               CPU_BASED_MOV_DR_EXITING |
2740               CPU_BASED_USE_TSC_OFFSETING |
2741               CPU_BASED_MWAIT_EXITING |
2742               CPU_BASED_MONITOR_EXITING |
2743               CPU_BASED_INVLPG_EXITING |
2744               CPU_BASED_RDPMC_EXITING;
2745
2746         opt = CPU_BASED_TPR_SHADOW |
2747               CPU_BASED_USE_MSR_BITMAPS |
2748               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2749         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2750                                 &_cpu_based_exec_control) < 0)
2751                 return -EIO;
2752 #ifdef CONFIG_X86_64
2753         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2754                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2755                                            ~CPU_BASED_CR8_STORE_EXITING;
2756 #endif
2757         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2758                 min2 = 0;
2759                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2760                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2761                         SECONDARY_EXEC_WBINVD_EXITING |
2762                         SECONDARY_EXEC_ENABLE_VPID |
2763                         SECONDARY_EXEC_ENABLE_EPT |
2764                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2765                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2766                         SECONDARY_EXEC_RDTSCP |
2767                         SECONDARY_EXEC_ENABLE_INVPCID |
2768                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2769                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2770                         SECONDARY_EXEC_SHADOW_VMCS;
2771                 if (adjust_vmx_controls(min2, opt2,
2772                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2773                                         &_cpu_based_2nd_exec_control) < 0)
2774                         return -EIO;
2775         }
2776 #ifndef CONFIG_X86_64
2777         if (!(_cpu_based_2nd_exec_control &
2778                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2779                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2780 #endif
2781
2782         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2783                 _cpu_based_2nd_exec_control &= ~(
2784                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2785                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2786                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2787
2788         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2789                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2790                    enabled */
2791                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2792                                              CPU_BASED_CR3_STORE_EXITING |
2793                                              CPU_BASED_INVLPG_EXITING);
2794                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2795                       vmx_capability.ept, vmx_capability.vpid);
2796         }
2797
2798         min = 0;
2799 #ifdef CONFIG_X86_64
2800         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2801 #endif
2802         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2803                 VM_EXIT_ACK_INTR_ON_EXIT;
2804         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2805                                 &_vmexit_control) < 0)
2806                 return -EIO;
2807
2808         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2809         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2810         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2811                                 &_pin_based_exec_control) < 0)
2812                 return -EIO;
2813
2814         if (!(_cpu_based_2nd_exec_control &
2815                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2816                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2817                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2818
2819         min = 0;
2820         opt = VM_ENTRY_LOAD_IA32_PAT;
2821         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2822                                 &_vmentry_control) < 0)
2823                 return -EIO;
2824
2825         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2826
2827         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2828         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2829                 return -EIO;
2830
2831 #ifdef CONFIG_X86_64
2832         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2833         if (vmx_msr_high & (1u<<16))
2834                 return -EIO;
2835 #endif
2836
2837         /* Require Write-Back (WB) memory type for VMCS accesses. */
2838         if (((vmx_msr_high >> 18) & 15) != 6)
2839                 return -EIO;
2840
2841         vmcs_conf->size = vmx_msr_high & 0x1fff;
2842         vmcs_conf->order = get_order(vmcs_config.size);
2843         vmcs_conf->revision_id = vmx_msr_low;
2844
2845         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2846         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2847         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2848         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2849         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2850
2851         cpu_has_load_ia32_efer =
2852                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2853                                 VM_ENTRY_LOAD_IA32_EFER)
2854                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2855                                    VM_EXIT_LOAD_IA32_EFER);
2856
2857         cpu_has_load_perf_global_ctrl =
2858                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2859                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2860                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2861                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2862
2863         /*
2864          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2865          * but due to arrata below it can't be used. Workaround is to use
2866          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2867          *
2868          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2869          *
2870          * AAK155             (model 26)
2871          * AAP115             (model 30)
2872          * AAT100             (model 37)
2873          * BC86,AAY89,BD102   (model 44)
2874          * BA97               (model 46)
2875          *
2876          */
2877         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2878                 switch (boot_cpu_data.x86_model) {
2879                 case 26:
2880                 case 30:
2881                 case 37:
2882                 case 44:
2883                 case 46:
2884                         cpu_has_load_perf_global_ctrl = false;
2885                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2886                                         "does not work properly. Using workaround\n");
2887                         break;
2888                 default:
2889                         break;
2890                 }
2891         }
2892
2893         return 0;
2894 }
2895
2896 static struct vmcs *alloc_vmcs_cpu(int cpu)
2897 {
2898         int node = cpu_to_node(cpu);
2899         struct page *pages;
2900         struct vmcs *vmcs;
2901
2902         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2903         if (!pages)
2904                 return NULL;
2905         vmcs = page_address(pages);
2906         memset(vmcs, 0, vmcs_config.size);
2907         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2908         return vmcs;
2909 }
2910
2911 static struct vmcs *alloc_vmcs(void)
2912 {
2913         return alloc_vmcs_cpu(raw_smp_processor_id());
2914 }
2915
2916 static void free_vmcs(struct vmcs *vmcs)
2917 {
2918         free_pages((unsigned long)vmcs, vmcs_config.order);
2919 }
2920
2921 /*
2922  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2923  */
2924 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2925 {
2926         if (!loaded_vmcs->vmcs)
2927                 return;
2928         loaded_vmcs_clear(loaded_vmcs);
2929         free_vmcs(loaded_vmcs->vmcs);
2930         loaded_vmcs->vmcs = NULL;
2931 }
2932
2933 static void free_kvm_area(void)
2934 {
2935         int cpu;
2936
2937         for_each_possible_cpu(cpu) {
2938                 free_vmcs(per_cpu(vmxarea, cpu));
2939                 per_cpu(vmxarea, cpu) = NULL;
2940         }
2941 }
2942
2943 static __init int alloc_kvm_area(void)
2944 {
2945         int cpu;
2946
2947         for_each_possible_cpu(cpu) {
2948                 struct vmcs *vmcs;
2949
2950                 vmcs = alloc_vmcs_cpu(cpu);
2951                 if (!vmcs) {
2952                         free_kvm_area();
2953                         return -ENOMEM;
2954                 }
2955
2956                 per_cpu(vmxarea, cpu) = vmcs;
2957         }
2958         return 0;
2959 }
2960
2961 static __init int hardware_setup(void)
2962 {
2963         if (setup_vmcs_config(&vmcs_config) < 0)
2964                 return -EIO;
2965
2966         if (boot_cpu_has(X86_FEATURE_NX))
2967                 kvm_enable_efer_bits(EFER_NX);
2968
2969         if (!cpu_has_vmx_vpid())
2970                 enable_vpid = 0;
2971         if (!cpu_has_vmx_shadow_vmcs())
2972                 enable_shadow_vmcs = 0;
2973
2974         if (!cpu_has_vmx_ept() ||
2975             !cpu_has_vmx_ept_4levels()) {
2976                 enable_ept = 0;
2977                 enable_unrestricted_guest = 0;
2978                 enable_ept_ad_bits = 0;
2979         }
2980
2981         if (!cpu_has_vmx_ept_ad_bits())
2982                 enable_ept_ad_bits = 0;
2983
2984         if (!cpu_has_vmx_unrestricted_guest())
2985                 enable_unrestricted_guest = 0;
2986
2987         if (!cpu_has_vmx_flexpriority())
2988                 flexpriority_enabled = 0;
2989
2990         if (!cpu_has_vmx_tpr_shadow())
2991                 kvm_x86_ops->update_cr8_intercept = NULL;
2992
2993         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2994                 kvm_disable_largepages();
2995
2996         if (!cpu_has_vmx_ple())
2997                 ple_gap = 0;
2998
2999         if (!cpu_has_vmx_apicv())
3000                 enable_apicv = 0;
3001
3002         if (enable_apicv)
3003                 kvm_x86_ops->update_cr8_intercept = NULL;
3004         else {
3005                 kvm_x86_ops->hwapic_irr_update = NULL;
3006                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3007                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3008         }
3009
3010         if (nested)
3011                 nested_vmx_setup_ctls_msrs();
3012
3013         return alloc_kvm_area();
3014 }
3015
3016 static __exit void hardware_unsetup(void)
3017 {
3018         free_kvm_area();
3019 }
3020
3021 static bool emulation_required(struct kvm_vcpu *vcpu)
3022 {
3023         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3024 }
3025
3026 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3027                 struct kvm_segment *save)
3028 {
3029         if (!emulate_invalid_guest_state) {
3030                 /*
3031                  * CS and SS RPL should be equal during guest entry according
3032                  * to VMX spec, but in reality it is not always so. Since vcpu
3033                  * is in the middle of the transition from real mode to
3034                  * protected mode it is safe to assume that RPL 0 is a good
3035                  * default value.
3036                  */
3037                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3038                         save->selector &= ~SELECTOR_RPL_MASK;
3039                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3040                 save->s = 1;
3041         }
3042         vmx_set_segment(vcpu, save, seg);
3043 }
3044
3045 static void enter_pmode(struct kvm_vcpu *vcpu)
3046 {
3047         unsigned long flags;
3048         struct vcpu_vmx *vmx = to_vmx(vcpu);
3049
3050         /*
3051          * Update real mode segment cache. It may be not up-to-date if sement
3052          * register was written while vcpu was in a guest mode.
3053          */
3054         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3055         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3056         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3057         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3058         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3059         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3060
3061         vmx->rmode.vm86_active = 0;
3062
3063         vmx_segment_cache_clear(vmx);
3064
3065         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3066
3067         flags = vmcs_readl(GUEST_RFLAGS);
3068         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3069         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3070         vmcs_writel(GUEST_RFLAGS, flags);
3071
3072         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3073                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3074
3075         update_exception_bitmap(vcpu);
3076
3077         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3078         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3079         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3080         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3081         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3082         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3083
3084         /* CPL is always 0 when CPU enters protected mode */
3085         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3086         vmx->cpl = 0;
3087 }
3088
3089 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3090 {
3091         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3092         struct kvm_segment var = *save;
3093
3094         var.dpl = 0x3;
3095         if (seg == VCPU_SREG_CS)
3096                 var.type = 0x3;
3097
3098         if (!emulate_invalid_guest_state) {
3099                 var.selector = var.base >> 4;
3100                 var.base = var.base & 0xffff0;
3101                 var.limit = 0xffff;
3102                 var.g = 0;
3103                 var.db = 0;
3104                 var.present = 1;
3105                 var.s = 1;
3106                 var.l = 0;
3107                 var.unusable = 0;
3108                 var.type = 0x3;
3109                 var.avl = 0;
3110                 if (save->base & 0xf)
3111                         printk_once(KERN_WARNING "kvm: segment base is not "
3112                                         "paragraph aligned when entering "
3113                                         "protected mode (seg=%d)", seg);
3114         }
3115
3116         vmcs_write16(sf->selector, var.selector);
3117         vmcs_write32(sf->base, var.base);
3118         vmcs_write32(sf->limit, var.limit);
3119         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3120 }
3121
3122 static void enter_rmode(struct kvm_vcpu *vcpu)
3123 {
3124         unsigned long flags;
3125         struct vcpu_vmx *vmx = to_vmx(vcpu);
3126
3127         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3128         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3129         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3130         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3131         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3132         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3133         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3134
3135         vmx->rmode.vm86_active = 1;
3136
3137         /*
3138          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3139          * vcpu. Warn the user that an update is overdue.
3140          */
3141         if (!vcpu->kvm->arch.tss_addr)
3142                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3143                              "called before entering vcpu\n");
3144
3145         vmx_segment_cache_clear(vmx);
3146
3147         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3148         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3149         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3150
3151         flags = vmcs_readl(GUEST_RFLAGS);
3152         vmx->rmode.save_rflags = flags;
3153
3154         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3155
3156         vmcs_writel(GUEST_RFLAGS, flags);
3157         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3158         update_exception_bitmap(vcpu);
3159
3160         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3161         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3162         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3163         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3164         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3165         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3166
3167         kvm_mmu_reset_context(vcpu);
3168 }
3169
3170 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3171 {
3172         struct vcpu_vmx *vmx = to_vmx(vcpu);
3173         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3174
3175         if (!msr)
3176                 return;
3177
3178         /*
3179          * Force kernel_gs_base reloading before EFER changes, as control
3180          * of this msr depends on is_long_mode().
3181          */
3182         vmx_load_host_state(to_vmx(vcpu));
3183         vcpu->arch.efer = efer;
3184         if (efer & EFER_LMA) {
3185                 vmcs_write32(VM_ENTRY_CONTROLS,
3186                              vmcs_read32(VM_ENTRY_CONTROLS) |
3187                              VM_ENTRY_IA32E_MODE);
3188                 msr->data = efer;
3189         } else {
3190                 vmcs_write32(VM_ENTRY_CONTROLS,
3191                              vmcs_read32(VM_ENTRY_CONTROLS) &
3192                              ~VM_ENTRY_IA32E_MODE);
3193
3194                 msr->data = efer & ~EFER_LME;
3195         }
3196         setup_msrs(vmx);
3197 }
3198
3199 #ifdef CONFIG_X86_64
3200
3201 static void enter_lmode(struct kvm_vcpu *vcpu)
3202 {
3203         u32 guest_tr_ar;
3204
3205         vmx_segment_cache_clear(to_vmx(vcpu));
3206
3207         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3208         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3209                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3210                                      __func__);
3211                 vmcs_write32(GUEST_TR_AR_BYTES,
3212                              (guest_tr_ar & ~AR_TYPE_MASK)
3213                              | AR_TYPE_BUSY_64_TSS);
3214         }
3215         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3216 }
3217
3218 static void exit_lmode(struct kvm_vcpu *vcpu)
3219 {
3220         vmcs_write32(VM_ENTRY_CONTROLS,
3221                      vmcs_read32(VM_ENTRY_CONTROLS)
3222                      & ~VM_ENTRY_IA32E_MODE);
3223         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3224 }
3225
3226 #endif
3227
3228 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3229 {
3230         vpid_sync_context(to_vmx(vcpu));
3231         if (enable_ept) {
3232                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3233                         return;
3234                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3235         }
3236 }
3237
3238 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3239 {
3240         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3241
3242         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3243         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3244 }
3245
3246 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3247 {
3248         if (enable_ept && is_paging(vcpu))
3249                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3250         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3251 }
3252
3253 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3254 {
3255         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3256
3257         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3258         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3259 }
3260
3261 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3262 {
3263         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3264
3265         if (!test_bit(VCPU_EXREG_PDPTR,
3266                       (unsigned long *)&vcpu->arch.regs_dirty))
3267                 return;
3268
3269         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3270                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3271                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3272                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3273                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3274         }
3275 }
3276
3277 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3278 {
3279         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3280
3281         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3282                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3283                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3284                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3285                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3286         }
3287
3288         __set_bit(VCPU_EXREG_PDPTR,
3289                   (unsigned long *)&vcpu->arch.regs_avail);
3290         __set_bit(VCPU_EXREG_PDPTR,
3291                   (unsigned long *)&vcpu->arch.regs_dirty);
3292 }
3293
3294 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3295
3296 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3297                                         unsigned long cr0,
3298                                         struct kvm_vcpu *vcpu)
3299 {
3300         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3301                 vmx_decache_cr3(vcpu);
3302         if (!(cr0 & X86_CR0_PG)) {
3303                 /* From paging/starting to nonpaging */
3304                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3305                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3306                              (CPU_BASED_CR3_LOAD_EXITING |
3307                               CPU_BASED_CR3_STORE_EXITING));
3308                 vcpu->arch.cr0 = cr0;
3309                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3310         } else if (!is_paging(vcpu)) {
3311                 /* From nonpaging to paging */
3312                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3313                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3314                              ~(CPU_BASED_CR3_LOAD_EXITING |
3315                                CPU_BASED_CR3_STORE_EXITING));
3316                 vcpu->arch.cr0 = cr0;
3317                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3318         }
3319
3320         if (!(cr0 & X86_CR0_WP))
3321                 *hw_cr0 &= ~X86_CR0_WP;
3322 }
3323
3324 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3325 {
3326         struct vcpu_vmx *vmx = to_vmx(vcpu);
3327         unsigned long hw_cr0;
3328
3329         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3330         if (enable_unrestricted_guest)
3331                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3332         else {
3333                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3334
3335                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3336                         enter_pmode(vcpu);
3337
3338                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3339                         enter_rmode(vcpu);
3340         }
3341
3342 #ifdef CONFIG_X86_64
3343         if (vcpu->arch.efer & EFER_LME) {
3344                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3345                         enter_lmode(vcpu);
3346                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3347                         exit_lmode(vcpu);
3348         }
3349 #endif
3350
3351         if (enable_ept)
3352                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3353
3354         if (!vcpu->fpu_active)
3355                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3356
3357         vmcs_writel(CR0_READ_SHADOW, cr0);
3358         vmcs_writel(GUEST_CR0, hw_cr0);
3359         vcpu->arch.cr0 = cr0;
3360
3361         /* depends on vcpu->arch.cr0 to be set to a new value */
3362         vmx->emulation_required = emulation_required(vcpu);
3363 }
3364
3365 static u64 construct_eptp(unsigned long root_hpa)
3366 {
3367         u64 eptp;
3368
3369         /* TODO write the value reading from MSR */
3370         eptp = VMX_EPT_DEFAULT_MT |
3371                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3372         if (enable_ept_ad_bits)
3373                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3374         eptp |= (root_hpa & PAGE_MASK);
3375
3376         return eptp;
3377 }
3378
3379 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3380 {
3381         unsigned long guest_cr3;
3382         u64 eptp;
3383
3384         guest_cr3 = cr3;
3385         if (enable_ept) {
3386                 eptp = construct_eptp(cr3);
3387                 vmcs_write64(EPT_POINTER, eptp);
3388                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3389                         guest_cr3 = kvm_read_cr3(vcpu);
3390                 else
3391                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3392                 ept_load_pdptrs(vcpu);
3393         }
3394
3395         vmx_flush_tlb(vcpu);
3396         vmcs_writel(GUEST_CR3, guest_cr3);
3397 }
3398
3399 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3400 {
3401         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3402                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3403
3404         if (cr4 & X86_CR4_VMXE) {
3405                 /*
3406                  * To use VMXON (and later other VMX instructions), a guest
3407                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3408                  * So basically the check on whether to allow nested VMX
3409                  * is here.
3410                  */
3411                 if (!nested_vmx_allowed(vcpu))
3412                         return 1;
3413         }
3414         if (to_vmx(vcpu)->nested.vmxon &&
3415             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3416                 return 1;
3417
3418         vcpu->arch.cr4 = cr4;
3419         if (enable_ept) {
3420                 if (!is_paging(vcpu)) {
3421                         hw_cr4 &= ~X86_CR4_PAE;
3422                         hw_cr4 |= X86_CR4_PSE;
3423                         /*
3424                          * SMEP is disabled if CPU is in non-paging mode in
3425                          * hardware. However KVM always uses paging mode to
3426                          * emulate guest non-paging mode with TDP.
3427                          * To emulate this behavior, SMEP needs to be manually
3428                          * disabled when guest switches to non-paging mode.
3429                          */
3430                         hw_cr4 &= ~X86_CR4_SMEP;
3431                 } else if (!(cr4 & X86_CR4_PAE)) {
3432                         hw_cr4 &= ~X86_CR4_PAE;
3433                 }
3434         }
3435
3436         vmcs_writel(CR4_READ_SHADOW, cr4);
3437         vmcs_writel(GUEST_CR4, hw_cr4);
3438         return 0;
3439 }
3440
3441 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3442                             struct kvm_segment *var, int seg)
3443 {
3444         struct vcpu_vmx *vmx = to_vmx(vcpu);
3445         u32 ar;
3446
3447         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3448                 *var = vmx->rmode.segs[seg];
3449                 if (seg == VCPU_SREG_TR
3450                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3451                         return;
3452                 var->base = vmx_read_guest_seg_base(vmx, seg);
3453                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3454                 return;
3455         }
3456         var->base = vmx_read_guest_seg_base(vmx, seg);
3457         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3458         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3459         ar = vmx_read_guest_seg_ar(vmx, seg);
3460         var->unusable = (ar >> 16) & 1;
3461         var->type = ar & 15;
3462         var->s = (ar >> 4) & 1;
3463         var->dpl = (ar >> 5) & 3;
3464         /*
3465          * Some userspaces do not preserve unusable property. Since usable
3466          * segment has to be present according to VMX spec we can use present
3467          * property to amend userspace bug by making unusable segment always
3468          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3469          * segment as unusable.
3470          */
3471         var->present = !var->unusable;
3472         var->avl = (ar >> 12) & 1;
3473         var->l = (ar >> 13) & 1;
3474         var->db = (ar >> 14) & 1;
3475         var->g = (ar >> 15) & 1;
3476 }
3477
3478 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3479 {
3480         struct kvm_segment s;
3481
3482         if (to_vmx(vcpu)->rmode.vm86_active) {
3483                 vmx_get_segment(vcpu, &s, seg);
3484                 return s.base;
3485         }
3486         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3487 }
3488
3489 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3490 {
3491         struct vcpu_vmx *vmx = to_vmx(vcpu);
3492
3493         if (!is_protmode(vcpu))
3494                 return 0;
3495
3496         if (!is_long_mode(vcpu)
3497             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3498                 return 3;
3499
3500         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3501                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3502                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3503         }
3504
3505         return vmx->cpl;
3506 }
3507
3508
3509 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3510 {
3511         u32 ar;
3512
3513         if (var->unusable || !var->present)
3514                 ar = 1 << 16;
3515         else {
3516                 ar = var->type & 15;
3517                 ar |= (var->s & 1) << 4;
3518                 ar |= (var->dpl & 3) << 5;
3519                 ar |= (var->present & 1) << 7;
3520                 ar |= (var->avl & 1) << 12;
3521                 ar |= (var->l & 1) << 13;
3522                 ar |= (var->db & 1) << 14;
3523                 ar |= (var->g & 1) << 15;
3524         }
3525
3526         return ar;
3527 }
3528
3529 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3530                             struct kvm_segment *var, int seg)
3531 {
3532         struct vcpu_vmx *vmx = to_vmx(vcpu);
3533         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3534
3535         vmx_segment_cache_clear(vmx);
3536         if (seg == VCPU_SREG_CS)
3537                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3538
3539         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3540                 vmx->rmode.segs[seg] = *var;
3541                 if (seg == VCPU_SREG_TR)
3542                         vmcs_write16(sf->selector, var->selector);
3543                 else if (var->s)
3544                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3545                 goto out;
3546         }
3547
3548         vmcs_writel(sf->base, var->base);
3549         vmcs_write32(sf->limit, var->limit);
3550         vmcs_write16(sf->selector, var->selector);
3551
3552         /*
3553          *   Fix the "Accessed" bit in AR field of segment registers for older
3554          * qemu binaries.
3555          *   IA32 arch specifies that at the time of processor reset the
3556          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3557          * is setting it to 0 in the userland code. This causes invalid guest
3558          * state vmexit when "unrestricted guest" mode is turned on.
3559          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3560          * tree. Newer qemu binaries with that qemu fix would not need this
3561          * kvm hack.
3562          */
3563         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3564                 var->type |= 0x1; /* Accessed */
3565
3566         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3567
3568 out:
3569         vmx->emulation_required |= emulation_required(vcpu);
3570 }
3571
3572 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3573 {
3574         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3575
3576         *db = (ar >> 14) & 1;
3577         *l = (ar >> 13) & 1;
3578 }
3579
3580 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3581 {
3582         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3583         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3584 }
3585
3586 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3587 {
3588         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3589         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3590 }
3591
3592 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3593 {
3594         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3595         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3596 }
3597
3598 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3599 {
3600         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3601         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3602 }
3603
3604 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3605 {
3606         struct kvm_segment var;
3607         u32 ar;
3608
3609         vmx_get_segment(vcpu, &var, seg);
3610         var.dpl = 0x3;
3611         if (seg == VCPU_SREG_CS)
3612                 var.type = 0x3;
3613         ar = vmx_segment_access_rights(&var);
3614
3615         if (var.base != (var.selector << 4))
3616                 return false;
3617         if (var.limit != 0xffff)
3618                 return false;
3619         if (ar != 0xf3)
3620                 return false;
3621
3622         return true;
3623 }
3624
3625 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3626 {
3627         struct kvm_segment cs;
3628         unsigned int cs_rpl;
3629
3630         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3631         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3632
3633         if (cs.unusable)
3634                 return false;
3635         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3636                 return false;
3637         if (!cs.s)
3638                 return false;
3639         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3640                 if (cs.dpl > cs_rpl)
3641                         return false;
3642         } else {
3643                 if (cs.dpl != cs_rpl)
3644                         return false;
3645         }
3646         if (!cs.present)
3647                 return false;
3648
3649         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3650         return true;
3651 }
3652
3653 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3654 {
3655         struct kvm_segment ss;
3656         unsigned int ss_rpl;
3657
3658         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3659         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3660
3661         if (ss.unusable)
3662                 return true;
3663         if (ss.type != 3 && ss.type != 7)
3664                 return false;
3665         if (!ss.s)
3666                 return false;
3667         if (ss.dpl != ss_rpl) /* DPL != RPL */
3668                 return false;
3669         if (!ss.present)
3670                 return false;
3671
3672         return true;
3673 }
3674
3675 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3676 {
3677         struct kvm_segment var;
3678         unsigned int rpl;
3679
3680         vmx_get_segment(vcpu, &var, seg);
3681         rpl = var.selector & SELECTOR_RPL_MASK;
3682
3683         if (var.unusable)
3684                 return true;
3685         if (!var.s)
3686                 return false;
3687         if (!var.present)
3688                 return false;
3689         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3690                 if (var.dpl < rpl) /* DPL < RPL */
3691                         return false;
3692         }
3693
3694         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3695          * rights flags
3696          */
3697         return true;
3698 }
3699
3700 static bool tr_valid(struct kvm_vcpu *vcpu)
3701 {
3702         struct kvm_segment tr;
3703
3704         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3705
3706         if (tr.unusable)
3707                 return false;
3708         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3709                 return false;
3710         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3711                 return false;
3712         if (!tr.present)
3713                 return false;
3714
3715         return true;
3716 }
3717
3718 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3719 {
3720         struct kvm_segment ldtr;
3721
3722         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3723
3724         if (ldtr.unusable)
3725                 return true;
3726         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3727                 return false;
3728         if (ldtr.type != 2)
3729                 return false;
3730         if (!ldtr.present)
3731                 return false;
3732
3733         return true;
3734 }
3735
3736 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3737 {
3738         struct kvm_segment cs, ss;
3739
3740         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3741         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3742
3743         return ((cs.selector & SELECTOR_RPL_MASK) ==
3744                  (ss.selector & SELECTOR_RPL_MASK));
3745 }
3746
3747 /*
3748  * Check if guest state is valid. Returns true if valid, false if
3749  * not.
3750  * We assume that registers are always usable
3751  */
3752 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3753 {
3754         if (enable_unrestricted_guest)
3755                 return true;
3756
3757         /* real mode guest state checks */
3758         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3759                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3760                         return false;
3761                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3762                         return false;
3763                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3764                         return false;
3765                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3766                         return false;
3767                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3768                         return false;
3769                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3770                         return false;
3771         } else {
3772         /* protected mode guest state checks */
3773                 if (!cs_ss_rpl_check(vcpu))
3774                         return false;
3775                 if (!code_segment_valid(vcpu))
3776                         return false;
3777                 if (!stack_segment_valid(vcpu))
3778                         return false;
3779                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3780                         return false;
3781                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3782                         return false;
3783                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3784                         return false;
3785                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3786                         return false;
3787                 if (!tr_valid(vcpu))
3788                         return false;
3789                 if (!ldtr_valid(vcpu))
3790                         return false;
3791         }
3792         /* TODO:
3793          * - Add checks on RIP
3794          * - Add checks on RFLAGS
3795          */
3796
3797         return true;
3798 }
3799
3800 static int init_rmode_tss(struct kvm *kvm)
3801 {
3802         gfn_t fn;
3803         u16 data = 0;
3804         int r, idx, ret = 0;
3805
3806         idx = srcu_read_lock(&kvm->srcu);
3807         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3808         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3809         if (r < 0)
3810                 goto out;
3811         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3812         r = kvm_write_guest_page(kvm, fn++, &data,
3813                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3814         if (r < 0)
3815                 goto out;
3816         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3817         if (r < 0)
3818                 goto out;
3819         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3820         if (r < 0)
3821                 goto out;
3822         data = ~0;
3823         r = kvm_write_guest_page(kvm, fn, &data,
3824                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3825                                  sizeof(u8));
3826         if (r < 0)
3827                 goto out;
3828
3829         ret = 1;
3830 out:
3831         srcu_read_unlock(&kvm->srcu, idx);
3832         return ret;
3833 }
3834
3835 static int init_rmode_identity_map(struct kvm *kvm)
3836 {
3837         int i, idx, r, ret;
3838         pfn_t identity_map_pfn;
3839         u32 tmp;
3840
3841         if (!enable_ept)
3842                 return 1;
3843         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3844                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3845                         "haven't been allocated!\n");
3846                 return 0;
3847         }
3848         if (likely(kvm->arch.ept_identity_pagetable_done))
3849                 return 1;
3850         ret = 0;
3851         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3852         idx = srcu_read_lock(&kvm->srcu);
3853         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3854         if (r < 0)
3855                 goto out;
3856         /* Set up identity-mapping pagetable for EPT in real mode */
3857         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3858                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3859                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3860                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3861                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3862                 if (r < 0)
3863                         goto out;
3864         }
3865         kvm->arch.ept_identity_pagetable_done = true;
3866         ret = 1;
3867 out:
3868         srcu_read_unlock(&kvm->srcu, idx);
3869         return ret;
3870 }
3871
3872 static void seg_setup(int seg)
3873 {
3874         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3875         unsigned int ar;
3876
3877         vmcs_write16(sf->selector, 0);
3878         vmcs_writel(sf->base, 0);
3879         vmcs_write32(sf->limit, 0xffff);
3880         ar = 0x93;
3881         if (seg == VCPU_SREG_CS)
3882                 ar |= 0x08; /* code segment */
3883
3884         vmcs_write32(sf->ar_bytes, ar);
3885 }
3886
3887 static int alloc_apic_access_page(struct kvm *kvm)
3888 {
3889         struct page *page;
3890         struct kvm_userspace_memory_region kvm_userspace_mem;
3891         int r = 0;
3892
3893         mutex_lock(&kvm->slots_lock);
3894         if (kvm->arch.apic_access_page)
3895                 goto out;
3896         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3897         kvm_userspace_mem.flags = 0;
3898         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3899         kvm_userspace_mem.memory_size = PAGE_SIZE;
3900         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3901         if (r)
3902                 goto out;
3903
3904         page = gfn_to_page(kvm, 0xfee00);
3905         if (is_error_page(page)) {
3906                 r = -EFAULT;
3907                 goto out;
3908         }
3909
3910         kvm->arch.apic_access_page = page;
3911 out:
3912         mutex_unlock(&kvm->slots_lock);
3913         return r;
3914 }
3915
3916 static int alloc_identity_pagetable(struct kvm *kvm)
3917 {
3918         struct page *page;
3919         struct kvm_userspace_memory_region kvm_userspace_mem;
3920         int r = 0;
3921
3922         mutex_lock(&kvm->slots_lock);
3923         if (kvm->arch.ept_identity_pagetable)
3924                 goto out;
3925         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3926         kvm_userspace_mem.flags = 0;
3927         kvm_userspace_mem.guest_phys_addr =
3928                 kvm->arch.ept_identity_map_addr;
3929         kvm_userspace_mem.memory_size = PAGE_SIZE;
3930         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3931         if (r)
3932                 goto out;
3933
3934         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3935         if (is_error_page(page)) {
3936                 r = -EFAULT;
3937                 goto out;
3938         }
3939
3940         kvm->arch.ept_identity_pagetable = page;
3941 out:
3942         mutex_unlock(&kvm->slots_lock);
3943         return r;
3944 }
3945
3946 static void allocate_vpid(struct vcpu_vmx *vmx)
3947 {
3948         int vpid;
3949
3950         vmx->vpid = 0;
3951         if (!enable_vpid)
3952                 return;
3953         spin_lock(&vmx_vpid_lock);
3954         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3955         if (vpid < VMX_NR_VPIDS) {
3956                 vmx->vpid = vpid;
3957                 __set_bit(vpid, vmx_vpid_bitmap);
3958         }
3959         spin_unlock(&vmx_vpid_lock);
3960 }
3961
3962 static void free_vpid(struct vcpu_vmx *vmx)
3963 {
3964         if (!enable_vpid)
3965                 return;
3966         spin_lock(&vmx_vpid_lock);
3967         if (vmx->vpid != 0)
3968                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3969         spin_unlock(&vmx_vpid_lock);
3970 }
3971
3972 #define MSR_TYPE_R      1
3973 #define MSR_TYPE_W      2
3974 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3975                                                 u32 msr, int type)
3976 {
3977         int f = sizeof(unsigned long);
3978
3979         if (!cpu_has_vmx_msr_bitmap())
3980                 return;
3981
3982         /*
3983          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3984          * have the write-low and read-high bitmap offsets the wrong way round.
3985          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3986          */
3987         if (msr <= 0x1fff) {
3988                 if (type & MSR_TYPE_R)
3989                         /* read-low */
3990                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3991
3992                 if (type & MSR_TYPE_W)
3993                         /* write-low */
3994                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3995
3996         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3997                 msr &= 0x1fff;
3998                 if (type & MSR_TYPE_R)
3999                         /* read-high */
4000                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4001
4002                 if (type & MSR_TYPE_W)
4003                         /* write-high */
4004                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4005
4006         }
4007 }
4008
4009 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4010                                                 u32 msr, int type)
4011 {
4012         int f = sizeof(unsigned long);
4013
4014         if (!cpu_has_vmx_msr_bitmap())
4015                 return;
4016
4017         /*
4018          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4019          * have the write-low and read-high bitmap offsets the wrong way round.
4020          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4021          */
4022         if (msr <= 0x1fff) {
4023                 if (type & MSR_TYPE_R)
4024                         /* read-low */
4025                         __set_bit(msr, msr_bitmap + 0x000 / f);
4026
4027                 if (type & MSR_TYPE_W)
4028                         /* write-low */
4029                         __set_bit(msr, msr_bitmap + 0x800 / f);
4030
4031         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4032                 msr &= 0x1fff;
4033                 if (type & MSR_TYPE_R)
4034                         /* read-high */
4035                         __set_bit(msr, msr_bitmap + 0x400 / f);
4036
4037                 if (type & MSR_TYPE_W)
4038                         /* write-high */
4039                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4040
4041         }
4042 }
4043
4044 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4045 {
4046         if (!longmode_only)
4047                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4048                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4049         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4050                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4051 }
4052
4053 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4054 {
4055         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4056                         msr, MSR_TYPE_R);
4057         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4058                         msr, MSR_TYPE_R);
4059 }
4060
4061 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4062 {
4063         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4064                         msr, MSR_TYPE_R);
4065         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4066                         msr, MSR_TYPE_R);
4067 }
4068
4069 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4070 {
4071         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4072                         msr, MSR_TYPE_W);
4073         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4074                         msr, MSR_TYPE_W);
4075 }
4076
4077 static int vmx_vm_has_apicv(struct kvm *kvm)
4078 {
4079         return enable_apicv && irqchip_in_kernel(kvm);
4080 }
4081
4082 /*
4083  * Send interrupt to vcpu via posted interrupt way.
4084  * 1. If target vcpu is running(non-root mode), send posted interrupt
4085  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4086  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4087  * interrupt from PIR in next vmentry.
4088  */
4089 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4090 {
4091         struct vcpu_vmx *vmx = to_vmx(vcpu);
4092         int r;
4093
4094         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4095                 return;
4096
4097         r = pi_test_and_set_on(&vmx->pi_desc);
4098         kvm_make_request(KVM_REQ_EVENT, vcpu);
4099 #ifdef CONFIG_SMP
4100         if (!r && (vcpu->mode == IN_GUEST_MODE))
4101                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4102                                 POSTED_INTR_VECTOR);
4103         else
4104 #endif
4105                 kvm_vcpu_kick(vcpu);
4106 }
4107
4108 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4109 {
4110         struct vcpu_vmx *vmx = to_vmx(vcpu);
4111
4112         if (!pi_test_and_clear_on(&vmx->pi_desc))
4113                 return;
4114
4115         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4116 }
4117
4118 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4119 {
4120         return;
4121 }
4122
4123 /*
4124  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4125  * will not change in the lifetime of the guest.
4126  * Note that host-state that does change is set elsewhere. E.g., host-state
4127  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4128  */
4129 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4130 {
4131         u32 low32, high32;
4132         unsigned long tmpl;
4133         struct desc_ptr dt;
4134
4135         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4136         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4137         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4138
4139         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4140 #ifdef CONFIG_X86_64
4141         /*
4142          * Load null selectors, so we can avoid reloading them in
4143          * __vmx_load_host_state(), in case userspace uses the null selectors
4144          * too (the expected case).
4145          */
4146         vmcs_write16(HOST_DS_SELECTOR, 0);
4147         vmcs_write16(HOST_ES_SELECTOR, 0);
4148 #else
4149         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4150         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4151 #endif
4152         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4153         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4154
4155         native_store_idt(&dt);
4156         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4157         vmx->host_idt_base = dt.address;
4158
4159         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4160
4161         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4162         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4163         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4164         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4165
4166         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4167                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4168                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4169         }
4170 }
4171
4172 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4173 {
4174         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4175         if (enable_ept)
4176                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4177         if (is_guest_mode(&vmx->vcpu))
4178                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4179                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4180         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4181 }
4182
4183 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4184 {
4185         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4186
4187         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4188                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4189         return pin_based_exec_ctrl;
4190 }
4191
4192 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4193 {
4194         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4195         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4196                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4197 #ifdef CONFIG_X86_64
4198                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4199                                 CPU_BASED_CR8_LOAD_EXITING;
4200 #endif
4201         }
4202         if (!enable_ept)
4203                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4204                                 CPU_BASED_CR3_LOAD_EXITING  |
4205                                 CPU_BASED_INVLPG_EXITING;
4206         return exec_control;
4207 }
4208
4209 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4210 {
4211         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4212         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4213                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4214         if (vmx->vpid == 0)
4215                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4216         if (!enable_ept) {
4217                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4218                 enable_unrestricted_guest = 0;
4219                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4220                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4221         }
4222         if (!enable_unrestricted_guest)
4223                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4224         if (!ple_gap)
4225                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4226         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4227                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4228                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4229         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4230         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4231            (handle_vmptrld).
4232            We can NOT enable shadow_vmcs here because we don't have yet
4233            a current VMCS12
4234         */
4235         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4236         return exec_control;
4237 }
4238
4239 static void ept_set_mmio_spte_mask(void)
4240 {
4241         /*
4242          * EPT Misconfigurations can be generated if the value of bits 2:0
4243          * of an EPT paging-structure entry is 110b (write/execute).
4244          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4245          * spte.
4246          */
4247         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4248 }
4249
4250 /*
4251  * Sets up the vmcs for emulated real mode.
4252  */
4253 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4254 {
4255 #ifdef CONFIG_X86_64
4256         unsigned long a;
4257 #endif
4258         int i;
4259
4260         /* I/O */
4261         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4262         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4263
4264         if (enable_shadow_vmcs) {
4265                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4266                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4267         }
4268         if (cpu_has_vmx_msr_bitmap())
4269                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4270
4271         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4272
4273         /* Control */
4274         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4275
4276         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4277
4278         if (cpu_has_secondary_exec_ctrls()) {
4279                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4280                                 vmx_secondary_exec_control(vmx));
4281         }
4282
4283         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4284                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4285                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4286                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4287                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4288
4289                 vmcs_write16(GUEST_INTR_STATUS, 0);
4290
4291                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4292                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4293         }
4294
4295         if (ple_gap) {
4296                 vmcs_write32(PLE_GAP, ple_gap);
4297                 vmcs_write32(PLE_WINDOW, ple_window);
4298         }
4299
4300         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4301         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4302         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4303
4304         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4305         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4306         vmx_set_constant_host_state(vmx);
4307 #ifdef CONFIG_X86_64
4308         rdmsrl(MSR_FS_BASE, a);
4309         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4310         rdmsrl(MSR_GS_BASE, a);
4311         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4312 #else
4313         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4314         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4315 #endif
4316
4317         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4318         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4319         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4320         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4321         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4322
4323         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4324                 u32 msr_low, msr_high;
4325                 u64 host_pat;
4326                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4327                 host_pat = msr_low | ((u64) msr_high << 32);
4328                 /* Write the default value follow host pat */
4329                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4330                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4331                 vmx->vcpu.arch.pat = host_pat;
4332         }
4333
4334         for (i = 0; i < NR_VMX_MSR; ++i) {
4335                 u32 index = vmx_msr_index[i];
4336                 u32 data_low, data_high;
4337                 int j = vmx->nmsrs;
4338
4339                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4340                         continue;
4341                 if (wrmsr_safe(index, data_low, data_high) < 0)
4342                         continue;
4343                 vmx->guest_msrs[j].index = i;
4344                 vmx->guest_msrs[j].data = 0;
4345                 vmx->guest_msrs[j].mask = -1ull;
4346                 ++vmx->nmsrs;
4347         }
4348
4349         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4350
4351         /* 22.2.1, 20.8.1 */
4352         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4353
4354         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4355         set_cr4_guest_host_mask(vmx);
4356
4357         return 0;
4358 }
4359
4360 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4361 {
4362         struct vcpu_vmx *vmx = to_vmx(vcpu);
4363         u64 msr;
4364
4365         vmx->rmode.vm86_active = 0;
4366
4367         vmx->soft_vnmi_blocked = 0;
4368
4369         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4370         kvm_set_cr8(&vmx->vcpu, 0);
4371         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4372         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4373                 msr |= MSR_IA32_APICBASE_BSP;
4374         kvm_set_apic_base(&vmx->vcpu, msr);
4375
4376         vmx_segment_cache_clear(vmx);
4377
4378         seg_setup(VCPU_SREG_CS);
4379         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4380         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4381
4382         seg_setup(VCPU_SREG_DS);
4383         seg_setup(VCPU_SREG_ES);
4384         seg_setup(VCPU_SREG_FS);
4385         seg_setup(VCPU_SREG_GS);
4386         seg_setup(VCPU_SREG_SS);
4387
4388         vmcs_write16(GUEST_TR_SELECTOR, 0);
4389         vmcs_writel(GUEST_TR_BASE, 0);
4390         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4391         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4392
4393         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4394         vmcs_writel(GUEST_LDTR_BASE, 0);
4395         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4396         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4397
4398         vmcs_write32(GUEST_SYSENTER_CS, 0);
4399         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4400         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4401
4402         vmcs_writel(GUEST_RFLAGS, 0x02);
4403         kvm_rip_write(vcpu, 0xfff0);
4404
4405         vmcs_writel(GUEST_GDTR_BASE, 0);
4406         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4407
4408         vmcs_writel(GUEST_IDTR_BASE, 0);
4409         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4410
4411         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4412         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4413         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4414
4415         /* Special registers */
4416         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4417
4418         setup_msrs(vmx);
4419
4420         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4421
4422         if (cpu_has_vmx_tpr_shadow()) {
4423                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4424                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4425                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4426                                      __pa(vmx->vcpu.arch.apic->regs));
4427                 vmcs_write32(TPR_THRESHOLD, 0);
4428         }
4429
4430         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4431                 vmcs_write64(APIC_ACCESS_ADDR,
4432                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4433
4434         if (vmx_vm_has_apicv(vcpu->kvm))
4435                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4436
4437         if (vmx->vpid != 0)
4438                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4439
4440         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4441         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4442         vmx_set_cr4(&vmx->vcpu, 0);
4443         vmx_set_efer(&vmx->vcpu, 0);
4444         vmx_fpu_activate(&vmx->vcpu);
4445         update_exception_bitmap(&vmx->vcpu);
4446
4447         vpid_sync_context(vmx);
4448 }
4449
4450 /*
4451  * In nested virtualization, check if L1 asked to exit on external interrupts.
4452  * For most existing hypervisors, this will always return true.
4453  */
4454 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4455 {
4456         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4457                 PIN_BASED_EXT_INTR_MASK;
4458 }
4459
4460 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4461 {
4462         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4463                 PIN_BASED_NMI_EXITING;
4464 }
4465
4466 static int enable_irq_window(struct kvm_vcpu *vcpu)
4467 {
4468         u32 cpu_based_vm_exec_control;
4469
4470         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4471                 /*
4472                  * We get here if vmx_interrupt_allowed() said we can't
4473                  * inject to L1 now because L2 must run. The caller will have
4474                  * to make L2 exit right after entry, so we can inject to L1
4475                  * more promptly.
4476                  */
4477                 return -EBUSY;
4478
4479         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4480         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4481         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4482         return 0;
4483 }
4484
4485 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4486 {
4487         u32 cpu_based_vm_exec_control;
4488
4489         if (!cpu_has_virtual_nmis())
4490                 return enable_irq_window(vcpu);
4491
4492         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4493                 return enable_irq_window(vcpu);
4494
4495         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4496         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4497         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4498         return 0;
4499 }
4500
4501 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4502 {
4503         struct vcpu_vmx *vmx = to_vmx(vcpu);
4504         uint32_t intr;
4505         int irq = vcpu->arch.interrupt.nr;
4506
4507         trace_kvm_inj_virq(irq);
4508
4509         ++vcpu->stat.irq_injections;
4510         if (vmx->rmode.vm86_active) {
4511                 int inc_eip = 0;
4512                 if (vcpu->arch.interrupt.soft)
4513                         inc_eip = vcpu->arch.event_exit_inst_len;
4514                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4515                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4516                 return;
4517         }
4518         intr = irq | INTR_INFO_VALID_MASK;
4519         if (vcpu->arch.interrupt.soft) {
4520                 intr |= INTR_TYPE_SOFT_INTR;
4521                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4522                              vmx->vcpu.arch.event_exit_inst_len);
4523         } else
4524                 intr |= INTR_TYPE_EXT_INTR;
4525         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4526 }
4527
4528 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4529 {
4530         struct vcpu_vmx *vmx = to_vmx(vcpu);
4531
4532         if (is_guest_mode(vcpu))
4533                 return;
4534
4535         if (!cpu_has_virtual_nmis()) {
4536                 /*
4537                  * Tracking the NMI-blocked state in software is built upon
4538                  * finding the next open IRQ window. This, in turn, depends on
4539                  * well-behaving guests: They have to keep IRQs disabled at
4540                  * least as long as the NMI handler runs. Otherwise we may
4541                  * cause NMI nesting, maybe breaking the guest. But as this is
4542                  * highly unlikely, we can live with the residual risk.
4543                  */
4544                 vmx->soft_vnmi_blocked = 1;
4545                 vmx->vnmi_blocked_time = 0;
4546         }
4547
4548         ++vcpu->stat.nmi_injections;
4549         vmx->nmi_known_unmasked = false;
4550         if (vmx->rmode.vm86_active) {
4551                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4552                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4553                 return;
4554         }
4555         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4556                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4557 }
4558
4559 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4560 {
4561         if (!cpu_has_virtual_nmis())
4562                 return to_vmx(vcpu)->soft_vnmi_blocked;
4563         if (to_vmx(vcpu)->nmi_known_unmasked)
4564                 return false;
4565         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4566 }
4567
4568 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4569 {
4570         struct vcpu_vmx *vmx = to_vmx(vcpu);
4571
4572         if (!cpu_has_virtual_nmis()) {
4573                 if (vmx->soft_vnmi_blocked != masked) {
4574                         vmx->soft_vnmi_blocked = masked;
4575                         vmx->vnmi_blocked_time = 0;
4576                 }
4577         } else {
4578                 vmx->nmi_known_unmasked = !masked;
4579                 if (masked)
4580                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4581                                       GUEST_INTR_STATE_NMI);
4582                 else
4583                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4584                                         GUEST_INTR_STATE_NMI);
4585         }
4586 }
4587
4588 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4589 {
4590         if (is_guest_mode(vcpu)) {
4591                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4592
4593                 if (to_vmx(vcpu)->nested.nested_run_pending)
4594                         return 0;
4595                 if (nested_exit_on_nmi(vcpu)) {
4596                         nested_vmx_vmexit(vcpu);
4597                         vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4598                         vmcs12->vm_exit_intr_info = NMI_VECTOR |
4599                                 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4600                         /*
4601                          * The NMI-triggered VM exit counts as injection:
4602                          * clear this one and block further NMIs.
4603                          */
4604                         vcpu->arch.nmi_pending = 0;
4605                         vmx_set_nmi_mask(vcpu, true);
4606                         return 0;
4607                 }
4608         }
4609
4610         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4611                 return 0;
4612
4613         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4614                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4615                    | GUEST_INTR_STATE_NMI));
4616 }
4617
4618 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4619 {
4620         if (is_guest_mode(vcpu)) {
4621                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4622
4623                 if (to_vmx(vcpu)->nested.nested_run_pending)
4624                         return 0;
4625                 if (nested_exit_on_intr(vcpu)) {
4626                         nested_vmx_vmexit(vcpu);
4627                         vmcs12->vm_exit_reason =
4628                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4629                         vmcs12->vm_exit_intr_info = 0;
4630                         /*
4631                          * fall through to normal code, but now in L1, not L2
4632                          */
4633                 }
4634         }
4635
4636         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4637                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4638                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4639 }
4640
4641 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4642 {
4643         int ret;
4644         struct kvm_userspace_memory_region tss_mem = {
4645                 .slot = TSS_PRIVATE_MEMSLOT,
4646                 .guest_phys_addr = addr,
4647                 .memory_size = PAGE_SIZE * 3,
4648                 .flags = 0,
4649         };
4650
4651         ret = kvm_set_memory_region(kvm, &tss_mem);
4652         if (ret)
4653                 return ret;
4654         kvm->arch.tss_addr = addr;
4655         if (!init_rmode_tss(kvm))
4656                 return  -ENOMEM;
4657
4658         return 0;
4659 }
4660
4661 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4662 {
4663         switch (vec) {
4664         case BP_VECTOR:
4665                 /*
4666                  * Update instruction length as we may reinject the exception
4667                  * from user space while in guest debugging mode.
4668                  */
4669                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4670                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4671                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4672                         return false;
4673                 /* fall through */
4674         case DB_VECTOR:
4675                 if (vcpu->guest_debug &
4676                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4677                         return false;
4678                 /* fall through */
4679         case DE_VECTOR:
4680         case OF_VECTOR:
4681         case BR_VECTOR:
4682         case UD_VECTOR:
4683         case DF_VECTOR:
4684         case SS_VECTOR:
4685         case GP_VECTOR:
4686         case MF_VECTOR:
4687                 return true;
4688         break;
4689         }
4690         return false;
4691 }
4692
4693 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4694                                   int vec, u32 err_code)
4695 {
4696         /*
4697          * Instruction with address size override prefix opcode 0x67
4698          * Cause the #SS fault with 0 error code in VM86 mode.
4699          */
4700         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4701                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4702                         if (vcpu->arch.halt_request) {
4703                                 vcpu->arch.halt_request = 0;
4704                                 return kvm_emulate_halt(vcpu);
4705                         }
4706                         return 1;
4707                 }
4708                 return 0;
4709         }
4710
4711         /*
4712          * Forward all other exceptions that are valid in real mode.
4713          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4714          *        the required debugging infrastructure rework.
4715          */
4716         kvm_queue_exception(vcpu, vec);
4717         return 1;
4718 }
4719
4720 /*
4721  * Trigger machine check on the host. We assume all the MSRs are already set up
4722  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4723  * We pass a fake environment to the machine check handler because we want
4724  * the guest to be always treated like user space, no matter what context
4725  * it used internally.
4726  */
4727 static void kvm_machine_check(void)
4728 {
4729 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4730         struct pt_regs regs = {
4731                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4732                 .flags = X86_EFLAGS_IF,
4733         };
4734
4735         do_machine_check(&regs, 0);
4736 #endif
4737 }
4738
4739 static int handle_machine_check(struct kvm_vcpu *vcpu)
4740 {
4741         /* already handled by vcpu_run */
4742         return 1;
4743 }
4744
4745 static int handle_exception(struct kvm_vcpu *vcpu)
4746 {
4747         struct vcpu_vmx *vmx = to_vmx(vcpu);
4748         struct kvm_run *kvm_run = vcpu->run;
4749         u32 intr_info, ex_no, error_code;
4750         unsigned long cr2, rip, dr6;
4751         u32 vect_info;
4752         enum emulation_result er;
4753
4754         vect_info = vmx->idt_vectoring_info;
4755         intr_info = vmx->exit_intr_info;
4756
4757         if (is_machine_check(intr_info))
4758                 return handle_machine_check(vcpu);
4759
4760         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4761                 return 1;  /* already handled by vmx_vcpu_run() */
4762
4763         if (is_no_device(intr_info)) {
4764                 vmx_fpu_activate(vcpu);
4765                 return 1;
4766         }
4767
4768         if (is_invalid_opcode(intr_info)) {
4769                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4770                 if (er != EMULATE_DONE)
4771                         kvm_queue_exception(vcpu, UD_VECTOR);
4772                 return 1;
4773         }
4774
4775         error_code = 0;
4776         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4777                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4778
4779         /*
4780          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4781          * MMIO, it is better to report an internal error.
4782          * See the comments in vmx_handle_exit.
4783          */
4784         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4785             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4786                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4787                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4788                 vcpu->run->internal.ndata = 2;
4789                 vcpu->run->internal.data[0] = vect_info;
4790                 vcpu->run->internal.data[1] = intr_info;
4791                 return 0;
4792         }
4793
4794         if (is_page_fault(intr_info)) {
4795                 /* EPT won't cause page fault directly */
4796                 BUG_ON(enable_ept);
4797                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4798                 trace_kvm_page_fault(cr2, error_code);
4799
4800                 if (kvm_event_needs_reinjection(vcpu))
4801                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4802                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4803         }
4804
4805         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4806
4807         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4808                 return handle_rmode_exception(vcpu, ex_no, error_code);
4809
4810         switch (ex_no) {
4811         case DB_VECTOR:
4812                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4813                 if (!(vcpu->guest_debug &
4814                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4815                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4816                         kvm_queue_exception(vcpu, DB_VECTOR);
4817                         return 1;
4818                 }
4819                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4820                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4821                 /* fall through */
4822         case BP_VECTOR:
4823                 /*
4824                  * Update instruction length as we may reinject #BP from
4825                  * user space while in guest debugging mode. Reading it for
4826                  * #DB as well causes no harm, it is not used in that case.
4827                  */
4828                 vmx->vcpu.arch.event_exit_inst_len =
4829                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4830                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4831                 rip = kvm_rip_read(vcpu);
4832                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4833                 kvm_run->debug.arch.exception = ex_no;
4834                 break;
4835         default:
4836                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4837                 kvm_run->ex.exception = ex_no;
4838                 kvm_run->ex.error_code = error_code;
4839                 break;
4840         }
4841         return 0;
4842 }
4843
4844 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4845 {
4846         ++vcpu->stat.irq_exits;
4847         return 1;
4848 }
4849
4850 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4851 {
4852         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4853         return 0;
4854 }
4855
4856 static int handle_io(struct kvm_vcpu *vcpu)
4857 {
4858         unsigned long exit_qualification;
4859         int size, in, string;
4860         unsigned port;
4861
4862         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4863         string = (exit_qualification & 16) != 0;
4864         in = (exit_qualification & 8) != 0;
4865
4866         ++vcpu->stat.io_exits;
4867
4868         if (string || in)
4869                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4870
4871         port = exit_qualification >> 16;
4872         size = (exit_qualification & 7) + 1;
4873         skip_emulated_instruction(vcpu);
4874
4875         return kvm_fast_pio_out(vcpu, size, port);
4876 }
4877
4878 static void
4879 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4880 {
4881         /*
4882          * Patch in the VMCALL instruction:
4883          */
4884         hypercall[0] = 0x0f;
4885         hypercall[1] = 0x01;
4886         hypercall[2] = 0xc1;
4887 }
4888
4889 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4890 {
4891         unsigned long always_on = VMXON_CR0_ALWAYSON;
4892
4893         if (nested_vmx_secondary_ctls_high &
4894                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4895             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4896                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4897         return (val & always_on) == always_on;
4898 }
4899
4900 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4901 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4902 {
4903         if (is_guest_mode(vcpu)) {
4904                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4905                 unsigned long orig_val = val;
4906
4907                 /*
4908                  * We get here when L2 changed cr0 in a way that did not change
4909                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4910                  * but did change L0 shadowed bits. So we first calculate the
4911                  * effective cr0 value that L1 would like to write into the
4912                  * hardware. It consists of the L2-owned bits from the new
4913                  * value combined with the L1-owned bits from L1's guest_cr0.
4914                  */
4915                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4916                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4917
4918                 if (!nested_cr0_valid(vmcs12, val))
4919                         return 1;
4920
4921                 if (kvm_set_cr0(vcpu, val))
4922                         return 1;
4923                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4924                 return 0;
4925         } else {
4926                 if (to_vmx(vcpu)->nested.vmxon &&
4927                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4928                         return 1;
4929                 return kvm_set_cr0(vcpu, val);
4930         }
4931 }
4932
4933 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4934 {
4935         if (is_guest_mode(vcpu)) {
4936                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4937                 unsigned long orig_val = val;
4938
4939                 /* analogously to handle_set_cr0 */
4940                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4941                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4942                 if (kvm_set_cr4(vcpu, val))
4943                         return 1;
4944                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4945                 return 0;
4946         } else
4947                 return kvm_set_cr4(vcpu, val);
4948 }
4949
4950 /* called to set cr0 as approriate for clts instruction exit. */
4951 static void handle_clts(struct kvm_vcpu *vcpu)
4952 {
4953         if (is_guest_mode(vcpu)) {
4954                 /*
4955                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4956                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4957                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4958                  */
4959                 vmcs_writel(CR0_READ_SHADOW,
4960                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4961                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4962         } else
4963                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4964 }
4965
4966 static int handle_cr(struct kvm_vcpu *vcpu)
4967 {
4968         unsigned long exit_qualification, val;
4969         int cr;
4970         int reg;
4971         int err;
4972
4973         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4974         cr = exit_qualification & 15;
4975         reg = (exit_qualification >> 8) & 15;
4976         switch ((exit_qualification >> 4) & 3) {
4977         case 0: /* mov to cr */
4978                 val = kvm_register_read(vcpu, reg);
4979                 trace_kvm_cr_write(cr, val);
4980                 switch (cr) {
4981                 case 0:
4982                         err = handle_set_cr0(vcpu, val);
4983                         kvm_complete_insn_gp(vcpu, err);
4984                         return 1;
4985                 case 3:
4986                         err = kvm_set_cr3(vcpu, val);
4987                         kvm_complete_insn_gp(vcpu, err);
4988                         return 1;
4989                 case 4:
4990                         err = handle_set_cr4(vcpu, val);
4991                         kvm_complete_insn_gp(vcpu, err);
4992                         return 1;
4993                 case 8: {
4994                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4995                                 u8 cr8 = kvm_register_read(vcpu, reg);
4996                                 err = kvm_set_cr8(vcpu, cr8);
4997                                 kvm_complete_insn_gp(vcpu, err);
4998                                 if (irqchip_in_kernel(vcpu->kvm))
4999                                         return 1;
5000                                 if (cr8_prev <= cr8)
5001                                         return 1;
5002                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5003                                 return 0;
5004                         }
5005                 }
5006                 break;
5007         case 2: /* clts */
5008                 handle_clts(vcpu);
5009                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5010                 skip_emulated_instruction(vcpu);
5011                 vmx_fpu_activate(vcpu);
5012                 return 1;
5013         case 1: /*mov from cr*/
5014                 switch (cr) {
5015                 case 3:
5016                         val = kvm_read_cr3(vcpu);
5017                         kvm_register_write(vcpu, reg, val);
5018                         trace_kvm_cr_read(cr, val);
5019                         skip_emulated_instruction(vcpu);
5020                         return 1;
5021                 case 8:
5022                         val = kvm_get_cr8(vcpu);
5023                         kvm_register_write(vcpu, reg, val);
5024                         trace_kvm_cr_read(cr, val);
5025                         skip_emulated_instruction(vcpu);
5026                         return 1;
5027                 }
5028                 break;
5029         case 3: /* lmsw */
5030                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5031                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5032                 kvm_lmsw(vcpu, val);
5033
5034                 skip_emulated_instruction(vcpu);
5035                 return 1;
5036         default:
5037                 break;
5038         }
5039         vcpu->run->exit_reason = 0;
5040         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5041                (int)(exit_qualification >> 4) & 3, cr);
5042         return 0;
5043 }
5044
5045 static int handle_dr(struct kvm_vcpu *vcpu)
5046 {
5047         unsigned long exit_qualification;
5048         int dr, reg;
5049
5050         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5051         if (!kvm_require_cpl(vcpu, 0))
5052                 return 1;
5053         dr = vmcs_readl(GUEST_DR7);
5054         if (dr & DR7_GD) {
5055                 /*
5056                  * As the vm-exit takes precedence over the debug trap, we
5057                  * need to emulate the latter, either for the host or the
5058                  * guest debugging itself.
5059                  */
5060                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5061                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5062                         vcpu->run->debug.arch.dr7 = dr;
5063                         vcpu->run->debug.arch.pc =
5064                                 vmcs_readl(GUEST_CS_BASE) +
5065                                 vmcs_readl(GUEST_RIP);
5066                         vcpu->run->debug.arch.exception = DB_VECTOR;
5067                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5068                         return 0;
5069                 } else {
5070                         vcpu->arch.dr7 &= ~DR7_GD;
5071                         vcpu->arch.dr6 |= DR6_BD;
5072                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5073                         kvm_queue_exception(vcpu, DB_VECTOR);
5074                         return 1;
5075                 }
5076         }
5077
5078         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5079         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5080         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5081         if (exit_qualification & TYPE_MOV_FROM_DR) {
5082                 unsigned long val;
5083                 if (!kvm_get_dr(vcpu, dr, &val))
5084                         kvm_register_write(vcpu, reg, val);
5085         } else
5086                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5087         skip_emulated_instruction(vcpu);
5088         return 1;
5089 }
5090
5091 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5092 {
5093         vmcs_writel(GUEST_DR7, val);
5094 }
5095
5096 static int handle_cpuid(struct kvm_vcpu *vcpu)
5097 {
5098         kvm_emulate_cpuid(vcpu);
5099         return 1;
5100 }
5101
5102 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5103 {
5104         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5105         u64 data;
5106
5107         if (vmx_get_msr(vcpu, ecx, &data)) {
5108                 trace_kvm_msr_read_ex(ecx);
5109                 kvm_inject_gp(vcpu, 0);
5110                 return 1;
5111         }
5112
5113         trace_kvm_msr_read(ecx, data);
5114
5115         /* FIXME: handling of bits 32:63 of rax, rdx */
5116         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5117         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5118         skip_emulated_instruction(vcpu);
5119         return 1;
5120 }
5121
5122 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5123 {
5124         struct msr_data msr;
5125         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5126         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5127                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5128
5129         msr.data = data;
5130         msr.index = ecx;
5131         msr.host_initiated = false;
5132         if (vmx_set_msr(vcpu, &msr) != 0) {
5133                 trace_kvm_msr_write_ex(ecx, data);
5134                 kvm_inject_gp(vcpu, 0);
5135                 return 1;
5136         }
5137
5138         trace_kvm_msr_write(ecx, data);
5139         skip_emulated_instruction(vcpu);
5140         return 1;
5141 }
5142
5143 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5144 {
5145         kvm_make_request(KVM_REQ_EVENT, vcpu);
5146         return 1;
5147 }
5148
5149 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5150 {
5151         u32 cpu_based_vm_exec_control;
5152
5153         /* clear pending irq */
5154         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5155         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5156         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5157
5158         kvm_make_request(KVM_REQ_EVENT, vcpu);
5159
5160         ++vcpu->stat.irq_window_exits;
5161
5162         /*
5163          * If the user space waits to inject interrupts, exit as soon as
5164          * possible
5165          */
5166         if (!irqchip_in_kernel(vcpu->kvm) &&
5167             vcpu->run->request_interrupt_window &&
5168             !kvm_cpu_has_interrupt(vcpu)) {
5169                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5170                 return 0;
5171         }
5172         return 1;
5173 }
5174
5175 static int handle_halt(struct kvm_vcpu *vcpu)
5176 {
5177         skip_emulated_instruction(vcpu);
5178         return kvm_emulate_halt(vcpu);
5179 }
5180
5181 static int handle_vmcall(struct kvm_vcpu *vcpu)
5182 {
5183         skip_emulated_instruction(vcpu);
5184         kvm_emulate_hypercall(vcpu);
5185         return 1;
5186 }
5187
5188 static int handle_invd(struct kvm_vcpu *vcpu)
5189 {
5190         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5191 }
5192
5193 static int handle_invlpg(struct kvm_vcpu *vcpu)
5194 {
5195         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5196
5197         kvm_mmu_invlpg(vcpu, exit_qualification);
5198         skip_emulated_instruction(vcpu);
5199         return 1;
5200 }
5201
5202 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5203 {
5204         int err;
5205
5206         err = kvm_rdpmc(vcpu);
5207         kvm_complete_insn_gp(vcpu, err);
5208
5209         return 1;
5210 }
5211
5212 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5213 {
5214         skip_emulated_instruction(vcpu);
5215         kvm_emulate_wbinvd(vcpu);
5216         return 1;
5217 }
5218
5219 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5220 {
5221         u64 new_bv = kvm_read_edx_eax(vcpu);
5222         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5223
5224         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5225                 skip_emulated_instruction(vcpu);
5226         return 1;
5227 }
5228
5229 static int handle_apic_access(struct kvm_vcpu *vcpu)
5230 {
5231         if (likely(fasteoi)) {
5232                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5233                 int access_type, offset;
5234
5235                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5236                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5237                 /*
5238                  * Sane guest uses MOV to write EOI, with written value
5239                  * not cared. So make a short-circuit here by avoiding
5240                  * heavy instruction emulation.
5241                  */
5242                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5243                     (offset == APIC_EOI)) {
5244                         kvm_lapic_set_eoi(vcpu);
5245                         skip_emulated_instruction(vcpu);
5246                         return 1;
5247                 }
5248         }
5249         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5250 }
5251
5252 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5253 {
5254         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5255         int vector = exit_qualification & 0xff;
5256
5257         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5258         kvm_apic_set_eoi_accelerated(vcpu, vector);
5259         return 1;
5260 }
5261
5262 static int handle_apic_write(struct kvm_vcpu *vcpu)
5263 {
5264         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5265         u32 offset = exit_qualification & 0xfff;
5266
5267         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5268         kvm_apic_write_nodecode(vcpu, offset);
5269         return 1;
5270 }
5271
5272 static int handle_task_switch(struct kvm_vcpu *vcpu)
5273 {
5274         struct vcpu_vmx *vmx = to_vmx(vcpu);
5275         unsigned long exit_qualification;
5276         bool has_error_code = false;
5277         u32 error_code = 0;
5278         u16 tss_selector;
5279         int reason, type, idt_v, idt_index;
5280
5281         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5282         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5283         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5284
5285         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5286
5287         reason = (u32)exit_qualification >> 30;
5288         if (reason == TASK_SWITCH_GATE && idt_v) {
5289                 switch (type) {
5290                 case INTR_TYPE_NMI_INTR:
5291                         vcpu->arch.nmi_injected = false;
5292                         vmx_set_nmi_mask(vcpu, true);
5293                         break;
5294                 case INTR_TYPE_EXT_INTR:
5295                 case INTR_TYPE_SOFT_INTR:
5296                         kvm_clear_interrupt_queue(vcpu);
5297                         break;
5298                 case INTR_TYPE_HARD_EXCEPTION:
5299                         if (vmx->idt_vectoring_info &
5300                             VECTORING_INFO_DELIVER_CODE_MASK) {
5301                                 has_error_code = true;
5302                                 error_code =
5303                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5304                         }
5305                         /* fall through */
5306                 case INTR_TYPE_SOFT_EXCEPTION:
5307                         kvm_clear_exception_queue(vcpu);
5308                         break;
5309                 default:
5310                         break;
5311                 }
5312         }
5313         tss_selector = exit_qualification;
5314
5315         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5316                        type != INTR_TYPE_EXT_INTR &&
5317                        type != INTR_TYPE_NMI_INTR))
5318                 skip_emulated_instruction(vcpu);
5319
5320         if (kvm_task_switch(vcpu, tss_selector,
5321                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5322                             has_error_code, error_code) == EMULATE_FAIL) {
5323                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5324                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5325                 vcpu->run->internal.ndata = 0;
5326                 return 0;
5327         }
5328
5329         /* clear all local breakpoint enable flags */
5330         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5331
5332         /*
5333          * TODO: What about debug traps on tss switch?
5334          *       Are we supposed to inject them and update dr6?
5335          */
5336
5337         return 1;
5338 }
5339
5340 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5341 {
5342         unsigned long exit_qualification;
5343         gpa_t gpa;
5344         u32 error_code;
5345         int gla_validity;
5346
5347         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5348
5349         gla_validity = (exit_qualification >> 7) & 0x3;
5350         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5351                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5352                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5353                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5354                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5355                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5356                         (long unsigned int)exit_qualification);
5357                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5358                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5359                 return 0;
5360         }
5361
5362         /*
5363          * EPT violation happened while executing iret from NMI,
5364          * "blocked by NMI" bit has to be set before next VM entry.
5365          * There are errata that may cause this bit to not be set:
5366          * AAK134, BY25.
5367          */
5368         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5369                         cpu_has_virtual_nmis() &&
5370                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5371                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5372
5373         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5374         trace_kvm_page_fault(gpa, exit_qualification);
5375
5376         /* It is a write fault? */
5377         error_code = exit_qualification & (1U << 1);
5378         /* It is a fetch fault? */
5379         error_code |= (exit_qualification & (1U << 2)) << 2;
5380         /* ept page table is present? */
5381         error_code |= (exit_qualification >> 3) & 0x1;
5382
5383         vcpu->arch.exit_qualification = exit_qualification;
5384
5385         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5386 }
5387
5388 static u64 ept_rsvd_mask(u64 spte, int level)
5389 {
5390         int i;
5391         u64 mask = 0;
5392
5393         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5394                 mask |= (1ULL << i);
5395
5396         if (level > 2)
5397                 /* bits 7:3 reserved */
5398                 mask |= 0xf8;
5399         else if (level == 2) {
5400                 if (spte & (1ULL << 7))
5401                         /* 2MB ref, bits 20:12 reserved */
5402                         mask |= 0x1ff000;
5403                 else
5404                         /* bits 6:3 reserved */
5405                         mask |= 0x78;
5406         }
5407
5408         return mask;
5409 }
5410
5411 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5412                                        int level)
5413 {
5414         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5415
5416         /* 010b (write-only) */
5417         WARN_ON((spte & 0x7) == 0x2);
5418
5419         /* 110b (write/execute) */
5420         WARN_ON((spte & 0x7) == 0x6);
5421
5422         /* 100b (execute-only) and value not supported by logical processor */
5423         if (!cpu_has_vmx_ept_execute_only())
5424                 WARN_ON((spte & 0x7) == 0x4);
5425
5426         /* not 000b */
5427         if ((spte & 0x7)) {
5428                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5429
5430                 if (rsvd_bits != 0) {
5431                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5432                                          __func__, rsvd_bits);
5433                         WARN_ON(1);
5434                 }
5435
5436                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5437                         u64 ept_mem_type = (spte & 0x38) >> 3;
5438
5439                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5440                             ept_mem_type == 7) {
5441                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5442                                                 __func__, ept_mem_type);
5443                                 WARN_ON(1);
5444                         }
5445                 }
5446         }
5447 }
5448
5449 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5450 {
5451         u64 sptes[4];
5452         int nr_sptes, i, ret;
5453         gpa_t gpa;
5454
5455         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5456
5457         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5458         if (likely(ret == RET_MMIO_PF_EMULATE))
5459                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5460                                               EMULATE_DONE;
5461
5462         if (unlikely(ret == RET_MMIO_PF_INVALID))
5463                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5464
5465         if (unlikely(ret == RET_MMIO_PF_RETRY))
5466                 return 1;
5467
5468         /* It is the real ept misconfig */
5469         printk(KERN_ERR "EPT: Misconfiguration.\n");
5470         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5471
5472         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5473
5474         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5475                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5476
5477         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5478         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5479
5480         return 0;
5481 }
5482
5483 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5484 {
5485         u32 cpu_based_vm_exec_control;
5486
5487         /* clear pending NMI */
5488         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5489         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5490         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5491         ++vcpu->stat.nmi_window_exits;
5492         kvm_make_request(KVM_REQ_EVENT, vcpu);
5493
5494         return 1;
5495 }
5496
5497 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5498 {
5499         struct vcpu_vmx *vmx = to_vmx(vcpu);
5500         enum emulation_result err = EMULATE_DONE;
5501         int ret = 1;
5502         u32 cpu_exec_ctrl;
5503         bool intr_window_requested;
5504         unsigned count = 130;
5505
5506         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5507         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5508
5509         while (!guest_state_valid(vcpu) && count-- != 0) {
5510                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5511                         return handle_interrupt_window(&vmx->vcpu);
5512
5513                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5514                         return 1;
5515
5516                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5517
5518                 if (err == EMULATE_USER_EXIT) {
5519                         ++vcpu->stat.mmio_exits;
5520                         ret = 0;
5521                         goto out;
5522                 }
5523
5524                 if (err != EMULATE_DONE) {
5525                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5526                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5527                         vcpu->run->internal.ndata = 0;
5528                         return 0;
5529                 }
5530
5531                 if (vcpu->arch.halt_request) {
5532                         vcpu->arch.halt_request = 0;
5533                         ret = kvm_emulate_halt(vcpu);
5534                         goto out;
5535                 }
5536
5537                 if (signal_pending(current))
5538                         goto out;
5539                 if (need_resched())
5540                         schedule();
5541         }
5542
5543         vmx->emulation_required = emulation_required(vcpu);
5544 out:
5545         return ret;
5546 }
5547
5548 /*
5549  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5550  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5551  */
5552 static int handle_pause(struct kvm_vcpu *vcpu)
5553 {
5554         skip_emulated_instruction(vcpu);
5555         kvm_vcpu_on_spin(vcpu);
5556
5557         return 1;
5558 }
5559
5560 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5561 {
5562         kvm_queue_exception(vcpu, UD_VECTOR);
5563         return 1;
5564 }
5565
5566 /*
5567  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5568  * We could reuse a single VMCS for all the L2 guests, but we also want the
5569  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5570  * allows keeping them loaded on the processor, and in the future will allow
5571  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5572  * every entry if they never change.
5573  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5574  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5575  *
5576  * The following functions allocate and free a vmcs02 in this pool.
5577  */
5578
5579 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5580 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5581 {
5582         struct vmcs02_list *item;
5583         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5584                 if (item->vmptr == vmx->nested.current_vmptr) {
5585                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5586                         return &item->vmcs02;
5587                 }
5588
5589         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5590                 /* Recycle the least recently used VMCS. */
5591                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5592                         struct vmcs02_list, list);
5593                 item->vmptr = vmx->nested.current_vmptr;
5594                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5595                 return &item->vmcs02;
5596         }
5597
5598         /* Create a new VMCS */
5599         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5600         if (!item)
5601                 return NULL;
5602         item->vmcs02.vmcs = alloc_vmcs();
5603         if (!item->vmcs02.vmcs) {
5604                 kfree(item);
5605                 return NULL;
5606         }
5607         loaded_vmcs_init(&item->vmcs02);
5608         item->vmptr = vmx->nested.current_vmptr;
5609         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5610         vmx->nested.vmcs02_num++;
5611         return &item->vmcs02;
5612 }
5613
5614 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5615 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5616 {
5617         struct vmcs02_list *item;
5618         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5619                 if (item->vmptr == vmptr) {
5620                         free_loaded_vmcs(&item->vmcs02);
5621                         list_del(&item->list);
5622                         kfree(item);
5623                         vmx->nested.vmcs02_num--;
5624                         return;
5625                 }
5626 }
5627
5628 /*
5629  * Free all VMCSs saved for this vcpu, except the one pointed by
5630  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5631  * currently used, if running L2), and vmcs01 when running L2.
5632  */
5633 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5634 {
5635         struct vmcs02_list *item, *n;
5636         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5637                 if (vmx->loaded_vmcs != &item->vmcs02)
5638                         free_loaded_vmcs(&item->vmcs02);
5639                 list_del(&item->list);
5640                 kfree(item);
5641         }
5642         vmx->nested.vmcs02_num = 0;
5643
5644         if (vmx->loaded_vmcs != &vmx->vmcs01)
5645                 free_loaded_vmcs(&vmx->vmcs01);
5646 }
5647
5648 /*
5649  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5650  * set the success or error code of an emulated VMX instruction, as specified
5651  * by Vol 2B, VMX Instruction Reference, "Conventions".
5652  */
5653 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5654 {
5655         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5656                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5657                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5658 }
5659
5660 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5661 {
5662         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5663                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5664                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5665                         | X86_EFLAGS_CF);
5666 }
5667
5668 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5669                                         u32 vm_instruction_error)
5670 {
5671         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5672                 /*
5673                  * failValid writes the error number to the current VMCS, which
5674                  * can't be done there isn't a current VMCS.
5675                  */
5676                 nested_vmx_failInvalid(vcpu);
5677                 return;
5678         }
5679         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5680                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5681                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5682                         | X86_EFLAGS_ZF);
5683         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5684         /*
5685          * We don't need to force a shadow sync because
5686          * VM_INSTRUCTION_ERROR is not shadowed
5687          */
5688 }
5689
5690 /*
5691  * Emulate the VMXON instruction.
5692  * Currently, we just remember that VMX is active, and do not save or even
5693  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5694  * do not currently need to store anything in that guest-allocated memory
5695  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5696  * argument is different from the VMXON pointer (which the spec says they do).
5697  */
5698 static int handle_vmon(struct kvm_vcpu *vcpu)
5699 {
5700         struct kvm_segment cs;
5701         struct vcpu_vmx *vmx = to_vmx(vcpu);
5702         struct vmcs *shadow_vmcs;
5703         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5704                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5705
5706         /* The Intel VMX Instruction Reference lists a bunch of bits that
5707          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5708          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5709          * Otherwise, we should fail with #UD. We test these now:
5710          */
5711         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5712             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5713             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5714                 kvm_queue_exception(vcpu, UD_VECTOR);
5715                 return 1;
5716         }
5717
5718         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5719         if (is_long_mode(vcpu) && !cs.l) {
5720                 kvm_queue_exception(vcpu, UD_VECTOR);
5721                 return 1;
5722         }
5723
5724         if (vmx_get_cpl(vcpu)) {
5725                 kvm_inject_gp(vcpu, 0);
5726                 return 1;
5727         }
5728         if (vmx->nested.vmxon) {
5729                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5730                 skip_emulated_instruction(vcpu);
5731                 return 1;
5732         }
5733
5734         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5735                         != VMXON_NEEDED_FEATURES) {
5736                 kvm_inject_gp(vcpu, 0);
5737                 return 1;
5738         }
5739
5740         if (enable_shadow_vmcs) {
5741                 shadow_vmcs = alloc_vmcs();
5742                 if (!shadow_vmcs)
5743                         return -ENOMEM;
5744                 /* mark vmcs as shadow */
5745                 shadow_vmcs->revision_id |= (1u << 31);
5746                 /* init shadow vmcs */
5747                 vmcs_clear(shadow_vmcs);
5748                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5749         }
5750
5751         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5752         vmx->nested.vmcs02_num = 0;
5753
5754         vmx->nested.vmxon = true;
5755
5756         skip_emulated_instruction(vcpu);
5757         nested_vmx_succeed(vcpu);
5758         return 1;
5759 }
5760
5761 /*
5762  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5763  * for running VMX instructions (except VMXON, whose prerequisites are
5764  * slightly different). It also specifies what exception to inject otherwise.
5765  */
5766 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5767 {
5768         struct kvm_segment cs;
5769         struct vcpu_vmx *vmx = to_vmx(vcpu);
5770
5771         if (!vmx->nested.vmxon) {
5772                 kvm_queue_exception(vcpu, UD_VECTOR);
5773                 return 0;
5774         }
5775
5776         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5777         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5778             (is_long_mode(vcpu) && !cs.l)) {
5779                 kvm_queue_exception(vcpu, UD_VECTOR);
5780                 return 0;
5781         }
5782
5783         if (vmx_get_cpl(vcpu)) {
5784                 kvm_inject_gp(vcpu, 0);
5785                 return 0;
5786         }
5787
5788         return 1;
5789 }
5790
5791 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5792 {
5793         u32 exec_control;
5794         if (enable_shadow_vmcs) {
5795                 if (vmx->nested.current_vmcs12 != NULL) {
5796                         /* copy to memory all shadowed fields in case
5797                            they were modified */
5798                         copy_shadow_to_vmcs12(vmx);
5799                         vmx->nested.sync_shadow_vmcs = false;
5800                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5801                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5802                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5803                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5804                 }
5805         }
5806         kunmap(vmx->nested.current_vmcs12_page);
5807         nested_release_page(vmx->nested.current_vmcs12_page);
5808 }
5809
5810 /*
5811  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5812  * just stops using VMX.
5813  */
5814 static void free_nested(struct vcpu_vmx *vmx)
5815 {
5816         if (!vmx->nested.vmxon)
5817                 return;
5818         vmx->nested.vmxon = false;
5819         if (vmx->nested.current_vmptr != -1ull) {
5820                 nested_release_vmcs12(vmx);
5821                 vmx->nested.current_vmptr = -1ull;
5822                 vmx->nested.current_vmcs12 = NULL;
5823         }
5824         if (enable_shadow_vmcs)
5825                 free_vmcs(vmx->nested.current_shadow_vmcs);
5826         /* Unpin physical memory we referred to in current vmcs02 */
5827         if (vmx->nested.apic_access_page) {
5828                 nested_release_page(vmx->nested.apic_access_page);
5829                 vmx->nested.apic_access_page = 0;
5830         }
5831
5832         nested_free_all_saved_vmcss(vmx);
5833 }
5834
5835 /* Emulate the VMXOFF instruction */
5836 static int handle_vmoff(struct kvm_vcpu *vcpu)
5837 {
5838         if (!nested_vmx_check_permission(vcpu))
5839                 return 1;
5840         free_nested(to_vmx(vcpu));
5841         skip_emulated_instruction(vcpu);
5842         nested_vmx_succeed(vcpu);
5843         return 1;
5844 }
5845
5846 /*
5847  * Decode the memory-address operand of a vmx instruction, as recorded on an
5848  * exit caused by such an instruction (run by a guest hypervisor).
5849  * On success, returns 0. When the operand is invalid, returns 1 and throws
5850  * #UD or #GP.
5851  */
5852 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5853                                  unsigned long exit_qualification,
5854                                  u32 vmx_instruction_info, gva_t *ret)
5855 {
5856         /*
5857          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5858          * Execution", on an exit, vmx_instruction_info holds most of the
5859          * addressing components of the operand. Only the displacement part
5860          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5861          * For how an actual address is calculated from all these components,
5862          * refer to Vol. 1, "Operand Addressing".
5863          */
5864         int  scaling = vmx_instruction_info & 3;
5865         int  addr_size = (vmx_instruction_info >> 7) & 7;
5866         bool is_reg = vmx_instruction_info & (1u << 10);
5867         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5868         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5869         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5870         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5871         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5872
5873         if (is_reg) {
5874                 kvm_queue_exception(vcpu, UD_VECTOR);
5875                 return 1;
5876         }
5877
5878         /* Addr = segment_base + offset */
5879         /* offset = base + [index * scale] + displacement */
5880         *ret = vmx_get_segment_base(vcpu, seg_reg);
5881         if (base_is_valid)
5882                 *ret += kvm_register_read(vcpu, base_reg);
5883         if (index_is_valid)
5884                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5885         *ret += exit_qualification; /* holds the displacement */
5886
5887         if (addr_size == 1) /* 32 bit */
5888                 *ret &= 0xffffffff;
5889
5890         /*
5891          * TODO: throw #GP (and return 1) in various cases that the VM*
5892          * instructions require it - e.g., offset beyond segment limit,
5893          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5894          * address, and so on. Currently these are not checked.
5895          */
5896         return 0;
5897 }
5898
5899 /* Emulate the VMCLEAR instruction */
5900 static int handle_vmclear(struct kvm_vcpu *vcpu)
5901 {
5902         struct vcpu_vmx *vmx = to_vmx(vcpu);
5903         gva_t gva;
5904         gpa_t vmptr;
5905         struct vmcs12 *vmcs12;
5906         struct page *page;
5907         struct x86_exception e;
5908
5909         if (!nested_vmx_check_permission(vcpu))
5910                 return 1;
5911
5912         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5913                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5914                 return 1;
5915
5916         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5917                                 sizeof(vmptr), &e)) {
5918                 kvm_inject_page_fault(vcpu, &e);
5919                 return 1;
5920         }
5921
5922         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5923                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5924                 skip_emulated_instruction(vcpu);
5925                 return 1;
5926         }
5927
5928         if (vmptr == vmx->nested.current_vmptr) {
5929                 nested_release_vmcs12(vmx);
5930                 vmx->nested.current_vmptr = -1ull;
5931                 vmx->nested.current_vmcs12 = NULL;
5932         }
5933
5934         page = nested_get_page(vcpu, vmptr);
5935         if (page == NULL) {
5936                 /*
5937                  * For accurate processor emulation, VMCLEAR beyond available
5938                  * physical memory should do nothing at all. However, it is
5939                  * possible that a nested vmx bug, not a guest hypervisor bug,
5940                  * resulted in this case, so let's shut down before doing any
5941                  * more damage:
5942                  */
5943                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5944                 return 1;
5945         }
5946         vmcs12 = kmap(page);
5947         vmcs12->launch_state = 0;
5948         kunmap(page);
5949         nested_release_page(page);
5950
5951         nested_free_vmcs02(vmx, vmptr);
5952
5953         skip_emulated_instruction(vcpu);
5954         nested_vmx_succeed(vcpu);
5955         return 1;
5956 }
5957
5958 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5959
5960 /* Emulate the VMLAUNCH instruction */
5961 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5962 {
5963         return nested_vmx_run(vcpu, true);
5964 }
5965
5966 /* Emulate the VMRESUME instruction */
5967 static int handle_vmresume(struct kvm_vcpu *vcpu)
5968 {
5969
5970         return nested_vmx_run(vcpu, false);
5971 }
5972
5973 enum vmcs_field_type {
5974         VMCS_FIELD_TYPE_U16 = 0,
5975         VMCS_FIELD_TYPE_U64 = 1,
5976         VMCS_FIELD_TYPE_U32 = 2,
5977         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5978 };
5979
5980 static inline int vmcs_field_type(unsigned long field)
5981 {
5982         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5983                 return VMCS_FIELD_TYPE_U32;
5984         return (field >> 13) & 0x3 ;
5985 }
5986
5987 static inline int vmcs_field_readonly(unsigned long field)
5988 {
5989         return (((field >> 10) & 0x3) == 1);
5990 }
5991
5992 /*
5993  * Read a vmcs12 field. Since these can have varying lengths and we return
5994  * one type, we chose the biggest type (u64) and zero-extend the return value
5995  * to that size. Note that the caller, handle_vmread, might need to use only
5996  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5997  * 64-bit fields are to be returned).
5998  */
5999 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6000                                         unsigned long field, u64 *ret)
6001 {
6002         short offset = vmcs_field_to_offset(field);
6003         char *p;
6004
6005         if (offset < 0)
6006                 return 0;
6007
6008         p = ((char *)(get_vmcs12(vcpu))) + offset;
6009
6010         switch (vmcs_field_type(field)) {
6011         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6012                 *ret = *((natural_width *)p);
6013                 return 1;
6014         case VMCS_FIELD_TYPE_U16:
6015                 *ret = *((u16 *)p);
6016                 return 1;
6017         case VMCS_FIELD_TYPE_U32:
6018                 *ret = *((u32 *)p);
6019                 return 1;
6020         case VMCS_FIELD_TYPE_U64:
6021                 *ret = *((u64 *)p);
6022                 return 1;
6023         default:
6024                 return 0; /* can never happen. */
6025         }
6026 }
6027
6028
6029 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6030                                     unsigned long field, u64 field_value){
6031         short offset = vmcs_field_to_offset(field);
6032         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6033         if (offset < 0)
6034                 return false;
6035
6036         switch (vmcs_field_type(field)) {
6037         case VMCS_FIELD_TYPE_U16:
6038                 *(u16 *)p = field_value;
6039                 return true;
6040         case VMCS_FIELD_TYPE_U32:
6041                 *(u32 *)p = field_value;
6042                 return true;
6043         case VMCS_FIELD_TYPE_U64:
6044                 *(u64 *)p = field_value;
6045                 return true;
6046         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6047                 *(natural_width *)p = field_value;
6048                 return true;
6049         default:
6050                 return false; /* can never happen. */
6051         }
6052
6053 }
6054
6055 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6056 {
6057         int i;
6058         unsigned long field;
6059         u64 field_value;
6060         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6061         const unsigned long *fields = shadow_read_write_fields;
6062         const int num_fields = max_shadow_read_write_fields;
6063
6064         vmcs_load(shadow_vmcs);
6065
6066         for (i = 0; i < num_fields; i++) {
6067                 field = fields[i];
6068                 switch (vmcs_field_type(field)) {
6069                 case VMCS_FIELD_TYPE_U16:
6070                         field_value = vmcs_read16(field);
6071                         break;
6072                 case VMCS_FIELD_TYPE_U32:
6073                         field_value = vmcs_read32(field);
6074                         break;
6075                 case VMCS_FIELD_TYPE_U64:
6076                         field_value = vmcs_read64(field);
6077                         break;
6078                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6079                         field_value = vmcs_readl(field);
6080                         break;
6081                 }
6082                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6083         }
6084
6085         vmcs_clear(shadow_vmcs);
6086         vmcs_load(vmx->loaded_vmcs->vmcs);
6087 }
6088
6089 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6090 {
6091         const unsigned long *fields[] = {
6092                 shadow_read_write_fields,
6093                 shadow_read_only_fields
6094         };
6095         const int max_fields[] = {
6096                 max_shadow_read_write_fields,
6097                 max_shadow_read_only_fields
6098         };
6099         int i, q;
6100         unsigned long field;
6101         u64 field_value = 0;
6102         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6103
6104         vmcs_load(shadow_vmcs);
6105
6106         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6107                 for (i = 0; i < max_fields[q]; i++) {
6108                         field = fields[q][i];
6109                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6110
6111                         switch (vmcs_field_type(field)) {
6112                         case VMCS_FIELD_TYPE_U16:
6113                                 vmcs_write16(field, (u16)field_value);
6114                                 break;
6115                         case VMCS_FIELD_TYPE_U32:
6116                                 vmcs_write32(field, (u32)field_value);
6117                                 break;
6118                         case VMCS_FIELD_TYPE_U64:
6119                                 vmcs_write64(field, (u64)field_value);
6120                                 break;
6121                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6122                                 vmcs_writel(field, (long)field_value);
6123                                 break;
6124                         }
6125                 }
6126         }
6127
6128         vmcs_clear(shadow_vmcs);
6129         vmcs_load(vmx->loaded_vmcs->vmcs);
6130 }
6131
6132 /*
6133  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6134  * used before) all generate the same failure when it is missing.
6135  */
6136 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6137 {
6138         struct vcpu_vmx *vmx = to_vmx(vcpu);
6139         if (vmx->nested.current_vmptr == -1ull) {
6140                 nested_vmx_failInvalid(vcpu);
6141                 skip_emulated_instruction(vcpu);
6142                 return 0;
6143         }
6144         return 1;
6145 }
6146
6147 static int handle_vmread(struct kvm_vcpu *vcpu)
6148 {
6149         unsigned long field;
6150         u64 field_value;
6151         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6152         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6153         gva_t gva = 0;
6154
6155         if (!nested_vmx_check_permission(vcpu) ||
6156             !nested_vmx_check_vmcs12(vcpu))
6157                 return 1;
6158
6159         /* Decode instruction info and find the field to read */
6160         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6161         /* Read the field, zero-extended to a u64 field_value */
6162         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6163                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6164                 skip_emulated_instruction(vcpu);
6165                 return 1;
6166         }
6167         /*
6168          * Now copy part of this value to register or memory, as requested.
6169          * Note that the number of bits actually copied is 32 or 64 depending
6170          * on the guest's mode (32 or 64 bit), not on the given field's length.
6171          */
6172         if (vmx_instruction_info & (1u << 10)) {
6173                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6174                         field_value);
6175         } else {
6176                 if (get_vmx_mem_address(vcpu, exit_qualification,
6177                                 vmx_instruction_info, &gva))
6178                         return 1;
6179                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6180                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6181                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6182         }
6183
6184         nested_vmx_succeed(vcpu);
6185         skip_emulated_instruction(vcpu);
6186         return 1;
6187 }
6188
6189
6190 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6191 {
6192         unsigned long field;
6193         gva_t gva;
6194         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6195         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6196         /* The value to write might be 32 or 64 bits, depending on L1's long
6197          * mode, and eventually we need to write that into a field of several
6198          * possible lengths. The code below first zero-extends the value to 64
6199          * bit (field_value), and then copies only the approriate number of
6200          * bits into the vmcs12 field.
6201          */
6202         u64 field_value = 0;
6203         struct x86_exception e;
6204
6205         if (!nested_vmx_check_permission(vcpu) ||
6206             !nested_vmx_check_vmcs12(vcpu))
6207                 return 1;
6208
6209         if (vmx_instruction_info & (1u << 10))
6210                 field_value = kvm_register_read(vcpu,
6211                         (((vmx_instruction_info) >> 3) & 0xf));
6212         else {
6213                 if (get_vmx_mem_address(vcpu, exit_qualification,
6214                                 vmx_instruction_info, &gva))
6215                         return 1;
6216                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6217                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6218                         kvm_inject_page_fault(vcpu, &e);
6219                         return 1;
6220                 }
6221         }
6222
6223
6224         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6225         if (vmcs_field_readonly(field)) {
6226                 nested_vmx_failValid(vcpu,
6227                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6228                 skip_emulated_instruction(vcpu);
6229                 return 1;
6230         }
6231
6232         if (!vmcs12_write_any(vcpu, field, field_value)) {
6233                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6234                 skip_emulated_instruction(vcpu);
6235                 return 1;
6236         }
6237
6238         nested_vmx_succeed(vcpu);
6239         skip_emulated_instruction(vcpu);
6240         return 1;
6241 }
6242
6243 /* Emulate the VMPTRLD instruction */
6244 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6245 {
6246         struct vcpu_vmx *vmx = to_vmx(vcpu);
6247         gva_t gva;
6248         gpa_t vmptr;
6249         struct x86_exception e;
6250         u32 exec_control;
6251
6252         if (!nested_vmx_check_permission(vcpu))
6253                 return 1;
6254
6255         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6256                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6257                 return 1;
6258
6259         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6260                                 sizeof(vmptr), &e)) {
6261                 kvm_inject_page_fault(vcpu, &e);
6262                 return 1;
6263         }
6264
6265         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6266                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6267                 skip_emulated_instruction(vcpu);
6268                 return 1;
6269         }
6270
6271         if (vmx->nested.current_vmptr != vmptr) {
6272                 struct vmcs12 *new_vmcs12;
6273                 struct page *page;
6274                 page = nested_get_page(vcpu, vmptr);
6275                 if (page == NULL) {
6276                         nested_vmx_failInvalid(vcpu);
6277                         skip_emulated_instruction(vcpu);
6278                         return 1;
6279                 }
6280                 new_vmcs12 = kmap(page);
6281                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6282                         kunmap(page);
6283                         nested_release_page_clean(page);
6284                         nested_vmx_failValid(vcpu,
6285                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6286                         skip_emulated_instruction(vcpu);
6287                         return 1;
6288                 }
6289                 if (vmx->nested.current_vmptr != -1ull)
6290                         nested_release_vmcs12(vmx);
6291
6292                 vmx->nested.current_vmptr = vmptr;
6293                 vmx->nested.current_vmcs12 = new_vmcs12;
6294                 vmx->nested.current_vmcs12_page = page;
6295                 if (enable_shadow_vmcs) {
6296                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6297                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6298                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6299                         vmcs_write64(VMCS_LINK_POINTER,
6300                                      __pa(vmx->nested.current_shadow_vmcs));
6301                         vmx->nested.sync_shadow_vmcs = true;
6302                 }
6303         }
6304
6305         nested_vmx_succeed(vcpu);
6306         skip_emulated_instruction(vcpu);
6307         return 1;
6308 }
6309
6310 /* Emulate the VMPTRST instruction */
6311 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6312 {
6313         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6314         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6315         gva_t vmcs_gva;
6316         struct x86_exception e;
6317
6318         if (!nested_vmx_check_permission(vcpu))
6319                 return 1;
6320
6321         if (get_vmx_mem_address(vcpu, exit_qualification,
6322                         vmx_instruction_info, &vmcs_gva))
6323                 return 1;
6324         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6325         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6326                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6327                                  sizeof(u64), &e)) {
6328                 kvm_inject_page_fault(vcpu, &e);
6329                 return 1;
6330         }
6331         nested_vmx_succeed(vcpu);
6332         skip_emulated_instruction(vcpu);
6333         return 1;
6334 }
6335
6336 /* Emulate the INVEPT instruction */
6337 static int handle_invept(struct kvm_vcpu *vcpu)
6338 {
6339         u32 vmx_instruction_info, types;
6340         unsigned long type;
6341         gva_t gva;
6342         struct x86_exception e;
6343         struct {
6344                 u64 eptp, gpa;
6345         } operand;
6346         u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6347
6348         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6349             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6350                 kvm_queue_exception(vcpu, UD_VECTOR);
6351                 return 1;
6352         }
6353
6354         if (!nested_vmx_check_permission(vcpu))
6355                 return 1;
6356
6357         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6358                 kvm_queue_exception(vcpu, UD_VECTOR);
6359                 return 1;
6360         }
6361
6362         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6363         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6364
6365         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6366
6367         if (!(types & (1UL << type))) {
6368                 nested_vmx_failValid(vcpu,
6369                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6370                 return 1;
6371         }
6372
6373         /* According to the Intel VMX instruction reference, the memory
6374          * operand is read even if it isn't needed (e.g., for type==global)
6375          */
6376         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6377                         vmx_instruction_info, &gva))
6378                 return 1;
6379         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6380                                 sizeof(operand), &e)) {
6381                 kvm_inject_page_fault(vcpu, &e);
6382                 return 1;
6383         }
6384
6385         switch (type) {
6386         case VMX_EPT_EXTENT_CONTEXT:
6387                 if ((operand.eptp & eptp_mask) !=
6388                                 (nested_ept_get_cr3(vcpu) & eptp_mask))
6389                         break;
6390         case VMX_EPT_EXTENT_GLOBAL:
6391                 kvm_mmu_sync_roots(vcpu);
6392                 kvm_mmu_flush_tlb(vcpu);
6393                 nested_vmx_succeed(vcpu);
6394                 break;
6395         default:
6396                 BUG_ON(1);
6397                 break;
6398         }
6399
6400         skip_emulated_instruction(vcpu);
6401         return 1;
6402 }
6403
6404 /*
6405  * The exit handlers return 1 if the exit was handled fully and guest execution
6406  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6407  * to be done to userspace and return 0.
6408  */
6409 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6410         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6411         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6412         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6413         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6414         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6415         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6416         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6417         [EXIT_REASON_CPUID]                   = handle_cpuid,
6418         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6419         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6420         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6421         [EXIT_REASON_HLT]                     = handle_halt,
6422         [EXIT_REASON_INVD]                    = handle_invd,
6423         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6424         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6425         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6426         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6427         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6428         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6429         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6430         [EXIT_REASON_VMREAD]                  = handle_vmread,
6431         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6432         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6433         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6434         [EXIT_REASON_VMON]                    = handle_vmon,
6435         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6436         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6437         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6438         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6439         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6440         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6441         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6442         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6443         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6444         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6445         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6446         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6447         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6448         [EXIT_REASON_INVEPT]                  = handle_invept,
6449 };
6450
6451 static const int kvm_vmx_max_exit_handlers =
6452         ARRAY_SIZE(kvm_vmx_exit_handlers);
6453
6454 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6455                                        struct vmcs12 *vmcs12)
6456 {
6457         unsigned long exit_qualification;
6458         gpa_t bitmap, last_bitmap;
6459         unsigned int port;
6460         int size;
6461         u8 b;
6462
6463         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6464                 return 1;
6465
6466         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6467                 return 0;
6468
6469         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6470
6471         port = exit_qualification >> 16;
6472         size = (exit_qualification & 7) + 1;
6473
6474         last_bitmap = (gpa_t)-1;
6475         b = -1;
6476
6477         while (size > 0) {
6478                 if (port < 0x8000)
6479                         bitmap = vmcs12->io_bitmap_a;
6480                 else if (port < 0x10000)
6481                         bitmap = vmcs12->io_bitmap_b;
6482                 else
6483                         return 1;
6484                 bitmap += (port & 0x7fff) / 8;
6485
6486                 if (last_bitmap != bitmap)
6487                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6488                                 return 1;
6489                 if (b & (1 << (port & 7)))
6490                         return 1;
6491
6492                 port++;
6493                 size--;
6494                 last_bitmap = bitmap;
6495         }
6496
6497         return 0;
6498 }
6499
6500 /*
6501  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6502  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6503  * disinterest in the current event (read or write a specific MSR) by using an
6504  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6505  */
6506 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6507         struct vmcs12 *vmcs12, u32 exit_reason)
6508 {
6509         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6510         gpa_t bitmap;
6511
6512         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6513                 return 1;
6514
6515         /*
6516          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6517          * for the four combinations of read/write and low/high MSR numbers.
6518          * First we need to figure out which of the four to use:
6519          */
6520         bitmap = vmcs12->msr_bitmap;
6521         if (exit_reason == EXIT_REASON_MSR_WRITE)
6522                 bitmap += 2048;
6523         if (msr_index >= 0xc0000000) {
6524                 msr_index -= 0xc0000000;
6525                 bitmap += 1024;
6526         }
6527
6528         /* Then read the msr_index'th bit from this bitmap: */
6529         if (msr_index < 1024*8) {
6530                 unsigned char b;
6531                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6532                         return 1;
6533                 return 1 & (b >> (msr_index & 7));
6534         } else
6535                 return 1; /* let L1 handle the wrong parameter */
6536 }
6537
6538 /*
6539  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6540  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6541  * intercept (via guest_host_mask etc.) the current event.
6542  */
6543 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6544         struct vmcs12 *vmcs12)
6545 {
6546         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6547         int cr = exit_qualification & 15;
6548         int reg = (exit_qualification >> 8) & 15;
6549         unsigned long val = kvm_register_read(vcpu, reg);
6550
6551         switch ((exit_qualification >> 4) & 3) {
6552         case 0: /* mov to cr */
6553                 switch (cr) {
6554                 case 0:
6555                         if (vmcs12->cr0_guest_host_mask &
6556                             (val ^ vmcs12->cr0_read_shadow))
6557                                 return 1;
6558                         break;
6559                 case 3:
6560                         if ((vmcs12->cr3_target_count >= 1 &&
6561                                         vmcs12->cr3_target_value0 == val) ||
6562                                 (vmcs12->cr3_target_count >= 2 &&
6563                                         vmcs12->cr3_target_value1 == val) ||
6564                                 (vmcs12->cr3_target_count >= 3 &&
6565                                         vmcs12->cr3_target_value2 == val) ||
6566                                 (vmcs12->cr3_target_count >= 4 &&
6567                                         vmcs12->cr3_target_value3 == val))
6568                                 return 0;
6569                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6570                                 return 1;
6571                         break;
6572                 case 4:
6573                         if (vmcs12->cr4_guest_host_mask &
6574                             (vmcs12->cr4_read_shadow ^ val))
6575                                 return 1;
6576                         break;
6577                 case 8:
6578                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6579                                 return 1;
6580                         break;
6581                 }
6582                 break;
6583         case 2: /* clts */
6584                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6585                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6586                         return 1;
6587                 break;
6588         case 1: /* mov from cr */
6589                 switch (cr) {
6590                 case 3:
6591                         if (vmcs12->cpu_based_vm_exec_control &
6592                             CPU_BASED_CR3_STORE_EXITING)
6593                                 return 1;
6594                         break;
6595                 case 8:
6596                         if (vmcs12->cpu_based_vm_exec_control &
6597                             CPU_BASED_CR8_STORE_EXITING)
6598                                 return 1;
6599                         break;
6600                 }
6601                 break;
6602         case 3: /* lmsw */
6603                 /*
6604                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6605                  * cr0. Other attempted changes are ignored, with no exit.
6606                  */
6607                 if (vmcs12->cr0_guest_host_mask & 0xe &
6608                     (val ^ vmcs12->cr0_read_shadow))
6609                         return 1;
6610                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6611                     !(vmcs12->cr0_read_shadow & 0x1) &&
6612                     (val & 0x1))
6613                         return 1;
6614                 break;
6615         }
6616         return 0;
6617 }
6618
6619 /*
6620  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6621  * should handle it ourselves in L0 (and then continue L2). Only call this
6622  * when in is_guest_mode (L2).
6623  */
6624 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6625 {
6626         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6627         struct vcpu_vmx *vmx = to_vmx(vcpu);
6628         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6629         u32 exit_reason = vmx->exit_reason;
6630
6631         if (vmx->nested.nested_run_pending)
6632                 return 0;
6633
6634         if (unlikely(vmx->fail)) {
6635                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6636                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6637                 return 1;
6638         }
6639
6640         switch (exit_reason) {
6641         case EXIT_REASON_EXCEPTION_NMI:
6642                 if (!is_exception(intr_info))
6643                         return 0;
6644                 else if (is_page_fault(intr_info))
6645                         return enable_ept;
6646                 else if (is_no_device(intr_info) &&
6647                          !(nested_read_cr0(vmcs12) & X86_CR0_TS))
6648                         return 0;
6649                 return vmcs12->exception_bitmap &
6650                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6651         case EXIT_REASON_EXTERNAL_INTERRUPT:
6652                 return 0;
6653         case EXIT_REASON_TRIPLE_FAULT:
6654                 return 1;
6655         case EXIT_REASON_PENDING_INTERRUPT:
6656                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6657         case EXIT_REASON_NMI_WINDOW:
6658                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6659         case EXIT_REASON_TASK_SWITCH:
6660                 return 1;
6661         case EXIT_REASON_CPUID:
6662                 return 1;
6663         case EXIT_REASON_HLT:
6664                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6665         case EXIT_REASON_INVD:
6666                 return 1;
6667         case EXIT_REASON_INVLPG:
6668                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6669         case EXIT_REASON_RDPMC:
6670                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6671         case EXIT_REASON_RDTSC:
6672                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6673         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6674         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6675         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6676         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6677         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6678         case EXIT_REASON_INVEPT:
6679                 /*
6680                  * VMX instructions trap unconditionally. This allows L1 to
6681                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6682                  */
6683                 return 1;
6684         case EXIT_REASON_CR_ACCESS:
6685                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6686         case EXIT_REASON_DR_ACCESS:
6687                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6688         case EXIT_REASON_IO_INSTRUCTION:
6689                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6690         case EXIT_REASON_MSR_READ:
6691         case EXIT_REASON_MSR_WRITE:
6692                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6693         case EXIT_REASON_INVALID_STATE:
6694                 return 1;
6695         case EXIT_REASON_MWAIT_INSTRUCTION:
6696                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6697         case EXIT_REASON_MONITOR_INSTRUCTION:
6698                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6699         case EXIT_REASON_PAUSE_INSTRUCTION:
6700                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6701                         nested_cpu_has2(vmcs12,
6702                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6703         case EXIT_REASON_MCE_DURING_VMENTRY:
6704                 return 0;
6705         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6706                 return 1;
6707         case EXIT_REASON_APIC_ACCESS:
6708                 return nested_cpu_has2(vmcs12,
6709                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6710         case EXIT_REASON_EPT_VIOLATION:
6711                 /*
6712                  * L0 always deals with the EPT violation. If nested EPT is
6713                  * used, and the nested mmu code discovers that the address is
6714                  * missing in the guest EPT table (EPT12), the EPT violation
6715                  * will be injected with nested_ept_inject_page_fault()
6716                  */
6717                 return 0;
6718         case EXIT_REASON_EPT_MISCONFIG:
6719                 /*
6720                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6721                  * table (shadow on EPT) or a merged EPT table that L0 built
6722                  * (EPT on EPT). So any problems with the structure of the
6723                  * table is L0's fault.
6724                  */
6725                 return 0;
6726         case EXIT_REASON_PREEMPTION_TIMER:
6727                 return vmcs12->pin_based_vm_exec_control &
6728                         PIN_BASED_VMX_PREEMPTION_TIMER;
6729         case EXIT_REASON_WBINVD:
6730                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6731         case EXIT_REASON_XSETBV:
6732                 return 1;
6733         default:
6734                 return 1;
6735         }
6736 }
6737
6738 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6739 {
6740         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6741         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6742 }
6743
6744 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6745 {
6746         u64 delta_tsc_l1;
6747         u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6748
6749         if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6750                         PIN_BASED_VMX_PREEMPTION_TIMER))
6751                 return;
6752         preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6753                         MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6754         preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6755         delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6756                 - vcpu->arch.last_guest_tsc;
6757         preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6758         if (preempt_val_l2 <= preempt_val_l1)
6759                 preempt_val_l2 = 0;
6760         else
6761                 preempt_val_l2 -= preempt_val_l1;
6762         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6763 }
6764
6765 /*
6766  * The guest has exited.  See if we can fix it or if we need userspace
6767  * assistance.
6768  */
6769 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6770 {
6771         struct vcpu_vmx *vmx = to_vmx(vcpu);
6772         u32 exit_reason = vmx->exit_reason;
6773         u32 vectoring_info = vmx->idt_vectoring_info;
6774
6775         /* If guest state is invalid, start emulating */
6776         if (vmx->emulation_required)
6777                 return handle_invalid_guest_state(vcpu);
6778
6779         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6780                 nested_vmx_vmexit(vcpu);
6781                 return 1;
6782         }
6783
6784         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6785                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6786                 vcpu->run->fail_entry.hardware_entry_failure_reason
6787                         = exit_reason;
6788                 return 0;
6789         }
6790
6791         if (unlikely(vmx->fail)) {
6792                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6793                 vcpu->run->fail_entry.hardware_entry_failure_reason
6794                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6795                 return 0;
6796         }
6797
6798         /*
6799          * Note:
6800          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6801          * delivery event since it indicates guest is accessing MMIO.
6802          * The vm-exit can be triggered again after return to guest that
6803          * will cause infinite loop.
6804          */
6805         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6806                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6807                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6808                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6809                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6810                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6811                 vcpu->run->internal.ndata = 2;
6812                 vcpu->run->internal.data[0] = vectoring_info;
6813                 vcpu->run->internal.data[1] = exit_reason;
6814                 return 0;
6815         }
6816
6817         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6818             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6819                                         get_vmcs12(vcpu))))) {
6820                 if (vmx_interrupt_allowed(vcpu)) {
6821                         vmx->soft_vnmi_blocked = 0;
6822                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6823                            vcpu->arch.nmi_pending) {
6824                         /*
6825                          * This CPU don't support us in finding the end of an
6826                          * NMI-blocked window if the guest runs with IRQs
6827                          * disabled. So we pull the trigger after 1 s of
6828                          * futile waiting, but inform the user about this.
6829                          */
6830                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6831                                "state on VCPU %d after 1 s timeout\n",
6832                                __func__, vcpu->vcpu_id);
6833                         vmx->soft_vnmi_blocked = 0;
6834                 }
6835         }
6836
6837         if (exit_reason < kvm_vmx_max_exit_handlers
6838             && kvm_vmx_exit_handlers[exit_reason])
6839                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6840         else {
6841                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6842                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6843         }
6844         return 0;
6845 }
6846
6847 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6848 {
6849         if (irr == -1 || tpr < irr) {
6850                 vmcs_write32(TPR_THRESHOLD, 0);
6851                 return;
6852         }
6853
6854         vmcs_write32(TPR_THRESHOLD, irr);
6855 }
6856
6857 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6858 {
6859         u32 sec_exec_control;
6860
6861         /*
6862          * There is not point to enable virtualize x2apic without enable
6863          * apicv
6864          */
6865         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6866                                 !vmx_vm_has_apicv(vcpu->kvm))
6867                 return;
6868
6869         if (!vm_need_tpr_shadow(vcpu->kvm))
6870                 return;
6871
6872         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6873
6874         if (set) {
6875                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6876                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6877         } else {
6878                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6879                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6880         }
6881         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6882
6883         vmx_set_msr_bitmap(vcpu);
6884 }
6885
6886 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6887 {
6888         u16 status;
6889         u8 old;
6890
6891         if (!vmx_vm_has_apicv(kvm))
6892                 return;
6893
6894         if (isr == -1)
6895                 isr = 0;
6896
6897         status = vmcs_read16(GUEST_INTR_STATUS);
6898         old = status >> 8;
6899         if (isr != old) {
6900                 status &= 0xff;
6901                 status |= isr << 8;
6902                 vmcs_write16(GUEST_INTR_STATUS, status);
6903         }
6904 }
6905
6906 static void vmx_set_rvi(int vector)
6907 {
6908         u16 status;
6909         u8 old;
6910
6911         status = vmcs_read16(GUEST_INTR_STATUS);
6912         old = (u8)status & 0xff;
6913         if ((u8)vector != old) {
6914                 status &= ~0xff;
6915                 status |= (u8)vector;
6916                 vmcs_write16(GUEST_INTR_STATUS, status);
6917         }
6918 }
6919
6920 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6921 {
6922         if (max_irr == -1)
6923                 return;
6924
6925         vmx_set_rvi(max_irr);
6926 }
6927
6928 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6929 {
6930         if (!vmx_vm_has_apicv(vcpu->kvm))
6931                 return;
6932
6933         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6934         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6935         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6936         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6937 }
6938
6939 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6940 {
6941         u32 exit_intr_info;
6942
6943         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6944               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6945                 return;
6946
6947         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6948         exit_intr_info = vmx->exit_intr_info;
6949
6950         /* Handle machine checks before interrupts are enabled */
6951         if (is_machine_check(exit_intr_info))
6952                 kvm_machine_check();
6953
6954         /* We need to handle NMIs before interrupts are enabled */
6955         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6956             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6957                 kvm_before_handle_nmi(&vmx->vcpu);
6958                 asm("int $2");
6959                 kvm_after_handle_nmi(&vmx->vcpu);
6960         }
6961 }
6962
6963 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6964 {
6965         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6966
6967         /*
6968          * If external interrupt exists, IF bit is set in rflags/eflags on the
6969          * interrupt stack frame, and interrupt will be enabled on a return
6970          * from interrupt handler.
6971          */
6972         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6973                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6974                 unsigned int vector;
6975                 unsigned long entry;
6976                 gate_desc *desc;
6977                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6978 #ifdef CONFIG_X86_64
6979                 unsigned long tmp;
6980 #endif
6981
6982                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6983                 desc = (gate_desc *)vmx->host_idt_base + vector;
6984                 entry = gate_offset(*desc);
6985                 asm volatile(
6986 #ifdef CONFIG_X86_64
6987                         "mov %%" _ASM_SP ", %[sp]\n\t"
6988                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6989                         "push $%c[ss]\n\t"
6990                         "push %[sp]\n\t"
6991 #endif
6992                         "pushf\n\t"
6993                         "orl $0x200, (%%" _ASM_SP ")\n\t"
6994                         __ASM_SIZE(push) " $%c[cs]\n\t"
6995                         "call *%[entry]\n\t"
6996                         :
6997 #ifdef CONFIG_X86_64
6998                         [sp]"=&r"(tmp)
6999 #endif
7000                         :
7001                         [entry]"r"(entry),
7002                         [ss]"i"(__KERNEL_DS),
7003                         [cs]"i"(__KERNEL_CS)
7004                         );
7005         } else
7006                 local_irq_enable();
7007 }
7008
7009 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7010 {
7011         u32 exit_intr_info;
7012         bool unblock_nmi;
7013         u8 vector;
7014         bool idtv_info_valid;
7015
7016         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7017
7018         if (cpu_has_virtual_nmis()) {
7019                 if (vmx->nmi_known_unmasked)
7020                         return;
7021                 /*
7022                  * Can't use vmx->exit_intr_info since we're not sure what
7023                  * the exit reason is.
7024                  */
7025                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7026                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7027                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7028                 /*
7029                  * SDM 3: 27.7.1.2 (September 2008)
7030                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7031                  * a guest IRET fault.
7032                  * SDM 3: 23.2.2 (September 2008)
7033                  * Bit 12 is undefined in any of the following cases:
7034                  *  If the VM exit sets the valid bit in the IDT-vectoring
7035                  *   information field.
7036                  *  If the VM exit is due to a double fault.
7037                  */
7038                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7039                     vector != DF_VECTOR && !idtv_info_valid)
7040                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7041                                       GUEST_INTR_STATE_NMI);
7042                 else
7043                         vmx->nmi_known_unmasked =
7044                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7045                                   & GUEST_INTR_STATE_NMI);
7046         } else if (unlikely(vmx->soft_vnmi_blocked))
7047                 vmx->vnmi_blocked_time +=
7048                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7049 }
7050
7051 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7052                                       u32 idt_vectoring_info,
7053                                       int instr_len_field,
7054                                       int error_code_field)
7055 {
7056         u8 vector;
7057         int type;
7058         bool idtv_info_valid;
7059
7060         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7061
7062         vcpu->arch.nmi_injected = false;
7063         kvm_clear_exception_queue(vcpu);
7064         kvm_clear_interrupt_queue(vcpu);
7065
7066         if (!idtv_info_valid)
7067                 return;
7068
7069         kvm_make_request(KVM_REQ_EVENT, vcpu);
7070
7071         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7072         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7073
7074         switch (type) {
7075         case INTR_TYPE_NMI_INTR:
7076                 vcpu->arch.nmi_injected = true;
7077                 /*
7078                  * SDM 3: 27.7.1.2 (September 2008)
7079                  * Clear bit "block by NMI" before VM entry if a NMI
7080                  * delivery faulted.
7081                  */
7082                 vmx_set_nmi_mask(vcpu, false);
7083                 break;
7084         case INTR_TYPE_SOFT_EXCEPTION:
7085                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7086                 /* fall through */
7087         case INTR_TYPE_HARD_EXCEPTION:
7088                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7089                         u32 err = vmcs_read32(error_code_field);
7090                         kvm_requeue_exception_e(vcpu, vector, err);
7091                 } else
7092                         kvm_requeue_exception(vcpu, vector);
7093                 break;
7094         case INTR_TYPE_SOFT_INTR:
7095                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7096                 /* fall through */
7097         case INTR_TYPE_EXT_INTR:
7098                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7099                 break;
7100         default:
7101                 break;
7102         }
7103 }
7104
7105 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7106 {
7107         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7108                                   VM_EXIT_INSTRUCTION_LEN,
7109                                   IDT_VECTORING_ERROR_CODE);
7110 }
7111
7112 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7113 {
7114         __vmx_complete_interrupts(vcpu,
7115                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7116                                   VM_ENTRY_INSTRUCTION_LEN,
7117                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7118
7119         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7120 }
7121
7122 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7123 {
7124         int i, nr_msrs;
7125         struct perf_guest_switch_msr *msrs;
7126
7127         msrs = perf_guest_get_msrs(&nr_msrs);
7128
7129         if (!msrs)
7130                 return;
7131
7132         for (i = 0; i < nr_msrs; i++)
7133                 if (msrs[i].host == msrs[i].guest)
7134                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7135                 else
7136                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7137                                         msrs[i].host);
7138 }
7139
7140 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7141 {
7142         struct vcpu_vmx *vmx = to_vmx(vcpu);
7143         unsigned long debugctlmsr;
7144
7145         /* Record the guest's net vcpu time for enforced NMI injections. */
7146         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7147                 vmx->entry_time = ktime_get();
7148
7149         /* Don't enter VMX if guest state is invalid, let the exit handler
7150            start emulation until we arrive back to a valid state */
7151         if (vmx->emulation_required)
7152                 return;
7153
7154         if (vmx->nested.sync_shadow_vmcs) {
7155                 copy_vmcs12_to_shadow(vmx);
7156                 vmx->nested.sync_shadow_vmcs = false;
7157         }
7158
7159         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7160                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7161         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7162                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7163
7164         /* When single-stepping over STI and MOV SS, we must clear the
7165          * corresponding interruptibility bits in the guest state. Otherwise
7166          * vmentry fails as it then expects bit 14 (BS) in pending debug
7167          * exceptions being set, but that's not correct for the guest debugging
7168          * case. */
7169         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7170                 vmx_set_interrupt_shadow(vcpu, 0);
7171
7172         atomic_switch_perf_msrs(vmx);
7173         debugctlmsr = get_debugctlmsr();
7174
7175         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7176                 nested_adjust_preemption_timer(vcpu);
7177         vmx->__launched = vmx->loaded_vmcs->launched;
7178         asm(
7179                 /* Store host registers */
7180                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7181                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7182                 "push %%" _ASM_CX " \n\t"
7183                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7184                 "je 1f \n\t"
7185                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7186                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7187                 "1: \n\t"
7188                 /* Reload cr2 if changed */
7189                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7190                 "mov %%cr2, %%" _ASM_DX " \n\t"
7191                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7192                 "je 2f \n\t"
7193                 "mov %%" _ASM_AX", %%cr2 \n\t"
7194                 "2: \n\t"
7195                 /* Check if vmlaunch of vmresume is needed */
7196                 "cmpl $0, %c[launched](%0) \n\t"
7197                 /* Load guest registers.  Don't clobber flags. */
7198                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7199                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7200                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7201                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7202                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7203                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7204 #ifdef CONFIG_X86_64
7205                 "mov %c[r8](%0),  %%r8  \n\t"
7206                 "mov %c[r9](%0),  %%r9  \n\t"
7207                 "mov %c[r10](%0), %%r10 \n\t"
7208                 "mov %c[r11](%0), %%r11 \n\t"
7209                 "mov %c[r12](%0), %%r12 \n\t"
7210                 "mov %c[r13](%0), %%r13 \n\t"
7211                 "mov %c[r14](%0), %%r14 \n\t"
7212                 "mov %c[r15](%0), %%r15 \n\t"
7213 #endif
7214                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7215
7216                 /* Enter guest mode */
7217                 "jne 1f \n\t"
7218                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7219                 "jmp 2f \n\t"
7220                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7221                 "2: "
7222                 /* Save guest registers, load host registers, keep flags */
7223                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7224                 "pop %0 \n\t"
7225                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7226                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7227                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7228                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7229                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7230                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7231                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7232 #ifdef CONFIG_X86_64
7233                 "mov %%r8,  %c[r8](%0) \n\t"
7234                 "mov %%r9,  %c[r9](%0) \n\t"
7235                 "mov %%r10, %c[r10](%0) \n\t"
7236                 "mov %%r11, %c[r11](%0) \n\t"
7237                 "mov %%r12, %c[r12](%0) \n\t"
7238                 "mov %%r13, %c[r13](%0) \n\t"
7239                 "mov %%r14, %c[r14](%0) \n\t"
7240                 "mov %%r15, %c[r15](%0) \n\t"
7241 #endif
7242                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7243                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7244
7245                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7246                 "setbe %c[fail](%0) \n\t"
7247                 ".pushsection .rodata \n\t"
7248                 ".global vmx_return \n\t"
7249                 "vmx_return: " _ASM_PTR " 2b \n\t"
7250                 ".popsection"
7251               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7252                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7253                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7254                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7255                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7256                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7257                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7258                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7259                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7260                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7261                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7262 #ifdef CONFIG_X86_64
7263                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7264                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7265                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7266                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7267                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7268                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7269                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7270                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7271 #endif
7272                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7273                 [wordsize]"i"(sizeof(ulong))
7274               : "cc", "memory"
7275 #ifdef CONFIG_X86_64
7276                 , "rax", "rbx", "rdi", "rsi"
7277                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7278 #else
7279                 , "eax", "ebx", "edi", "esi"
7280 #endif
7281               );
7282
7283         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7284         if (debugctlmsr)
7285                 update_debugctlmsr(debugctlmsr);
7286
7287 #ifndef CONFIG_X86_64
7288         /*
7289          * The sysexit path does not restore ds/es, so we must set them to
7290          * a reasonable value ourselves.
7291          *
7292          * We can't defer this to vmx_load_host_state() since that function
7293          * may be executed in interrupt context, which saves and restore segments
7294          * around it, nullifying its effect.
7295          */
7296         loadsegment(ds, __USER_DS);
7297         loadsegment(es, __USER_DS);
7298 #endif
7299
7300         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7301                                   | (1 << VCPU_EXREG_RFLAGS)
7302                                   | (1 << VCPU_EXREG_CPL)
7303                                   | (1 << VCPU_EXREG_PDPTR)
7304                                   | (1 << VCPU_EXREG_SEGMENTS)
7305                                   | (1 << VCPU_EXREG_CR3));
7306         vcpu->arch.regs_dirty = 0;
7307
7308         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7309
7310         vmx->loaded_vmcs->launched = 1;
7311
7312         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7313         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7314
7315         /*
7316          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7317          * we did not inject a still-pending event to L1 now because of
7318          * nested_run_pending, we need to re-enable this bit.
7319          */
7320         if (vmx->nested.nested_run_pending)
7321                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7322
7323         vmx->nested.nested_run_pending = 0;
7324
7325         vmx_complete_atomic_exit(vmx);
7326         vmx_recover_nmi_blocking(vmx);
7327         vmx_complete_interrupts(vmx);
7328 }
7329
7330 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7331 {
7332         struct vcpu_vmx *vmx = to_vmx(vcpu);
7333
7334         free_vpid(vmx);
7335         free_nested(vmx);
7336         free_loaded_vmcs(vmx->loaded_vmcs);
7337         kfree(vmx->guest_msrs);
7338         kvm_vcpu_uninit(vcpu);
7339         kmem_cache_free(kvm_vcpu_cache, vmx);
7340 }
7341
7342 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7343 {
7344         int err;
7345         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7346         int cpu;
7347
7348         if (!vmx)
7349                 return ERR_PTR(-ENOMEM);
7350
7351         allocate_vpid(vmx);
7352
7353         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7354         if (err)
7355                 goto free_vcpu;
7356
7357         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7358         err = -ENOMEM;
7359         if (!vmx->guest_msrs) {
7360                 goto uninit_vcpu;
7361         }
7362
7363         vmx->loaded_vmcs = &vmx->vmcs01;
7364         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7365         if (!vmx->loaded_vmcs->vmcs)
7366                 goto free_msrs;
7367         if (!vmm_exclusive)
7368                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7369         loaded_vmcs_init(vmx->loaded_vmcs);
7370         if (!vmm_exclusive)
7371                 kvm_cpu_vmxoff();
7372
7373         cpu = get_cpu();
7374         vmx_vcpu_load(&vmx->vcpu, cpu);
7375         vmx->vcpu.cpu = cpu;
7376         err = vmx_vcpu_setup(vmx);
7377         vmx_vcpu_put(&vmx->vcpu);
7378         put_cpu();
7379         if (err)
7380                 goto free_vmcs;
7381         if (vm_need_virtualize_apic_accesses(kvm)) {
7382                 err = alloc_apic_access_page(kvm);
7383                 if (err)
7384                         goto free_vmcs;
7385         }
7386
7387         if (enable_ept) {
7388                 if (!kvm->arch.ept_identity_map_addr)
7389                         kvm->arch.ept_identity_map_addr =
7390                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7391                 err = -ENOMEM;
7392                 if (alloc_identity_pagetable(kvm) != 0)
7393                         goto free_vmcs;
7394                 if (!init_rmode_identity_map(kvm))
7395                         goto free_vmcs;
7396         }
7397
7398         vmx->nested.current_vmptr = -1ull;
7399         vmx->nested.current_vmcs12 = NULL;
7400
7401         return &vmx->vcpu;
7402
7403 free_vmcs:
7404         free_loaded_vmcs(vmx->loaded_vmcs);
7405 free_msrs:
7406         kfree(vmx->guest_msrs);
7407 uninit_vcpu:
7408         kvm_vcpu_uninit(&vmx->vcpu);
7409 free_vcpu:
7410         free_vpid(vmx);
7411         kmem_cache_free(kvm_vcpu_cache, vmx);
7412         return ERR_PTR(err);
7413 }
7414
7415 static void __init vmx_check_processor_compat(void *rtn)
7416 {
7417         struct vmcs_config vmcs_conf;
7418
7419         *(int *)rtn = 0;
7420         if (setup_vmcs_config(&vmcs_conf) < 0)
7421                 *(int *)rtn = -EIO;
7422         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7423                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7424                                 smp_processor_id());
7425                 *(int *)rtn = -EIO;
7426         }
7427 }
7428
7429 static int get_ept_level(void)
7430 {
7431         return VMX_EPT_DEFAULT_GAW + 1;
7432 }
7433
7434 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7435 {
7436         u64 ret;
7437
7438         /* For VT-d and EPT combination
7439          * 1. MMIO: always map as UC
7440          * 2. EPT with VT-d:
7441          *   a. VT-d without snooping control feature: can't guarantee the
7442          *      result, try to trust guest.
7443          *   b. VT-d with snooping control feature: snooping control feature of
7444          *      VT-d engine can guarantee the cache correctness. Just set it
7445          *      to WB to keep consistent with host. So the same as item 3.
7446          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7447          *    consistent with host MTRR
7448          */
7449         if (is_mmio)
7450                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7451         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7452                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7453                       VMX_EPT_MT_EPTE_SHIFT;
7454         else
7455                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7456                         | VMX_EPT_IPAT_BIT;
7457
7458         return ret;
7459 }
7460
7461 static int vmx_get_lpage_level(void)
7462 {
7463         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7464                 return PT_DIRECTORY_LEVEL;
7465         else
7466                 /* For shadow and EPT supported 1GB page */
7467                 return PT_PDPE_LEVEL;
7468 }
7469
7470 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7471 {
7472         struct kvm_cpuid_entry2 *best;
7473         struct vcpu_vmx *vmx = to_vmx(vcpu);
7474         u32 exec_control;
7475
7476         vmx->rdtscp_enabled = false;
7477         if (vmx_rdtscp_supported()) {
7478                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7479                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7480                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7481                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7482                                 vmx->rdtscp_enabled = true;
7483                         else {
7484                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7485                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7486                                                 exec_control);
7487                         }
7488                 }
7489         }
7490
7491         /* Exposing INVPCID only when PCID is exposed */
7492         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7493         if (vmx_invpcid_supported() &&
7494             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7495             guest_cpuid_has_pcid(vcpu)) {
7496                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7497                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7498                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7499                              exec_control);
7500         } else {
7501                 if (cpu_has_secondary_exec_ctrls()) {
7502                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7503                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7504                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7505                                      exec_control);
7506                 }
7507                 if (best)
7508                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7509         }
7510 }
7511
7512 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7513 {
7514         if (func == 1 && nested)
7515                 entry->ecx |= bit(X86_FEATURE_VMX);
7516 }
7517
7518 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7519                 struct x86_exception *fault)
7520 {
7521         struct vmcs12 *vmcs12;
7522         nested_vmx_vmexit(vcpu);
7523         vmcs12 = get_vmcs12(vcpu);
7524
7525         if (fault->error_code & PFERR_RSVD_MASK)
7526                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7527         else
7528                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7529         vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7530         vmcs12->guest_physical_address = fault->address;
7531 }
7532
7533 /* Callbacks for nested_ept_init_mmu_context: */
7534
7535 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7536 {
7537         /* return the page table to be shadowed - in our case, EPT12 */
7538         return get_vmcs12(vcpu)->ept_pointer;
7539 }
7540
7541 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7542 {
7543         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7544                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7545
7546         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7547         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7548         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7549
7550         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7551 }
7552
7553 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7554 {
7555         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7556 }
7557
7558 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7559                 struct x86_exception *fault)
7560 {
7561         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7562
7563         WARN_ON(!is_guest_mode(vcpu));
7564
7565         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7566         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7567                 nested_vmx_vmexit(vcpu);
7568         else
7569                 kvm_inject_page_fault(vcpu, fault);
7570 }
7571
7572 /*
7573  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7574  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7575  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7576  * guest in a way that will both be appropriate to L1's requests, and our
7577  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7578  * function also has additional necessary side-effects, like setting various
7579  * vcpu->arch fields.
7580  */
7581 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7582 {
7583         struct vcpu_vmx *vmx = to_vmx(vcpu);
7584         u32 exec_control;
7585         u32 exit_control;
7586
7587         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7588         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7589         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7590         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7591         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7592         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7593         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7594         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7595         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7596         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7597         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7598         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7599         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7600         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7601         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7602         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7603         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7604         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7605         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7606         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7607         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7608         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7609         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7610         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7611         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7612         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7613         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7614         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7615         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7616         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7617         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7618         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7619         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7620         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7621         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7622         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7623
7624         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7625         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7626                 vmcs12->vm_entry_intr_info_field);
7627         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7628                 vmcs12->vm_entry_exception_error_code);
7629         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7630                 vmcs12->vm_entry_instruction_len);
7631         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7632                 vmcs12->guest_interruptibility_info);
7633         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7634         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7635         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7636         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7637                 vmcs12->guest_pending_dbg_exceptions);
7638         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7639         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7640
7641         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7642
7643         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7644                 (vmcs_config.pin_based_exec_ctrl |
7645                  vmcs12->pin_based_vm_exec_control));
7646
7647         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7648                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7649                              vmcs12->vmx_preemption_timer_value);
7650
7651         /*
7652          * Whether page-faults are trapped is determined by a combination of
7653          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7654          * If enable_ept, L0 doesn't care about page faults and we should
7655          * set all of these to L1's desires. However, if !enable_ept, L0 does
7656          * care about (at least some) page faults, and because it is not easy
7657          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7658          * to exit on each and every L2 page fault. This is done by setting
7659          * MASK=MATCH=0 and (see below) EB.PF=1.
7660          * Note that below we don't need special code to set EB.PF beyond the
7661          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7662          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7663          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7664          *
7665          * A problem with this approach (when !enable_ept) is that L1 may be
7666          * injected with more page faults than it asked for. This could have
7667          * caused problems, but in practice existing hypervisors don't care.
7668          * To fix this, we will need to emulate the PFEC checking (on the L1
7669          * page tables), using walk_addr(), when injecting PFs to L1.
7670          */
7671         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7672                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7673         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7674                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7675
7676         if (cpu_has_secondary_exec_ctrls()) {
7677                 u32 exec_control = vmx_secondary_exec_control(vmx);
7678                 if (!vmx->rdtscp_enabled)
7679                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7680                 /* Take the following fields only from vmcs12 */
7681                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7682                 if (nested_cpu_has(vmcs12,
7683                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7684                         exec_control |= vmcs12->secondary_vm_exec_control;
7685
7686                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7687                         /*
7688                          * Translate L1 physical address to host physical
7689                          * address for vmcs02. Keep the page pinned, so this
7690                          * physical address remains valid. We keep a reference
7691                          * to it so we can release it later.
7692                          */
7693                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7694                                 nested_release_page(vmx->nested.apic_access_page);
7695                         vmx->nested.apic_access_page =
7696                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7697                         /*
7698                          * If translation failed, no matter: This feature asks
7699                          * to exit when accessing the given address, and if it
7700                          * can never be accessed, this feature won't do
7701                          * anything anyway.
7702                          */
7703                         if (!vmx->nested.apic_access_page)
7704                                 exec_control &=
7705                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7706                         else
7707                                 vmcs_write64(APIC_ACCESS_ADDR,
7708                                   page_to_phys(vmx->nested.apic_access_page));
7709                 }
7710
7711                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7712         }
7713
7714
7715         /*
7716          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7717          * Some constant fields are set here by vmx_set_constant_host_state().
7718          * Other fields are different per CPU, and will be set later when
7719          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7720          */
7721         vmx_set_constant_host_state(vmx);
7722
7723         /*
7724          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7725          * entry, but only if the current (host) sp changed from the value
7726          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7727          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7728          * here we just force the write to happen on entry.
7729          */
7730         vmx->host_rsp = 0;
7731
7732         exec_control = vmx_exec_control(vmx); /* L0's desires */
7733         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7734         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7735         exec_control &= ~CPU_BASED_TPR_SHADOW;
7736         exec_control |= vmcs12->cpu_based_vm_exec_control;
7737         /*
7738          * Merging of IO and MSR bitmaps not currently supported.
7739          * Rather, exit every time.
7740          */
7741         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7742         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7743         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7744
7745         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7746
7747         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7748          * bitwise-or of what L1 wants to trap for L2, and what we want to
7749          * trap. Note that CR0.TS also needs updating - we do this later.
7750          */
7751         update_exception_bitmap(vcpu);
7752         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7753         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7754
7755         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7756          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7757          * bits are further modified by vmx_set_efer() below.
7758          */
7759         exit_control = vmcs_config.vmexit_ctrl;
7760         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7761                 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7762         vmcs_write32(VM_EXIT_CONTROLS, exit_control);
7763
7764         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7765          * emulated by vmx_set_efer(), below.
7766          */
7767         vmcs_write32(VM_ENTRY_CONTROLS,
7768                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7769                         ~VM_ENTRY_IA32E_MODE) |
7770                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7771
7772         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7773                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7774                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7775         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7776                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7777
7778
7779         set_cr4_guest_host_mask(vmx);
7780
7781         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7782                 vmcs_write64(TSC_OFFSET,
7783                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7784         else
7785                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7786
7787         if (enable_vpid) {
7788                 /*
7789                  * Trivially support vpid by letting L2s share their parent
7790                  * L1's vpid. TODO: move to a more elaborate solution, giving
7791                  * each L2 its own vpid and exposing the vpid feature to L1.
7792                  */
7793                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7794                 vmx_flush_tlb(vcpu);
7795         }
7796
7797         if (nested_cpu_has_ept(vmcs12)) {
7798                 kvm_mmu_unload(vcpu);
7799                 nested_ept_init_mmu_context(vcpu);
7800         }
7801
7802         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7803                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7804         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7805                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7806         else
7807                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7808         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7809         vmx_set_efer(vcpu, vcpu->arch.efer);
7810
7811         /*
7812          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7813          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7814          * The CR0_READ_SHADOW is what L2 should have expected to read given
7815          * the specifications by L1; It's not enough to take
7816          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7817          * have more bits than L1 expected.
7818          */
7819         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7820         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7821
7822         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7823         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7824
7825         /* shadow page tables on either EPT or shadow page tables */
7826         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7827         kvm_mmu_reset_context(vcpu);
7828
7829         if (!enable_ept)
7830                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7831
7832         /*
7833          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7834          */
7835         if (enable_ept) {
7836                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7837                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7838                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7839                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7840         }
7841
7842         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7843         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7844 }
7845
7846 /*
7847  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7848  * for running an L2 nested guest.
7849  */
7850 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7851 {
7852         struct vmcs12 *vmcs12;
7853         struct vcpu_vmx *vmx = to_vmx(vcpu);
7854         int cpu;
7855         struct loaded_vmcs *vmcs02;
7856         bool ia32e;
7857
7858         if (!nested_vmx_check_permission(vcpu) ||
7859             !nested_vmx_check_vmcs12(vcpu))
7860                 return 1;
7861
7862         skip_emulated_instruction(vcpu);
7863         vmcs12 = get_vmcs12(vcpu);
7864
7865         if (enable_shadow_vmcs)
7866                 copy_shadow_to_vmcs12(vmx);
7867
7868         /*
7869          * The nested entry process starts with enforcing various prerequisites
7870          * on vmcs12 as required by the Intel SDM, and act appropriately when
7871          * they fail: As the SDM explains, some conditions should cause the
7872          * instruction to fail, while others will cause the instruction to seem
7873          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7874          * To speed up the normal (success) code path, we should avoid checking
7875          * for misconfigurations which will anyway be caught by the processor
7876          * when using the merged vmcs02.
7877          */
7878         if (vmcs12->launch_state == launch) {
7879                 nested_vmx_failValid(vcpu,
7880                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7881                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7882                 return 1;
7883         }
7884
7885         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7886                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7887                 return 1;
7888         }
7889
7890         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7891                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7892                 /*TODO: Also verify bits beyond physical address width are 0*/
7893                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7894                 return 1;
7895         }
7896
7897         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7898                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7899                 /*TODO: Also verify bits beyond physical address width are 0*/
7900                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7901                 return 1;
7902         }
7903
7904         if (vmcs12->vm_entry_msr_load_count > 0 ||
7905             vmcs12->vm_exit_msr_load_count > 0 ||
7906             vmcs12->vm_exit_msr_store_count > 0) {
7907                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7908                                     __func__);
7909                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7910                 return 1;
7911         }
7912
7913         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7914               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7915             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7916               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7917             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7918               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7919             !vmx_control_verify(vmcs12->vm_exit_controls,
7920               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7921             !vmx_control_verify(vmcs12->vm_entry_controls,
7922               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7923         {
7924                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7925                 return 1;
7926         }
7927
7928         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7929             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7930                 nested_vmx_failValid(vcpu,
7931                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7932                 return 1;
7933         }
7934
7935         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7936             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7937                 nested_vmx_entry_failure(vcpu, vmcs12,
7938                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7939                 return 1;
7940         }
7941         if (vmcs12->vmcs_link_pointer != -1ull) {
7942                 nested_vmx_entry_failure(vcpu, vmcs12,
7943                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7944                 return 1;
7945         }
7946
7947         /*
7948          * If the load IA32_EFER VM-entry control is 1, the following checks
7949          * are performed on the field for the IA32_EFER MSR:
7950          * - Bits reserved in the IA32_EFER MSR must be 0.
7951          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7952          *   the IA-32e mode guest VM-exit control. It must also be identical
7953          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7954          *   CR0.PG) is 1.
7955          */
7956         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7957                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7958                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7959                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7960                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7961                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7962                         nested_vmx_entry_failure(vcpu, vmcs12,
7963                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7964                         return 1;
7965                 }
7966         }
7967
7968         /*
7969          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7970          * IA32_EFER MSR must be 0 in the field for that register. In addition,
7971          * the values of the LMA and LME bits in the field must each be that of
7972          * the host address-space size VM-exit control.
7973          */
7974         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7975                 ia32e = (vmcs12->vm_exit_controls &
7976                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7977                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7978                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7979                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7980                         nested_vmx_entry_failure(vcpu, vmcs12,
7981                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7982                         return 1;
7983                 }
7984         }
7985
7986         /*
7987          * We're finally done with prerequisite checking, and can start with
7988          * the nested entry.
7989          */
7990
7991         vmcs02 = nested_get_current_vmcs02(vmx);
7992         if (!vmcs02)
7993                 return -ENOMEM;
7994
7995         enter_guest_mode(vcpu);
7996
7997         vmx->nested.nested_run_pending = 1;
7998
7999         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8000
8001         cpu = get_cpu();
8002         vmx->loaded_vmcs = vmcs02;
8003         vmx_vcpu_put(vcpu);
8004         vmx_vcpu_load(vcpu, cpu);
8005         vcpu->cpu = cpu;
8006         put_cpu();
8007
8008         vmx_segment_cache_clear(vmx);
8009
8010         vmcs12->launch_state = 1;
8011
8012         prepare_vmcs02(vcpu, vmcs12);
8013
8014         /*
8015          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8016          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8017          * returned as far as L1 is concerned. It will only return (and set
8018          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8019          */
8020         return 1;
8021 }
8022
8023 /*
8024  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8025  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8026  * This function returns the new value we should put in vmcs12.guest_cr0.
8027  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8028  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8029  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8030  *     didn't trap the bit, because if L1 did, so would L0).
8031  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8032  *     been modified by L2, and L1 knows it. So just leave the old value of
8033  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8034  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8035  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8036  *     changed these bits, and therefore they need to be updated, but L0
8037  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8038  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8039  */
8040 static inline unsigned long
8041 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8042 {
8043         return
8044         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8045         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8046         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8047                         vcpu->arch.cr0_guest_owned_bits));
8048 }
8049
8050 static inline unsigned long
8051 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8052 {
8053         return
8054         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8055         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8056         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8057                         vcpu->arch.cr4_guest_owned_bits));
8058 }
8059
8060 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8061                                        struct vmcs12 *vmcs12)
8062 {
8063         u32 idt_vectoring;
8064         unsigned int nr;
8065
8066         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8067                 nr = vcpu->arch.exception.nr;
8068                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8069
8070                 if (kvm_exception_is_soft(nr)) {
8071                         vmcs12->vm_exit_instruction_len =
8072                                 vcpu->arch.event_exit_inst_len;
8073                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8074                 } else
8075                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8076
8077                 if (vcpu->arch.exception.has_error_code) {
8078                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8079                         vmcs12->idt_vectoring_error_code =
8080                                 vcpu->arch.exception.error_code;
8081                 }
8082
8083                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8084         } else if (vcpu->arch.nmi_injected) {
8085                 vmcs12->idt_vectoring_info_field =
8086                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8087         } else if (vcpu->arch.interrupt.pending) {
8088                 nr = vcpu->arch.interrupt.nr;
8089                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8090
8091                 if (vcpu->arch.interrupt.soft) {
8092                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8093                         vmcs12->vm_entry_instruction_len =
8094                                 vcpu->arch.event_exit_inst_len;
8095                 } else
8096                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8097
8098                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8099         }
8100 }
8101
8102 /*
8103  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8104  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8105  * and this function updates it to reflect the changes to the guest state while
8106  * L2 was running (and perhaps made some exits which were handled directly by L0
8107  * without going back to L1), and to reflect the exit reason.
8108  * Note that we do not have to copy here all VMCS fields, just those that
8109  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8110  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8111  * which already writes to vmcs12 directly.
8112  */
8113 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8114 {
8115         /* update guest state fields: */
8116         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8117         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8118
8119         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8120         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8121         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8122         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8123
8124         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8125         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8126         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8127         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8128         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8129         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8130         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8131         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8132         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8133         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8134         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8135         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8136         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8137         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8138         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8139         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8140         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8141         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8142         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8143         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8144         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8145         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8146         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8147         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8148         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8149         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8150         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8151         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8152         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8153         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8154         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8155         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8156         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8157         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8158         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8159         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8160
8161         vmcs12->guest_interruptibility_info =
8162                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8163         vmcs12->guest_pending_dbg_exceptions =
8164                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8165
8166         if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8167             (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8168                 vmcs12->vmx_preemption_timer_value =
8169                         vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8170
8171         /*
8172          * In some cases (usually, nested EPT), L2 is allowed to change its
8173          * own CR3 without exiting. If it has changed it, we must keep it.
8174          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8175          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8176          *
8177          * Additionally, restore L2's PDPTR to vmcs12.
8178          */
8179         if (enable_ept) {
8180                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8181                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8182                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8183                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8184                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8185         }
8186
8187         vmcs12->vm_entry_controls =
8188                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8189                 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
8190
8191         /* TODO: These cannot have changed unless we have MSR bitmaps and
8192          * the relevant bit asks not to trap the change */
8193         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8194         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8195                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8196         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8197                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8198         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8199         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8200         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8201
8202         /* update exit information fields: */
8203
8204         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8205         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8206
8207         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8208         if ((vmcs12->vm_exit_intr_info &
8209              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8210             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8211                 vmcs12->vm_exit_intr_error_code =
8212                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8213         vmcs12->idt_vectoring_info_field = 0;
8214         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8215         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8216
8217         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8218                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8219                  * instead of reading the real value. */
8220                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8221
8222                 /*
8223                  * Transfer the event that L0 or L1 may wanted to inject into
8224                  * L2 to IDT_VECTORING_INFO_FIELD.
8225                  */
8226                 vmcs12_save_pending_event(vcpu, vmcs12);
8227         }
8228
8229         /*
8230          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8231          * preserved above and would only end up incorrectly in L1.
8232          */
8233         vcpu->arch.nmi_injected = false;
8234         kvm_clear_exception_queue(vcpu);
8235         kvm_clear_interrupt_queue(vcpu);
8236 }
8237
8238 /*
8239  * A part of what we need to when the nested L2 guest exits and we want to
8240  * run its L1 parent, is to reset L1's guest state to the host state specified
8241  * in vmcs12.
8242  * This function is to be called not only on normal nested exit, but also on
8243  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8244  * Failures During or After Loading Guest State").
8245  * This function should be called when the active VMCS is L1's (vmcs01).
8246  */
8247 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8248                                    struct vmcs12 *vmcs12)
8249 {
8250         struct kvm_segment seg;
8251
8252         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8253                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8254         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8255                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8256         else
8257                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8258         vmx_set_efer(vcpu, vcpu->arch.efer);
8259
8260         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8261         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8262         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8263         /*
8264          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8265          * actually changed, because it depends on the current state of
8266          * fpu_active (which may have changed).
8267          * Note that vmx_set_cr0 refers to efer set above.
8268          */
8269         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8270         /*
8271          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8272          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8273          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8274          */
8275         update_exception_bitmap(vcpu);
8276         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8277         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8278
8279         /*
8280          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8281          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8282          */
8283         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8284         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8285
8286         if (nested_cpu_has_ept(vmcs12))
8287                 nested_ept_uninit_mmu_context(vcpu);
8288
8289         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8290         kvm_mmu_reset_context(vcpu);
8291
8292         if (!enable_ept)
8293                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8294
8295         if (enable_vpid) {
8296                 /*
8297                  * Trivially support vpid by letting L2s share their parent
8298                  * L1's vpid. TODO: move to a more elaborate solution, giving
8299                  * each L2 its own vpid and exposing the vpid feature to L1.
8300                  */
8301                 vmx_flush_tlb(vcpu);
8302         }
8303
8304
8305         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8306         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8307         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8308         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8309         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8310
8311         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8312                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8313                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8314         }
8315         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8316                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8317                         vmcs12->host_ia32_perf_global_ctrl);
8318
8319         /* Set L1 segment info according to Intel SDM
8320             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8321         seg = (struct kvm_segment) {
8322                 .base = 0,
8323                 .limit = 0xFFFFFFFF,
8324                 .selector = vmcs12->host_cs_selector,
8325                 .type = 11,
8326                 .present = 1,
8327                 .s = 1,
8328                 .g = 1
8329         };
8330         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8331                 seg.l = 1;
8332         else
8333                 seg.db = 1;
8334         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8335         seg = (struct kvm_segment) {
8336                 .base = 0,
8337                 .limit = 0xFFFFFFFF,
8338                 .type = 3,
8339                 .present = 1,
8340                 .s = 1,
8341                 .db = 1,
8342                 .g = 1
8343         };
8344         seg.selector = vmcs12->host_ds_selector;
8345         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8346         seg.selector = vmcs12->host_es_selector;
8347         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8348         seg.selector = vmcs12->host_ss_selector;
8349         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8350         seg.selector = vmcs12->host_fs_selector;
8351         seg.base = vmcs12->host_fs_base;
8352         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8353         seg.selector = vmcs12->host_gs_selector;
8354         seg.base = vmcs12->host_gs_base;
8355         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8356         seg = (struct kvm_segment) {
8357                 .base = vmcs12->host_tr_base,
8358                 .limit = 0x67,
8359                 .selector = vmcs12->host_tr_selector,
8360                 .type = 11,
8361                 .present = 1
8362         };
8363         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8364
8365         kvm_set_dr(vcpu, 7, 0x400);
8366         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8367 }
8368
8369 /*
8370  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8371  * and modify vmcs12 to make it see what it would expect to see there if
8372  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8373  */
8374 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8375 {
8376         struct vcpu_vmx *vmx = to_vmx(vcpu);
8377         int cpu;
8378         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8379
8380         /* trying to cancel vmlaunch/vmresume is a bug */
8381         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8382
8383         leave_guest_mode(vcpu);
8384         prepare_vmcs12(vcpu, vmcs12);
8385
8386         cpu = get_cpu();
8387         vmx->loaded_vmcs = &vmx->vmcs01;
8388         vmx_vcpu_put(vcpu);
8389         vmx_vcpu_load(vcpu, cpu);
8390         vcpu->cpu = cpu;
8391         put_cpu();
8392
8393         vmx_segment_cache_clear(vmx);
8394
8395         /* if no vmcs02 cache requested, remove the one we used */
8396         if (VMCS02_POOL_SIZE == 0)
8397                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8398
8399         load_vmcs12_host_state(vcpu, vmcs12);
8400
8401         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8402         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8403
8404         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8405         vmx->host_rsp = 0;
8406
8407         /* Unpin physical memory we referred to in vmcs02 */
8408         if (vmx->nested.apic_access_page) {
8409                 nested_release_page(vmx->nested.apic_access_page);
8410                 vmx->nested.apic_access_page = 0;
8411         }
8412
8413         /*
8414          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8415          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8416          * success or failure flag accordingly.
8417          */
8418         if (unlikely(vmx->fail)) {
8419                 vmx->fail = 0;
8420                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8421         } else
8422                 nested_vmx_succeed(vcpu);
8423         if (enable_shadow_vmcs)
8424                 vmx->nested.sync_shadow_vmcs = true;
8425 }
8426
8427 /*
8428  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8429  * 23.7 "VM-entry failures during or after loading guest state" (this also
8430  * lists the acceptable exit-reason and exit-qualification parameters).
8431  * It should only be called before L2 actually succeeded to run, and when
8432  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8433  */
8434 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8435                         struct vmcs12 *vmcs12,
8436                         u32 reason, unsigned long qualification)
8437 {
8438         load_vmcs12_host_state(vcpu, vmcs12);
8439         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8440         vmcs12->exit_qualification = qualification;
8441         nested_vmx_succeed(vcpu);
8442         if (enable_shadow_vmcs)
8443                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8444 }
8445
8446 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8447                                struct x86_instruction_info *info,
8448                                enum x86_intercept_stage stage)
8449 {
8450         return X86EMUL_CONTINUE;
8451 }
8452
8453 static struct kvm_x86_ops vmx_x86_ops = {
8454         .cpu_has_kvm_support = cpu_has_kvm_support,
8455         .disabled_by_bios = vmx_disabled_by_bios,
8456         .hardware_setup = hardware_setup,
8457         .hardware_unsetup = hardware_unsetup,
8458         .check_processor_compatibility = vmx_check_processor_compat,
8459         .hardware_enable = hardware_enable,
8460         .hardware_disable = hardware_disable,
8461         .cpu_has_accelerated_tpr = report_flexpriority,
8462
8463         .vcpu_create = vmx_create_vcpu,
8464         .vcpu_free = vmx_free_vcpu,
8465         .vcpu_reset = vmx_vcpu_reset,
8466
8467         .prepare_guest_switch = vmx_save_host_state,
8468         .vcpu_load = vmx_vcpu_load,
8469         .vcpu_put = vmx_vcpu_put,
8470
8471         .update_db_bp_intercept = update_exception_bitmap,
8472         .get_msr = vmx_get_msr,
8473         .set_msr = vmx_set_msr,
8474         .get_segment_base = vmx_get_segment_base,
8475         .get_segment = vmx_get_segment,
8476         .set_segment = vmx_set_segment,
8477         .get_cpl = vmx_get_cpl,
8478         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8479         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8480         .decache_cr3 = vmx_decache_cr3,
8481         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8482         .set_cr0 = vmx_set_cr0,
8483         .set_cr3 = vmx_set_cr3,
8484         .set_cr4 = vmx_set_cr4,
8485         .set_efer = vmx_set_efer,
8486         .get_idt = vmx_get_idt,
8487         .set_idt = vmx_set_idt,
8488         .get_gdt = vmx_get_gdt,
8489         .set_gdt = vmx_set_gdt,
8490         .set_dr7 = vmx_set_dr7,
8491         .cache_reg = vmx_cache_reg,
8492         .get_rflags = vmx_get_rflags,
8493         .set_rflags = vmx_set_rflags,
8494         .fpu_activate = vmx_fpu_activate,
8495         .fpu_deactivate = vmx_fpu_deactivate,
8496
8497         .tlb_flush = vmx_flush_tlb,
8498
8499         .run = vmx_vcpu_run,
8500         .handle_exit = vmx_handle_exit,
8501         .skip_emulated_instruction = skip_emulated_instruction,
8502         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8503         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8504         .patch_hypercall = vmx_patch_hypercall,
8505         .set_irq = vmx_inject_irq,
8506         .set_nmi = vmx_inject_nmi,
8507         .queue_exception = vmx_queue_exception,
8508         .cancel_injection = vmx_cancel_injection,
8509         .interrupt_allowed = vmx_interrupt_allowed,
8510         .nmi_allowed = vmx_nmi_allowed,
8511         .get_nmi_mask = vmx_get_nmi_mask,
8512         .set_nmi_mask = vmx_set_nmi_mask,
8513         .enable_nmi_window = enable_nmi_window,
8514         .enable_irq_window = enable_irq_window,
8515         .update_cr8_intercept = update_cr8_intercept,
8516         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8517         .vm_has_apicv = vmx_vm_has_apicv,
8518         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8519         .hwapic_irr_update = vmx_hwapic_irr_update,
8520         .hwapic_isr_update = vmx_hwapic_isr_update,
8521         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8522         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8523
8524         .set_tss_addr = vmx_set_tss_addr,
8525         .get_tdp_level = get_ept_level,
8526         .get_mt_mask = vmx_get_mt_mask,
8527
8528         .get_exit_info = vmx_get_exit_info,
8529
8530         .get_lpage_level = vmx_get_lpage_level,
8531
8532         .cpuid_update = vmx_cpuid_update,
8533
8534         .rdtscp_supported = vmx_rdtscp_supported,
8535         .invpcid_supported = vmx_invpcid_supported,
8536
8537         .set_supported_cpuid = vmx_set_supported_cpuid,
8538
8539         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8540
8541         .set_tsc_khz = vmx_set_tsc_khz,
8542         .read_tsc_offset = vmx_read_tsc_offset,
8543         .write_tsc_offset = vmx_write_tsc_offset,
8544         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8545         .compute_tsc_offset = vmx_compute_tsc_offset,
8546         .read_l1_tsc = vmx_read_l1_tsc,
8547
8548         .set_tdp_cr3 = vmx_set_cr3,
8549
8550         .check_intercept = vmx_check_intercept,
8551         .handle_external_intr = vmx_handle_external_intr,
8552 };
8553
8554 static int __init vmx_init(void)
8555 {
8556         int r, i, msr;
8557
8558         rdmsrl_safe(MSR_EFER, &host_efer);
8559
8560         for (i = 0; i < NR_VMX_MSR; ++i)
8561                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8562
8563         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8564         if (!vmx_io_bitmap_a)
8565                 return -ENOMEM;
8566
8567         r = -ENOMEM;
8568
8569         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8570         if (!vmx_io_bitmap_b)
8571                 goto out;
8572
8573         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8574         if (!vmx_msr_bitmap_legacy)
8575                 goto out1;
8576
8577         vmx_msr_bitmap_legacy_x2apic =
8578                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8579         if (!vmx_msr_bitmap_legacy_x2apic)
8580                 goto out2;
8581
8582         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8583         if (!vmx_msr_bitmap_longmode)
8584                 goto out3;
8585
8586         vmx_msr_bitmap_longmode_x2apic =
8587                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8588         if (!vmx_msr_bitmap_longmode_x2apic)
8589                 goto out4;
8590         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8591         if (!vmx_vmread_bitmap)
8592                 goto out5;
8593
8594         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8595         if (!vmx_vmwrite_bitmap)
8596                 goto out6;
8597
8598         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8599         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8600         /* shadowed read/write fields */
8601         for (i = 0; i < max_shadow_read_write_fields; i++) {
8602                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8603                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8604         }
8605         /* shadowed read only fields */
8606         for (i = 0; i < max_shadow_read_only_fields; i++)
8607                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8608
8609         /*
8610          * Allow direct access to the PC debug port (it is often used for I/O
8611          * delays, but the vmexits simply slow things down).
8612          */
8613         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8614         clear_bit(0x80, vmx_io_bitmap_a);
8615
8616         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8617
8618         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8619         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8620
8621         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8622
8623         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8624                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8625         if (r)
8626                 goto out7;
8627
8628 #ifdef CONFIG_KEXEC
8629         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8630                            crash_vmclear_local_loaded_vmcss);
8631 #endif
8632
8633         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8634         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8635         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8636         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8637         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8638         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8639         memcpy(vmx_msr_bitmap_legacy_x2apic,
8640                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8641         memcpy(vmx_msr_bitmap_longmode_x2apic,
8642                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8643
8644         if (enable_apicv) {
8645                 for (msr = 0x800; msr <= 0x8ff; msr++)
8646                         vmx_disable_intercept_msr_read_x2apic(msr);
8647
8648                 /* According SDM, in x2apic mode, the whole id reg is used.
8649                  * But in KVM, it only use the highest eight bits. Need to
8650                  * intercept it */
8651                 vmx_enable_intercept_msr_read_x2apic(0x802);
8652                 /* TMCCT */
8653                 vmx_enable_intercept_msr_read_x2apic(0x839);
8654                 /* TPR */
8655                 vmx_disable_intercept_msr_write_x2apic(0x808);
8656                 /* EOI */
8657                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8658                 /* SELF-IPI */
8659                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8660         }
8661
8662         if (enable_ept) {
8663                 kvm_mmu_set_mask_ptes(0ull,
8664                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8665                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8666                         0ull, VMX_EPT_EXECUTABLE_MASK);
8667                 ept_set_mmio_spte_mask();
8668                 kvm_enable_tdp();
8669         } else
8670                 kvm_disable_tdp();
8671
8672         return 0;
8673
8674 out7:
8675         free_page((unsigned long)vmx_vmwrite_bitmap);
8676 out6:
8677         free_page((unsigned long)vmx_vmread_bitmap);
8678 out5:
8679         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8680 out4:
8681         free_page((unsigned long)vmx_msr_bitmap_longmode);
8682 out3:
8683         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8684 out2:
8685         free_page((unsigned long)vmx_msr_bitmap_legacy);
8686 out1:
8687         free_page((unsigned long)vmx_io_bitmap_b);
8688 out:
8689         free_page((unsigned long)vmx_io_bitmap_a);
8690         return r;
8691 }
8692
8693 static void __exit vmx_exit(void)
8694 {
8695         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8696         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8697         free_page((unsigned long)vmx_msr_bitmap_legacy);
8698         free_page((unsigned long)vmx_msr_bitmap_longmode);
8699         free_page((unsigned long)vmx_io_bitmap_b);
8700         free_page((unsigned long)vmx_io_bitmap_a);
8701         free_page((unsigned long)vmx_vmwrite_bitmap);
8702         free_page((unsigned long)vmx_vmread_bitmap);
8703
8704 #ifdef CONFIG_KEXEC
8705         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8706         synchronize_rcu();
8707 #endif
8708
8709         kvm_exit();
8710 }
8711
8712 module_init(vmx_init)
8713 module_exit(vmx_exit)