KVM: VMX: shadow VM_(ENTRY|EXIT)_CONTROLS vmcs field
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         u32 vm_entry_controls_shadow;
422         u32 vm_exit_controls_shadow;
423         /*
424          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
425          * non-nested (L1) guest, it always points to vmcs01. For a nested
426          * guest (L2), it points to a different VMCS.
427          */
428         struct loaded_vmcs    vmcs01;
429         struct loaded_vmcs   *loaded_vmcs;
430         bool                  __launched; /* temporary, used in vmx_vcpu_run */
431         struct msr_autoload {
432                 unsigned nr;
433                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
434                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
435         } msr_autoload;
436         struct {
437                 int           loaded;
438                 u16           fs_sel, gs_sel, ldt_sel;
439 #ifdef CONFIG_X86_64
440                 u16           ds_sel, es_sel;
441 #endif
442                 int           gs_ldt_reload_needed;
443                 int           fs_reload_needed;
444         } host_state;
445         struct {
446                 int vm86_active;
447                 ulong save_rflags;
448                 struct kvm_segment segs[8];
449         } rmode;
450         struct {
451                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
452                 struct kvm_save_segment {
453                         u16 selector;
454                         unsigned long base;
455                         u32 limit;
456                         u32 ar;
457                 } seg[8];
458         } segment_cache;
459         int vpid;
460         bool emulation_required;
461
462         /* Support for vnmi-less CPUs */
463         int soft_vnmi_blocked;
464         ktime_t entry_time;
465         s64 vnmi_blocked_time;
466         u32 exit_reason;
467
468         bool rdtscp_enabled;
469
470         /* Posted interrupt descriptor */
471         struct pi_desc pi_desc;
472
473         /* Support for a guest hypervisor (nested VMX) */
474         struct nested_vmx nested;
475 };
476
477 enum segment_cache_field {
478         SEG_FIELD_SEL = 0,
479         SEG_FIELD_BASE = 1,
480         SEG_FIELD_LIMIT = 2,
481         SEG_FIELD_AR = 3,
482
483         SEG_FIELD_NR = 4
484 };
485
486 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
487 {
488         return container_of(vcpu, struct vcpu_vmx, vcpu);
489 }
490
491 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
492 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
493 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
494                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
495
496
497 static const unsigned long shadow_read_only_fields[] = {
498         /*
499          * We do NOT shadow fields that are modified when L0
500          * traps and emulates any vmx instruction (e.g. VMPTRLD,
501          * VMXON...) executed by L1.
502          * For example, VM_INSTRUCTION_ERROR is read
503          * by L1 if a vmx instruction fails (part of the error path).
504          * Note the code assumes this logic. If for some reason
505          * we start shadowing these fields then we need to
506          * force a shadow sync when L0 emulates vmx instructions
507          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
508          * by nested_vmx_failValid)
509          */
510         VM_EXIT_REASON,
511         VM_EXIT_INTR_INFO,
512         VM_EXIT_INSTRUCTION_LEN,
513         IDT_VECTORING_INFO_FIELD,
514         IDT_VECTORING_ERROR_CODE,
515         VM_EXIT_INTR_ERROR_CODE,
516         EXIT_QUALIFICATION,
517         GUEST_LINEAR_ADDRESS,
518         GUEST_PHYSICAL_ADDRESS
519 };
520 static const int max_shadow_read_only_fields =
521         ARRAY_SIZE(shadow_read_only_fields);
522
523 static const unsigned long shadow_read_write_fields[] = {
524         GUEST_RIP,
525         GUEST_RSP,
526         GUEST_CR0,
527         GUEST_CR3,
528         GUEST_CR4,
529         GUEST_INTERRUPTIBILITY_INFO,
530         GUEST_RFLAGS,
531         GUEST_CS_SELECTOR,
532         GUEST_CS_AR_BYTES,
533         GUEST_CS_LIMIT,
534         GUEST_CS_BASE,
535         GUEST_ES_BASE,
536         CR0_GUEST_HOST_MASK,
537         CR0_READ_SHADOW,
538         CR4_READ_SHADOW,
539         TSC_OFFSET,
540         EXCEPTION_BITMAP,
541         CPU_BASED_VM_EXEC_CONTROL,
542         VM_ENTRY_EXCEPTION_ERROR_CODE,
543         VM_ENTRY_INTR_INFO_FIELD,
544         VM_ENTRY_INSTRUCTION_LEN,
545         VM_ENTRY_EXCEPTION_ERROR_CODE,
546         HOST_FS_BASE,
547         HOST_GS_BASE,
548         HOST_FS_SELECTOR,
549         HOST_GS_SELECTOR
550 };
551 static const int max_shadow_read_write_fields =
552         ARRAY_SIZE(shadow_read_write_fields);
553
554 static const unsigned short vmcs_field_to_offset_table[] = {
555         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
556         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
557         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
558         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
559         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
560         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
561         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
562         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
563         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
564         FIELD(HOST_ES_SELECTOR, host_es_selector),
565         FIELD(HOST_CS_SELECTOR, host_cs_selector),
566         FIELD(HOST_SS_SELECTOR, host_ss_selector),
567         FIELD(HOST_DS_SELECTOR, host_ds_selector),
568         FIELD(HOST_FS_SELECTOR, host_fs_selector),
569         FIELD(HOST_GS_SELECTOR, host_gs_selector),
570         FIELD(HOST_TR_SELECTOR, host_tr_selector),
571         FIELD64(IO_BITMAP_A, io_bitmap_a),
572         FIELD64(IO_BITMAP_B, io_bitmap_b),
573         FIELD64(MSR_BITMAP, msr_bitmap),
574         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
575         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
576         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
577         FIELD64(TSC_OFFSET, tsc_offset),
578         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
579         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
580         FIELD64(EPT_POINTER, ept_pointer),
581         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
582         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
583         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
584         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
585         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
586         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
587         FIELD64(GUEST_PDPTR0, guest_pdptr0),
588         FIELD64(GUEST_PDPTR1, guest_pdptr1),
589         FIELD64(GUEST_PDPTR2, guest_pdptr2),
590         FIELD64(GUEST_PDPTR3, guest_pdptr3),
591         FIELD64(HOST_IA32_PAT, host_ia32_pat),
592         FIELD64(HOST_IA32_EFER, host_ia32_efer),
593         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
594         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
595         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
596         FIELD(EXCEPTION_BITMAP, exception_bitmap),
597         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
598         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
599         FIELD(CR3_TARGET_COUNT, cr3_target_count),
600         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
601         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
602         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
603         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
604         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
605         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
606         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
607         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
608         FIELD(TPR_THRESHOLD, tpr_threshold),
609         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
610         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
611         FIELD(VM_EXIT_REASON, vm_exit_reason),
612         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
613         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
614         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
615         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
616         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
617         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
618         FIELD(GUEST_ES_LIMIT, guest_es_limit),
619         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
620         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
621         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
622         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
623         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
624         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
625         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
626         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
627         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
628         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
629         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
630         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
631         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
632         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
633         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
634         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
635         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
636         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
637         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
638         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
639         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
640         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
641         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
642         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
643         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
644         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
645         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
646         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
647         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
648         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
649         FIELD(EXIT_QUALIFICATION, exit_qualification),
650         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
651         FIELD(GUEST_CR0, guest_cr0),
652         FIELD(GUEST_CR3, guest_cr3),
653         FIELD(GUEST_CR4, guest_cr4),
654         FIELD(GUEST_ES_BASE, guest_es_base),
655         FIELD(GUEST_CS_BASE, guest_cs_base),
656         FIELD(GUEST_SS_BASE, guest_ss_base),
657         FIELD(GUEST_DS_BASE, guest_ds_base),
658         FIELD(GUEST_FS_BASE, guest_fs_base),
659         FIELD(GUEST_GS_BASE, guest_gs_base),
660         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
661         FIELD(GUEST_TR_BASE, guest_tr_base),
662         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
663         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
664         FIELD(GUEST_DR7, guest_dr7),
665         FIELD(GUEST_RSP, guest_rsp),
666         FIELD(GUEST_RIP, guest_rip),
667         FIELD(GUEST_RFLAGS, guest_rflags),
668         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
669         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
670         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
671         FIELD(HOST_CR0, host_cr0),
672         FIELD(HOST_CR3, host_cr3),
673         FIELD(HOST_CR4, host_cr4),
674         FIELD(HOST_FS_BASE, host_fs_base),
675         FIELD(HOST_GS_BASE, host_gs_base),
676         FIELD(HOST_TR_BASE, host_tr_base),
677         FIELD(HOST_GDTR_BASE, host_gdtr_base),
678         FIELD(HOST_IDTR_BASE, host_idtr_base),
679         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
680         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
681         FIELD(HOST_RSP, host_rsp),
682         FIELD(HOST_RIP, host_rip),
683 };
684 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
685
686 static inline short vmcs_field_to_offset(unsigned long field)
687 {
688         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
689                 return -1;
690         return vmcs_field_to_offset_table[field];
691 }
692
693 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
694 {
695         return to_vmx(vcpu)->nested.current_vmcs12;
696 }
697
698 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
699 {
700         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
701         if (is_error_page(page))
702                 return NULL;
703
704         return page;
705 }
706
707 static void nested_release_page(struct page *page)
708 {
709         kvm_release_page_dirty(page);
710 }
711
712 static void nested_release_page_clean(struct page *page)
713 {
714         kvm_release_page_clean(page);
715 }
716
717 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
718 static u64 construct_eptp(unsigned long root_hpa);
719 static void kvm_cpu_vmxon(u64 addr);
720 static void kvm_cpu_vmxoff(void);
721 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
722 static void vmx_set_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static void vmx_get_segment(struct kvm_vcpu *vcpu,
725                             struct kvm_segment *var, int seg);
726 static bool guest_state_valid(struct kvm_vcpu *vcpu);
727 static u32 vmx_segment_access_rights(struct kvm_segment *var);
728 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
729 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
730 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
731
732 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
733 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
734 /*
735  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
736  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
737  */
738 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
739 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
740
741 static unsigned long *vmx_io_bitmap_a;
742 static unsigned long *vmx_io_bitmap_b;
743 static unsigned long *vmx_msr_bitmap_legacy;
744 static unsigned long *vmx_msr_bitmap_longmode;
745 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
746 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
747 static unsigned long *vmx_vmread_bitmap;
748 static unsigned long *vmx_vmwrite_bitmap;
749
750 static bool cpu_has_load_ia32_efer;
751 static bool cpu_has_load_perf_global_ctrl;
752
753 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
754 static DEFINE_SPINLOCK(vmx_vpid_lock);
755
756 static struct vmcs_config {
757         int size;
758         int order;
759         u32 revision_id;
760         u32 pin_based_exec_ctrl;
761         u32 cpu_based_exec_ctrl;
762         u32 cpu_based_2nd_exec_ctrl;
763         u32 vmexit_ctrl;
764         u32 vmentry_ctrl;
765 } vmcs_config;
766
767 static struct vmx_capability {
768         u32 ept;
769         u32 vpid;
770 } vmx_capability;
771
772 #define VMX_SEGMENT_FIELD(seg)                                  \
773         [VCPU_SREG_##seg] = {                                   \
774                 .selector = GUEST_##seg##_SELECTOR,             \
775                 .base = GUEST_##seg##_BASE,                     \
776                 .limit = GUEST_##seg##_LIMIT,                   \
777                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
778         }
779
780 static const struct kvm_vmx_segment_field {
781         unsigned selector;
782         unsigned base;
783         unsigned limit;
784         unsigned ar_bytes;
785 } kvm_vmx_segment_fields[] = {
786         VMX_SEGMENT_FIELD(CS),
787         VMX_SEGMENT_FIELD(DS),
788         VMX_SEGMENT_FIELD(ES),
789         VMX_SEGMENT_FIELD(FS),
790         VMX_SEGMENT_FIELD(GS),
791         VMX_SEGMENT_FIELD(SS),
792         VMX_SEGMENT_FIELD(TR),
793         VMX_SEGMENT_FIELD(LDTR),
794 };
795
796 static u64 host_efer;
797
798 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
799
800 /*
801  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
802  * away by decrementing the array size.
803  */
804 static const u32 vmx_msr_index[] = {
805 #ifdef CONFIG_X86_64
806         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
807 #endif
808         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
809 };
810 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
811
812 static inline bool is_page_fault(u32 intr_info)
813 {
814         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
815                              INTR_INFO_VALID_MASK)) ==
816                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
817 }
818
819 static inline bool is_no_device(u32 intr_info)
820 {
821         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
822                              INTR_INFO_VALID_MASK)) ==
823                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
824 }
825
826 static inline bool is_invalid_opcode(u32 intr_info)
827 {
828         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
829                              INTR_INFO_VALID_MASK)) ==
830                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
831 }
832
833 static inline bool is_external_interrupt(u32 intr_info)
834 {
835         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
836                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
837 }
838
839 static inline bool is_machine_check(u32 intr_info)
840 {
841         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842                              INTR_INFO_VALID_MASK)) ==
843                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
844 }
845
846 static inline bool cpu_has_vmx_msr_bitmap(void)
847 {
848         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
849 }
850
851 static inline bool cpu_has_vmx_tpr_shadow(void)
852 {
853         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
854 }
855
856 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
857 {
858         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
859 }
860
861 static inline bool cpu_has_secondary_exec_ctrls(void)
862 {
863         return vmcs_config.cpu_based_exec_ctrl &
864                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
865 }
866
867 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
868 {
869         return vmcs_config.cpu_based_2nd_exec_ctrl &
870                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
871 }
872
873 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
874 {
875         return vmcs_config.cpu_based_2nd_exec_ctrl &
876                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
877 }
878
879 static inline bool cpu_has_vmx_apic_register_virt(void)
880 {
881         return vmcs_config.cpu_based_2nd_exec_ctrl &
882                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
883 }
884
885 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
886 {
887         return vmcs_config.cpu_based_2nd_exec_ctrl &
888                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
889 }
890
891 static inline bool cpu_has_vmx_posted_intr(void)
892 {
893         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
894 }
895
896 static inline bool cpu_has_vmx_apicv(void)
897 {
898         return cpu_has_vmx_apic_register_virt() &&
899                 cpu_has_vmx_virtual_intr_delivery() &&
900                 cpu_has_vmx_posted_intr();
901 }
902
903 static inline bool cpu_has_vmx_flexpriority(void)
904 {
905         return cpu_has_vmx_tpr_shadow() &&
906                 cpu_has_vmx_virtualize_apic_accesses();
907 }
908
909 static inline bool cpu_has_vmx_ept_execute_only(void)
910 {
911         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
912 }
913
914 static inline bool cpu_has_vmx_eptp_uncacheable(void)
915 {
916         return vmx_capability.ept & VMX_EPTP_UC_BIT;
917 }
918
919 static inline bool cpu_has_vmx_eptp_writeback(void)
920 {
921         return vmx_capability.ept & VMX_EPTP_WB_BIT;
922 }
923
924 static inline bool cpu_has_vmx_ept_2m_page(void)
925 {
926         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
927 }
928
929 static inline bool cpu_has_vmx_ept_1g_page(void)
930 {
931         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
932 }
933
934 static inline bool cpu_has_vmx_ept_4levels(void)
935 {
936         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
937 }
938
939 static inline bool cpu_has_vmx_ept_ad_bits(void)
940 {
941         return vmx_capability.ept & VMX_EPT_AD_BIT;
942 }
943
944 static inline bool cpu_has_vmx_invept_context(void)
945 {
946         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
947 }
948
949 static inline bool cpu_has_vmx_invept_global(void)
950 {
951         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
952 }
953
954 static inline bool cpu_has_vmx_invvpid_single(void)
955 {
956         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
957 }
958
959 static inline bool cpu_has_vmx_invvpid_global(void)
960 {
961         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
962 }
963
964 static inline bool cpu_has_vmx_ept(void)
965 {
966         return vmcs_config.cpu_based_2nd_exec_ctrl &
967                 SECONDARY_EXEC_ENABLE_EPT;
968 }
969
970 static inline bool cpu_has_vmx_unrestricted_guest(void)
971 {
972         return vmcs_config.cpu_based_2nd_exec_ctrl &
973                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
974 }
975
976 static inline bool cpu_has_vmx_ple(void)
977 {
978         return vmcs_config.cpu_based_2nd_exec_ctrl &
979                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
980 }
981
982 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
983 {
984         return flexpriority_enabled && irqchip_in_kernel(kvm);
985 }
986
987 static inline bool cpu_has_vmx_vpid(void)
988 {
989         return vmcs_config.cpu_based_2nd_exec_ctrl &
990                 SECONDARY_EXEC_ENABLE_VPID;
991 }
992
993 static inline bool cpu_has_vmx_rdtscp(void)
994 {
995         return vmcs_config.cpu_based_2nd_exec_ctrl &
996                 SECONDARY_EXEC_RDTSCP;
997 }
998
999 static inline bool cpu_has_vmx_invpcid(void)
1000 {
1001         return vmcs_config.cpu_based_2nd_exec_ctrl &
1002                 SECONDARY_EXEC_ENABLE_INVPCID;
1003 }
1004
1005 static inline bool cpu_has_virtual_nmis(void)
1006 {
1007         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1008 }
1009
1010 static inline bool cpu_has_vmx_wbinvd_exit(void)
1011 {
1012         return vmcs_config.cpu_based_2nd_exec_ctrl &
1013                 SECONDARY_EXEC_WBINVD_EXITING;
1014 }
1015
1016 static inline bool cpu_has_vmx_shadow_vmcs(void)
1017 {
1018         u64 vmx_msr;
1019         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1020         /* check if the cpu supports writing r/o exit information fields */
1021         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1022                 return false;
1023
1024         return vmcs_config.cpu_based_2nd_exec_ctrl &
1025                 SECONDARY_EXEC_SHADOW_VMCS;
1026 }
1027
1028 static inline bool report_flexpriority(void)
1029 {
1030         return flexpriority_enabled;
1031 }
1032
1033 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1034 {
1035         return vmcs12->cpu_based_vm_exec_control & bit;
1036 }
1037
1038 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1039 {
1040         return (vmcs12->cpu_based_vm_exec_control &
1041                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1042                 (vmcs12->secondary_vm_exec_control & bit);
1043 }
1044
1045 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1046 {
1047         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1048 }
1049
1050 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1051 {
1052         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1053 }
1054
1055 static inline bool is_exception(u32 intr_info)
1056 {
1057         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1058                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1059 }
1060
1061 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1062 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1063                         struct vmcs12 *vmcs12,
1064                         u32 reason, unsigned long qualification);
1065
1066 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1067 {
1068         int i;
1069
1070         for (i = 0; i < vmx->nmsrs; ++i)
1071                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1072                         return i;
1073         return -1;
1074 }
1075
1076 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1077 {
1078     struct {
1079         u64 vpid : 16;
1080         u64 rsvd : 48;
1081         u64 gva;
1082     } operand = { vpid, 0, gva };
1083
1084     asm volatile (__ex(ASM_VMX_INVVPID)
1085                   /* CF==1 or ZF==1 --> rc = -1 */
1086                   "; ja 1f ; ud2 ; 1:"
1087                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1088 }
1089
1090 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1091 {
1092         struct {
1093                 u64 eptp, gpa;
1094         } operand = {eptp, gpa};
1095
1096         asm volatile (__ex(ASM_VMX_INVEPT)
1097                         /* CF==1 or ZF==1 --> rc = -1 */
1098                         "; ja 1f ; ud2 ; 1:\n"
1099                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1100 }
1101
1102 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1103 {
1104         int i;
1105
1106         i = __find_msr_index(vmx, msr);
1107         if (i >= 0)
1108                 return &vmx->guest_msrs[i];
1109         return NULL;
1110 }
1111
1112 static void vmcs_clear(struct vmcs *vmcs)
1113 {
1114         u64 phys_addr = __pa(vmcs);
1115         u8 error;
1116
1117         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1118                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1119                       : "cc", "memory");
1120         if (error)
1121                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1122                        vmcs, phys_addr);
1123 }
1124
1125 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1126 {
1127         vmcs_clear(loaded_vmcs->vmcs);
1128         loaded_vmcs->cpu = -1;
1129         loaded_vmcs->launched = 0;
1130 }
1131
1132 static void vmcs_load(struct vmcs *vmcs)
1133 {
1134         u64 phys_addr = __pa(vmcs);
1135         u8 error;
1136
1137         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1138                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1139                         : "cc", "memory");
1140         if (error)
1141                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1142                        vmcs, phys_addr);
1143 }
1144
1145 #ifdef CONFIG_KEXEC
1146 /*
1147  * This bitmap is used to indicate whether the vmclear
1148  * operation is enabled on all cpus. All disabled by
1149  * default.
1150  */
1151 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1152
1153 static inline void crash_enable_local_vmclear(int cpu)
1154 {
1155         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1156 }
1157
1158 static inline void crash_disable_local_vmclear(int cpu)
1159 {
1160         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1161 }
1162
1163 static inline int crash_local_vmclear_enabled(int cpu)
1164 {
1165         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1166 }
1167
1168 static void crash_vmclear_local_loaded_vmcss(void)
1169 {
1170         int cpu = raw_smp_processor_id();
1171         struct loaded_vmcs *v;
1172
1173         if (!crash_local_vmclear_enabled(cpu))
1174                 return;
1175
1176         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1177                             loaded_vmcss_on_cpu_link)
1178                 vmcs_clear(v->vmcs);
1179 }
1180 #else
1181 static inline void crash_enable_local_vmclear(int cpu) { }
1182 static inline void crash_disable_local_vmclear(int cpu) { }
1183 #endif /* CONFIG_KEXEC */
1184
1185 static void __loaded_vmcs_clear(void *arg)
1186 {
1187         struct loaded_vmcs *loaded_vmcs = arg;
1188         int cpu = raw_smp_processor_id();
1189
1190         if (loaded_vmcs->cpu != cpu)
1191                 return; /* vcpu migration can race with cpu offline */
1192         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1193                 per_cpu(current_vmcs, cpu) = NULL;
1194         crash_disable_local_vmclear(cpu);
1195         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1196
1197         /*
1198          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1199          * is before setting loaded_vmcs->vcpu to -1 which is done in
1200          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1201          * then adds the vmcs into percpu list before it is deleted.
1202          */
1203         smp_wmb();
1204
1205         loaded_vmcs_init(loaded_vmcs);
1206         crash_enable_local_vmclear(cpu);
1207 }
1208
1209 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1210 {
1211         int cpu = loaded_vmcs->cpu;
1212
1213         if (cpu != -1)
1214                 smp_call_function_single(cpu,
1215                          __loaded_vmcs_clear, loaded_vmcs, 1);
1216 }
1217
1218 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1219 {
1220         if (vmx->vpid == 0)
1221                 return;
1222
1223         if (cpu_has_vmx_invvpid_single())
1224                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1225 }
1226
1227 static inline void vpid_sync_vcpu_global(void)
1228 {
1229         if (cpu_has_vmx_invvpid_global())
1230                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1231 }
1232
1233 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1234 {
1235         if (cpu_has_vmx_invvpid_single())
1236                 vpid_sync_vcpu_single(vmx);
1237         else
1238                 vpid_sync_vcpu_global();
1239 }
1240
1241 static inline void ept_sync_global(void)
1242 {
1243         if (cpu_has_vmx_invept_global())
1244                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1245 }
1246
1247 static inline void ept_sync_context(u64 eptp)
1248 {
1249         if (enable_ept) {
1250                 if (cpu_has_vmx_invept_context())
1251                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1252                 else
1253                         ept_sync_global();
1254         }
1255 }
1256
1257 static __always_inline unsigned long vmcs_readl(unsigned long field)
1258 {
1259         unsigned long value;
1260
1261         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1262                       : "=a"(value) : "d"(field) : "cc");
1263         return value;
1264 }
1265
1266 static __always_inline u16 vmcs_read16(unsigned long field)
1267 {
1268         return vmcs_readl(field);
1269 }
1270
1271 static __always_inline u32 vmcs_read32(unsigned long field)
1272 {
1273         return vmcs_readl(field);
1274 }
1275
1276 static __always_inline u64 vmcs_read64(unsigned long field)
1277 {
1278 #ifdef CONFIG_X86_64
1279         return vmcs_readl(field);
1280 #else
1281         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1282 #endif
1283 }
1284
1285 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1286 {
1287         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1288                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1289         dump_stack();
1290 }
1291
1292 static void vmcs_writel(unsigned long field, unsigned long value)
1293 {
1294         u8 error;
1295
1296         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1297                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1298         if (unlikely(error))
1299                 vmwrite_error(field, value);
1300 }
1301
1302 static void vmcs_write16(unsigned long field, u16 value)
1303 {
1304         vmcs_writel(field, value);
1305 }
1306
1307 static void vmcs_write32(unsigned long field, u32 value)
1308 {
1309         vmcs_writel(field, value);
1310 }
1311
1312 static void vmcs_write64(unsigned long field, u64 value)
1313 {
1314         vmcs_writel(field, value);
1315 #ifndef CONFIG_X86_64
1316         asm volatile ("");
1317         vmcs_writel(field+1, value >> 32);
1318 #endif
1319 }
1320
1321 static void vmcs_clear_bits(unsigned long field, u32 mask)
1322 {
1323         vmcs_writel(field, vmcs_readl(field) & ~mask);
1324 }
1325
1326 static void vmcs_set_bits(unsigned long field, u32 mask)
1327 {
1328         vmcs_writel(field, vmcs_readl(field) | mask);
1329 }
1330
1331 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1332 {
1333         vmcs_write32(VM_ENTRY_CONTROLS, val);
1334         vmx->vm_entry_controls_shadow = val;
1335 }
1336
1337 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1338 {
1339         if (vmx->vm_entry_controls_shadow != val)
1340                 vm_entry_controls_init(vmx, val);
1341 }
1342
1343 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1344 {
1345         return vmx->vm_entry_controls_shadow;
1346 }
1347
1348
1349 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1350 {
1351         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1352 }
1353
1354 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1355 {
1356         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1357 }
1358
1359 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1360 {
1361         vmcs_write32(VM_EXIT_CONTROLS, val);
1362         vmx->vm_exit_controls_shadow = val;
1363 }
1364
1365 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1366 {
1367         if (vmx->vm_exit_controls_shadow != val)
1368                 vm_exit_controls_init(vmx, val);
1369 }
1370
1371 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1372 {
1373         return vmx->vm_exit_controls_shadow;
1374 }
1375
1376
1377 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1378 {
1379         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1380 }
1381
1382 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1383 {
1384         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1385 }
1386
1387 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1388 {
1389         vmx->segment_cache.bitmask = 0;
1390 }
1391
1392 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1393                                        unsigned field)
1394 {
1395         bool ret;
1396         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1397
1398         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1399                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1400                 vmx->segment_cache.bitmask = 0;
1401         }
1402         ret = vmx->segment_cache.bitmask & mask;
1403         vmx->segment_cache.bitmask |= mask;
1404         return ret;
1405 }
1406
1407 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1408 {
1409         u16 *p = &vmx->segment_cache.seg[seg].selector;
1410
1411         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1412                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1413         return *p;
1414 }
1415
1416 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1417 {
1418         ulong *p = &vmx->segment_cache.seg[seg].base;
1419
1420         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1421                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1422         return *p;
1423 }
1424
1425 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1426 {
1427         u32 *p = &vmx->segment_cache.seg[seg].limit;
1428
1429         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1430                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1431         return *p;
1432 }
1433
1434 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1435 {
1436         u32 *p = &vmx->segment_cache.seg[seg].ar;
1437
1438         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1439                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1440         return *p;
1441 }
1442
1443 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1444 {
1445         u32 eb;
1446
1447         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1448              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1449         if ((vcpu->guest_debug &
1450              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1451             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1452                 eb |= 1u << BP_VECTOR;
1453         if (to_vmx(vcpu)->rmode.vm86_active)
1454                 eb = ~0;
1455         if (enable_ept)
1456                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1457         if (vcpu->fpu_active)
1458                 eb &= ~(1u << NM_VECTOR);
1459
1460         /* When we are running a nested L2 guest and L1 specified for it a
1461          * certain exception bitmap, we must trap the same exceptions and pass
1462          * them to L1. When running L2, we will only handle the exceptions
1463          * specified above if L1 did not want them.
1464          */
1465         if (is_guest_mode(vcpu))
1466                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1467
1468         vmcs_write32(EXCEPTION_BITMAP, eb);
1469 }
1470
1471 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1472                 unsigned long entry, unsigned long exit)
1473 {
1474         vm_entry_controls_clearbit(vmx, entry);
1475         vm_exit_controls_clearbit(vmx, exit);
1476 }
1477
1478 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1479 {
1480         unsigned i;
1481         struct msr_autoload *m = &vmx->msr_autoload;
1482
1483         switch (msr) {
1484         case MSR_EFER:
1485                 if (cpu_has_load_ia32_efer) {
1486                         clear_atomic_switch_msr_special(vmx,
1487                                         VM_ENTRY_LOAD_IA32_EFER,
1488                                         VM_EXIT_LOAD_IA32_EFER);
1489                         return;
1490                 }
1491                 break;
1492         case MSR_CORE_PERF_GLOBAL_CTRL:
1493                 if (cpu_has_load_perf_global_ctrl) {
1494                         clear_atomic_switch_msr_special(vmx,
1495                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1496                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1497                         return;
1498                 }
1499                 break;
1500         }
1501
1502         for (i = 0; i < m->nr; ++i)
1503                 if (m->guest[i].index == msr)
1504                         break;
1505
1506         if (i == m->nr)
1507                 return;
1508         --m->nr;
1509         m->guest[i] = m->guest[m->nr];
1510         m->host[i] = m->host[m->nr];
1511         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1512         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1513 }
1514
1515 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1516                 unsigned long entry, unsigned long exit,
1517                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1518                 u64 guest_val, u64 host_val)
1519 {
1520         vmcs_write64(guest_val_vmcs, guest_val);
1521         vmcs_write64(host_val_vmcs, host_val);
1522         vm_entry_controls_setbit(vmx, entry);
1523         vm_exit_controls_setbit(vmx, exit);
1524 }
1525
1526 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1527                                   u64 guest_val, u64 host_val)
1528 {
1529         unsigned i;
1530         struct msr_autoload *m = &vmx->msr_autoload;
1531
1532         switch (msr) {
1533         case MSR_EFER:
1534                 if (cpu_has_load_ia32_efer) {
1535                         add_atomic_switch_msr_special(vmx,
1536                                         VM_ENTRY_LOAD_IA32_EFER,
1537                                         VM_EXIT_LOAD_IA32_EFER,
1538                                         GUEST_IA32_EFER,
1539                                         HOST_IA32_EFER,
1540                                         guest_val, host_val);
1541                         return;
1542                 }
1543                 break;
1544         case MSR_CORE_PERF_GLOBAL_CTRL:
1545                 if (cpu_has_load_perf_global_ctrl) {
1546                         add_atomic_switch_msr_special(vmx,
1547                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1548                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1549                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1550                                         HOST_IA32_PERF_GLOBAL_CTRL,
1551                                         guest_val, host_val);
1552                         return;
1553                 }
1554                 break;
1555         }
1556
1557         for (i = 0; i < m->nr; ++i)
1558                 if (m->guest[i].index == msr)
1559                         break;
1560
1561         if (i == NR_AUTOLOAD_MSRS) {
1562                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1563                                 "Can't add msr %x\n", msr);
1564                 return;
1565         } else if (i == m->nr) {
1566                 ++m->nr;
1567                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1568                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1569         }
1570
1571         m->guest[i].index = msr;
1572         m->guest[i].value = guest_val;
1573         m->host[i].index = msr;
1574         m->host[i].value = host_val;
1575 }
1576
1577 static void reload_tss(void)
1578 {
1579         /*
1580          * VT restores TR but not its size.  Useless.
1581          */
1582         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1583         struct desc_struct *descs;
1584
1585         descs = (void *)gdt->address;
1586         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1587         load_TR_desc();
1588 }
1589
1590 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1591 {
1592         u64 guest_efer;
1593         u64 ignore_bits;
1594
1595         guest_efer = vmx->vcpu.arch.efer;
1596
1597         /*
1598          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1599          * outside long mode
1600          */
1601         ignore_bits = EFER_NX | EFER_SCE;
1602 #ifdef CONFIG_X86_64
1603         ignore_bits |= EFER_LMA | EFER_LME;
1604         /* SCE is meaningful only in long mode on Intel */
1605         if (guest_efer & EFER_LMA)
1606                 ignore_bits &= ~(u64)EFER_SCE;
1607 #endif
1608         guest_efer &= ~ignore_bits;
1609         guest_efer |= host_efer & ignore_bits;
1610         vmx->guest_msrs[efer_offset].data = guest_efer;
1611         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1612
1613         clear_atomic_switch_msr(vmx, MSR_EFER);
1614         /* On ept, can't emulate nx, and must switch nx atomically */
1615         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1616                 guest_efer = vmx->vcpu.arch.efer;
1617                 if (!(guest_efer & EFER_LMA))
1618                         guest_efer &= ~EFER_LME;
1619                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1620                 return false;
1621         }
1622
1623         return true;
1624 }
1625
1626 static unsigned long segment_base(u16 selector)
1627 {
1628         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1629         struct desc_struct *d;
1630         unsigned long table_base;
1631         unsigned long v;
1632
1633         if (!(selector & ~3))
1634                 return 0;
1635
1636         table_base = gdt->address;
1637
1638         if (selector & 4) {           /* from ldt */
1639                 u16 ldt_selector = kvm_read_ldt();
1640
1641                 if (!(ldt_selector & ~3))
1642                         return 0;
1643
1644                 table_base = segment_base(ldt_selector);
1645         }
1646         d = (struct desc_struct *)(table_base + (selector & ~7));
1647         v = get_desc_base(d);
1648 #ifdef CONFIG_X86_64
1649        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1650                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1651 #endif
1652         return v;
1653 }
1654
1655 static inline unsigned long kvm_read_tr_base(void)
1656 {
1657         u16 tr;
1658         asm("str %0" : "=g"(tr));
1659         return segment_base(tr);
1660 }
1661
1662 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1663 {
1664         struct vcpu_vmx *vmx = to_vmx(vcpu);
1665         int i;
1666
1667         if (vmx->host_state.loaded)
1668                 return;
1669
1670         vmx->host_state.loaded = 1;
1671         /*
1672          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1673          * allow segment selectors with cpl > 0 or ti == 1.
1674          */
1675         vmx->host_state.ldt_sel = kvm_read_ldt();
1676         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1677         savesegment(fs, vmx->host_state.fs_sel);
1678         if (!(vmx->host_state.fs_sel & 7)) {
1679                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1680                 vmx->host_state.fs_reload_needed = 0;
1681         } else {
1682                 vmcs_write16(HOST_FS_SELECTOR, 0);
1683                 vmx->host_state.fs_reload_needed = 1;
1684         }
1685         savesegment(gs, vmx->host_state.gs_sel);
1686         if (!(vmx->host_state.gs_sel & 7))
1687                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1688         else {
1689                 vmcs_write16(HOST_GS_SELECTOR, 0);
1690                 vmx->host_state.gs_ldt_reload_needed = 1;
1691         }
1692
1693 #ifdef CONFIG_X86_64
1694         savesegment(ds, vmx->host_state.ds_sel);
1695         savesegment(es, vmx->host_state.es_sel);
1696 #endif
1697
1698 #ifdef CONFIG_X86_64
1699         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1700         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1701 #else
1702         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1703         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1704 #endif
1705
1706 #ifdef CONFIG_X86_64
1707         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1708         if (is_long_mode(&vmx->vcpu))
1709                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1710 #endif
1711         for (i = 0; i < vmx->save_nmsrs; ++i)
1712                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1713                                    vmx->guest_msrs[i].data,
1714                                    vmx->guest_msrs[i].mask);
1715 }
1716
1717 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1718 {
1719         if (!vmx->host_state.loaded)
1720                 return;
1721
1722         ++vmx->vcpu.stat.host_state_reload;
1723         vmx->host_state.loaded = 0;
1724 #ifdef CONFIG_X86_64
1725         if (is_long_mode(&vmx->vcpu))
1726                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1727 #endif
1728         if (vmx->host_state.gs_ldt_reload_needed) {
1729                 kvm_load_ldt(vmx->host_state.ldt_sel);
1730 #ifdef CONFIG_X86_64
1731                 load_gs_index(vmx->host_state.gs_sel);
1732 #else
1733                 loadsegment(gs, vmx->host_state.gs_sel);
1734 #endif
1735         }
1736         if (vmx->host_state.fs_reload_needed)
1737                 loadsegment(fs, vmx->host_state.fs_sel);
1738 #ifdef CONFIG_X86_64
1739         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1740                 loadsegment(ds, vmx->host_state.ds_sel);
1741                 loadsegment(es, vmx->host_state.es_sel);
1742         }
1743 #endif
1744         reload_tss();
1745 #ifdef CONFIG_X86_64
1746         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1747 #endif
1748         /*
1749          * If the FPU is not active (through the host task or
1750          * the guest vcpu), then restore the cr0.TS bit.
1751          */
1752         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1753                 stts();
1754         load_gdt(&__get_cpu_var(host_gdt));
1755 }
1756
1757 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1758 {
1759         preempt_disable();
1760         __vmx_load_host_state(vmx);
1761         preempt_enable();
1762 }
1763
1764 /*
1765  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1766  * vcpu mutex is already taken.
1767  */
1768 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1769 {
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1772
1773         if (!vmm_exclusive)
1774                 kvm_cpu_vmxon(phys_addr);
1775         else if (vmx->loaded_vmcs->cpu != cpu)
1776                 loaded_vmcs_clear(vmx->loaded_vmcs);
1777
1778         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1779                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1780                 vmcs_load(vmx->loaded_vmcs->vmcs);
1781         }
1782
1783         if (vmx->loaded_vmcs->cpu != cpu) {
1784                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1785                 unsigned long sysenter_esp;
1786
1787                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1788                 local_irq_disable();
1789                 crash_disable_local_vmclear(cpu);
1790
1791                 /*
1792                  * Read loaded_vmcs->cpu should be before fetching
1793                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1794                  * See the comments in __loaded_vmcs_clear().
1795                  */
1796                 smp_rmb();
1797
1798                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1799                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1800                 crash_enable_local_vmclear(cpu);
1801                 local_irq_enable();
1802
1803                 /*
1804                  * Linux uses per-cpu TSS and GDT, so set these when switching
1805                  * processors.
1806                  */
1807                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1808                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1809
1810                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1811                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1812                 vmx->loaded_vmcs->cpu = cpu;
1813         }
1814 }
1815
1816 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1817 {
1818         __vmx_load_host_state(to_vmx(vcpu));
1819         if (!vmm_exclusive) {
1820                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1821                 vcpu->cpu = -1;
1822                 kvm_cpu_vmxoff();
1823         }
1824 }
1825
1826 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1827 {
1828         ulong cr0;
1829
1830         if (vcpu->fpu_active)
1831                 return;
1832         vcpu->fpu_active = 1;
1833         cr0 = vmcs_readl(GUEST_CR0);
1834         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1835         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1836         vmcs_writel(GUEST_CR0, cr0);
1837         update_exception_bitmap(vcpu);
1838         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1839         if (is_guest_mode(vcpu))
1840                 vcpu->arch.cr0_guest_owned_bits &=
1841                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1842         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1843 }
1844
1845 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1846
1847 /*
1848  * Return the cr0 value that a nested guest would read. This is a combination
1849  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1850  * its hypervisor (cr0_read_shadow).
1851  */
1852 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1853 {
1854         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1855                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1856 }
1857 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1858 {
1859         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1860                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1861 }
1862
1863 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1864 {
1865         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1866          * set this *before* calling this function.
1867          */
1868         vmx_decache_cr0_guest_bits(vcpu);
1869         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1870         update_exception_bitmap(vcpu);
1871         vcpu->arch.cr0_guest_owned_bits = 0;
1872         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1873         if (is_guest_mode(vcpu)) {
1874                 /*
1875                  * L1's specified read shadow might not contain the TS bit,
1876                  * so now that we turned on shadowing of this bit, we need to
1877                  * set this bit of the shadow. Like in nested_vmx_run we need
1878                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1879                  * up-to-date here because we just decached cr0.TS (and we'll
1880                  * only update vmcs12->guest_cr0 on nested exit).
1881                  */
1882                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1884                         (vcpu->arch.cr0 & X86_CR0_TS);
1885                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1886         } else
1887                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1888 }
1889
1890 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1891 {
1892         unsigned long rflags, save_rflags;
1893
1894         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1895                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1896                 rflags = vmcs_readl(GUEST_RFLAGS);
1897                 if (to_vmx(vcpu)->rmode.vm86_active) {
1898                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1899                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1900                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1901                 }
1902                 to_vmx(vcpu)->rflags = rflags;
1903         }
1904         return to_vmx(vcpu)->rflags;
1905 }
1906
1907 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1908 {
1909         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1910         to_vmx(vcpu)->rflags = rflags;
1911         if (to_vmx(vcpu)->rmode.vm86_active) {
1912                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1913                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1914         }
1915         vmcs_writel(GUEST_RFLAGS, rflags);
1916 }
1917
1918 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1919 {
1920         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1921         int ret = 0;
1922
1923         if (interruptibility & GUEST_INTR_STATE_STI)
1924                 ret |= KVM_X86_SHADOW_INT_STI;
1925         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1926                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1927
1928         return ret & mask;
1929 }
1930
1931 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1932 {
1933         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1934         u32 interruptibility = interruptibility_old;
1935
1936         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1937
1938         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1939                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1940         else if (mask & KVM_X86_SHADOW_INT_STI)
1941                 interruptibility |= GUEST_INTR_STATE_STI;
1942
1943         if ((interruptibility != interruptibility_old))
1944                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1945 }
1946
1947 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1948 {
1949         unsigned long rip;
1950
1951         rip = kvm_rip_read(vcpu);
1952         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1953         kvm_rip_write(vcpu, rip);
1954
1955         /* skipping an emulated instruction also counts */
1956         vmx_set_interrupt_shadow(vcpu, 0);
1957 }
1958
1959 /*
1960  * KVM wants to inject page-faults which it got to the guest. This function
1961  * checks whether in a nested guest, we need to inject them to L1 or L2.
1962  */
1963 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1964 {
1965         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1966
1967         if (!(vmcs12->exception_bitmap & (1u << nr)))
1968                 return 0;
1969
1970         nested_vmx_vmexit(vcpu);
1971         return 1;
1972 }
1973
1974 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1975                                 bool has_error_code, u32 error_code,
1976                                 bool reinject)
1977 {
1978         struct vcpu_vmx *vmx = to_vmx(vcpu);
1979         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1980
1981         if (!reinject && is_guest_mode(vcpu) &&
1982             nested_vmx_check_exception(vcpu, nr))
1983                 return;
1984
1985         if (has_error_code) {
1986                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1987                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1988         }
1989
1990         if (vmx->rmode.vm86_active) {
1991                 int inc_eip = 0;
1992                 if (kvm_exception_is_soft(nr))
1993                         inc_eip = vcpu->arch.event_exit_inst_len;
1994                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1995                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1996                 return;
1997         }
1998
1999         if (kvm_exception_is_soft(nr)) {
2000                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2001                              vmx->vcpu.arch.event_exit_inst_len);
2002                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2003         } else
2004                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2005
2006         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2007 }
2008
2009 static bool vmx_rdtscp_supported(void)
2010 {
2011         return cpu_has_vmx_rdtscp();
2012 }
2013
2014 static bool vmx_invpcid_supported(void)
2015 {
2016         return cpu_has_vmx_invpcid() && enable_ept;
2017 }
2018
2019 /*
2020  * Swap MSR entry in host/guest MSR entry array.
2021  */
2022 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2023 {
2024         struct shared_msr_entry tmp;
2025
2026         tmp = vmx->guest_msrs[to];
2027         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2028         vmx->guest_msrs[from] = tmp;
2029 }
2030
2031 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2032 {
2033         unsigned long *msr_bitmap;
2034
2035         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2036                 if (is_long_mode(vcpu))
2037                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2038                 else
2039                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2040         } else {
2041                 if (is_long_mode(vcpu))
2042                         msr_bitmap = vmx_msr_bitmap_longmode;
2043                 else
2044                         msr_bitmap = vmx_msr_bitmap_legacy;
2045         }
2046
2047         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2048 }
2049
2050 /*
2051  * Set up the vmcs to automatically save and restore system
2052  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2053  * mode, as fiddling with msrs is very expensive.
2054  */
2055 static void setup_msrs(struct vcpu_vmx *vmx)
2056 {
2057         int save_nmsrs, index;
2058
2059         save_nmsrs = 0;
2060 #ifdef CONFIG_X86_64
2061         if (is_long_mode(&vmx->vcpu)) {
2062                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2063                 if (index >= 0)
2064                         move_msr_up(vmx, index, save_nmsrs++);
2065                 index = __find_msr_index(vmx, MSR_LSTAR);
2066                 if (index >= 0)
2067                         move_msr_up(vmx, index, save_nmsrs++);
2068                 index = __find_msr_index(vmx, MSR_CSTAR);
2069                 if (index >= 0)
2070                         move_msr_up(vmx, index, save_nmsrs++);
2071                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2072                 if (index >= 0 && vmx->rdtscp_enabled)
2073                         move_msr_up(vmx, index, save_nmsrs++);
2074                 /*
2075                  * MSR_STAR is only needed on long mode guests, and only
2076                  * if efer.sce is enabled.
2077                  */
2078                 index = __find_msr_index(vmx, MSR_STAR);
2079                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2080                         move_msr_up(vmx, index, save_nmsrs++);
2081         }
2082 #endif
2083         index = __find_msr_index(vmx, MSR_EFER);
2084         if (index >= 0 && update_transition_efer(vmx, index))
2085                 move_msr_up(vmx, index, save_nmsrs++);
2086
2087         vmx->save_nmsrs = save_nmsrs;
2088
2089         if (cpu_has_vmx_msr_bitmap())
2090                 vmx_set_msr_bitmap(&vmx->vcpu);
2091 }
2092
2093 /*
2094  * reads and returns guest's timestamp counter "register"
2095  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2096  */
2097 static u64 guest_read_tsc(void)
2098 {
2099         u64 host_tsc, tsc_offset;
2100
2101         rdtscll(host_tsc);
2102         tsc_offset = vmcs_read64(TSC_OFFSET);
2103         return host_tsc + tsc_offset;
2104 }
2105
2106 /*
2107  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2108  * counter, even if a nested guest (L2) is currently running.
2109  */
2110 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2111 {
2112         u64 tsc_offset;
2113
2114         tsc_offset = is_guest_mode(vcpu) ?
2115                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2116                 vmcs_read64(TSC_OFFSET);
2117         return host_tsc + tsc_offset;
2118 }
2119
2120 /*
2121  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2122  * software catchup for faster rates on slower CPUs.
2123  */
2124 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2125 {
2126         if (!scale)
2127                 return;
2128
2129         if (user_tsc_khz > tsc_khz) {
2130                 vcpu->arch.tsc_catchup = 1;
2131                 vcpu->arch.tsc_always_catchup = 1;
2132         } else
2133                 WARN(1, "user requested TSC rate below hardware speed\n");
2134 }
2135
2136 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2137 {
2138         return vmcs_read64(TSC_OFFSET);
2139 }
2140
2141 /*
2142  * writes 'offset' into guest's timestamp counter offset register
2143  */
2144 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2145 {
2146         if (is_guest_mode(vcpu)) {
2147                 /*
2148                  * We're here if L1 chose not to trap WRMSR to TSC. According
2149                  * to the spec, this should set L1's TSC; The offset that L1
2150                  * set for L2 remains unchanged, and still needs to be added
2151                  * to the newly set TSC to get L2's TSC.
2152                  */
2153                 struct vmcs12 *vmcs12;
2154                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2155                 /* recalculate vmcs02.TSC_OFFSET: */
2156                 vmcs12 = get_vmcs12(vcpu);
2157                 vmcs_write64(TSC_OFFSET, offset +
2158                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2159                          vmcs12->tsc_offset : 0));
2160         } else {
2161                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2162                                            vmcs_read64(TSC_OFFSET), offset);
2163                 vmcs_write64(TSC_OFFSET, offset);
2164         }
2165 }
2166
2167 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2168 {
2169         u64 offset = vmcs_read64(TSC_OFFSET);
2170
2171         vmcs_write64(TSC_OFFSET, offset + adjustment);
2172         if (is_guest_mode(vcpu)) {
2173                 /* Even when running L2, the adjustment needs to apply to L1 */
2174                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2175         } else
2176                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2177                                            offset + adjustment);
2178 }
2179
2180 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2181 {
2182         return target_tsc - native_read_tsc();
2183 }
2184
2185 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2186 {
2187         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2188         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2189 }
2190
2191 /*
2192  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2193  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2194  * all guests if the "nested" module option is off, and can also be disabled
2195  * for a single guest by disabling its VMX cpuid bit.
2196  */
2197 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2198 {
2199         return nested && guest_cpuid_has_vmx(vcpu);
2200 }
2201
2202 /*
2203  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2204  * returned for the various VMX controls MSRs when nested VMX is enabled.
2205  * The same values should also be used to verify that vmcs12 control fields are
2206  * valid during nested entry from L1 to L2.
2207  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2208  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2209  * bit in the high half is on if the corresponding bit in the control field
2210  * may be on. See also vmx_control_verify().
2211  * TODO: allow these variables to be modified (downgraded) by module options
2212  * or other means.
2213  */
2214 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2215 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2216 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2217 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2218 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2219 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2220 static u32 nested_vmx_ept_caps;
2221 static __init void nested_vmx_setup_ctls_msrs(void)
2222 {
2223         /*
2224          * Note that as a general rule, the high half of the MSRs (bits in
2225          * the control fields which may be 1) should be initialized by the
2226          * intersection of the underlying hardware's MSR (i.e., features which
2227          * can be supported) and the list of features we want to expose -
2228          * because they are known to be properly supported in our code.
2229          * Also, usually, the low half of the MSRs (bits which must be 1) can
2230          * be set to 0, meaning that L1 may turn off any of these bits. The
2231          * reason is that if one of these bits is necessary, it will appear
2232          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2233          * fields of vmcs01 and vmcs02, will turn these bits off - and
2234          * nested_vmx_exit_handled() will not pass related exits to L1.
2235          * These rules have exceptions below.
2236          */
2237
2238         /* pin-based controls */
2239         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2240               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2241         /*
2242          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2243          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2244          */
2245         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2246         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2247                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2248                 PIN_BASED_VMX_PREEMPTION_TIMER;
2249         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2250
2251         /*
2252          * Exit controls
2253          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2254          * 17 must be 1.
2255          */
2256         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2257                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2258         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2259         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2260         nested_vmx_exit_ctls_high &=
2261 #ifdef CONFIG_X86_64
2262                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2263 #endif
2264                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2265                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2266         if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2267             !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2268                 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2269                 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2270         }
2271         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2272                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2273
2274         /* entry controls */
2275         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2276                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2277         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2278         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2279         nested_vmx_entry_ctls_high &=
2280 #ifdef CONFIG_X86_64
2281                 VM_ENTRY_IA32E_MODE |
2282 #endif
2283                 VM_ENTRY_LOAD_IA32_PAT;
2284         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2285                                        VM_ENTRY_LOAD_IA32_EFER);
2286
2287         /* cpu-based controls */
2288         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2289                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2290         nested_vmx_procbased_ctls_low = 0;
2291         nested_vmx_procbased_ctls_high &=
2292                 CPU_BASED_VIRTUAL_INTR_PENDING |
2293                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2294                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2295                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2296                 CPU_BASED_CR3_STORE_EXITING |
2297 #ifdef CONFIG_X86_64
2298                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2299 #endif
2300                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2301                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2302                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2303                 CPU_BASED_PAUSE_EXITING |
2304                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2305         /*
2306          * We can allow some features even when not supported by the
2307          * hardware. For example, L1 can specify an MSR bitmap - and we
2308          * can use it to avoid exits to L1 - even when L0 runs L2
2309          * without MSR bitmaps.
2310          */
2311         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2312
2313         /* secondary cpu-based controls */
2314         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2315                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2316         nested_vmx_secondary_ctls_low = 0;
2317         nested_vmx_secondary_ctls_high &=
2318                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2319                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2320                 SECONDARY_EXEC_WBINVD_EXITING;
2321
2322         if (enable_ept) {
2323                 /* nested EPT: emulate EPT also to L1 */
2324                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2325                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2326                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2327                          VMX_EPT_INVEPT_BIT;
2328                 nested_vmx_ept_caps &= vmx_capability.ept;
2329                 /*
2330                  * Since invept is completely emulated we support both global
2331                  * and context invalidation independent of what host cpu
2332                  * supports
2333                  */
2334                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2335                         VMX_EPT_EXTENT_CONTEXT_BIT;
2336         } else
2337                 nested_vmx_ept_caps = 0;
2338
2339         /* miscellaneous data */
2340         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2341         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2342                 VMX_MISC_SAVE_EFER_LMA;
2343         nested_vmx_misc_high = 0;
2344 }
2345
2346 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2347 {
2348         /*
2349          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2350          */
2351         return ((control & high) | low) == control;
2352 }
2353
2354 static inline u64 vmx_control_msr(u32 low, u32 high)
2355 {
2356         return low | ((u64)high << 32);
2357 }
2358
2359 /*
2360  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2361  * also let it use VMX-specific MSRs.
2362  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2363  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2364  * like all other MSRs).
2365  */
2366 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2367 {
2368         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2369                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2370                 /*
2371                  * According to the spec, processors which do not support VMX
2372                  * should throw a #GP(0) when VMX capability MSRs are read.
2373                  */
2374                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2375                 return 1;
2376         }
2377
2378         switch (msr_index) {
2379         case MSR_IA32_FEATURE_CONTROL:
2380                 if (nested_vmx_allowed(vcpu)) {
2381                         *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2382                         break;
2383                 }
2384                 return 0;
2385         case MSR_IA32_VMX_BASIC:
2386                 /*
2387                  * This MSR reports some information about VMX support. We
2388                  * should return information about the VMX we emulate for the
2389                  * guest, and the VMCS structure we give it - not about the
2390                  * VMX support of the underlying hardware.
2391                  */
2392                 *pdata = VMCS12_REVISION |
2393                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2394                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2395                 break;
2396         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2397         case MSR_IA32_VMX_PINBASED_CTLS:
2398                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2399                                         nested_vmx_pinbased_ctls_high);
2400                 break;
2401         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2402         case MSR_IA32_VMX_PROCBASED_CTLS:
2403                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2404                                         nested_vmx_procbased_ctls_high);
2405                 break;
2406         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2407         case MSR_IA32_VMX_EXIT_CTLS:
2408                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2409                                         nested_vmx_exit_ctls_high);
2410                 break;
2411         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2412         case MSR_IA32_VMX_ENTRY_CTLS:
2413                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2414                                         nested_vmx_entry_ctls_high);
2415                 break;
2416         case MSR_IA32_VMX_MISC:
2417                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2418                                          nested_vmx_misc_high);
2419                 break;
2420         /*
2421          * These MSRs specify bits which the guest must keep fixed (on or off)
2422          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2423          * We picked the standard core2 setting.
2424          */
2425 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2426 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2427         case MSR_IA32_VMX_CR0_FIXED0:
2428                 *pdata = VMXON_CR0_ALWAYSON;
2429                 break;
2430         case MSR_IA32_VMX_CR0_FIXED1:
2431                 *pdata = -1ULL;
2432                 break;
2433         case MSR_IA32_VMX_CR4_FIXED0:
2434                 *pdata = VMXON_CR4_ALWAYSON;
2435                 break;
2436         case MSR_IA32_VMX_CR4_FIXED1:
2437                 *pdata = -1ULL;
2438                 break;
2439         case MSR_IA32_VMX_VMCS_ENUM:
2440                 *pdata = 0x1f;
2441                 break;
2442         case MSR_IA32_VMX_PROCBASED_CTLS2:
2443                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2444                                         nested_vmx_secondary_ctls_high);
2445                 break;
2446         case MSR_IA32_VMX_EPT_VPID_CAP:
2447                 /* Currently, no nested vpid support */
2448                 *pdata = nested_vmx_ept_caps;
2449                 break;
2450         default:
2451                 return 0;
2452         }
2453
2454         return 1;
2455 }
2456
2457 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2458 {
2459         u32 msr_index = msr_info->index;
2460         u64 data = msr_info->data;
2461         bool host_initialized = msr_info->host_initiated;
2462
2463         if (!nested_vmx_allowed(vcpu))
2464                 return 0;
2465
2466         if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2467                 if (!host_initialized &&
2468                                 to_vmx(vcpu)->nested.msr_ia32_feature_control
2469                                 & FEATURE_CONTROL_LOCKED)
2470                         return 0;
2471                 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2472                 return 1;
2473         }
2474
2475         /*
2476          * No need to treat VMX capability MSRs specially: If we don't handle
2477          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2478          */
2479         return 0;
2480 }
2481
2482 /*
2483  * Reads an msr value (of 'msr_index') into 'pdata'.
2484  * Returns 0 on success, non-0 otherwise.
2485  * Assumes vcpu_load() was already called.
2486  */
2487 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2488 {
2489         u64 data;
2490         struct shared_msr_entry *msr;
2491
2492         if (!pdata) {
2493                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2494                 return -EINVAL;
2495         }
2496
2497         switch (msr_index) {
2498 #ifdef CONFIG_X86_64
2499         case MSR_FS_BASE:
2500                 data = vmcs_readl(GUEST_FS_BASE);
2501                 break;
2502         case MSR_GS_BASE:
2503                 data = vmcs_readl(GUEST_GS_BASE);
2504                 break;
2505         case MSR_KERNEL_GS_BASE:
2506                 vmx_load_host_state(to_vmx(vcpu));
2507                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2508                 break;
2509 #endif
2510         case MSR_EFER:
2511                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2512         case MSR_IA32_TSC:
2513                 data = guest_read_tsc();
2514                 break;
2515         case MSR_IA32_SYSENTER_CS:
2516                 data = vmcs_read32(GUEST_SYSENTER_CS);
2517                 break;
2518         case MSR_IA32_SYSENTER_EIP:
2519                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2520                 break;
2521         case MSR_IA32_SYSENTER_ESP:
2522                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2523                 break;
2524         case MSR_TSC_AUX:
2525                 if (!to_vmx(vcpu)->rdtscp_enabled)
2526                         return 1;
2527                 /* Otherwise falls through */
2528         default:
2529                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2530                         return 0;
2531                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2532                 if (msr) {
2533                         data = msr->data;
2534                         break;
2535                 }
2536                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2537         }
2538
2539         *pdata = data;
2540         return 0;
2541 }
2542
2543 /*
2544  * Writes msr value into into the appropriate "register".
2545  * Returns 0 on success, non-0 otherwise.
2546  * Assumes vcpu_load() was already called.
2547  */
2548 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2549 {
2550         struct vcpu_vmx *vmx = to_vmx(vcpu);
2551         struct shared_msr_entry *msr;
2552         int ret = 0;
2553         u32 msr_index = msr_info->index;
2554         u64 data = msr_info->data;
2555
2556         switch (msr_index) {
2557         case MSR_EFER:
2558                 ret = kvm_set_msr_common(vcpu, msr_info);
2559                 break;
2560 #ifdef CONFIG_X86_64
2561         case MSR_FS_BASE:
2562                 vmx_segment_cache_clear(vmx);
2563                 vmcs_writel(GUEST_FS_BASE, data);
2564                 break;
2565         case MSR_GS_BASE:
2566                 vmx_segment_cache_clear(vmx);
2567                 vmcs_writel(GUEST_GS_BASE, data);
2568                 break;
2569         case MSR_KERNEL_GS_BASE:
2570                 vmx_load_host_state(vmx);
2571                 vmx->msr_guest_kernel_gs_base = data;
2572                 break;
2573 #endif
2574         case MSR_IA32_SYSENTER_CS:
2575                 vmcs_write32(GUEST_SYSENTER_CS, data);
2576                 break;
2577         case MSR_IA32_SYSENTER_EIP:
2578                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2579                 break;
2580         case MSR_IA32_SYSENTER_ESP:
2581                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2582                 break;
2583         case MSR_IA32_TSC:
2584                 kvm_write_tsc(vcpu, msr_info);
2585                 break;
2586         case MSR_IA32_CR_PAT:
2587                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2588                         vmcs_write64(GUEST_IA32_PAT, data);
2589                         vcpu->arch.pat = data;
2590                         break;
2591                 }
2592                 ret = kvm_set_msr_common(vcpu, msr_info);
2593                 break;
2594         case MSR_IA32_TSC_ADJUST:
2595                 ret = kvm_set_msr_common(vcpu, msr_info);
2596                 break;
2597         case MSR_TSC_AUX:
2598                 if (!vmx->rdtscp_enabled)
2599                         return 1;
2600                 /* Check reserved bit, higher 32 bits should be zero */
2601                 if ((data >> 32) != 0)
2602                         return 1;
2603                 /* Otherwise falls through */
2604         default:
2605                 if (vmx_set_vmx_msr(vcpu, msr_info))
2606                         break;
2607                 msr = find_msr_entry(vmx, msr_index);
2608                 if (msr) {
2609                         msr->data = data;
2610                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2611                                 preempt_disable();
2612                                 kvm_set_shared_msr(msr->index, msr->data,
2613                                                    msr->mask);
2614                                 preempt_enable();
2615                         }
2616                         break;
2617                 }
2618                 ret = kvm_set_msr_common(vcpu, msr_info);
2619         }
2620
2621         return ret;
2622 }
2623
2624 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2625 {
2626         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2627         switch (reg) {
2628         case VCPU_REGS_RSP:
2629                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2630                 break;
2631         case VCPU_REGS_RIP:
2632                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2633                 break;
2634         case VCPU_EXREG_PDPTR:
2635                 if (enable_ept)
2636                         ept_save_pdptrs(vcpu);
2637                 break;
2638         default:
2639                 break;
2640         }
2641 }
2642
2643 static __init int cpu_has_kvm_support(void)
2644 {
2645         return cpu_has_vmx();
2646 }
2647
2648 static __init int vmx_disabled_by_bios(void)
2649 {
2650         u64 msr;
2651
2652         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2653         if (msr & FEATURE_CONTROL_LOCKED) {
2654                 /* launched w/ TXT and VMX disabled */
2655                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2656                         && tboot_enabled())
2657                         return 1;
2658                 /* launched w/o TXT and VMX only enabled w/ TXT */
2659                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2660                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2661                         && !tboot_enabled()) {
2662                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2663                                 "activate TXT before enabling KVM\n");
2664                         return 1;
2665                 }
2666                 /* launched w/o TXT and VMX disabled */
2667                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2668                         && !tboot_enabled())
2669                         return 1;
2670         }
2671
2672         return 0;
2673 }
2674
2675 static void kvm_cpu_vmxon(u64 addr)
2676 {
2677         asm volatile (ASM_VMX_VMXON_RAX
2678                         : : "a"(&addr), "m"(addr)
2679                         : "memory", "cc");
2680 }
2681
2682 static int hardware_enable(void *garbage)
2683 {
2684         int cpu = raw_smp_processor_id();
2685         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2686         u64 old, test_bits;
2687
2688         if (read_cr4() & X86_CR4_VMXE)
2689                 return -EBUSY;
2690
2691         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2692
2693         /*
2694          * Now we can enable the vmclear operation in kdump
2695          * since the loaded_vmcss_on_cpu list on this cpu
2696          * has been initialized.
2697          *
2698          * Though the cpu is not in VMX operation now, there
2699          * is no problem to enable the vmclear operation
2700          * for the loaded_vmcss_on_cpu list is empty!
2701          */
2702         crash_enable_local_vmclear(cpu);
2703
2704         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2705
2706         test_bits = FEATURE_CONTROL_LOCKED;
2707         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2708         if (tboot_enabled())
2709                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2710
2711         if ((old & test_bits) != test_bits) {
2712                 /* enable and lock */
2713                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2714         }
2715         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2716
2717         if (vmm_exclusive) {
2718                 kvm_cpu_vmxon(phys_addr);
2719                 ept_sync_global();
2720         }
2721
2722         native_store_gdt(&__get_cpu_var(host_gdt));
2723
2724         return 0;
2725 }
2726
2727 static void vmclear_local_loaded_vmcss(void)
2728 {
2729         int cpu = raw_smp_processor_id();
2730         struct loaded_vmcs *v, *n;
2731
2732         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2733                                  loaded_vmcss_on_cpu_link)
2734                 __loaded_vmcs_clear(v);
2735 }
2736
2737
2738 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2739  * tricks.
2740  */
2741 static void kvm_cpu_vmxoff(void)
2742 {
2743         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2744 }
2745
2746 static void hardware_disable(void *garbage)
2747 {
2748         if (vmm_exclusive) {
2749                 vmclear_local_loaded_vmcss();
2750                 kvm_cpu_vmxoff();
2751         }
2752         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2753 }
2754
2755 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2756                                       u32 msr, u32 *result)
2757 {
2758         u32 vmx_msr_low, vmx_msr_high;
2759         u32 ctl = ctl_min | ctl_opt;
2760
2761         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2762
2763         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2764         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2765
2766         /* Ensure minimum (required) set of control bits are supported. */
2767         if (ctl_min & ~ctl)
2768                 return -EIO;
2769
2770         *result = ctl;
2771         return 0;
2772 }
2773
2774 static __init bool allow_1_setting(u32 msr, u32 ctl)
2775 {
2776         u32 vmx_msr_low, vmx_msr_high;
2777
2778         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2779         return vmx_msr_high & ctl;
2780 }
2781
2782 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2783 {
2784         u32 vmx_msr_low, vmx_msr_high;
2785         u32 min, opt, min2, opt2;
2786         u32 _pin_based_exec_control = 0;
2787         u32 _cpu_based_exec_control = 0;
2788         u32 _cpu_based_2nd_exec_control = 0;
2789         u32 _vmexit_control = 0;
2790         u32 _vmentry_control = 0;
2791
2792         min = CPU_BASED_HLT_EXITING |
2793 #ifdef CONFIG_X86_64
2794               CPU_BASED_CR8_LOAD_EXITING |
2795               CPU_BASED_CR8_STORE_EXITING |
2796 #endif
2797               CPU_BASED_CR3_LOAD_EXITING |
2798               CPU_BASED_CR3_STORE_EXITING |
2799               CPU_BASED_USE_IO_BITMAPS |
2800               CPU_BASED_MOV_DR_EXITING |
2801               CPU_BASED_USE_TSC_OFFSETING |
2802               CPU_BASED_MWAIT_EXITING |
2803               CPU_BASED_MONITOR_EXITING |
2804               CPU_BASED_INVLPG_EXITING |
2805               CPU_BASED_RDPMC_EXITING;
2806
2807         opt = CPU_BASED_TPR_SHADOW |
2808               CPU_BASED_USE_MSR_BITMAPS |
2809               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2810         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2811                                 &_cpu_based_exec_control) < 0)
2812                 return -EIO;
2813 #ifdef CONFIG_X86_64
2814         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2815                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2816                                            ~CPU_BASED_CR8_STORE_EXITING;
2817 #endif
2818         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2819                 min2 = 0;
2820                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2821                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2822                         SECONDARY_EXEC_WBINVD_EXITING |
2823                         SECONDARY_EXEC_ENABLE_VPID |
2824                         SECONDARY_EXEC_ENABLE_EPT |
2825                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2826                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2827                         SECONDARY_EXEC_RDTSCP |
2828                         SECONDARY_EXEC_ENABLE_INVPCID |
2829                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2830                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2831                         SECONDARY_EXEC_SHADOW_VMCS;
2832                 if (adjust_vmx_controls(min2, opt2,
2833                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2834                                         &_cpu_based_2nd_exec_control) < 0)
2835                         return -EIO;
2836         }
2837 #ifndef CONFIG_X86_64
2838         if (!(_cpu_based_2nd_exec_control &
2839                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2840                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2841 #endif
2842
2843         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2844                 _cpu_based_2nd_exec_control &= ~(
2845                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2846                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2847                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2848
2849         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2850                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2851                    enabled */
2852                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2853                                              CPU_BASED_CR3_STORE_EXITING |
2854                                              CPU_BASED_INVLPG_EXITING);
2855                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2856                       vmx_capability.ept, vmx_capability.vpid);
2857         }
2858
2859         min = 0;
2860 #ifdef CONFIG_X86_64
2861         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2862 #endif
2863         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2864                 VM_EXIT_ACK_INTR_ON_EXIT;
2865         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2866                                 &_vmexit_control) < 0)
2867                 return -EIO;
2868
2869         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2870         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2871         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2872                                 &_pin_based_exec_control) < 0)
2873                 return -EIO;
2874
2875         if (!(_cpu_based_2nd_exec_control &
2876                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2877                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2878                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2879
2880         min = 0;
2881         opt = VM_ENTRY_LOAD_IA32_PAT;
2882         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2883                                 &_vmentry_control) < 0)
2884                 return -EIO;
2885
2886         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2887
2888         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2889         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2890                 return -EIO;
2891
2892 #ifdef CONFIG_X86_64
2893         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2894         if (vmx_msr_high & (1u<<16))
2895                 return -EIO;
2896 #endif
2897
2898         /* Require Write-Back (WB) memory type for VMCS accesses. */
2899         if (((vmx_msr_high >> 18) & 15) != 6)
2900                 return -EIO;
2901
2902         vmcs_conf->size = vmx_msr_high & 0x1fff;
2903         vmcs_conf->order = get_order(vmcs_config.size);
2904         vmcs_conf->revision_id = vmx_msr_low;
2905
2906         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2907         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2908         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2909         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2910         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2911
2912         cpu_has_load_ia32_efer =
2913                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2914                                 VM_ENTRY_LOAD_IA32_EFER)
2915                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2916                                    VM_EXIT_LOAD_IA32_EFER);
2917
2918         cpu_has_load_perf_global_ctrl =
2919                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2920                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2921                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2922                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2923
2924         /*
2925          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2926          * but due to arrata below it can't be used. Workaround is to use
2927          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2928          *
2929          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2930          *
2931          * AAK155             (model 26)
2932          * AAP115             (model 30)
2933          * AAT100             (model 37)
2934          * BC86,AAY89,BD102   (model 44)
2935          * BA97               (model 46)
2936          *
2937          */
2938         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2939                 switch (boot_cpu_data.x86_model) {
2940                 case 26:
2941                 case 30:
2942                 case 37:
2943                 case 44:
2944                 case 46:
2945                         cpu_has_load_perf_global_ctrl = false;
2946                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2947                                         "does not work properly. Using workaround\n");
2948                         break;
2949                 default:
2950                         break;
2951                 }
2952         }
2953
2954         return 0;
2955 }
2956
2957 static struct vmcs *alloc_vmcs_cpu(int cpu)
2958 {
2959         int node = cpu_to_node(cpu);
2960         struct page *pages;
2961         struct vmcs *vmcs;
2962
2963         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2964         if (!pages)
2965                 return NULL;
2966         vmcs = page_address(pages);
2967         memset(vmcs, 0, vmcs_config.size);
2968         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2969         return vmcs;
2970 }
2971
2972 static struct vmcs *alloc_vmcs(void)
2973 {
2974         return alloc_vmcs_cpu(raw_smp_processor_id());
2975 }
2976
2977 static void free_vmcs(struct vmcs *vmcs)
2978 {
2979         free_pages((unsigned long)vmcs, vmcs_config.order);
2980 }
2981
2982 /*
2983  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2984  */
2985 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2986 {
2987         if (!loaded_vmcs->vmcs)
2988                 return;
2989         loaded_vmcs_clear(loaded_vmcs);
2990         free_vmcs(loaded_vmcs->vmcs);
2991         loaded_vmcs->vmcs = NULL;
2992 }
2993
2994 static void free_kvm_area(void)
2995 {
2996         int cpu;
2997
2998         for_each_possible_cpu(cpu) {
2999                 free_vmcs(per_cpu(vmxarea, cpu));
3000                 per_cpu(vmxarea, cpu) = NULL;
3001         }
3002 }
3003
3004 static __init int alloc_kvm_area(void)
3005 {
3006         int cpu;
3007
3008         for_each_possible_cpu(cpu) {
3009                 struct vmcs *vmcs;
3010
3011                 vmcs = alloc_vmcs_cpu(cpu);
3012                 if (!vmcs) {
3013                         free_kvm_area();
3014                         return -ENOMEM;
3015                 }
3016
3017                 per_cpu(vmxarea, cpu) = vmcs;
3018         }
3019         return 0;
3020 }
3021
3022 static __init int hardware_setup(void)
3023 {
3024         if (setup_vmcs_config(&vmcs_config) < 0)
3025                 return -EIO;
3026
3027         if (boot_cpu_has(X86_FEATURE_NX))
3028                 kvm_enable_efer_bits(EFER_NX);
3029
3030         if (!cpu_has_vmx_vpid())
3031                 enable_vpid = 0;
3032         if (!cpu_has_vmx_shadow_vmcs())
3033                 enable_shadow_vmcs = 0;
3034
3035         if (!cpu_has_vmx_ept() ||
3036             !cpu_has_vmx_ept_4levels()) {
3037                 enable_ept = 0;
3038                 enable_unrestricted_guest = 0;
3039                 enable_ept_ad_bits = 0;
3040         }
3041
3042         if (!cpu_has_vmx_ept_ad_bits())
3043                 enable_ept_ad_bits = 0;
3044
3045         if (!cpu_has_vmx_unrestricted_guest())
3046                 enable_unrestricted_guest = 0;
3047
3048         if (!cpu_has_vmx_flexpriority())
3049                 flexpriority_enabled = 0;
3050
3051         if (!cpu_has_vmx_tpr_shadow())
3052                 kvm_x86_ops->update_cr8_intercept = NULL;
3053
3054         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3055                 kvm_disable_largepages();
3056
3057         if (!cpu_has_vmx_ple())
3058                 ple_gap = 0;
3059
3060         if (!cpu_has_vmx_apicv())
3061                 enable_apicv = 0;
3062
3063         if (enable_apicv)
3064                 kvm_x86_ops->update_cr8_intercept = NULL;
3065         else {
3066                 kvm_x86_ops->hwapic_irr_update = NULL;
3067                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3068                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3069         }
3070
3071         if (nested)
3072                 nested_vmx_setup_ctls_msrs();
3073
3074         return alloc_kvm_area();
3075 }
3076
3077 static __exit void hardware_unsetup(void)
3078 {
3079         free_kvm_area();
3080 }
3081
3082 static bool emulation_required(struct kvm_vcpu *vcpu)
3083 {
3084         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3085 }
3086
3087 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3088                 struct kvm_segment *save)
3089 {
3090         if (!emulate_invalid_guest_state) {
3091                 /*
3092                  * CS and SS RPL should be equal during guest entry according
3093                  * to VMX spec, but in reality it is not always so. Since vcpu
3094                  * is in the middle of the transition from real mode to
3095                  * protected mode it is safe to assume that RPL 0 is a good
3096                  * default value.
3097                  */
3098                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3099                         save->selector &= ~SELECTOR_RPL_MASK;
3100                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3101                 save->s = 1;
3102         }
3103         vmx_set_segment(vcpu, save, seg);
3104 }
3105
3106 static void enter_pmode(struct kvm_vcpu *vcpu)
3107 {
3108         unsigned long flags;
3109         struct vcpu_vmx *vmx = to_vmx(vcpu);
3110
3111         /*
3112          * Update real mode segment cache. It may be not up-to-date if sement
3113          * register was written while vcpu was in a guest mode.
3114          */
3115         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3116         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3117         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3118         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3119         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3120         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3121
3122         vmx->rmode.vm86_active = 0;
3123
3124         vmx_segment_cache_clear(vmx);
3125
3126         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3127
3128         flags = vmcs_readl(GUEST_RFLAGS);
3129         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3130         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3131         vmcs_writel(GUEST_RFLAGS, flags);
3132
3133         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3134                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3135
3136         update_exception_bitmap(vcpu);
3137
3138         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3139         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3140         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3141         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3142         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3143         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3144
3145         /* CPL is always 0 when CPU enters protected mode */
3146         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3147         vmx->cpl = 0;
3148 }
3149
3150 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3151 {
3152         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3153         struct kvm_segment var = *save;
3154
3155         var.dpl = 0x3;
3156         if (seg == VCPU_SREG_CS)
3157                 var.type = 0x3;
3158
3159         if (!emulate_invalid_guest_state) {
3160                 var.selector = var.base >> 4;
3161                 var.base = var.base & 0xffff0;
3162                 var.limit = 0xffff;
3163                 var.g = 0;
3164                 var.db = 0;
3165                 var.present = 1;
3166                 var.s = 1;
3167                 var.l = 0;
3168                 var.unusable = 0;
3169                 var.type = 0x3;
3170                 var.avl = 0;
3171                 if (save->base & 0xf)
3172                         printk_once(KERN_WARNING "kvm: segment base is not "
3173                                         "paragraph aligned when entering "
3174                                         "protected mode (seg=%d)", seg);
3175         }
3176
3177         vmcs_write16(sf->selector, var.selector);
3178         vmcs_write32(sf->base, var.base);
3179         vmcs_write32(sf->limit, var.limit);
3180         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3181 }
3182
3183 static void enter_rmode(struct kvm_vcpu *vcpu)
3184 {
3185         unsigned long flags;
3186         struct vcpu_vmx *vmx = to_vmx(vcpu);
3187
3188         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3189         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3190         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3191         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3192         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3193         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3194         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3195
3196         vmx->rmode.vm86_active = 1;
3197
3198         /*
3199          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3200          * vcpu. Warn the user that an update is overdue.
3201          */
3202         if (!vcpu->kvm->arch.tss_addr)
3203                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3204                              "called before entering vcpu\n");
3205
3206         vmx_segment_cache_clear(vmx);
3207
3208         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3209         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3210         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3211
3212         flags = vmcs_readl(GUEST_RFLAGS);
3213         vmx->rmode.save_rflags = flags;
3214
3215         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3216
3217         vmcs_writel(GUEST_RFLAGS, flags);
3218         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3219         update_exception_bitmap(vcpu);
3220
3221         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3222         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3223         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3224         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3225         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3226         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3227
3228         kvm_mmu_reset_context(vcpu);
3229 }
3230
3231 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3232 {
3233         struct vcpu_vmx *vmx = to_vmx(vcpu);
3234         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3235
3236         if (!msr)
3237                 return;
3238
3239         /*
3240          * Force kernel_gs_base reloading before EFER changes, as control
3241          * of this msr depends on is_long_mode().
3242          */
3243         vmx_load_host_state(to_vmx(vcpu));
3244         vcpu->arch.efer = efer;
3245         if (efer & EFER_LMA) {
3246                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3247                 msr->data = efer;
3248         } else {
3249                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3250
3251                 msr->data = efer & ~EFER_LME;
3252         }
3253         setup_msrs(vmx);
3254 }
3255
3256 #ifdef CONFIG_X86_64
3257
3258 static void enter_lmode(struct kvm_vcpu *vcpu)
3259 {
3260         u32 guest_tr_ar;
3261
3262         vmx_segment_cache_clear(to_vmx(vcpu));
3263
3264         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3265         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3266                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3267                                      __func__);
3268                 vmcs_write32(GUEST_TR_AR_BYTES,
3269                              (guest_tr_ar & ~AR_TYPE_MASK)
3270                              | AR_TYPE_BUSY_64_TSS);
3271         }
3272         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3273 }
3274
3275 static void exit_lmode(struct kvm_vcpu *vcpu)
3276 {
3277         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3278         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3279 }
3280
3281 #endif
3282
3283 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3284 {
3285         vpid_sync_context(to_vmx(vcpu));
3286         if (enable_ept) {
3287                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3288                         return;
3289                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3290         }
3291 }
3292
3293 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3294 {
3295         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3296
3297         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3298         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3299 }
3300
3301 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3302 {
3303         if (enable_ept && is_paging(vcpu))
3304                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3305         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3306 }
3307
3308 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3309 {
3310         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3311
3312         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3313         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3314 }
3315
3316 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3317 {
3318         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3319
3320         if (!test_bit(VCPU_EXREG_PDPTR,
3321                       (unsigned long *)&vcpu->arch.regs_dirty))
3322                 return;
3323
3324         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3325                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3326                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3327                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3328                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3329         }
3330 }
3331
3332 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3333 {
3334         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3335
3336         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3337                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3338                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3339                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3340                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3341         }
3342
3343         __set_bit(VCPU_EXREG_PDPTR,
3344                   (unsigned long *)&vcpu->arch.regs_avail);
3345         __set_bit(VCPU_EXREG_PDPTR,
3346                   (unsigned long *)&vcpu->arch.regs_dirty);
3347 }
3348
3349 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3350
3351 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3352                                         unsigned long cr0,
3353                                         struct kvm_vcpu *vcpu)
3354 {
3355         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3356                 vmx_decache_cr3(vcpu);
3357         if (!(cr0 & X86_CR0_PG)) {
3358                 /* From paging/starting to nonpaging */
3359                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3360                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3361                              (CPU_BASED_CR3_LOAD_EXITING |
3362                               CPU_BASED_CR3_STORE_EXITING));
3363                 vcpu->arch.cr0 = cr0;
3364                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3365         } else if (!is_paging(vcpu)) {
3366                 /* From nonpaging to paging */
3367                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3368                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3369                              ~(CPU_BASED_CR3_LOAD_EXITING |
3370                                CPU_BASED_CR3_STORE_EXITING));
3371                 vcpu->arch.cr0 = cr0;
3372                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3373         }
3374
3375         if (!(cr0 & X86_CR0_WP))
3376                 *hw_cr0 &= ~X86_CR0_WP;
3377 }
3378
3379 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3380 {
3381         struct vcpu_vmx *vmx = to_vmx(vcpu);
3382         unsigned long hw_cr0;
3383
3384         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3385         if (enable_unrestricted_guest)
3386                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3387         else {
3388                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3389
3390                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3391                         enter_pmode(vcpu);
3392
3393                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3394                         enter_rmode(vcpu);
3395         }
3396
3397 #ifdef CONFIG_X86_64
3398         if (vcpu->arch.efer & EFER_LME) {
3399                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3400                         enter_lmode(vcpu);
3401                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3402                         exit_lmode(vcpu);
3403         }
3404 #endif
3405
3406         if (enable_ept)
3407                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3408
3409         if (!vcpu->fpu_active)
3410                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3411
3412         vmcs_writel(CR0_READ_SHADOW, cr0);
3413         vmcs_writel(GUEST_CR0, hw_cr0);
3414         vcpu->arch.cr0 = cr0;
3415
3416         /* depends on vcpu->arch.cr0 to be set to a new value */
3417         vmx->emulation_required = emulation_required(vcpu);
3418 }
3419
3420 static u64 construct_eptp(unsigned long root_hpa)
3421 {
3422         u64 eptp;
3423
3424         /* TODO write the value reading from MSR */
3425         eptp = VMX_EPT_DEFAULT_MT |
3426                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3427         if (enable_ept_ad_bits)
3428                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3429         eptp |= (root_hpa & PAGE_MASK);
3430
3431         return eptp;
3432 }
3433
3434 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3435 {
3436         unsigned long guest_cr3;
3437         u64 eptp;
3438
3439         guest_cr3 = cr3;
3440         if (enable_ept) {
3441                 eptp = construct_eptp(cr3);
3442                 vmcs_write64(EPT_POINTER, eptp);
3443                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3444                         guest_cr3 = kvm_read_cr3(vcpu);
3445                 else
3446                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3447                 ept_load_pdptrs(vcpu);
3448         }
3449
3450         vmx_flush_tlb(vcpu);
3451         vmcs_writel(GUEST_CR3, guest_cr3);
3452 }
3453
3454 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3455 {
3456         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3457                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3458
3459         if (cr4 & X86_CR4_VMXE) {
3460                 /*
3461                  * To use VMXON (and later other VMX instructions), a guest
3462                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3463                  * So basically the check on whether to allow nested VMX
3464                  * is here.
3465                  */
3466                 if (!nested_vmx_allowed(vcpu))
3467                         return 1;
3468         }
3469         if (to_vmx(vcpu)->nested.vmxon &&
3470             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3471                 return 1;
3472
3473         vcpu->arch.cr4 = cr4;
3474         if (enable_ept) {
3475                 if (!is_paging(vcpu)) {
3476                         hw_cr4 &= ~X86_CR4_PAE;
3477                         hw_cr4 |= X86_CR4_PSE;
3478                         /*
3479                          * SMEP is disabled if CPU is in non-paging mode in
3480                          * hardware. However KVM always uses paging mode to
3481                          * emulate guest non-paging mode with TDP.
3482                          * To emulate this behavior, SMEP needs to be manually
3483                          * disabled when guest switches to non-paging mode.
3484                          */
3485                         hw_cr4 &= ~X86_CR4_SMEP;
3486                 } else if (!(cr4 & X86_CR4_PAE)) {
3487                         hw_cr4 &= ~X86_CR4_PAE;
3488                 }
3489         }
3490
3491         vmcs_writel(CR4_READ_SHADOW, cr4);
3492         vmcs_writel(GUEST_CR4, hw_cr4);
3493         return 0;
3494 }
3495
3496 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3497                             struct kvm_segment *var, int seg)
3498 {
3499         struct vcpu_vmx *vmx = to_vmx(vcpu);
3500         u32 ar;
3501
3502         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3503                 *var = vmx->rmode.segs[seg];
3504                 if (seg == VCPU_SREG_TR
3505                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3506                         return;
3507                 var->base = vmx_read_guest_seg_base(vmx, seg);
3508                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3509                 return;
3510         }
3511         var->base = vmx_read_guest_seg_base(vmx, seg);
3512         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3513         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3514         ar = vmx_read_guest_seg_ar(vmx, seg);
3515         var->unusable = (ar >> 16) & 1;
3516         var->type = ar & 15;
3517         var->s = (ar >> 4) & 1;
3518         var->dpl = (ar >> 5) & 3;
3519         /*
3520          * Some userspaces do not preserve unusable property. Since usable
3521          * segment has to be present according to VMX spec we can use present
3522          * property to amend userspace bug by making unusable segment always
3523          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3524          * segment as unusable.
3525          */
3526         var->present = !var->unusable;
3527         var->avl = (ar >> 12) & 1;
3528         var->l = (ar >> 13) & 1;
3529         var->db = (ar >> 14) & 1;
3530         var->g = (ar >> 15) & 1;
3531 }
3532
3533 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3534 {
3535         struct kvm_segment s;
3536
3537         if (to_vmx(vcpu)->rmode.vm86_active) {
3538                 vmx_get_segment(vcpu, &s, seg);
3539                 return s.base;
3540         }
3541         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3542 }
3543
3544 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3545 {
3546         struct vcpu_vmx *vmx = to_vmx(vcpu);
3547
3548         if (!is_protmode(vcpu))
3549                 return 0;
3550
3551         if (!is_long_mode(vcpu)
3552             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3553                 return 3;
3554
3555         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3556                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3557                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3558         }
3559
3560         return vmx->cpl;
3561 }
3562
3563
3564 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3565 {
3566         u32 ar;
3567
3568         if (var->unusable || !var->present)
3569                 ar = 1 << 16;
3570         else {
3571                 ar = var->type & 15;
3572                 ar |= (var->s & 1) << 4;
3573                 ar |= (var->dpl & 3) << 5;
3574                 ar |= (var->present & 1) << 7;
3575                 ar |= (var->avl & 1) << 12;
3576                 ar |= (var->l & 1) << 13;
3577                 ar |= (var->db & 1) << 14;
3578                 ar |= (var->g & 1) << 15;
3579         }
3580
3581         return ar;
3582 }
3583
3584 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3585                             struct kvm_segment *var, int seg)
3586 {
3587         struct vcpu_vmx *vmx = to_vmx(vcpu);
3588         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3589
3590         vmx_segment_cache_clear(vmx);
3591         if (seg == VCPU_SREG_CS)
3592                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3593
3594         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3595                 vmx->rmode.segs[seg] = *var;
3596                 if (seg == VCPU_SREG_TR)
3597                         vmcs_write16(sf->selector, var->selector);
3598                 else if (var->s)
3599                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3600                 goto out;
3601         }
3602
3603         vmcs_writel(sf->base, var->base);
3604         vmcs_write32(sf->limit, var->limit);
3605         vmcs_write16(sf->selector, var->selector);
3606
3607         /*
3608          *   Fix the "Accessed" bit in AR field of segment registers for older
3609          * qemu binaries.
3610          *   IA32 arch specifies that at the time of processor reset the
3611          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3612          * is setting it to 0 in the userland code. This causes invalid guest
3613          * state vmexit when "unrestricted guest" mode is turned on.
3614          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3615          * tree. Newer qemu binaries with that qemu fix would not need this
3616          * kvm hack.
3617          */
3618         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3619                 var->type |= 0x1; /* Accessed */
3620
3621         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3622
3623 out:
3624         vmx->emulation_required |= emulation_required(vcpu);
3625 }
3626
3627 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3628 {
3629         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3630
3631         *db = (ar >> 14) & 1;
3632         *l = (ar >> 13) & 1;
3633 }
3634
3635 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3636 {
3637         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3638         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3639 }
3640
3641 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3642 {
3643         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3644         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3645 }
3646
3647 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3648 {
3649         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3650         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3651 }
3652
3653 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3654 {
3655         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3656         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3657 }
3658
3659 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3660 {
3661         struct kvm_segment var;
3662         u32 ar;
3663
3664         vmx_get_segment(vcpu, &var, seg);
3665         var.dpl = 0x3;
3666         if (seg == VCPU_SREG_CS)
3667                 var.type = 0x3;
3668         ar = vmx_segment_access_rights(&var);
3669
3670         if (var.base != (var.selector << 4))
3671                 return false;
3672         if (var.limit != 0xffff)
3673                 return false;
3674         if (ar != 0xf3)
3675                 return false;
3676
3677         return true;
3678 }
3679
3680 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3681 {
3682         struct kvm_segment cs;
3683         unsigned int cs_rpl;
3684
3685         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3686         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3687
3688         if (cs.unusable)
3689                 return false;
3690         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3691                 return false;
3692         if (!cs.s)
3693                 return false;
3694         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3695                 if (cs.dpl > cs_rpl)
3696                         return false;
3697         } else {
3698                 if (cs.dpl != cs_rpl)
3699                         return false;
3700         }
3701         if (!cs.present)
3702                 return false;
3703
3704         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3705         return true;
3706 }
3707
3708 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3709 {
3710         struct kvm_segment ss;
3711         unsigned int ss_rpl;
3712
3713         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3714         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3715
3716         if (ss.unusable)
3717                 return true;
3718         if (ss.type != 3 && ss.type != 7)
3719                 return false;
3720         if (!ss.s)
3721                 return false;
3722         if (ss.dpl != ss_rpl) /* DPL != RPL */
3723                 return false;
3724         if (!ss.present)
3725                 return false;
3726
3727         return true;
3728 }
3729
3730 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3731 {
3732         struct kvm_segment var;
3733         unsigned int rpl;
3734
3735         vmx_get_segment(vcpu, &var, seg);
3736         rpl = var.selector & SELECTOR_RPL_MASK;
3737
3738         if (var.unusable)
3739                 return true;
3740         if (!var.s)
3741                 return false;
3742         if (!var.present)
3743                 return false;
3744         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3745                 if (var.dpl < rpl) /* DPL < RPL */
3746                         return false;
3747         }
3748
3749         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3750          * rights flags
3751          */
3752         return true;
3753 }
3754
3755 static bool tr_valid(struct kvm_vcpu *vcpu)
3756 {
3757         struct kvm_segment tr;
3758
3759         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3760
3761         if (tr.unusable)
3762                 return false;
3763         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3764                 return false;
3765         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3766                 return false;
3767         if (!tr.present)
3768                 return false;
3769
3770         return true;
3771 }
3772
3773 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3774 {
3775         struct kvm_segment ldtr;
3776
3777         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3778
3779         if (ldtr.unusable)
3780                 return true;
3781         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3782                 return false;
3783         if (ldtr.type != 2)
3784                 return false;
3785         if (!ldtr.present)
3786                 return false;
3787
3788         return true;
3789 }
3790
3791 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3792 {
3793         struct kvm_segment cs, ss;
3794
3795         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3796         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3797
3798         return ((cs.selector & SELECTOR_RPL_MASK) ==
3799                  (ss.selector & SELECTOR_RPL_MASK));
3800 }
3801
3802 /*
3803  * Check if guest state is valid. Returns true if valid, false if
3804  * not.
3805  * We assume that registers are always usable
3806  */
3807 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3808 {
3809         if (enable_unrestricted_guest)
3810                 return true;
3811
3812         /* real mode guest state checks */
3813         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3814                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3815                         return false;
3816                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3817                         return false;
3818                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3819                         return false;
3820                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3821                         return false;
3822                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3823                         return false;
3824                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3825                         return false;
3826         } else {
3827         /* protected mode guest state checks */
3828                 if (!cs_ss_rpl_check(vcpu))
3829                         return false;
3830                 if (!code_segment_valid(vcpu))
3831                         return false;
3832                 if (!stack_segment_valid(vcpu))
3833                         return false;
3834                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3835                         return false;
3836                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3837                         return false;
3838                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3839                         return false;
3840                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3841                         return false;
3842                 if (!tr_valid(vcpu))
3843                         return false;
3844                 if (!ldtr_valid(vcpu))
3845                         return false;
3846         }
3847         /* TODO:
3848          * - Add checks on RIP
3849          * - Add checks on RFLAGS
3850          */
3851
3852         return true;
3853 }
3854
3855 static int init_rmode_tss(struct kvm *kvm)
3856 {
3857         gfn_t fn;
3858         u16 data = 0;
3859         int r, idx, ret = 0;
3860
3861         idx = srcu_read_lock(&kvm->srcu);
3862         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3863         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3864         if (r < 0)
3865                 goto out;
3866         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3867         r = kvm_write_guest_page(kvm, fn++, &data,
3868                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3869         if (r < 0)
3870                 goto out;
3871         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3872         if (r < 0)
3873                 goto out;
3874         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3875         if (r < 0)
3876                 goto out;
3877         data = ~0;
3878         r = kvm_write_guest_page(kvm, fn, &data,
3879                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3880                                  sizeof(u8));
3881         if (r < 0)
3882                 goto out;
3883
3884         ret = 1;
3885 out:
3886         srcu_read_unlock(&kvm->srcu, idx);
3887         return ret;
3888 }
3889
3890 static int init_rmode_identity_map(struct kvm *kvm)
3891 {
3892         int i, idx, r, ret;
3893         pfn_t identity_map_pfn;
3894         u32 tmp;
3895
3896         if (!enable_ept)
3897                 return 1;
3898         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3899                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3900                         "haven't been allocated!\n");
3901                 return 0;
3902         }
3903         if (likely(kvm->arch.ept_identity_pagetable_done))
3904                 return 1;
3905         ret = 0;
3906         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3907         idx = srcu_read_lock(&kvm->srcu);
3908         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3909         if (r < 0)
3910                 goto out;
3911         /* Set up identity-mapping pagetable for EPT in real mode */
3912         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3913                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3914                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3915                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3916                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3917                 if (r < 0)
3918                         goto out;
3919         }
3920         kvm->arch.ept_identity_pagetable_done = true;
3921         ret = 1;
3922 out:
3923         srcu_read_unlock(&kvm->srcu, idx);
3924         return ret;
3925 }
3926
3927 static void seg_setup(int seg)
3928 {
3929         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3930         unsigned int ar;
3931
3932         vmcs_write16(sf->selector, 0);
3933         vmcs_writel(sf->base, 0);
3934         vmcs_write32(sf->limit, 0xffff);
3935         ar = 0x93;
3936         if (seg == VCPU_SREG_CS)
3937                 ar |= 0x08; /* code segment */
3938
3939         vmcs_write32(sf->ar_bytes, ar);
3940 }
3941
3942 static int alloc_apic_access_page(struct kvm *kvm)
3943 {
3944         struct page *page;
3945         struct kvm_userspace_memory_region kvm_userspace_mem;
3946         int r = 0;
3947
3948         mutex_lock(&kvm->slots_lock);
3949         if (kvm->arch.apic_access_page)
3950                 goto out;
3951         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3952         kvm_userspace_mem.flags = 0;
3953         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3954         kvm_userspace_mem.memory_size = PAGE_SIZE;
3955         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3956         if (r)
3957                 goto out;
3958
3959         page = gfn_to_page(kvm, 0xfee00);
3960         if (is_error_page(page)) {
3961                 r = -EFAULT;
3962                 goto out;
3963         }
3964
3965         kvm->arch.apic_access_page = page;
3966 out:
3967         mutex_unlock(&kvm->slots_lock);
3968         return r;
3969 }
3970
3971 static int alloc_identity_pagetable(struct kvm *kvm)
3972 {
3973         struct page *page;
3974         struct kvm_userspace_memory_region kvm_userspace_mem;
3975         int r = 0;
3976
3977         mutex_lock(&kvm->slots_lock);
3978         if (kvm->arch.ept_identity_pagetable)
3979                 goto out;
3980         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3981         kvm_userspace_mem.flags = 0;
3982         kvm_userspace_mem.guest_phys_addr =
3983                 kvm->arch.ept_identity_map_addr;
3984         kvm_userspace_mem.memory_size = PAGE_SIZE;
3985         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3986         if (r)
3987                 goto out;
3988
3989         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3990         if (is_error_page(page)) {
3991                 r = -EFAULT;
3992                 goto out;
3993         }
3994
3995         kvm->arch.ept_identity_pagetable = page;
3996 out:
3997         mutex_unlock(&kvm->slots_lock);
3998         return r;
3999 }
4000
4001 static void allocate_vpid(struct vcpu_vmx *vmx)
4002 {
4003         int vpid;
4004
4005         vmx->vpid = 0;
4006         if (!enable_vpid)
4007                 return;
4008         spin_lock(&vmx_vpid_lock);
4009         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4010         if (vpid < VMX_NR_VPIDS) {
4011                 vmx->vpid = vpid;
4012                 __set_bit(vpid, vmx_vpid_bitmap);
4013         }
4014         spin_unlock(&vmx_vpid_lock);
4015 }
4016
4017 static void free_vpid(struct vcpu_vmx *vmx)
4018 {
4019         if (!enable_vpid)
4020                 return;
4021         spin_lock(&vmx_vpid_lock);
4022         if (vmx->vpid != 0)
4023                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4024         spin_unlock(&vmx_vpid_lock);
4025 }
4026
4027 #define MSR_TYPE_R      1
4028 #define MSR_TYPE_W      2
4029 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4030                                                 u32 msr, int type)
4031 {
4032         int f = sizeof(unsigned long);
4033
4034         if (!cpu_has_vmx_msr_bitmap())
4035                 return;
4036
4037         /*
4038          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4039          * have the write-low and read-high bitmap offsets the wrong way round.
4040          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4041          */
4042         if (msr <= 0x1fff) {
4043                 if (type & MSR_TYPE_R)
4044                         /* read-low */
4045                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4046
4047                 if (type & MSR_TYPE_W)
4048                         /* write-low */
4049                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4050
4051         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4052                 msr &= 0x1fff;
4053                 if (type & MSR_TYPE_R)
4054                         /* read-high */
4055                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4056
4057                 if (type & MSR_TYPE_W)
4058                         /* write-high */
4059                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4060
4061         }
4062 }
4063
4064 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4065                                                 u32 msr, int type)
4066 {
4067         int f = sizeof(unsigned long);
4068
4069         if (!cpu_has_vmx_msr_bitmap())
4070                 return;
4071
4072         /*
4073          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4074          * have the write-low and read-high bitmap offsets the wrong way round.
4075          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4076          */
4077         if (msr <= 0x1fff) {
4078                 if (type & MSR_TYPE_R)
4079                         /* read-low */
4080                         __set_bit(msr, msr_bitmap + 0x000 / f);
4081
4082                 if (type & MSR_TYPE_W)
4083                         /* write-low */
4084                         __set_bit(msr, msr_bitmap + 0x800 / f);
4085
4086         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4087                 msr &= 0x1fff;
4088                 if (type & MSR_TYPE_R)
4089                         /* read-high */
4090                         __set_bit(msr, msr_bitmap + 0x400 / f);
4091
4092                 if (type & MSR_TYPE_W)
4093                         /* write-high */
4094                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4095
4096         }
4097 }
4098
4099 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4100 {
4101         if (!longmode_only)
4102                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4103                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4104         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4105                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4106 }
4107
4108 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4109 {
4110         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4111                         msr, MSR_TYPE_R);
4112         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4113                         msr, MSR_TYPE_R);
4114 }
4115
4116 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4117 {
4118         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4119                         msr, MSR_TYPE_R);
4120         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4121                         msr, MSR_TYPE_R);
4122 }
4123
4124 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4125 {
4126         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4127                         msr, MSR_TYPE_W);
4128         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4129                         msr, MSR_TYPE_W);
4130 }
4131
4132 static int vmx_vm_has_apicv(struct kvm *kvm)
4133 {
4134         return enable_apicv && irqchip_in_kernel(kvm);
4135 }
4136
4137 /*
4138  * Send interrupt to vcpu via posted interrupt way.
4139  * 1. If target vcpu is running(non-root mode), send posted interrupt
4140  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4141  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4142  * interrupt from PIR in next vmentry.
4143  */
4144 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4145 {
4146         struct vcpu_vmx *vmx = to_vmx(vcpu);
4147         int r;
4148
4149         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4150                 return;
4151
4152         r = pi_test_and_set_on(&vmx->pi_desc);
4153         kvm_make_request(KVM_REQ_EVENT, vcpu);
4154 #ifdef CONFIG_SMP
4155         if (!r && (vcpu->mode == IN_GUEST_MODE))
4156                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4157                                 POSTED_INTR_VECTOR);
4158         else
4159 #endif
4160                 kvm_vcpu_kick(vcpu);
4161 }
4162
4163 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4164 {
4165         struct vcpu_vmx *vmx = to_vmx(vcpu);
4166
4167         if (!pi_test_and_clear_on(&vmx->pi_desc))
4168                 return;
4169
4170         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4171 }
4172
4173 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4174 {
4175         return;
4176 }
4177
4178 /*
4179  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4180  * will not change in the lifetime of the guest.
4181  * Note that host-state that does change is set elsewhere. E.g., host-state
4182  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4183  */
4184 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4185 {
4186         u32 low32, high32;
4187         unsigned long tmpl;
4188         struct desc_ptr dt;
4189
4190         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4191         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4192         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4193
4194         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4195 #ifdef CONFIG_X86_64
4196         /*
4197          * Load null selectors, so we can avoid reloading them in
4198          * __vmx_load_host_state(), in case userspace uses the null selectors
4199          * too (the expected case).
4200          */
4201         vmcs_write16(HOST_DS_SELECTOR, 0);
4202         vmcs_write16(HOST_ES_SELECTOR, 0);
4203 #else
4204         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4205         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4206 #endif
4207         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4208         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4209
4210         native_store_idt(&dt);
4211         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4212         vmx->host_idt_base = dt.address;
4213
4214         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4215
4216         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4217         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4218         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4219         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4220
4221         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4222                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4223                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4224         }
4225 }
4226
4227 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4228 {
4229         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4230         if (enable_ept)
4231                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4232         if (is_guest_mode(&vmx->vcpu))
4233                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4234                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4235         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4236 }
4237
4238 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4239 {
4240         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4241
4242         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4243                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4244         return pin_based_exec_ctrl;
4245 }
4246
4247 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4248 {
4249         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4250         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4251                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4252 #ifdef CONFIG_X86_64
4253                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4254                                 CPU_BASED_CR8_LOAD_EXITING;
4255 #endif
4256         }
4257         if (!enable_ept)
4258                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4259                                 CPU_BASED_CR3_LOAD_EXITING  |
4260                                 CPU_BASED_INVLPG_EXITING;
4261         return exec_control;
4262 }
4263
4264 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4265 {
4266         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4267         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4268                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4269         if (vmx->vpid == 0)
4270                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4271         if (!enable_ept) {
4272                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4273                 enable_unrestricted_guest = 0;
4274                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4275                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4276         }
4277         if (!enable_unrestricted_guest)
4278                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4279         if (!ple_gap)
4280                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4281         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4282                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4283                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4284         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4285         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4286            (handle_vmptrld).
4287            We can NOT enable shadow_vmcs here because we don't have yet
4288            a current VMCS12
4289         */
4290         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4291         return exec_control;
4292 }
4293
4294 static void ept_set_mmio_spte_mask(void)
4295 {
4296         /*
4297          * EPT Misconfigurations can be generated if the value of bits 2:0
4298          * of an EPT paging-structure entry is 110b (write/execute).
4299          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4300          * spte.
4301          */
4302         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4303 }
4304
4305 /*
4306  * Sets up the vmcs for emulated real mode.
4307  */
4308 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4309 {
4310 #ifdef CONFIG_X86_64
4311         unsigned long a;
4312 #endif
4313         int i;
4314
4315         /* I/O */
4316         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4317         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4318
4319         if (enable_shadow_vmcs) {
4320                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4321                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4322         }
4323         if (cpu_has_vmx_msr_bitmap())
4324                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4325
4326         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4327
4328         /* Control */
4329         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4330
4331         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4332
4333         if (cpu_has_secondary_exec_ctrls()) {
4334                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4335                                 vmx_secondary_exec_control(vmx));
4336         }
4337
4338         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4339                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4340                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4341                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4342                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4343
4344                 vmcs_write16(GUEST_INTR_STATUS, 0);
4345
4346                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4347                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4348         }
4349
4350         if (ple_gap) {
4351                 vmcs_write32(PLE_GAP, ple_gap);
4352                 vmcs_write32(PLE_WINDOW, ple_window);
4353         }
4354
4355         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4356         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4357         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4358
4359         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4360         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4361         vmx_set_constant_host_state(vmx);
4362 #ifdef CONFIG_X86_64
4363         rdmsrl(MSR_FS_BASE, a);
4364         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4365         rdmsrl(MSR_GS_BASE, a);
4366         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4367 #else
4368         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4369         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4370 #endif
4371
4372         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4373         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4374         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4375         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4376         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4377
4378         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4379                 u32 msr_low, msr_high;
4380                 u64 host_pat;
4381                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4382                 host_pat = msr_low | ((u64) msr_high << 32);
4383                 /* Write the default value follow host pat */
4384                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4385                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4386                 vmx->vcpu.arch.pat = host_pat;
4387         }
4388
4389         for (i = 0; i < NR_VMX_MSR; ++i) {
4390                 u32 index = vmx_msr_index[i];
4391                 u32 data_low, data_high;
4392                 int j = vmx->nmsrs;
4393
4394                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4395                         continue;
4396                 if (wrmsr_safe(index, data_low, data_high) < 0)
4397                         continue;
4398                 vmx->guest_msrs[j].index = i;
4399                 vmx->guest_msrs[j].data = 0;
4400                 vmx->guest_msrs[j].mask = -1ull;
4401                 ++vmx->nmsrs;
4402         }
4403
4404
4405         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4406
4407         /* 22.2.1, 20.8.1 */
4408         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4409
4410         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4411         set_cr4_guest_host_mask(vmx);
4412
4413         return 0;
4414 }
4415
4416 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4417 {
4418         struct vcpu_vmx *vmx = to_vmx(vcpu);
4419         u64 msr;
4420
4421         vmx->rmode.vm86_active = 0;
4422
4423         vmx->soft_vnmi_blocked = 0;
4424
4425         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4426         kvm_set_cr8(&vmx->vcpu, 0);
4427         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4428         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4429                 msr |= MSR_IA32_APICBASE_BSP;
4430         kvm_set_apic_base(&vmx->vcpu, msr);
4431
4432         vmx_segment_cache_clear(vmx);
4433
4434         seg_setup(VCPU_SREG_CS);
4435         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4436         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4437
4438         seg_setup(VCPU_SREG_DS);
4439         seg_setup(VCPU_SREG_ES);
4440         seg_setup(VCPU_SREG_FS);
4441         seg_setup(VCPU_SREG_GS);
4442         seg_setup(VCPU_SREG_SS);
4443
4444         vmcs_write16(GUEST_TR_SELECTOR, 0);
4445         vmcs_writel(GUEST_TR_BASE, 0);
4446         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4447         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4448
4449         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4450         vmcs_writel(GUEST_LDTR_BASE, 0);
4451         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4452         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4453
4454         vmcs_write32(GUEST_SYSENTER_CS, 0);
4455         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4456         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4457
4458         vmcs_writel(GUEST_RFLAGS, 0x02);
4459         kvm_rip_write(vcpu, 0xfff0);
4460
4461         vmcs_writel(GUEST_GDTR_BASE, 0);
4462         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4463
4464         vmcs_writel(GUEST_IDTR_BASE, 0);
4465         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4466
4467         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4468         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4469         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4470
4471         /* Special registers */
4472         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4473
4474         setup_msrs(vmx);
4475
4476         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4477
4478         if (cpu_has_vmx_tpr_shadow()) {
4479                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4480                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4481                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4482                                      __pa(vmx->vcpu.arch.apic->regs));
4483                 vmcs_write32(TPR_THRESHOLD, 0);
4484         }
4485
4486         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4487                 vmcs_write64(APIC_ACCESS_ADDR,
4488                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4489
4490         if (vmx_vm_has_apicv(vcpu->kvm))
4491                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4492
4493         if (vmx->vpid != 0)
4494                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4495
4496         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4497         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4498         vmx_set_cr4(&vmx->vcpu, 0);
4499         vmx_set_efer(&vmx->vcpu, 0);
4500         vmx_fpu_activate(&vmx->vcpu);
4501         update_exception_bitmap(&vmx->vcpu);
4502
4503         vpid_sync_context(vmx);
4504 }
4505
4506 /*
4507  * In nested virtualization, check if L1 asked to exit on external interrupts.
4508  * For most existing hypervisors, this will always return true.
4509  */
4510 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4511 {
4512         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4513                 PIN_BASED_EXT_INTR_MASK;
4514 }
4515
4516 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4517 {
4518         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4519                 PIN_BASED_NMI_EXITING;
4520 }
4521
4522 static int enable_irq_window(struct kvm_vcpu *vcpu)
4523 {
4524         u32 cpu_based_vm_exec_control;
4525
4526         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4527                 /*
4528                  * We get here if vmx_interrupt_allowed() said we can't
4529                  * inject to L1 now because L2 must run. The caller will have
4530                  * to make L2 exit right after entry, so we can inject to L1
4531                  * more promptly.
4532                  */
4533                 return -EBUSY;
4534
4535         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4536         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4537         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4538         return 0;
4539 }
4540
4541 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4542 {
4543         u32 cpu_based_vm_exec_control;
4544
4545         if (!cpu_has_virtual_nmis())
4546                 return enable_irq_window(vcpu);
4547
4548         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4549                 return enable_irq_window(vcpu);
4550
4551         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4552         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4553         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4554         return 0;
4555 }
4556
4557 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4558 {
4559         struct vcpu_vmx *vmx = to_vmx(vcpu);
4560         uint32_t intr;
4561         int irq = vcpu->arch.interrupt.nr;
4562
4563         trace_kvm_inj_virq(irq);
4564
4565         ++vcpu->stat.irq_injections;
4566         if (vmx->rmode.vm86_active) {
4567                 int inc_eip = 0;
4568                 if (vcpu->arch.interrupt.soft)
4569                         inc_eip = vcpu->arch.event_exit_inst_len;
4570                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4571                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4572                 return;
4573         }
4574         intr = irq | INTR_INFO_VALID_MASK;
4575         if (vcpu->arch.interrupt.soft) {
4576                 intr |= INTR_TYPE_SOFT_INTR;
4577                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4578                              vmx->vcpu.arch.event_exit_inst_len);
4579         } else
4580                 intr |= INTR_TYPE_EXT_INTR;
4581         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4582 }
4583
4584 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4585 {
4586         struct vcpu_vmx *vmx = to_vmx(vcpu);
4587
4588         if (is_guest_mode(vcpu))
4589                 return;
4590
4591         if (!cpu_has_virtual_nmis()) {
4592                 /*
4593                  * Tracking the NMI-blocked state in software is built upon
4594                  * finding the next open IRQ window. This, in turn, depends on
4595                  * well-behaving guests: They have to keep IRQs disabled at
4596                  * least as long as the NMI handler runs. Otherwise we may
4597                  * cause NMI nesting, maybe breaking the guest. But as this is
4598                  * highly unlikely, we can live with the residual risk.
4599                  */
4600                 vmx->soft_vnmi_blocked = 1;
4601                 vmx->vnmi_blocked_time = 0;
4602         }
4603
4604         ++vcpu->stat.nmi_injections;
4605         vmx->nmi_known_unmasked = false;
4606         if (vmx->rmode.vm86_active) {
4607                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4608                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4609                 return;
4610         }
4611         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4612                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4613 }
4614
4615 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4616 {
4617         if (!cpu_has_virtual_nmis())
4618                 return to_vmx(vcpu)->soft_vnmi_blocked;
4619         if (to_vmx(vcpu)->nmi_known_unmasked)
4620                 return false;
4621         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4622 }
4623
4624 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4625 {
4626         struct vcpu_vmx *vmx = to_vmx(vcpu);
4627
4628         if (!cpu_has_virtual_nmis()) {
4629                 if (vmx->soft_vnmi_blocked != masked) {
4630                         vmx->soft_vnmi_blocked = masked;
4631                         vmx->vnmi_blocked_time = 0;
4632                 }
4633         } else {
4634                 vmx->nmi_known_unmasked = !masked;
4635                 if (masked)
4636                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4637                                       GUEST_INTR_STATE_NMI);
4638                 else
4639                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4640                                         GUEST_INTR_STATE_NMI);
4641         }
4642 }
4643
4644 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4645 {
4646         if (is_guest_mode(vcpu)) {
4647                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4648
4649                 if (to_vmx(vcpu)->nested.nested_run_pending)
4650                         return 0;
4651                 if (nested_exit_on_nmi(vcpu)) {
4652                         nested_vmx_vmexit(vcpu);
4653                         vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4654                         vmcs12->vm_exit_intr_info = NMI_VECTOR |
4655                                 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4656                         /*
4657                          * The NMI-triggered VM exit counts as injection:
4658                          * clear this one and block further NMIs.
4659                          */
4660                         vcpu->arch.nmi_pending = 0;
4661                         vmx_set_nmi_mask(vcpu, true);
4662                         return 0;
4663                 }
4664         }
4665
4666         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4667                 return 0;
4668
4669         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4670                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4671                    | GUEST_INTR_STATE_NMI));
4672 }
4673
4674 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4675 {
4676         if (is_guest_mode(vcpu)) {
4677                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4678
4679                 if (to_vmx(vcpu)->nested.nested_run_pending)
4680                         return 0;
4681                 if (nested_exit_on_intr(vcpu)) {
4682                         nested_vmx_vmexit(vcpu);
4683                         vmcs12->vm_exit_reason =
4684                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4685                         vmcs12->vm_exit_intr_info = 0;
4686                         /*
4687                          * fall through to normal code, but now in L1, not L2
4688                          */
4689                 }
4690         }
4691
4692         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4693                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4694                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4695 }
4696
4697 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4698 {
4699         int ret;
4700         struct kvm_userspace_memory_region tss_mem = {
4701                 .slot = TSS_PRIVATE_MEMSLOT,
4702                 .guest_phys_addr = addr,
4703                 .memory_size = PAGE_SIZE * 3,
4704                 .flags = 0,
4705         };
4706
4707         ret = kvm_set_memory_region(kvm, &tss_mem);
4708         if (ret)
4709                 return ret;
4710         kvm->arch.tss_addr = addr;
4711         if (!init_rmode_tss(kvm))
4712                 return  -ENOMEM;
4713
4714         return 0;
4715 }
4716
4717 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4718 {
4719         switch (vec) {
4720         case BP_VECTOR:
4721                 /*
4722                  * Update instruction length as we may reinject the exception
4723                  * from user space while in guest debugging mode.
4724                  */
4725                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4726                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4727                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4728                         return false;
4729                 /* fall through */
4730         case DB_VECTOR:
4731                 if (vcpu->guest_debug &
4732                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4733                         return false;
4734                 /* fall through */
4735         case DE_VECTOR:
4736         case OF_VECTOR:
4737         case BR_VECTOR:
4738         case UD_VECTOR:
4739         case DF_VECTOR:
4740         case SS_VECTOR:
4741         case GP_VECTOR:
4742         case MF_VECTOR:
4743                 return true;
4744         break;
4745         }
4746         return false;
4747 }
4748
4749 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4750                                   int vec, u32 err_code)
4751 {
4752         /*
4753          * Instruction with address size override prefix opcode 0x67
4754          * Cause the #SS fault with 0 error code in VM86 mode.
4755          */
4756         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4757                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4758                         if (vcpu->arch.halt_request) {
4759                                 vcpu->arch.halt_request = 0;
4760                                 return kvm_emulate_halt(vcpu);
4761                         }
4762                         return 1;
4763                 }
4764                 return 0;
4765         }
4766
4767         /*
4768          * Forward all other exceptions that are valid in real mode.
4769          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4770          *        the required debugging infrastructure rework.
4771          */
4772         kvm_queue_exception(vcpu, vec);
4773         return 1;
4774 }
4775
4776 /*
4777  * Trigger machine check on the host. We assume all the MSRs are already set up
4778  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4779  * We pass a fake environment to the machine check handler because we want
4780  * the guest to be always treated like user space, no matter what context
4781  * it used internally.
4782  */
4783 static void kvm_machine_check(void)
4784 {
4785 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4786         struct pt_regs regs = {
4787                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4788                 .flags = X86_EFLAGS_IF,
4789         };
4790
4791         do_machine_check(&regs, 0);
4792 #endif
4793 }
4794
4795 static int handle_machine_check(struct kvm_vcpu *vcpu)
4796 {
4797         /* already handled by vcpu_run */
4798         return 1;
4799 }
4800
4801 static int handle_exception(struct kvm_vcpu *vcpu)
4802 {
4803         struct vcpu_vmx *vmx = to_vmx(vcpu);
4804         struct kvm_run *kvm_run = vcpu->run;
4805         u32 intr_info, ex_no, error_code;
4806         unsigned long cr2, rip, dr6;
4807         u32 vect_info;
4808         enum emulation_result er;
4809
4810         vect_info = vmx->idt_vectoring_info;
4811         intr_info = vmx->exit_intr_info;
4812
4813         if (is_machine_check(intr_info))
4814                 return handle_machine_check(vcpu);
4815
4816         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4817                 return 1;  /* already handled by vmx_vcpu_run() */
4818
4819         if (is_no_device(intr_info)) {
4820                 vmx_fpu_activate(vcpu);
4821                 return 1;
4822         }
4823
4824         if (is_invalid_opcode(intr_info)) {
4825                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4826                 if (er != EMULATE_DONE)
4827                         kvm_queue_exception(vcpu, UD_VECTOR);
4828                 return 1;
4829         }
4830
4831         error_code = 0;
4832         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4833                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4834
4835         /*
4836          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4837          * MMIO, it is better to report an internal error.
4838          * See the comments in vmx_handle_exit.
4839          */
4840         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4841             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4842                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4843                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4844                 vcpu->run->internal.ndata = 2;
4845                 vcpu->run->internal.data[0] = vect_info;
4846                 vcpu->run->internal.data[1] = intr_info;
4847                 return 0;
4848         }
4849
4850         if (is_page_fault(intr_info)) {
4851                 /* EPT won't cause page fault directly */
4852                 BUG_ON(enable_ept);
4853                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4854                 trace_kvm_page_fault(cr2, error_code);
4855
4856                 if (kvm_event_needs_reinjection(vcpu))
4857                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4858                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4859         }
4860
4861         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4862
4863         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4864                 return handle_rmode_exception(vcpu, ex_no, error_code);
4865
4866         switch (ex_no) {
4867         case DB_VECTOR:
4868                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4869                 if (!(vcpu->guest_debug &
4870                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4871                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4872                         kvm_queue_exception(vcpu, DB_VECTOR);
4873                         return 1;
4874                 }
4875                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4876                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4877                 /* fall through */
4878         case BP_VECTOR:
4879                 /*
4880                  * Update instruction length as we may reinject #BP from
4881                  * user space while in guest debugging mode. Reading it for
4882                  * #DB as well causes no harm, it is not used in that case.
4883                  */
4884                 vmx->vcpu.arch.event_exit_inst_len =
4885                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4886                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4887                 rip = kvm_rip_read(vcpu);
4888                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4889                 kvm_run->debug.arch.exception = ex_no;
4890                 break;
4891         default:
4892                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4893                 kvm_run->ex.exception = ex_no;
4894                 kvm_run->ex.error_code = error_code;
4895                 break;
4896         }
4897         return 0;
4898 }
4899
4900 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4901 {
4902         ++vcpu->stat.irq_exits;
4903         return 1;
4904 }
4905
4906 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4907 {
4908         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4909         return 0;
4910 }
4911
4912 static int handle_io(struct kvm_vcpu *vcpu)
4913 {
4914         unsigned long exit_qualification;
4915         int size, in, string;
4916         unsigned port;
4917
4918         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4919         string = (exit_qualification & 16) != 0;
4920         in = (exit_qualification & 8) != 0;
4921
4922         ++vcpu->stat.io_exits;
4923
4924         if (string || in)
4925                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4926
4927         port = exit_qualification >> 16;
4928         size = (exit_qualification & 7) + 1;
4929         skip_emulated_instruction(vcpu);
4930
4931         return kvm_fast_pio_out(vcpu, size, port);
4932 }
4933
4934 static void
4935 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4936 {
4937         /*
4938          * Patch in the VMCALL instruction:
4939          */
4940         hypercall[0] = 0x0f;
4941         hypercall[1] = 0x01;
4942         hypercall[2] = 0xc1;
4943 }
4944
4945 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4946 {
4947         unsigned long always_on = VMXON_CR0_ALWAYSON;
4948
4949         if (nested_vmx_secondary_ctls_high &
4950                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4951             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4952                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4953         return (val & always_on) == always_on;
4954 }
4955
4956 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4957 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4958 {
4959         if (is_guest_mode(vcpu)) {
4960                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4961                 unsigned long orig_val = val;
4962
4963                 /*
4964                  * We get here when L2 changed cr0 in a way that did not change
4965                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4966                  * but did change L0 shadowed bits. So we first calculate the
4967                  * effective cr0 value that L1 would like to write into the
4968                  * hardware. It consists of the L2-owned bits from the new
4969                  * value combined with the L1-owned bits from L1's guest_cr0.
4970                  */
4971                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4972                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4973
4974                 if (!nested_cr0_valid(vmcs12, val))
4975                         return 1;
4976
4977                 if (kvm_set_cr0(vcpu, val))
4978                         return 1;
4979                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4980                 return 0;
4981         } else {
4982                 if (to_vmx(vcpu)->nested.vmxon &&
4983                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4984                         return 1;
4985                 return kvm_set_cr0(vcpu, val);
4986         }
4987 }
4988
4989 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4990 {
4991         if (is_guest_mode(vcpu)) {
4992                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4993                 unsigned long orig_val = val;
4994
4995                 /* analogously to handle_set_cr0 */
4996                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4997                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4998                 if (kvm_set_cr4(vcpu, val))
4999                         return 1;
5000                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5001                 return 0;
5002         } else
5003                 return kvm_set_cr4(vcpu, val);
5004 }
5005
5006 /* called to set cr0 as approriate for clts instruction exit. */
5007 static void handle_clts(struct kvm_vcpu *vcpu)
5008 {
5009         if (is_guest_mode(vcpu)) {
5010                 /*
5011                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5012                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5013                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5014                  */
5015                 vmcs_writel(CR0_READ_SHADOW,
5016                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5017                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5018         } else
5019                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5020 }
5021
5022 static int handle_cr(struct kvm_vcpu *vcpu)
5023 {
5024         unsigned long exit_qualification, val;
5025         int cr;
5026         int reg;
5027         int err;
5028
5029         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5030         cr = exit_qualification & 15;
5031         reg = (exit_qualification >> 8) & 15;
5032         switch ((exit_qualification >> 4) & 3) {
5033         case 0: /* mov to cr */
5034                 val = kvm_register_read(vcpu, reg);
5035                 trace_kvm_cr_write(cr, val);
5036                 switch (cr) {
5037                 case 0:
5038                         err = handle_set_cr0(vcpu, val);
5039                         kvm_complete_insn_gp(vcpu, err);
5040                         return 1;
5041                 case 3:
5042                         err = kvm_set_cr3(vcpu, val);
5043                         kvm_complete_insn_gp(vcpu, err);
5044                         return 1;
5045                 case 4:
5046                         err = handle_set_cr4(vcpu, val);
5047                         kvm_complete_insn_gp(vcpu, err);
5048                         return 1;
5049                 case 8: {
5050                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5051                                 u8 cr8 = kvm_register_read(vcpu, reg);
5052                                 err = kvm_set_cr8(vcpu, cr8);
5053                                 kvm_complete_insn_gp(vcpu, err);
5054                                 if (irqchip_in_kernel(vcpu->kvm))
5055                                         return 1;
5056                                 if (cr8_prev <= cr8)
5057                                         return 1;
5058                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5059                                 return 0;
5060                         }
5061                 }
5062                 break;
5063         case 2: /* clts */
5064                 handle_clts(vcpu);
5065                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5066                 skip_emulated_instruction(vcpu);
5067                 vmx_fpu_activate(vcpu);
5068                 return 1;
5069         case 1: /*mov from cr*/
5070                 switch (cr) {
5071                 case 3:
5072                         val = kvm_read_cr3(vcpu);
5073                         kvm_register_write(vcpu, reg, val);
5074                         trace_kvm_cr_read(cr, val);
5075                         skip_emulated_instruction(vcpu);
5076                         return 1;
5077                 case 8:
5078                         val = kvm_get_cr8(vcpu);
5079                         kvm_register_write(vcpu, reg, val);
5080                         trace_kvm_cr_read(cr, val);
5081                         skip_emulated_instruction(vcpu);
5082                         return 1;
5083                 }
5084                 break;
5085         case 3: /* lmsw */
5086                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5087                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5088                 kvm_lmsw(vcpu, val);
5089
5090                 skip_emulated_instruction(vcpu);
5091                 return 1;
5092         default:
5093                 break;
5094         }
5095         vcpu->run->exit_reason = 0;
5096         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5097                (int)(exit_qualification >> 4) & 3, cr);
5098         return 0;
5099 }
5100
5101 static int handle_dr(struct kvm_vcpu *vcpu)
5102 {
5103         unsigned long exit_qualification;
5104         int dr, reg;
5105
5106         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5107         if (!kvm_require_cpl(vcpu, 0))
5108                 return 1;
5109         dr = vmcs_readl(GUEST_DR7);
5110         if (dr & DR7_GD) {
5111                 /*
5112                  * As the vm-exit takes precedence over the debug trap, we
5113                  * need to emulate the latter, either for the host or the
5114                  * guest debugging itself.
5115                  */
5116                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5117                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5118                         vcpu->run->debug.arch.dr7 = dr;
5119                         vcpu->run->debug.arch.pc =
5120                                 vmcs_readl(GUEST_CS_BASE) +
5121                                 vmcs_readl(GUEST_RIP);
5122                         vcpu->run->debug.arch.exception = DB_VECTOR;
5123                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5124                         return 0;
5125                 } else {
5126                         vcpu->arch.dr7 &= ~DR7_GD;
5127                         vcpu->arch.dr6 |= DR6_BD;
5128                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5129                         kvm_queue_exception(vcpu, DB_VECTOR);
5130                         return 1;
5131                 }
5132         }
5133
5134         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5135         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5136         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5137         if (exit_qualification & TYPE_MOV_FROM_DR) {
5138                 unsigned long val;
5139                 if (!kvm_get_dr(vcpu, dr, &val))
5140                         kvm_register_write(vcpu, reg, val);
5141         } else
5142                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5143         skip_emulated_instruction(vcpu);
5144         return 1;
5145 }
5146
5147 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5148 {
5149         vmcs_writel(GUEST_DR7, val);
5150 }
5151
5152 static int handle_cpuid(struct kvm_vcpu *vcpu)
5153 {
5154         kvm_emulate_cpuid(vcpu);
5155         return 1;
5156 }
5157
5158 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5159 {
5160         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5161         u64 data;
5162
5163         if (vmx_get_msr(vcpu, ecx, &data)) {
5164                 trace_kvm_msr_read_ex(ecx);
5165                 kvm_inject_gp(vcpu, 0);
5166                 return 1;
5167         }
5168
5169         trace_kvm_msr_read(ecx, data);
5170
5171         /* FIXME: handling of bits 32:63 of rax, rdx */
5172         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5173         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5174         skip_emulated_instruction(vcpu);
5175         return 1;
5176 }
5177
5178 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5179 {
5180         struct msr_data msr;
5181         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5182         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5183                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5184
5185         msr.data = data;
5186         msr.index = ecx;
5187         msr.host_initiated = false;
5188         if (vmx_set_msr(vcpu, &msr) != 0) {
5189                 trace_kvm_msr_write_ex(ecx, data);
5190                 kvm_inject_gp(vcpu, 0);
5191                 return 1;
5192         }
5193
5194         trace_kvm_msr_write(ecx, data);
5195         skip_emulated_instruction(vcpu);
5196         return 1;
5197 }
5198
5199 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5200 {
5201         kvm_make_request(KVM_REQ_EVENT, vcpu);
5202         return 1;
5203 }
5204
5205 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5206 {
5207         u32 cpu_based_vm_exec_control;
5208
5209         /* clear pending irq */
5210         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5211         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5212         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5213
5214         kvm_make_request(KVM_REQ_EVENT, vcpu);
5215
5216         ++vcpu->stat.irq_window_exits;
5217
5218         /*
5219          * If the user space waits to inject interrupts, exit as soon as
5220          * possible
5221          */
5222         if (!irqchip_in_kernel(vcpu->kvm) &&
5223             vcpu->run->request_interrupt_window &&
5224             !kvm_cpu_has_interrupt(vcpu)) {
5225                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5226                 return 0;
5227         }
5228         return 1;
5229 }
5230
5231 static int handle_halt(struct kvm_vcpu *vcpu)
5232 {
5233         skip_emulated_instruction(vcpu);
5234         return kvm_emulate_halt(vcpu);
5235 }
5236
5237 static int handle_vmcall(struct kvm_vcpu *vcpu)
5238 {
5239         skip_emulated_instruction(vcpu);
5240         kvm_emulate_hypercall(vcpu);
5241         return 1;
5242 }
5243
5244 static int handle_invd(struct kvm_vcpu *vcpu)
5245 {
5246         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5247 }
5248
5249 static int handle_invlpg(struct kvm_vcpu *vcpu)
5250 {
5251         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5252
5253         kvm_mmu_invlpg(vcpu, exit_qualification);
5254         skip_emulated_instruction(vcpu);
5255         return 1;
5256 }
5257
5258 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5259 {
5260         int err;
5261
5262         err = kvm_rdpmc(vcpu);
5263         kvm_complete_insn_gp(vcpu, err);
5264
5265         return 1;
5266 }
5267
5268 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5269 {
5270         skip_emulated_instruction(vcpu);
5271         kvm_emulate_wbinvd(vcpu);
5272         return 1;
5273 }
5274
5275 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5276 {
5277         u64 new_bv = kvm_read_edx_eax(vcpu);
5278         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5279
5280         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5281                 skip_emulated_instruction(vcpu);
5282         return 1;
5283 }
5284
5285 static int handle_apic_access(struct kvm_vcpu *vcpu)
5286 {
5287         if (likely(fasteoi)) {
5288                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5289                 int access_type, offset;
5290
5291                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5292                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5293                 /*
5294                  * Sane guest uses MOV to write EOI, with written value
5295                  * not cared. So make a short-circuit here by avoiding
5296                  * heavy instruction emulation.
5297                  */
5298                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5299                     (offset == APIC_EOI)) {
5300                         kvm_lapic_set_eoi(vcpu);
5301                         skip_emulated_instruction(vcpu);
5302                         return 1;
5303                 }
5304         }
5305         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5306 }
5307
5308 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5309 {
5310         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5311         int vector = exit_qualification & 0xff;
5312
5313         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5314         kvm_apic_set_eoi_accelerated(vcpu, vector);
5315         return 1;
5316 }
5317
5318 static int handle_apic_write(struct kvm_vcpu *vcpu)
5319 {
5320         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5321         u32 offset = exit_qualification & 0xfff;
5322
5323         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5324         kvm_apic_write_nodecode(vcpu, offset);
5325         return 1;
5326 }
5327
5328 static int handle_task_switch(struct kvm_vcpu *vcpu)
5329 {
5330         struct vcpu_vmx *vmx = to_vmx(vcpu);
5331         unsigned long exit_qualification;
5332         bool has_error_code = false;
5333         u32 error_code = 0;
5334         u16 tss_selector;
5335         int reason, type, idt_v, idt_index;
5336
5337         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5338         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5339         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5340
5341         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5342
5343         reason = (u32)exit_qualification >> 30;
5344         if (reason == TASK_SWITCH_GATE && idt_v) {
5345                 switch (type) {
5346                 case INTR_TYPE_NMI_INTR:
5347                         vcpu->arch.nmi_injected = false;
5348                         vmx_set_nmi_mask(vcpu, true);
5349                         break;
5350                 case INTR_TYPE_EXT_INTR:
5351                 case INTR_TYPE_SOFT_INTR:
5352                         kvm_clear_interrupt_queue(vcpu);
5353                         break;
5354                 case INTR_TYPE_HARD_EXCEPTION:
5355                         if (vmx->idt_vectoring_info &
5356                             VECTORING_INFO_DELIVER_CODE_MASK) {
5357                                 has_error_code = true;
5358                                 error_code =
5359                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5360                         }
5361                         /* fall through */
5362                 case INTR_TYPE_SOFT_EXCEPTION:
5363                         kvm_clear_exception_queue(vcpu);
5364                         break;
5365                 default:
5366                         break;
5367                 }
5368         }
5369         tss_selector = exit_qualification;
5370
5371         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5372                        type != INTR_TYPE_EXT_INTR &&
5373                        type != INTR_TYPE_NMI_INTR))
5374                 skip_emulated_instruction(vcpu);
5375
5376         if (kvm_task_switch(vcpu, tss_selector,
5377                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5378                             has_error_code, error_code) == EMULATE_FAIL) {
5379                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5380                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5381                 vcpu->run->internal.ndata = 0;
5382                 return 0;
5383         }
5384
5385         /* clear all local breakpoint enable flags */
5386         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5387
5388         /*
5389          * TODO: What about debug traps on tss switch?
5390          *       Are we supposed to inject them and update dr6?
5391          */
5392
5393         return 1;
5394 }
5395
5396 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5397 {
5398         unsigned long exit_qualification;
5399         gpa_t gpa;
5400         u32 error_code;
5401         int gla_validity;
5402
5403         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5404
5405         gla_validity = (exit_qualification >> 7) & 0x3;
5406         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5407                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5408                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5409                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5410                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5411                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5412                         (long unsigned int)exit_qualification);
5413                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5414                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5415                 return 0;
5416         }
5417
5418         /*
5419          * EPT violation happened while executing iret from NMI,
5420          * "blocked by NMI" bit has to be set before next VM entry.
5421          * There are errata that may cause this bit to not be set:
5422          * AAK134, BY25.
5423          */
5424         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5425                         cpu_has_virtual_nmis() &&
5426                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5427                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5428
5429         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5430         trace_kvm_page_fault(gpa, exit_qualification);
5431
5432         /* It is a write fault? */
5433         error_code = exit_qualification & (1U << 1);
5434         /* It is a fetch fault? */
5435         error_code |= (exit_qualification & (1U << 2)) << 2;
5436         /* ept page table is present? */
5437         error_code |= (exit_qualification >> 3) & 0x1;
5438
5439         vcpu->arch.exit_qualification = exit_qualification;
5440
5441         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5442 }
5443
5444 static u64 ept_rsvd_mask(u64 spte, int level)
5445 {
5446         int i;
5447         u64 mask = 0;
5448
5449         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5450                 mask |= (1ULL << i);
5451
5452         if (level > 2)
5453                 /* bits 7:3 reserved */
5454                 mask |= 0xf8;
5455         else if (level == 2) {
5456                 if (spte & (1ULL << 7))
5457                         /* 2MB ref, bits 20:12 reserved */
5458                         mask |= 0x1ff000;
5459                 else
5460                         /* bits 6:3 reserved */
5461                         mask |= 0x78;
5462         }
5463
5464         return mask;
5465 }
5466
5467 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5468                                        int level)
5469 {
5470         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5471
5472         /* 010b (write-only) */
5473         WARN_ON((spte & 0x7) == 0x2);
5474
5475         /* 110b (write/execute) */
5476         WARN_ON((spte & 0x7) == 0x6);
5477
5478         /* 100b (execute-only) and value not supported by logical processor */
5479         if (!cpu_has_vmx_ept_execute_only())
5480                 WARN_ON((spte & 0x7) == 0x4);
5481
5482         /* not 000b */
5483         if ((spte & 0x7)) {
5484                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5485
5486                 if (rsvd_bits != 0) {
5487                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5488                                          __func__, rsvd_bits);
5489                         WARN_ON(1);
5490                 }
5491
5492                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5493                         u64 ept_mem_type = (spte & 0x38) >> 3;
5494
5495                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5496                             ept_mem_type == 7) {
5497                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5498                                                 __func__, ept_mem_type);
5499                                 WARN_ON(1);
5500                         }
5501                 }
5502         }
5503 }
5504
5505 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5506 {
5507         u64 sptes[4];
5508         int nr_sptes, i, ret;
5509         gpa_t gpa;
5510
5511         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5512
5513         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5514         if (likely(ret == RET_MMIO_PF_EMULATE))
5515                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5516                                               EMULATE_DONE;
5517
5518         if (unlikely(ret == RET_MMIO_PF_INVALID))
5519                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5520
5521         if (unlikely(ret == RET_MMIO_PF_RETRY))
5522                 return 1;
5523
5524         /* It is the real ept misconfig */
5525         printk(KERN_ERR "EPT: Misconfiguration.\n");
5526         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5527
5528         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5529
5530         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5531                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5532
5533         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5534         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5535
5536         return 0;
5537 }
5538
5539 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5540 {
5541         u32 cpu_based_vm_exec_control;
5542
5543         /* clear pending NMI */
5544         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5545         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5546         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5547         ++vcpu->stat.nmi_window_exits;
5548         kvm_make_request(KVM_REQ_EVENT, vcpu);
5549
5550         return 1;
5551 }
5552
5553 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5554 {
5555         struct vcpu_vmx *vmx = to_vmx(vcpu);
5556         enum emulation_result err = EMULATE_DONE;
5557         int ret = 1;
5558         u32 cpu_exec_ctrl;
5559         bool intr_window_requested;
5560         unsigned count = 130;
5561
5562         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5563         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5564
5565         while (!guest_state_valid(vcpu) && count-- != 0) {
5566                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5567                         return handle_interrupt_window(&vmx->vcpu);
5568
5569                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5570                         return 1;
5571
5572                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5573
5574                 if (err == EMULATE_USER_EXIT) {
5575                         ++vcpu->stat.mmio_exits;
5576                         ret = 0;
5577                         goto out;
5578                 }
5579
5580                 if (err != EMULATE_DONE) {
5581                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5582                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5583                         vcpu->run->internal.ndata = 0;
5584                         return 0;
5585                 }
5586
5587                 if (vcpu->arch.halt_request) {
5588                         vcpu->arch.halt_request = 0;
5589                         ret = kvm_emulate_halt(vcpu);
5590                         goto out;
5591                 }
5592
5593                 if (signal_pending(current))
5594                         goto out;
5595                 if (need_resched())
5596                         schedule();
5597         }
5598
5599         vmx->emulation_required = emulation_required(vcpu);
5600 out:
5601         return ret;
5602 }
5603
5604 /*
5605  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5606  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5607  */
5608 static int handle_pause(struct kvm_vcpu *vcpu)
5609 {
5610         skip_emulated_instruction(vcpu);
5611         kvm_vcpu_on_spin(vcpu);
5612
5613         return 1;
5614 }
5615
5616 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5617 {
5618         kvm_queue_exception(vcpu, UD_VECTOR);
5619         return 1;
5620 }
5621
5622 /*
5623  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5624  * We could reuse a single VMCS for all the L2 guests, but we also want the
5625  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5626  * allows keeping them loaded on the processor, and in the future will allow
5627  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5628  * every entry if they never change.
5629  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5630  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5631  *
5632  * The following functions allocate and free a vmcs02 in this pool.
5633  */
5634
5635 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5636 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5637 {
5638         struct vmcs02_list *item;
5639         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5640                 if (item->vmptr == vmx->nested.current_vmptr) {
5641                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5642                         return &item->vmcs02;
5643                 }
5644
5645         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5646                 /* Recycle the least recently used VMCS. */
5647                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5648                         struct vmcs02_list, list);
5649                 item->vmptr = vmx->nested.current_vmptr;
5650                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5651                 return &item->vmcs02;
5652         }
5653
5654         /* Create a new VMCS */
5655         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5656         if (!item)
5657                 return NULL;
5658         item->vmcs02.vmcs = alloc_vmcs();
5659         if (!item->vmcs02.vmcs) {
5660                 kfree(item);
5661                 return NULL;
5662         }
5663         loaded_vmcs_init(&item->vmcs02);
5664         item->vmptr = vmx->nested.current_vmptr;
5665         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5666         vmx->nested.vmcs02_num++;
5667         return &item->vmcs02;
5668 }
5669
5670 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5671 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5672 {
5673         struct vmcs02_list *item;
5674         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5675                 if (item->vmptr == vmptr) {
5676                         free_loaded_vmcs(&item->vmcs02);
5677                         list_del(&item->list);
5678                         kfree(item);
5679                         vmx->nested.vmcs02_num--;
5680                         return;
5681                 }
5682 }
5683
5684 /*
5685  * Free all VMCSs saved for this vcpu, except the one pointed by
5686  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5687  * currently used, if running L2), and vmcs01 when running L2.
5688  */
5689 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5690 {
5691         struct vmcs02_list *item, *n;
5692         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5693                 if (vmx->loaded_vmcs != &item->vmcs02)
5694                         free_loaded_vmcs(&item->vmcs02);
5695                 list_del(&item->list);
5696                 kfree(item);
5697         }
5698         vmx->nested.vmcs02_num = 0;
5699
5700         if (vmx->loaded_vmcs != &vmx->vmcs01)
5701                 free_loaded_vmcs(&vmx->vmcs01);
5702 }
5703
5704 /*
5705  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5706  * set the success or error code of an emulated VMX instruction, as specified
5707  * by Vol 2B, VMX Instruction Reference, "Conventions".
5708  */
5709 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5710 {
5711         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5712                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5713                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5714 }
5715
5716 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5717 {
5718         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5719                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5720                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5721                         | X86_EFLAGS_CF);
5722 }
5723
5724 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5725                                         u32 vm_instruction_error)
5726 {
5727         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5728                 /*
5729                  * failValid writes the error number to the current VMCS, which
5730                  * can't be done there isn't a current VMCS.
5731                  */
5732                 nested_vmx_failInvalid(vcpu);
5733                 return;
5734         }
5735         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5736                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5737                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5738                         | X86_EFLAGS_ZF);
5739         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5740         /*
5741          * We don't need to force a shadow sync because
5742          * VM_INSTRUCTION_ERROR is not shadowed
5743          */
5744 }
5745
5746 /*
5747  * Emulate the VMXON instruction.
5748  * Currently, we just remember that VMX is active, and do not save or even
5749  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5750  * do not currently need to store anything in that guest-allocated memory
5751  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5752  * argument is different from the VMXON pointer (which the spec says they do).
5753  */
5754 static int handle_vmon(struct kvm_vcpu *vcpu)
5755 {
5756         struct kvm_segment cs;
5757         struct vcpu_vmx *vmx = to_vmx(vcpu);
5758         struct vmcs *shadow_vmcs;
5759         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5760                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5761
5762         /* The Intel VMX Instruction Reference lists a bunch of bits that
5763          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5764          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5765          * Otherwise, we should fail with #UD. We test these now:
5766          */
5767         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5768             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5769             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5770                 kvm_queue_exception(vcpu, UD_VECTOR);
5771                 return 1;
5772         }
5773
5774         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5775         if (is_long_mode(vcpu) && !cs.l) {
5776                 kvm_queue_exception(vcpu, UD_VECTOR);
5777                 return 1;
5778         }
5779
5780         if (vmx_get_cpl(vcpu)) {
5781                 kvm_inject_gp(vcpu, 0);
5782                 return 1;
5783         }
5784         if (vmx->nested.vmxon) {
5785                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5786                 skip_emulated_instruction(vcpu);
5787                 return 1;
5788         }
5789
5790         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5791                         != VMXON_NEEDED_FEATURES) {
5792                 kvm_inject_gp(vcpu, 0);
5793                 return 1;
5794         }
5795
5796         if (enable_shadow_vmcs) {
5797                 shadow_vmcs = alloc_vmcs();
5798                 if (!shadow_vmcs)
5799                         return -ENOMEM;
5800                 /* mark vmcs as shadow */
5801                 shadow_vmcs->revision_id |= (1u << 31);
5802                 /* init shadow vmcs */
5803                 vmcs_clear(shadow_vmcs);
5804                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5805         }
5806
5807         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5808         vmx->nested.vmcs02_num = 0;
5809
5810         vmx->nested.vmxon = true;
5811
5812         skip_emulated_instruction(vcpu);
5813         nested_vmx_succeed(vcpu);
5814         return 1;
5815 }
5816
5817 /*
5818  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5819  * for running VMX instructions (except VMXON, whose prerequisites are
5820  * slightly different). It also specifies what exception to inject otherwise.
5821  */
5822 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5823 {
5824         struct kvm_segment cs;
5825         struct vcpu_vmx *vmx = to_vmx(vcpu);
5826
5827         if (!vmx->nested.vmxon) {
5828                 kvm_queue_exception(vcpu, UD_VECTOR);
5829                 return 0;
5830         }
5831
5832         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5833         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5834             (is_long_mode(vcpu) && !cs.l)) {
5835                 kvm_queue_exception(vcpu, UD_VECTOR);
5836                 return 0;
5837         }
5838
5839         if (vmx_get_cpl(vcpu)) {
5840                 kvm_inject_gp(vcpu, 0);
5841                 return 0;
5842         }
5843
5844         return 1;
5845 }
5846
5847 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5848 {
5849         u32 exec_control;
5850         if (enable_shadow_vmcs) {
5851                 if (vmx->nested.current_vmcs12 != NULL) {
5852                         /* copy to memory all shadowed fields in case
5853                            they were modified */
5854                         copy_shadow_to_vmcs12(vmx);
5855                         vmx->nested.sync_shadow_vmcs = false;
5856                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5857                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5858                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5859                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5860                 }
5861         }
5862         kunmap(vmx->nested.current_vmcs12_page);
5863         nested_release_page(vmx->nested.current_vmcs12_page);
5864 }
5865
5866 /*
5867  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5868  * just stops using VMX.
5869  */
5870 static void free_nested(struct vcpu_vmx *vmx)
5871 {
5872         if (!vmx->nested.vmxon)
5873                 return;
5874         vmx->nested.vmxon = false;
5875         if (vmx->nested.current_vmptr != -1ull) {
5876                 nested_release_vmcs12(vmx);
5877                 vmx->nested.current_vmptr = -1ull;
5878                 vmx->nested.current_vmcs12 = NULL;
5879         }
5880         if (enable_shadow_vmcs)
5881                 free_vmcs(vmx->nested.current_shadow_vmcs);
5882         /* Unpin physical memory we referred to in current vmcs02 */
5883         if (vmx->nested.apic_access_page) {
5884                 nested_release_page(vmx->nested.apic_access_page);
5885                 vmx->nested.apic_access_page = 0;
5886         }
5887
5888         nested_free_all_saved_vmcss(vmx);
5889 }
5890
5891 /* Emulate the VMXOFF instruction */
5892 static int handle_vmoff(struct kvm_vcpu *vcpu)
5893 {
5894         if (!nested_vmx_check_permission(vcpu))
5895                 return 1;
5896         free_nested(to_vmx(vcpu));
5897         skip_emulated_instruction(vcpu);
5898         nested_vmx_succeed(vcpu);
5899         return 1;
5900 }
5901
5902 /*
5903  * Decode the memory-address operand of a vmx instruction, as recorded on an
5904  * exit caused by such an instruction (run by a guest hypervisor).
5905  * On success, returns 0. When the operand is invalid, returns 1 and throws
5906  * #UD or #GP.
5907  */
5908 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5909                                  unsigned long exit_qualification,
5910                                  u32 vmx_instruction_info, gva_t *ret)
5911 {
5912         /*
5913          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5914          * Execution", on an exit, vmx_instruction_info holds most of the
5915          * addressing components of the operand. Only the displacement part
5916          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5917          * For how an actual address is calculated from all these components,
5918          * refer to Vol. 1, "Operand Addressing".
5919          */
5920         int  scaling = vmx_instruction_info & 3;
5921         int  addr_size = (vmx_instruction_info >> 7) & 7;
5922         bool is_reg = vmx_instruction_info & (1u << 10);
5923         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5924         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5925         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5926         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5927         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5928
5929         if (is_reg) {
5930                 kvm_queue_exception(vcpu, UD_VECTOR);
5931                 return 1;
5932         }
5933
5934         /* Addr = segment_base + offset */
5935         /* offset = base + [index * scale] + displacement */
5936         *ret = vmx_get_segment_base(vcpu, seg_reg);
5937         if (base_is_valid)
5938                 *ret += kvm_register_read(vcpu, base_reg);
5939         if (index_is_valid)
5940                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5941         *ret += exit_qualification; /* holds the displacement */
5942
5943         if (addr_size == 1) /* 32 bit */
5944                 *ret &= 0xffffffff;
5945
5946         /*
5947          * TODO: throw #GP (and return 1) in various cases that the VM*
5948          * instructions require it - e.g., offset beyond segment limit,
5949          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5950          * address, and so on. Currently these are not checked.
5951          */
5952         return 0;
5953 }
5954
5955 /* Emulate the VMCLEAR instruction */
5956 static int handle_vmclear(struct kvm_vcpu *vcpu)
5957 {
5958         struct vcpu_vmx *vmx = to_vmx(vcpu);
5959         gva_t gva;
5960         gpa_t vmptr;
5961         struct vmcs12 *vmcs12;
5962         struct page *page;
5963         struct x86_exception e;
5964
5965         if (!nested_vmx_check_permission(vcpu))
5966                 return 1;
5967
5968         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5969                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5970                 return 1;
5971
5972         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5973                                 sizeof(vmptr), &e)) {
5974                 kvm_inject_page_fault(vcpu, &e);
5975                 return 1;
5976         }
5977
5978         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5979                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5980                 skip_emulated_instruction(vcpu);
5981                 return 1;
5982         }
5983
5984         if (vmptr == vmx->nested.current_vmptr) {
5985                 nested_release_vmcs12(vmx);
5986                 vmx->nested.current_vmptr = -1ull;
5987                 vmx->nested.current_vmcs12 = NULL;
5988         }
5989
5990         page = nested_get_page(vcpu, vmptr);
5991         if (page == NULL) {
5992                 /*
5993                  * For accurate processor emulation, VMCLEAR beyond available
5994                  * physical memory should do nothing at all. However, it is
5995                  * possible that a nested vmx bug, not a guest hypervisor bug,
5996                  * resulted in this case, so let's shut down before doing any
5997                  * more damage:
5998                  */
5999                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6000                 return 1;
6001         }
6002         vmcs12 = kmap(page);
6003         vmcs12->launch_state = 0;
6004         kunmap(page);
6005         nested_release_page(page);
6006
6007         nested_free_vmcs02(vmx, vmptr);
6008
6009         skip_emulated_instruction(vcpu);
6010         nested_vmx_succeed(vcpu);
6011         return 1;
6012 }
6013
6014 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6015
6016 /* Emulate the VMLAUNCH instruction */
6017 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6018 {
6019         return nested_vmx_run(vcpu, true);
6020 }
6021
6022 /* Emulate the VMRESUME instruction */
6023 static int handle_vmresume(struct kvm_vcpu *vcpu)
6024 {
6025
6026         return nested_vmx_run(vcpu, false);
6027 }
6028
6029 enum vmcs_field_type {
6030         VMCS_FIELD_TYPE_U16 = 0,
6031         VMCS_FIELD_TYPE_U64 = 1,
6032         VMCS_FIELD_TYPE_U32 = 2,
6033         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6034 };
6035
6036 static inline int vmcs_field_type(unsigned long field)
6037 {
6038         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6039                 return VMCS_FIELD_TYPE_U32;
6040         return (field >> 13) & 0x3 ;
6041 }
6042
6043 static inline int vmcs_field_readonly(unsigned long field)
6044 {
6045         return (((field >> 10) & 0x3) == 1);
6046 }
6047
6048 /*
6049  * Read a vmcs12 field. Since these can have varying lengths and we return
6050  * one type, we chose the biggest type (u64) and zero-extend the return value
6051  * to that size. Note that the caller, handle_vmread, might need to use only
6052  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6053  * 64-bit fields are to be returned).
6054  */
6055 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6056                                         unsigned long field, u64 *ret)
6057 {
6058         short offset = vmcs_field_to_offset(field);
6059         char *p;
6060
6061         if (offset < 0)
6062                 return 0;
6063
6064         p = ((char *)(get_vmcs12(vcpu))) + offset;
6065
6066         switch (vmcs_field_type(field)) {
6067         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6068                 *ret = *((natural_width *)p);
6069                 return 1;
6070         case VMCS_FIELD_TYPE_U16:
6071                 *ret = *((u16 *)p);
6072                 return 1;
6073         case VMCS_FIELD_TYPE_U32:
6074                 *ret = *((u32 *)p);
6075                 return 1;
6076         case VMCS_FIELD_TYPE_U64:
6077                 *ret = *((u64 *)p);
6078                 return 1;
6079         default:
6080                 return 0; /* can never happen. */
6081         }
6082 }
6083
6084
6085 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6086                                     unsigned long field, u64 field_value){
6087         short offset = vmcs_field_to_offset(field);
6088         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6089         if (offset < 0)
6090                 return false;
6091
6092         switch (vmcs_field_type(field)) {
6093         case VMCS_FIELD_TYPE_U16:
6094                 *(u16 *)p = field_value;
6095                 return true;
6096         case VMCS_FIELD_TYPE_U32:
6097                 *(u32 *)p = field_value;
6098                 return true;
6099         case VMCS_FIELD_TYPE_U64:
6100                 *(u64 *)p = field_value;
6101                 return true;
6102         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6103                 *(natural_width *)p = field_value;
6104                 return true;
6105         default:
6106                 return false; /* can never happen. */
6107         }
6108
6109 }
6110
6111 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6112 {
6113         int i;
6114         unsigned long field;
6115         u64 field_value;
6116         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6117         const unsigned long *fields = shadow_read_write_fields;
6118         const int num_fields = max_shadow_read_write_fields;
6119
6120         vmcs_load(shadow_vmcs);
6121
6122         for (i = 0; i < num_fields; i++) {
6123                 field = fields[i];
6124                 switch (vmcs_field_type(field)) {
6125                 case VMCS_FIELD_TYPE_U16:
6126                         field_value = vmcs_read16(field);
6127                         break;
6128                 case VMCS_FIELD_TYPE_U32:
6129                         field_value = vmcs_read32(field);
6130                         break;
6131                 case VMCS_FIELD_TYPE_U64:
6132                         field_value = vmcs_read64(field);
6133                         break;
6134                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6135                         field_value = vmcs_readl(field);
6136                         break;
6137                 }
6138                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6139         }
6140
6141         vmcs_clear(shadow_vmcs);
6142         vmcs_load(vmx->loaded_vmcs->vmcs);
6143 }
6144
6145 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6146 {
6147         const unsigned long *fields[] = {
6148                 shadow_read_write_fields,
6149                 shadow_read_only_fields
6150         };
6151         const int max_fields[] = {
6152                 max_shadow_read_write_fields,
6153                 max_shadow_read_only_fields
6154         };
6155         int i, q;
6156         unsigned long field;
6157         u64 field_value = 0;
6158         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6159
6160         vmcs_load(shadow_vmcs);
6161
6162         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6163                 for (i = 0; i < max_fields[q]; i++) {
6164                         field = fields[q][i];
6165                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6166
6167                         switch (vmcs_field_type(field)) {
6168                         case VMCS_FIELD_TYPE_U16:
6169                                 vmcs_write16(field, (u16)field_value);
6170                                 break;
6171                         case VMCS_FIELD_TYPE_U32:
6172                                 vmcs_write32(field, (u32)field_value);
6173                                 break;
6174                         case VMCS_FIELD_TYPE_U64:
6175                                 vmcs_write64(field, (u64)field_value);
6176                                 break;
6177                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6178                                 vmcs_writel(field, (long)field_value);
6179                                 break;
6180                         }
6181                 }
6182         }
6183
6184         vmcs_clear(shadow_vmcs);
6185         vmcs_load(vmx->loaded_vmcs->vmcs);
6186 }
6187
6188 /*
6189  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6190  * used before) all generate the same failure when it is missing.
6191  */
6192 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6193 {
6194         struct vcpu_vmx *vmx = to_vmx(vcpu);
6195         if (vmx->nested.current_vmptr == -1ull) {
6196                 nested_vmx_failInvalid(vcpu);
6197                 skip_emulated_instruction(vcpu);
6198                 return 0;
6199         }
6200         return 1;
6201 }
6202
6203 static int handle_vmread(struct kvm_vcpu *vcpu)
6204 {
6205         unsigned long field;
6206         u64 field_value;
6207         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6208         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6209         gva_t gva = 0;
6210
6211         if (!nested_vmx_check_permission(vcpu) ||
6212             !nested_vmx_check_vmcs12(vcpu))
6213                 return 1;
6214
6215         /* Decode instruction info and find the field to read */
6216         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6217         /* Read the field, zero-extended to a u64 field_value */
6218         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6219                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6220                 skip_emulated_instruction(vcpu);
6221                 return 1;
6222         }
6223         /*
6224          * Now copy part of this value to register or memory, as requested.
6225          * Note that the number of bits actually copied is 32 or 64 depending
6226          * on the guest's mode (32 or 64 bit), not on the given field's length.
6227          */
6228         if (vmx_instruction_info & (1u << 10)) {
6229                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6230                         field_value);
6231         } else {
6232                 if (get_vmx_mem_address(vcpu, exit_qualification,
6233                                 vmx_instruction_info, &gva))
6234                         return 1;
6235                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6236                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6237                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6238         }
6239
6240         nested_vmx_succeed(vcpu);
6241         skip_emulated_instruction(vcpu);
6242         return 1;
6243 }
6244
6245
6246 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6247 {
6248         unsigned long field;
6249         gva_t gva;
6250         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6251         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6252         /* The value to write might be 32 or 64 bits, depending on L1's long
6253          * mode, and eventually we need to write that into a field of several
6254          * possible lengths. The code below first zero-extends the value to 64
6255          * bit (field_value), and then copies only the approriate number of
6256          * bits into the vmcs12 field.
6257          */
6258         u64 field_value = 0;
6259         struct x86_exception e;
6260
6261         if (!nested_vmx_check_permission(vcpu) ||
6262             !nested_vmx_check_vmcs12(vcpu))
6263                 return 1;
6264
6265         if (vmx_instruction_info & (1u << 10))
6266                 field_value = kvm_register_read(vcpu,
6267                         (((vmx_instruction_info) >> 3) & 0xf));
6268         else {
6269                 if (get_vmx_mem_address(vcpu, exit_qualification,
6270                                 vmx_instruction_info, &gva))
6271                         return 1;
6272                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6273                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6274                         kvm_inject_page_fault(vcpu, &e);
6275                         return 1;
6276                 }
6277         }
6278
6279
6280         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6281         if (vmcs_field_readonly(field)) {
6282                 nested_vmx_failValid(vcpu,
6283                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6284                 skip_emulated_instruction(vcpu);
6285                 return 1;
6286         }
6287
6288         if (!vmcs12_write_any(vcpu, field, field_value)) {
6289                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6290                 skip_emulated_instruction(vcpu);
6291                 return 1;
6292         }
6293
6294         nested_vmx_succeed(vcpu);
6295         skip_emulated_instruction(vcpu);
6296         return 1;
6297 }
6298
6299 /* Emulate the VMPTRLD instruction */
6300 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6301 {
6302         struct vcpu_vmx *vmx = to_vmx(vcpu);
6303         gva_t gva;
6304         gpa_t vmptr;
6305         struct x86_exception e;
6306         u32 exec_control;
6307
6308         if (!nested_vmx_check_permission(vcpu))
6309                 return 1;
6310
6311         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6312                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6313                 return 1;
6314
6315         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6316                                 sizeof(vmptr), &e)) {
6317                 kvm_inject_page_fault(vcpu, &e);
6318                 return 1;
6319         }
6320
6321         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6322                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6323                 skip_emulated_instruction(vcpu);
6324                 return 1;
6325         }
6326
6327         if (vmx->nested.current_vmptr != vmptr) {
6328                 struct vmcs12 *new_vmcs12;
6329                 struct page *page;
6330                 page = nested_get_page(vcpu, vmptr);
6331                 if (page == NULL) {
6332                         nested_vmx_failInvalid(vcpu);
6333                         skip_emulated_instruction(vcpu);
6334                         return 1;
6335                 }
6336                 new_vmcs12 = kmap(page);
6337                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6338                         kunmap(page);
6339                         nested_release_page_clean(page);
6340                         nested_vmx_failValid(vcpu,
6341                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6342                         skip_emulated_instruction(vcpu);
6343                         return 1;
6344                 }
6345                 if (vmx->nested.current_vmptr != -1ull)
6346                         nested_release_vmcs12(vmx);
6347
6348                 vmx->nested.current_vmptr = vmptr;
6349                 vmx->nested.current_vmcs12 = new_vmcs12;
6350                 vmx->nested.current_vmcs12_page = page;
6351                 if (enable_shadow_vmcs) {
6352                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6353                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6354                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6355                         vmcs_write64(VMCS_LINK_POINTER,
6356                                      __pa(vmx->nested.current_shadow_vmcs));
6357                         vmx->nested.sync_shadow_vmcs = true;
6358                 }
6359         }
6360
6361         nested_vmx_succeed(vcpu);
6362         skip_emulated_instruction(vcpu);
6363         return 1;
6364 }
6365
6366 /* Emulate the VMPTRST instruction */
6367 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6368 {
6369         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6370         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6371         gva_t vmcs_gva;
6372         struct x86_exception e;
6373
6374         if (!nested_vmx_check_permission(vcpu))
6375                 return 1;
6376
6377         if (get_vmx_mem_address(vcpu, exit_qualification,
6378                         vmx_instruction_info, &vmcs_gva))
6379                 return 1;
6380         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6381         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6382                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6383                                  sizeof(u64), &e)) {
6384                 kvm_inject_page_fault(vcpu, &e);
6385                 return 1;
6386         }
6387         nested_vmx_succeed(vcpu);
6388         skip_emulated_instruction(vcpu);
6389         return 1;
6390 }
6391
6392 /* Emulate the INVEPT instruction */
6393 static int handle_invept(struct kvm_vcpu *vcpu)
6394 {
6395         u32 vmx_instruction_info, types;
6396         unsigned long type;
6397         gva_t gva;
6398         struct x86_exception e;
6399         struct {
6400                 u64 eptp, gpa;
6401         } operand;
6402         u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6403
6404         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6405             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6406                 kvm_queue_exception(vcpu, UD_VECTOR);
6407                 return 1;
6408         }
6409
6410         if (!nested_vmx_check_permission(vcpu))
6411                 return 1;
6412
6413         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6414                 kvm_queue_exception(vcpu, UD_VECTOR);
6415                 return 1;
6416         }
6417
6418         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6419         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6420
6421         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6422
6423         if (!(types & (1UL << type))) {
6424                 nested_vmx_failValid(vcpu,
6425                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6426                 return 1;
6427         }
6428
6429         /* According to the Intel VMX instruction reference, the memory
6430          * operand is read even if it isn't needed (e.g., for type==global)
6431          */
6432         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6433                         vmx_instruction_info, &gva))
6434                 return 1;
6435         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6436                                 sizeof(operand), &e)) {
6437                 kvm_inject_page_fault(vcpu, &e);
6438                 return 1;
6439         }
6440
6441         switch (type) {
6442         case VMX_EPT_EXTENT_CONTEXT:
6443                 if ((operand.eptp & eptp_mask) !=
6444                                 (nested_ept_get_cr3(vcpu) & eptp_mask))
6445                         break;
6446         case VMX_EPT_EXTENT_GLOBAL:
6447                 kvm_mmu_sync_roots(vcpu);
6448                 kvm_mmu_flush_tlb(vcpu);
6449                 nested_vmx_succeed(vcpu);
6450                 break;
6451         default:
6452                 BUG_ON(1);
6453                 break;
6454         }
6455
6456         skip_emulated_instruction(vcpu);
6457         return 1;
6458 }
6459
6460 /*
6461  * The exit handlers return 1 if the exit was handled fully and guest execution
6462  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6463  * to be done to userspace and return 0.
6464  */
6465 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6466         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6467         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6468         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6469         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6470         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6471         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6472         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6473         [EXIT_REASON_CPUID]                   = handle_cpuid,
6474         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6475         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6476         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6477         [EXIT_REASON_HLT]                     = handle_halt,
6478         [EXIT_REASON_INVD]                    = handle_invd,
6479         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6480         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6481         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6482         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6483         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6484         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6485         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6486         [EXIT_REASON_VMREAD]                  = handle_vmread,
6487         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6488         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6489         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6490         [EXIT_REASON_VMON]                    = handle_vmon,
6491         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6492         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6493         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6494         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6495         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6496         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6497         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6498         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6499         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6500         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6501         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6502         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6503         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6504         [EXIT_REASON_INVEPT]                  = handle_invept,
6505 };
6506
6507 static const int kvm_vmx_max_exit_handlers =
6508         ARRAY_SIZE(kvm_vmx_exit_handlers);
6509
6510 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6511                                        struct vmcs12 *vmcs12)
6512 {
6513         unsigned long exit_qualification;
6514         gpa_t bitmap, last_bitmap;
6515         unsigned int port;
6516         int size;
6517         u8 b;
6518
6519         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6520                 return 1;
6521
6522         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6523                 return 0;
6524
6525         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6526
6527         port = exit_qualification >> 16;
6528         size = (exit_qualification & 7) + 1;
6529
6530         last_bitmap = (gpa_t)-1;
6531         b = -1;
6532
6533         while (size > 0) {
6534                 if (port < 0x8000)
6535                         bitmap = vmcs12->io_bitmap_a;
6536                 else if (port < 0x10000)
6537                         bitmap = vmcs12->io_bitmap_b;
6538                 else
6539                         return 1;
6540                 bitmap += (port & 0x7fff) / 8;
6541
6542                 if (last_bitmap != bitmap)
6543                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6544                                 return 1;
6545                 if (b & (1 << (port & 7)))
6546                         return 1;
6547
6548                 port++;
6549                 size--;
6550                 last_bitmap = bitmap;
6551         }
6552
6553         return 0;
6554 }
6555
6556 /*
6557  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6558  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6559  * disinterest in the current event (read or write a specific MSR) by using an
6560  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6561  */
6562 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6563         struct vmcs12 *vmcs12, u32 exit_reason)
6564 {
6565         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6566         gpa_t bitmap;
6567
6568         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6569                 return 1;
6570
6571         /*
6572          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6573          * for the four combinations of read/write and low/high MSR numbers.
6574          * First we need to figure out which of the four to use:
6575          */
6576         bitmap = vmcs12->msr_bitmap;
6577         if (exit_reason == EXIT_REASON_MSR_WRITE)
6578                 bitmap += 2048;
6579         if (msr_index >= 0xc0000000) {
6580                 msr_index -= 0xc0000000;
6581                 bitmap += 1024;
6582         }
6583
6584         /* Then read the msr_index'th bit from this bitmap: */
6585         if (msr_index < 1024*8) {
6586                 unsigned char b;
6587                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6588                         return 1;
6589                 return 1 & (b >> (msr_index & 7));
6590         } else
6591                 return 1; /* let L1 handle the wrong parameter */
6592 }
6593
6594 /*
6595  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6596  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6597  * intercept (via guest_host_mask etc.) the current event.
6598  */
6599 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6600         struct vmcs12 *vmcs12)
6601 {
6602         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6603         int cr = exit_qualification & 15;
6604         int reg = (exit_qualification >> 8) & 15;
6605         unsigned long val = kvm_register_read(vcpu, reg);
6606
6607         switch ((exit_qualification >> 4) & 3) {
6608         case 0: /* mov to cr */
6609                 switch (cr) {
6610                 case 0:
6611                         if (vmcs12->cr0_guest_host_mask &
6612                             (val ^ vmcs12->cr0_read_shadow))
6613                                 return 1;
6614                         break;
6615                 case 3:
6616                         if ((vmcs12->cr3_target_count >= 1 &&
6617                                         vmcs12->cr3_target_value0 == val) ||
6618                                 (vmcs12->cr3_target_count >= 2 &&
6619                                         vmcs12->cr3_target_value1 == val) ||
6620                                 (vmcs12->cr3_target_count >= 3 &&
6621                                         vmcs12->cr3_target_value2 == val) ||
6622                                 (vmcs12->cr3_target_count >= 4 &&
6623                                         vmcs12->cr3_target_value3 == val))
6624                                 return 0;
6625                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6626                                 return 1;
6627                         break;
6628                 case 4:
6629                         if (vmcs12->cr4_guest_host_mask &
6630                             (vmcs12->cr4_read_shadow ^ val))
6631                                 return 1;
6632                         break;
6633                 case 8:
6634                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6635                                 return 1;
6636                         break;
6637                 }
6638                 break;
6639         case 2: /* clts */
6640                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6641                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6642                         return 1;
6643                 break;
6644         case 1: /* mov from cr */
6645                 switch (cr) {
6646                 case 3:
6647                         if (vmcs12->cpu_based_vm_exec_control &
6648                             CPU_BASED_CR3_STORE_EXITING)
6649                                 return 1;
6650                         break;
6651                 case 8:
6652                         if (vmcs12->cpu_based_vm_exec_control &
6653                             CPU_BASED_CR8_STORE_EXITING)
6654                                 return 1;
6655                         break;
6656                 }
6657                 break;
6658         case 3: /* lmsw */
6659                 /*
6660                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6661                  * cr0. Other attempted changes are ignored, with no exit.
6662                  */
6663                 if (vmcs12->cr0_guest_host_mask & 0xe &
6664                     (val ^ vmcs12->cr0_read_shadow))
6665                         return 1;
6666                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6667                     !(vmcs12->cr0_read_shadow & 0x1) &&
6668                     (val & 0x1))
6669                         return 1;
6670                 break;
6671         }
6672         return 0;
6673 }
6674
6675 /*
6676  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6677  * should handle it ourselves in L0 (and then continue L2). Only call this
6678  * when in is_guest_mode (L2).
6679  */
6680 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6681 {
6682         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6683         struct vcpu_vmx *vmx = to_vmx(vcpu);
6684         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6685         u32 exit_reason = vmx->exit_reason;
6686
6687         if (vmx->nested.nested_run_pending)
6688                 return 0;
6689
6690         if (unlikely(vmx->fail)) {
6691                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6692                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6693                 return 1;
6694         }
6695
6696         switch (exit_reason) {
6697         case EXIT_REASON_EXCEPTION_NMI:
6698                 if (!is_exception(intr_info))
6699                         return 0;
6700                 else if (is_page_fault(intr_info))
6701                         return enable_ept;
6702                 else if (is_no_device(intr_info) &&
6703                          !(nested_read_cr0(vmcs12) & X86_CR0_TS))
6704                         return 0;
6705                 return vmcs12->exception_bitmap &
6706                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6707         case EXIT_REASON_EXTERNAL_INTERRUPT:
6708                 return 0;
6709         case EXIT_REASON_TRIPLE_FAULT:
6710                 return 1;
6711         case EXIT_REASON_PENDING_INTERRUPT:
6712                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6713         case EXIT_REASON_NMI_WINDOW:
6714                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6715         case EXIT_REASON_TASK_SWITCH:
6716                 return 1;
6717         case EXIT_REASON_CPUID:
6718                 return 1;
6719         case EXIT_REASON_HLT:
6720                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6721         case EXIT_REASON_INVD:
6722                 return 1;
6723         case EXIT_REASON_INVLPG:
6724                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6725         case EXIT_REASON_RDPMC:
6726                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6727         case EXIT_REASON_RDTSC:
6728                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6729         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6730         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6731         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6732         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6733         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6734         case EXIT_REASON_INVEPT:
6735                 /*
6736                  * VMX instructions trap unconditionally. This allows L1 to
6737                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6738                  */
6739                 return 1;
6740         case EXIT_REASON_CR_ACCESS:
6741                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6742         case EXIT_REASON_DR_ACCESS:
6743                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6744         case EXIT_REASON_IO_INSTRUCTION:
6745                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6746         case EXIT_REASON_MSR_READ:
6747         case EXIT_REASON_MSR_WRITE:
6748                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6749         case EXIT_REASON_INVALID_STATE:
6750                 return 1;
6751         case EXIT_REASON_MWAIT_INSTRUCTION:
6752                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6753         case EXIT_REASON_MONITOR_INSTRUCTION:
6754                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6755         case EXIT_REASON_PAUSE_INSTRUCTION:
6756                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6757                         nested_cpu_has2(vmcs12,
6758                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6759         case EXIT_REASON_MCE_DURING_VMENTRY:
6760                 return 0;
6761         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6762                 return 1;
6763         case EXIT_REASON_APIC_ACCESS:
6764                 return nested_cpu_has2(vmcs12,
6765                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6766         case EXIT_REASON_EPT_VIOLATION:
6767                 /*
6768                  * L0 always deals with the EPT violation. If nested EPT is
6769                  * used, and the nested mmu code discovers that the address is
6770                  * missing in the guest EPT table (EPT12), the EPT violation
6771                  * will be injected with nested_ept_inject_page_fault()
6772                  */
6773                 return 0;
6774         case EXIT_REASON_EPT_MISCONFIG:
6775                 /*
6776                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6777                  * table (shadow on EPT) or a merged EPT table that L0 built
6778                  * (EPT on EPT). So any problems with the structure of the
6779                  * table is L0's fault.
6780                  */
6781                 return 0;
6782         case EXIT_REASON_PREEMPTION_TIMER:
6783                 return vmcs12->pin_based_vm_exec_control &
6784                         PIN_BASED_VMX_PREEMPTION_TIMER;
6785         case EXIT_REASON_WBINVD:
6786                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6787         case EXIT_REASON_XSETBV:
6788                 return 1;
6789         default:
6790                 return 1;
6791         }
6792 }
6793
6794 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6795 {
6796         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6797         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6798 }
6799
6800 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6801 {
6802         u64 delta_tsc_l1;
6803         u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6804
6805         if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6806                         PIN_BASED_VMX_PREEMPTION_TIMER))
6807                 return;
6808         preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6809                         MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6810         preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6811         delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6812                 - vcpu->arch.last_guest_tsc;
6813         preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6814         if (preempt_val_l2 <= preempt_val_l1)
6815                 preempt_val_l2 = 0;
6816         else
6817                 preempt_val_l2 -= preempt_val_l1;
6818         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6819 }
6820
6821 /*
6822  * The guest has exited.  See if we can fix it or if we need userspace
6823  * assistance.
6824  */
6825 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6826 {
6827         struct vcpu_vmx *vmx = to_vmx(vcpu);
6828         u32 exit_reason = vmx->exit_reason;
6829         u32 vectoring_info = vmx->idt_vectoring_info;
6830
6831         /* If guest state is invalid, start emulating */
6832         if (vmx->emulation_required)
6833                 return handle_invalid_guest_state(vcpu);
6834
6835         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6836                 nested_vmx_vmexit(vcpu);
6837                 return 1;
6838         }
6839
6840         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6841                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6842                 vcpu->run->fail_entry.hardware_entry_failure_reason
6843                         = exit_reason;
6844                 return 0;
6845         }
6846
6847         if (unlikely(vmx->fail)) {
6848                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6849                 vcpu->run->fail_entry.hardware_entry_failure_reason
6850                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6851                 return 0;
6852         }
6853
6854         /*
6855          * Note:
6856          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6857          * delivery event since it indicates guest is accessing MMIO.
6858          * The vm-exit can be triggered again after return to guest that
6859          * will cause infinite loop.
6860          */
6861         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6862                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6863                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6864                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6865                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6866                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6867                 vcpu->run->internal.ndata = 2;
6868                 vcpu->run->internal.data[0] = vectoring_info;
6869                 vcpu->run->internal.data[1] = exit_reason;
6870                 return 0;
6871         }
6872
6873         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6874             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6875                                         get_vmcs12(vcpu))))) {
6876                 if (vmx_interrupt_allowed(vcpu)) {
6877                         vmx->soft_vnmi_blocked = 0;
6878                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6879                            vcpu->arch.nmi_pending) {
6880                         /*
6881                          * This CPU don't support us in finding the end of an
6882                          * NMI-blocked window if the guest runs with IRQs
6883                          * disabled. So we pull the trigger after 1 s of
6884                          * futile waiting, but inform the user about this.
6885                          */
6886                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6887                                "state on VCPU %d after 1 s timeout\n",
6888                                __func__, vcpu->vcpu_id);
6889                         vmx->soft_vnmi_blocked = 0;
6890                 }
6891         }
6892
6893         if (exit_reason < kvm_vmx_max_exit_handlers
6894             && kvm_vmx_exit_handlers[exit_reason])
6895                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6896         else {
6897                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6898                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6899         }
6900         return 0;
6901 }
6902
6903 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6904 {
6905         if (irr == -1 || tpr < irr) {
6906                 vmcs_write32(TPR_THRESHOLD, 0);
6907                 return;
6908         }
6909
6910         vmcs_write32(TPR_THRESHOLD, irr);
6911 }
6912
6913 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6914 {
6915         u32 sec_exec_control;
6916
6917         /*
6918          * There is not point to enable virtualize x2apic without enable
6919          * apicv
6920          */
6921         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6922                                 !vmx_vm_has_apicv(vcpu->kvm))
6923                 return;
6924
6925         if (!vm_need_tpr_shadow(vcpu->kvm))
6926                 return;
6927
6928         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6929
6930         if (set) {
6931                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6932                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6933         } else {
6934                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6935                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6936         }
6937         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6938
6939         vmx_set_msr_bitmap(vcpu);
6940 }
6941
6942 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6943 {
6944         u16 status;
6945         u8 old;
6946
6947         if (!vmx_vm_has_apicv(kvm))
6948                 return;
6949
6950         if (isr == -1)
6951                 isr = 0;
6952
6953         status = vmcs_read16(GUEST_INTR_STATUS);
6954         old = status >> 8;
6955         if (isr != old) {
6956                 status &= 0xff;
6957                 status |= isr << 8;
6958                 vmcs_write16(GUEST_INTR_STATUS, status);
6959         }
6960 }
6961
6962 static void vmx_set_rvi(int vector)
6963 {
6964         u16 status;
6965         u8 old;
6966
6967         status = vmcs_read16(GUEST_INTR_STATUS);
6968         old = (u8)status & 0xff;
6969         if ((u8)vector != old) {
6970                 status &= ~0xff;
6971                 status |= (u8)vector;
6972                 vmcs_write16(GUEST_INTR_STATUS, status);
6973         }
6974 }
6975
6976 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6977 {
6978         if (max_irr == -1)
6979                 return;
6980
6981         vmx_set_rvi(max_irr);
6982 }
6983
6984 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6985 {
6986         if (!vmx_vm_has_apicv(vcpu->kvm))
6987                 return;
6988
6989         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6990         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6991         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6992         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6993 }
6994
6995 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6996 {
6997         u32 exit_intr_info;
6998
6999         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7000               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7001                 return;
7002
7003         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7004         exit_intr_info = vmx->exit_intr_info;
7005
7006         /* Handle machine checks before interrupts are enabled */
7007         if (is_machine_check(exit_intr_info))
7008                 kvm_machine_check();
7009
7010         /* We need to handle NMIs before interrupts are enabled */
7011         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7012             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7013                 kvm_before_handle_nmi(&vmx->vcpu);
7014                 asm("int $2");
7015                 kvm_after_handle_nmi(&vmx->vcpu);
7016         }
7017 }
7018
7019 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7020 {
7021         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7022
7023         /*
7024          * If external interrupt exists, IF bit is set in rflags/eflags on the
7025          * interrupt stack frame, and interrupt will be enabled on a return
7026          * from interrupt handler.
7027          */
7028         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7029                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7030                 unsigned int vector;
7031                 unsigned long entry;
7032                 gate_desc *desc;
7033                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7034 #ifdef CONFIG_X86_64
7035                 unsigned long tmp;
7036 #endif
7037
7038                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7039                 desc = (gate_desc *)vmx->host_idt_base + vector;
7040                 entry = gate_offset(*desc);
7041                 asm volatile(
7042 #ifdef CONFIG_X86_64
7043                         "mov %%" _ASM_SP ", %[sp]\n\t"
7044                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7045                         "push $%c[ss]\n\t"
7046                         "push %[sp]\n\t"
7047 #endif
7048                         "pushf\n\t"
7049                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7050                         __ASM_SIZE(push) " $%c[cs]\n\t"
7051                         "call *%[entry]\n\t"
7052                         :
7053 #ifdef CONFIG_X86_64
7054                         [sp]"=&r"(tmp)
7055 #endif
7056                         :
7057                         [entry]"r"(entry),
7058                         [ss]"i"(__KERNEL_DS),
7059                         [cs]"i"(__KERNEL_CS)
7060                         );
7061         } else
7062                 local_irq_enable();
7063 }
7064
7065 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7066 {
7067         u32 exit_intr_info;
7068         bool unblock_nmi;
7069         u8 vector;
7070         bool idtv_info_valid;
7071
7072         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7073
7074         if (cpu_has_virtual_nmis()) {
7075                 if (vmx->nmi_known_unmasked)
7076                         return;
7077                 /*
7078                  * Can't use vmx->exit_intr_info since we're not sure what
7079                  * the exit reason is.
7080                  */
7081                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7082                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7083                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7084                 /*
7085                  * SDM 3: 27.7.1.2 (September 2008)
7086                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7087                  * a guest IRET fault.
7088                  * SDM 3: 23.2.2 (September 2008)
7089                  * Bit 12 is undefined in any of the following cases:
7090                  *  If the VM exit sets the valid bit in the IDT-vectoring
7091                  *   information field.
7092                  *  If the VM exit is due to a double fault.
7093                  */
7094                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7095                     vector != DF_VECTOR && !idtv_info_valid)
7096                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7097                                       GUEST_INTR_STATE_NMI);
7098                 else
7099                         vmx->nmi_known_unmasked =
7100                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7101                                   & GUEST_INTR_STATE_NMI);
7102         } else if (unlikely(vmx->soft_vnmi_blocked))
7103                 vmx->vnmi_blocked_time +=
7104                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7105 }
7106
7107 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7108                                       u32 idt_vectoring_info,
7109                                       int instr_len_field,
7110                                       int error_code_field)
7111 {
7112         u8 vector;
7113         int type;
7114         bool idtv_info_valid;
7115
7116         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7117
7118         vcpu->arch.nmi_injected = false;
7119         kvm_clear_exception_queue(vcpu);
7120         kvm_clear_interrupt_queue(vcpu);
7121
7122         if (!idtv_info_valid)
7123                 return;
7124
7125         kvm_make_request(KVM_REQ_EVENT, vcpu);
7126
7127         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7128         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7129
7130         switch (type) {
7131         case INTR_TYPE_NMI_INTR:
7132                 vcpu->arch.nmi_injected = true;
7133                 /*
7134                  * SDM 3: 27.7.1.2 (September 2008)
7135                  * Clear bit "block by NMI" before VM entry if a NMI
7136                  * delivery faulted.
7137                  */
7138                 vmx_set_nmi_mask(vcpu, false);
7139                 break;
7140         case INTR_TYPE_SOFT_EXCEPTION:
7141                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7142                 /* fall through */
7143         case INTR_TYPE_HARD_EXCEPTION:
7144                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7145                         u32 err = vmcs_read32(error_code_field);
7146                         kvm_requeue_exception_e(vcpu, vector, err);
7147                 } else
7148                         kvm_requeue_exception(vcpu, vector);
7149                 break;
7150         case INTR_TYPE_SOFT_INTR:
7151                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7152                 /* fall through */
7153         case INTR_TYPE_EXT_INTR:
7154                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7155                 break;
7156         default:
7157                 break;
7158         }
7159 }
7160
7161 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7162 {
7163         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7164                                   VM_EXIT_INSTRUCTION_LEN,
7165                                   IDT_VECTORING_ERROR_CODE);
7166 }
7167
7168 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7169 {
7170         __vmx_complete_interrupts(vcpu,
7171                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7172                                   VM_ENTRY_INSTRUCTION_LEN,
7173                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7174
7175         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7176 }
7177
7178 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7179 {
7180         int i, nr_msrs;
7181         struct perf_guest_switch_msr *msrs;
7182
7183         msrs = perf_guest_get_msrs(&nr_msrs);
7184
7185         if (!msrs)
7186                 return;
7187
7188         for (i = 0; i < nr_msrs; i++)
7189                 if (msrs[i].host == msrs[i].guest)
7190                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7191                 else
7192                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7193                                         msrs[i].host);
7194 }
7195
7196 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7197 {
7198         struct vcpu_vmx *vmx = to_vmx(vcpu);
7199         unsigned long debugctlmsr;
7200
7201         /* Record the guest's net vcpu time for enforced NMI injections. */
7202         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7203                 vmx->entry_time = ktime_get();
7204
7205         /* Don't enter VMX if guest state is invalid, let the exit handler
7206            start emulation until we arrive back to a valid state */
7207         if (vmx->emulation_required)
7208                 return;
7209
7210         if (vmx->nested.sync_shadow_vmcs) {
7211                 copy_vmcs12_to_shadow(vmx);
7212                 vmx->nested.sync_shadow_vmcs = false;
7213         }
7214
7215         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7216                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7217         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7218                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7219
7220         /* When single-stepping over STI and MOV SS, we must clear the
7221          * corresponding interruptibility bits in the guest state. Otherwise
7222          * vmentry fails as it then expects bit 14 (BS) in pending debug
7223          * exceptions being set, but that's not correct for the guest debugging
7224          * case. */
7225         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7226                 vmx_set_interrupt_shadow(vcpu, 0);
7227
7228         atomic_switch_perf_msrs(vmx);
7229         debugctlmsr = get_debugctlmsr();
7230
7231         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7232                 nested_adjust_preemption_timer(vcpu);
7233         vmx->__launched = vmx->loaded_vmcs->launched;
7234         asm(
7235                 /* Store host registers */
7236                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7237                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7238                 "push %%" _ASM_CX " \n\t"
7239                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7240                 "je 1f \n\t"
7241                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7242                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7243                 "1: \n\t"
7244                 /* Reload cr2 if changed */
7245                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7246                 "mov %%cr2, %%" _ASM_DX " \n\t"
7247                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7248                 "je 2f \n\t"
7249                 "mov %%" _ASM_AX", %%cr2 \n\t"
7250                 "2: \n\t"
7251                 /* Check if vmlaunch of vmresume is needed */
7252                 "cmpl $0, %c[launched](%0) \n\t"
7253                 /* Load guest registers.  Don't clobber flags. */
7254                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7255                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7256                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7257                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7258                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7259                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7260 #ifdef CONFIG_X86_64
7261                 "mov %c[r8](%0),  %%r8  \n\t"
7262                 "mov %c[r9](%0),  %%r9  \n\t"
7263                 "mov %c[r10](%0), %%r10 \n\t"
7264                 "mov %c[r11](%0), %%r11 \n\t"
7265                 "mov %c[r12](%0), %%r12 \n\t"
7266                 "mov %c[r13](%0), %%r13 \n\t"
7267                 "mov %c[r14](%0), %%r14 \n\t"
7268                 "mov %c[r15](%0), %%r15 \n\t"
7269 #endif
7270                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7271
7272                 /* Enter guest mode */
7273                 "jne 1f \n\t"
7274                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7275                 "jmp 2f \n\t"
7276                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7277                 "2: "
7278                 /* Save guest registers, load host registers, keep flags */
7279                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7280                 "pop %0 \n\t"
7281                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7282                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7283                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7284                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7285                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7286                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7287                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7288 #ifdef CONFIG_X86_64
7289                 "mov %%r8,  %c[r8](%0) \n\t"
7290                 "mov %%r9,  %c[r9](%0) \n\t"
7291                 "mov %%r10, %c[r10](%0) \n\t"
7292                 "mov %%r11, %c[r11](%0) \n\t"
7293                 "mov %%r12, %c[r12](%0) \n\t"
7294                 "mov %%r13, %c[r13](%0) \n\t"
7295                 "mov %%r14, %c[r14](%0) \n\t"
7296                 "mov %%r15, %c[r15](%0) \n\t"
7297 #endif
7298                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7299                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7300
7301                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7302                 "setbe %c[fail](%0) \n\t"
7303                 ".pushsection .rodata \n\t"
7304                 ".global vmx_return \n\t"
7305                 "vmx_return: " _ASM_PTR " 2b \n\t"
7306                 ".popsection"
7307               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7308                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7309                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7310                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7311                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7312                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7313                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7314                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7315                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7316                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7317                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7318 #ifdef CONFIG_X86_64
7319                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7320                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7321                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7322                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7323                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7324                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7325                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7326                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7327 #endif
7328                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7329                 [wordsize]"i"(sizeof(ulong))
7330               : "cc", "memory"
7331 #ifdef CONFIG_X86_64
7332                 , "rax", "rbx", "rdi", "rsi"
7333                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7334 #else
7335                 , "eax", "ebx", "edi", "esi"
7336 #endif
7337               );
7338
7339         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7340         if (debugctlmsr)
7341                 update_debugctlmsr(debugctlmsr);
7342
7343 #ifndef CONFIG_X86_64
7344         /*
7345          * The sysexit path does not restore ds/es, so we must set them to
7346          * a reasonable value ourselves.
7347          *
7348          * We can't defer this to vmx_load_host_state() since that function
7349          * may be executed in interrupt context, which saves and restore segments
7350          * around it, nullifying its effect.
7351          */
7352         loadsegment(ds, __USER_DS);
7353         loadsegment(es, __USER_DS);
7354 #endif
7355
7356         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7357                                   | (1 << VCPU_EXREG_RFLAGS)
7358                                   | (1 << VCPU_EXREG_CPL)
7359                                   | (1 << VCPU_EXREG_PDPTR)
7360                                   | (1 << VCPU_EXREG_SEGMENTS)
7361                                   | (1 << VCPU_EXREG_CR3));
7362         vcpu->arch.regs_dirty = 0;
7363
7364         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7365
7366         vmx->loaded_vmcs->launched = 1;
7367
7368         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7369         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7370
7371         /*
7372          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7373          * we did not inject a still-pending event to L1 now because of
7374          * nested_run_pending, we need to re-enable this bit.
7375          */
7376         if (vmx->nested.nested_run_pending)
7377                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7378
7379         vmx->nested.nested_run_pending = 0;
7380
7381         vmx_complete_atomic_exit(vmx);
7382         vmx_recover_nmi_blocking(vmx);
7383         vmx_complete_interrupts(vmx);
7384 }
7385
7386 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7387 {
7388         struct vcpu_vmx *vmx = to_vmx(vcpu);
7389
7390         free_vpid(vmx);
7391         free_nested(vmx);
7392         free_loaded_vmcs(vmx->loaded_vmcs);
7393         kfree(vmx->guest_msrs);
7394         kvm_vcpu_uninit(vcpu);
7395         kmem_cache_free(kvm_vcpu_cache, vmx);
7396 }
7397
7398 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7399 {
7400         int err;
7401         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7402         int cpu;
7403
7404         if (!vmx)
7405                 return ERR_PTR(-ENOMEM);
7406
7407         allocate_vpid(vmx);
7408
7409         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7410         if (err)
7411                 goto free_vcpu;
7412
7413         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7414         err = -ENOMEM;
7415         if (!vmx->guest_msrs) {
7416                 goto uninit_vcpu;
7417         }
7418
7419         vmx->loaded_vmcs = &vmx->vmcs01;
7420         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7421         if (!vmx->loaded_vmcs->vmcs)
7422                 goto free_msrs;
7423         if (!vmm_exclusive)
7424                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7425         loaded_vmcs_init(vmx->loaded_vmcs);
7426         if (!vmm_exclusive)
7427                 kvm_cpu_vmxoff();
7428
7429         cpu = get_cpu();
7430         vmx_vcpu_load(&vmx->vcpu, cpu);
7431         vmx->vcpu.cpu = cpu;
7432         err = vmx_vcpu_setup(vmx);
7433         vmx_vcpu_put(&vmx->vcpu);
7434         put_cpu();
7435         if (err)
7436                 goto free_vmcs;
7437         if (vm_need_virtualize_apic_accesses(kvm)) {
7438                 err = alloc_apic_access_page(kvm);
7439                 if (err)
7440                         goto free_vmcs;
7441         }
7442
7443         if (enable_ept) {
7444                 if (!kvm->arch.ept_identity_map_addr)
7445                         kvm->arch.ept_identity_map_addr =
7446                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7447                 err = -ENOMEM;
7448                 if (alloc_identity_pagetable(kvm) != 0)
7449                         goto free_vmcs;
7450                 if (!init_rmode_identity_map(kvm))
7451                         goto free_vmcs;
7452         }
7453
7454         vmx->nested.current_vmptr = -1ull;
7455         vmx->nested.current_vmcs12 = NULL;
7456
7457         return &vmx->vcpu;
7458
7459 free_vmcs:
7460         free_loaded_vmcs(vmx->loaded_vmcs);
7461 free_msrs:
7462         kfree(vmx->guest_msrs);
7463 uninit_vcpu:
7464         kvm_vcpu_uninit(&vmx->vcpu);
7465 free_vcpu:
7466         free_vpid(vmx);
7467         kmem_cache_free(kvm_vcpu_cache, vmx);
7468         return ERR_PTR(err);
7469 }
7470
7471 static void __init vmx_check_processor_compat(void *rtn)
7472 {
7473         struct vmcs_config vmcs_conf;
7474
7475         *(int *)rtn = 0;
7476         if (setup_vmcs_config(&vmcs_conf) < 0)
7477                 *(int *)rtn = -EIO;
7478         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7479                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7480                                 smp_processor_id());
7481                 *(int *)rtn = -EIO;
7482         }
7483 }
7484
7485 static int get_ept_level(void)
7486 {
7487         return VMX_EPT_DEFAULT_GAW + 1;
7488 }
7489
7490 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7491 {
7492         u64 ret;
7493
7494         /* For VT-d and EPT combination
7495          * 1. MMIO: always map as UC
7496          * 2. EPT with VT-d:
7497          *   a. VT-d without snooping control feature: can't guarantee the
7498          *      result, try to trust guest.
7499          *   b. VT-d with snooping control feature: snooping control feature of
7500          *      VT-d engine can guarantee the cache correctness. Just set it
7501          *      to WB to keep consistent with host. So the same as item 3.
7502          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7503          *    consistent with host MTRR
7504          */
7505         if (is_mmio)
7506                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7507         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7508                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7509                       VMX_EPT_MT_EPTE_SHIFT;
7510         else
7511                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7512                         | VMX_EPT_IPAT_BIT;
7513
7514         return ret;
7515 }
7516
7517 static int vmx_get_lpage_level(void)
7518 {
7519         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7520                 return PT_DIRECTORY_LEVEL;
7521         else
7522                 /* For shadow and EPT supported 1GB page */
7523                 return PT_PDPE_LEVEL;
7524 }
7525
7526 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7527 {
7528         struct kvm_cpuid_entry2 *best;
7529         struct vcpu_vmx *vmx = to_vmx(vcpu);
7530         u32 exec_control;
7531
7532         vmx->rdtscp_enabled = false;
7533         if (vmx_rdtscp_supported()) {
7534                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7535                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7536                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7537                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7538                                 vmx->rdtscp_enabled = true;
7539                         else {
7540                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7541                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7542                                                 exec_control);
7543                         }
7544                 }
7545         }
7546
7547         /* Exposing INVPCID only when PCID is exposed */
7548         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7549         if (vmx_invpcid_supported() &&
7550             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7551             guest_cpuid_has_pcid(vcpu)) {
7552                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7553                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7554                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7555                              exec_control);
7556         } else {
7557                 if (cpu_has_secondary_exec_ctrls()) {
7558                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7559                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7560                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7561                                      exec_control);
7562                 }
7563                 if (best)
7564                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7565         }
7566 }
7567
7568 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7569 {
7570         if (func == 1 && nested)
7571                 entry->ecx |= bit(X86_FEATURE_VMX);
7572 }
7573
7574 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7575                 struct x86_exception *fault)
7576 {
7577         struct vmcs12 *vmcs12;
7578         nested_vmx_vmexit(vcpu);
7579         vmcs12 = get_vmcs12(vcpu);
7580
7581         if (fault->error_code & PFERR_RSVD_MASK)
7582                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7583         else
7584                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7585         vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7586         vmcs12->guest_physical_address = fault->address;
7587 }
7588
7589 /* Callbacks for nested_ept_init_mmu_context: */
7590
7591 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7592 {
7593         /* return the page table to be shadowed - in our case, EPT12 */
7594         return get_vmcs12(vcpu)->ept_pointer;
7595 }
7596
7597 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7598 {
7599         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7600                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7601
7602         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7603         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7604         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7605
7606         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7607 }
7608
7609 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7610 {
7611         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7612 }
7613
7614 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7615                 struct x86_exception *fault)
7616 {
7617         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7618
7619         WARN_ON(!is_guest_mode(vcpu));
7620
7621         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7622         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7623                 nested_vmx_vmexit(vcpu);
7624         else
7625                 kvm_inject_page_fault(vcpu, fault);
7626 }
7627
7628 /*
7629  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7630  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7631  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7632  * guest in a way that will both be appropriate to L1's requests, and our
7633  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7634  * function also has additional necessary side-effects, like setting various
7635  * vcpu->arch fields.
7636  */
7637 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7638 {
7639         struct vcpu_vmx *vmx = to_vmx(vcpu);
7640         u32 exec_control;
7641         u32 exit_control;
7642
7643         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7644         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7645         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7646         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7647         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7648         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7649         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7650         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7651         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7652         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7653         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7654         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7655         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7656         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7657         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7658         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7659         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7660         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7661         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7662         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7663         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7664         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7665         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7666         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7667         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7668         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7669         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7670         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7671         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7672         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7673         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7674         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7675         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7676         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7677         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7678         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7679
7680         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7681         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7682                 vmcs12->vm_entry_intr_info_field);
7683         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7684                 vmcs12->vm_entry_exception_error_code);
7685         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7686                 vmcs12->vm_entry_instruction_len);
7687         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7688                 vmcs12->guest_interruptibility_info);
7689         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7690         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7691         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7692         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7693                 vmcs12->guest_pending_dbg_exceptions);
7694         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7695         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7696
7697         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7698
7699         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7700                 (vmcs_config.pin_based_exec_ctrl |
7701                  vmcs12->pin_based_vm_exec_control));
7702
7703         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7704                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7705                              vmcs12->vmx_preemption_timer_value);
7706
7707         /*
7708          * Whether page-faults are trapped is determined by a combination of
7709          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7710          * If enable_ept, L0 doesn't care about page faults and we should
7711          * set all of these to L1's desires. However, if !enable_ept, L0 does
7712          * care about (at least some) page faults, and because it is not easy
7713          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7714          * to exit on each and every L2 page fault. This is done by setting
7715          * MASK=MATCH=0 and (see below) EB.PF=1.
7716          * Note that below we don't need special code to set EB.PF beyond the
7717          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7718          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7719          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7720          *
7721          * A problem with this approach (when !enable_ept) is that L1 may be
7722          * injected with more page faults than it asked for. This could have
7723          * caused problems, but in practice existing hypervisors don't care.
7724          * To fix this, we will need to emulate the PFEC checking (on the L1
7725          * page tables), using walk_addr(), when injecting PFs to L1.
7726          */
7727         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7728                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7729         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7730                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7731
7732         if (cpu_has_secondary_exec_ctrls()) {
7733                 u32 exec_control = vmx_secondary_exec_control(vmx);
7734                 if (!vmx->rdtscp_enabled)
7735                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7736                 /* Take the following fields only from vmcs12 */
7737                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7738                 if (nested_cpu_has(vmcs12,
7739                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7740                         exec_control |= vmcs12->secondary_vm_exec_control;
7741
7742                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7743                         /*
7744                          * Translate L1 physical address to host physical
7745                          * address for vmcs02. Keep the page pinned, so this
7746                          * physical address remains valid. We keep a reference
7747                          * to it so we can release it later.
7748                          */
7749                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7750                                 nested_release_page(vmx->nested.apic_access_page);
7751                         vmx->nested.apic_access_page =
7752                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7753                         /*
7754                          * If translation failed, no matter: This feature asks
7755                          * to exit when accessing the given address, and if it
7756                          * can never be accessed, this feature won't do
7757                          * anything anyway.
7758                          */
7759                         if (!vmx->nested.apic_access_page)
7760                                 exec_control &=
7761                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7762                         else
7763                                 vmcs_write64(APIC_ACCESS_ADDR,
7764                                   page_to_phys(vmx->nested.apic_access_page));
7765                 }
7766
7767                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7768         }
7769
7770
7771         /*
7772          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7773          * Some constant fields are set here by vmx_set_constant_host_state().
7774          * Other fields are different per CPU, and will be set later when
7775          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7776          */
7777         vmx_set_constant_host_state(vmx);
7778
7779         /*
7780          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7781          * entry, but only if the current (host) sp changed from the value
7782          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7783          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7784          * here we just force the write to happen on entry.
7785          */
7786         vmx->host_rsp = 0;
7787
7788         exec_control = vmx_exec_control(vmx); /* L0's desires */
7789         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7790         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7791         exec_control &= ~CPU_BASED_TPR_SHADOW;
7792         exec_control |= vmcs12->cpu_based_vm_exec_control;
7793         /*
7794          * Merging of IO and MSR bitmaps not currently supported.
7795          * Rather, exit every time.
7796          */
7797         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7798         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7799         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7800
7801         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7802
7803         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7804          * bitwise-or of what L1 wants to trap for L2, and what we want to
7805          * trap. Note that CR0.TS also needs updating - we do this later.
7806          */
7807         update_exception_bitmap(vcpu);
7808         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7809         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7810
7811         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7812          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7813          * bits are further modified by vmx_set_efer() below.
7814          */
7815         exit_control = vmcs_config.vmexit_ctrl;
7816         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7817                 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7818         vm_exit_controls_init(vmx, exit_control);
7819
7820         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7821          * emulated by vmx_set_efer(), below.
7822          */
7823         vm_entry_controls_init(vmx, 
7824                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7825                         ~VM_ENTRY_IA32E_MODE) |
7826                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7827
7828         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7829                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7830                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7831         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7832                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7833
7834
7835         set_cr4_guest_host_mask(vmx);
7836
7837         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7838                 vmcs_write64(TSC_OFFSET,
7839                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7840         else
7841                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7842
7843         if (enable_vpid) {
7844                 /*
7845                  * Trivially support vpid by letting L2s share their parent
7846                  * L1's vpid. TODO: move to a more elaborate solution, giving
7847                  * each L2 its own vpid and exposing the vpid feature to L1.
7848                  */
7849                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7850                 vmx_flush_tlb(vcpu);
7851         }
7852
7853         if (nested_cpu_has_ept(vmcs12)) {
7854                 kvm_mmu_unload(vcpu);
7855                 nested_ept_init_mmu_context(vcpu);
7856         }
7857
7858         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7859                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7860         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7861                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7862         else
7863                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7864         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7865         vmx_set_efer(vcpu, vcpu->arch.efer);
7866
7867         /*
7868          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7869          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7870          * The CR0_READ_SHADOW is what L2 should have expected to read given
7871          * the specifications by L1; It's not enough to take
7872          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7873          * have more bits than L1 expected.
7874          */
7875         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7876         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7877
7878         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7879         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7880
7881         /* shadow page tables on either EPT or shadow page tables */
7882         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7883         kvm_mmu_reset_context(vcpu);
7884
7885         if (!enable_ept)
7886                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7887
7888         /*
7889          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7890          */
7891         if (enable_ept) {
7892                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7893                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7894                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7895                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7896         }
7897
7898         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7899         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7900 }
7901
7902 /*
7903  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7904  * for running an L2 nested guest.
7905  */
7906 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7907 {
7908         struct vmcs12 *vmcs12;
7909         struct vcpu_vmx *vmx = to_vmx(vcpu);
7910         int cpu;
7911         struct loaded_vmcs *vmcs02;
7912         bool ia32e;
7913
7914         if (!nested_vmx_check_permission(vcpu) ||
7915             !nested_vmx_check_vmcs12(vcpu))
7916                 return 1;
7917
7918         skip_emulated_instruction(vcpu);
7919         vmcs12 = get_vmcs12(vcpu);
7920
7921         if (enable_shadow_vmcs)
7922                 copy_shadow_to_vmcs12(vmx);
7923
7924         /*
7925          * The nested entry process starts with enforcing various prerequisites
7926          * on vmcs12 as required by the Intel SDM, and act appropriately when
7927          * they fail: As the SDM explains, some conditions should cause the
7928          * instruction to fail, while others will cause the instruction to seem
7929          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7930          * To speed up the normal (success) code path, we should avoid checking
7931          * for misconfigurations which will anyway be caught by the processor
7932          * when using the merged vmcs02.
7933          */
7934         if (vmcs12->launch_state == launch) {
7935                 nested_vmx_failValid(vcpu,
7936                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7937                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7938                 return 1;
7939         }
7940
7941         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7942                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7943                 return 1;
7944         }
7945
7946         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7947                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7948                 /*TODO: Also verify bits beyond physical address width are 0*/
7949                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7950                 return 1;
7951         }
7952
7953         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7954                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7955                 /*TODO: Also verify bits beyond physical address width are 0*/
7956                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7957                 return 1;
7958         }
7959
7960         if (vmcs12->vm_entry_msr_load_count > 0 ||
7961             vmcs12->vm_exit_msr_load_count > 0 ||
7962             vmcs12->vm_exit_msr_store_count > 0) {
7963                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7964                                     __func__);
7965                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7966                 return 1;
7967         }
7968
7969         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7970               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7971             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7972               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7973             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7974               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7975             !vmx_control_verify(vmcs12->vm_exit_controls,
7976               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7977             !vmx_control_verify(vmcs12->vm_entry_controls,
7978               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7979         {
7980                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7981                 return 1;
7982         }
7983
7984         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7985             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7986                 nested_vmx_failValid(vcpu,
7987                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7988                 return 1;
7989         }
7990
7991         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
7992             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7993                 nested_vmx_entry_failure(vcpu, vmcs12,
7994                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7995                 return 1;
7996         }
7997         if (vmcs12->vmcs_link_pointer != -1ull) {
7998                 nested_vmx_entry_failure(vcpu, vmcs12,
7999                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8000                 return 1;
8001         }
8002
8003         /*
8004          * If the load IA32_EFER VM-entry control is 1, the following checks
8005          * are performed on the field for the IA32_EFER MSR:
8006          * - Bits reserved in the IA32_EFER MSR must be 0.
8007          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8008          *   the IA-32e mode guest VM-exit control. It must also be identical
8009          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8010          *   CR0.PG) is 1.
8011          */
8012         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8013                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8014                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8015                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8016                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8017                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8018                         nested_vmx_entry_failure(vcpu, vmcs12,
8019                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8020                         return 1;
8021                 }
8022         }
8023
8024         /*
8025          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8026          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8027          * the values of the LMA and LME bits in the field must each be that of
8028          * the host address-space size VM-exit control.
8029          */
8030         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8031                 ia32e = (vmcs12->vm_exit_controls &
8032                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8033                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8034                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8035                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8036                         nested_vmx_entry_failure(vcpu, vmcs12,
8037                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8038                         return 1;
8039                 }
8040         }
8041
8042         /*
8043          * We're finally done with prerequisite checking, and can start with
8044          * the nested entry.
8045          */
8046
8047         vmcs02 = nested_get_current_vmcs02(vmx);
8048         if (!vmcs02)
8049                 return -ENOMEM;
8050
8051         enter_guest_mode(vcpu);
8052
8053         vmx->nested.nested_run_pending = 1;
8054
8055         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8056
8057         cpu = get_cpu();
8058         vmx->loaded_vmcs = vmcs02;
8059         vmx_vcpu_put(vcpu);
8060         vmx_vcpu_load(vcpu, cpu);
8061         vcpu->cpu = cpu;
8062         put_cpu();
8063
8064         vmx_segment_cache_clear(vmx);
8065
8066         vmcs12->launch_state = 1;
8067
8068         prepare_vmcs02(vcpu, vmcs12);
8069
8070         /*
8071          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8072          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8073          * returned as far as L1 is concerned. It will only return (and set
8074          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8075          */
8076         return 1;
8077 }
8078
8079 /*
8080  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8081  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8082  * This function returns the new value we should put in vmcs12.guest_cr0.
8083  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8084  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8085  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8086  *     didn't trap the bit, because if L1 did, so would L0).
8087  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8088  *     been modified by L2, and L1 knows it. So just leave the old value of
8089  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8090  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8091  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8092  *     changed these bits, and therefore they need to be updated, but L0
8093  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8094  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8095  */
8096 static inline unsigned long
8097 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8098 {
8099         return
8100         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8101         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8102         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8103                         vcpu->arch.cr0_guest_owned_bits));
8104 }
8105
8106 static inline unsigned long
8107 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8108 {
8109         return
8110         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8111         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8112         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8113                         vcpu->arch.cr4_guest_owned_bits));
8114 }
8115
8116 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8117                                        struct vmcs12 *vmcs12)
8118 {
8119         u32 idt_vectoring;
8120         unsigned int nr;
8121
8122         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8123                 nr = vcpu->arch.exception.nr;
8124                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8125
8126                 if (kvm_exception_is_soft(nr)) {
8127                         vmcs12->vm_exit_instruction_len =
8128                                 vcpu->arch.event_exit_inst_len;
8129                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8130                 } else
8131                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8132
8133                 if (vcpu->arch.exception.has_error_code) {
8134                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8135                         vmcs12->idt_vectoring_error_code =
8136                                 vcpu->arch.exception.error_code;
8137                 }
8138
8139                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8140         } else if (vcpu->arch.nmi_injected) {
8141                 vmcs12->idt_vectoring_info_field =
8142                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8143         } else if (vcpu->arch.interrupt.pending) {
8144                 nr = vcpu->arch.interrupt.nr;
8145                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8146
8147                 if (vcpu->arch.interrupt.soft) {
8148                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8149                         vmcs12->vm_entry_instruction_len =
8150                                 vcpu->arch.event_exit_inst_len;
8151                 } else
8152                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8153
8154                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8155         }
8156 }
8157
8158 /*
8159  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8160  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8161  * and this function updates it to reflect the changes to the guest state while
8162  * L2 was running (and perhaps made some exits which were handled directly by L0
8163  * without going back to L1), and to reflect the exit reason.
8164  * Note that we do not have to copy here all VMCS fields, just those that
8165  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8166  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8167  * which already writes to vmcs12 directly.
8168  */
8169 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8170 {
8171         /* update guest state fields: */
8172         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8173         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8174
8175         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8176         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8177         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8178         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8179
8180         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8181         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8182         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8183         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8184         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8185         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8186         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8187         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8188         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8189         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8190         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8191         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8192         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8193         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8194         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8195         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8196         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8197         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8198         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8199         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8200         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8201         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8202         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8203         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8204         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8205         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8206         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8207         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8208         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8209         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8210         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8211         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8212         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8213         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8214         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8215         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8216
8217         vmcs12->guest_interruptibility_info =
8218                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8219         vmcs12->guest_pending_dbg_exceptions =
8220                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8221
8222         if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8223             (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8224                 vmcs12->vmx_preemption_timer_value =
8225                         vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8226
8227         /*
8228          * In some cases (usually, nested EPT), L2 is allowed to change its
8229          * own CR3 without exiting. If it has changed it, we must keep it.
8230          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8231          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8232          *
8233          * Additionally, restore L2's PDPTR to vmcs12.
8234          */
8235         if (enable_ept) {
8236                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8237                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8238                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8239                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8240                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8241         }
8242
8243         vmcs12->vm_entry_controls =
8244                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8245                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8246
8247         /* TODO: These cannot have changed unless we have MSR bitmaps and
8248          * the relevant bit asks not to trap the change */
8249         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8250         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8251                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8252         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8253                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8254         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8255         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8256         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8257
8258         /* update exit information fields: */
8259
8260         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8261         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8262
8263         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8264         if ((vmcs12->vm_exit_intr_info &
8265              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8266             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8267                 vmcs12->vm_exit_intr_error_code =
8268                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8269         vmcs12->idt_vectoring_info_field = 0;
8270         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8271         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8272
8273         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8274                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8275                  * instead of reading the real value. */
8276                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8277
8278                 /*
8279                  * Transfer the event that L0 or L1 may wanted to inject into
8280                  * L2 to IDT_VECTORING_INFO_FIELD.
8281                  */
8282                 vmcs12_save_pending_event(vcpu, vmcs12);
8283         }
8284
8285         /*
8286          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8287          * preserved above and would only end up incorrectly in L1.
8288          */
8289         vcpu->arch.nmi_injected = false;
8290         kvm_clear_exception_queue(vcpu);
8291         kvm_clear_interrupt_queue(vcpu);
8292 }
8293
8294 /*
8295  * A part of what we need to when the nested L2 guest exits and we want to
8296  * run its L1 parent, is to reset L1's guest state to the host state specified
8297  * in vmcs12.
8298  * This function is to be called not only on normal nested exit, but also on
8299  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8300  * Failures During or After Loading Guest State").
8301  * This function should be called when the active VMCS is L1's (vmcs01).
8302  */
8303 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8304                                    struct vmcs12 *vmcs12)
8305 {
8306         struct kvm_segment seg;
8307
8308         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8309                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8310         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8311                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8312         else
8313                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8314         vmx_set_efer(vcpu, vcpu->arch.efer);
8315
8316         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8317         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8318         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8319         /*
8320          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8321          * actually changed, because it depends on the current state of
8322          * fpu_active (which may have changed).
8323          * Note that vmx_set_cr0 refers to efer set above.
8324          */
8325         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8326         /*
8327          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8328          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8329          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8330          */
8331         update_exception_bitmap(vcpu);
8332         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8333         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8334
8335         /*
8336          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8337          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8338          */
8339         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8340         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8341
8342         if (nested_cpu_has_ept(vmcs12))
8343                 nested_ept_uninit_mmu_context(vcpu);
8344
8345         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8346         kvm_mmu_reset_context(vcpu);
8347
8348         if (!enable_ept)
8349                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8350
8351         if (enable_vpid) {
8352                 /*
8353                  * Trivially support vpid by letting L2s share their parent
8354                  * L1's vpid. TODO: move to a more elaborate solution, giving
8355                  * each L2 its own vpid and exposing the vpid feature to L1.
8356                  */
8357                 vmx_flush_tlb(vcpu);
8358         }
8359
8360
8361         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8362         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8363         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8364         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8365         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8366
8367         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8368                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8369                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8370         }
8371         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8372                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8373                         vmcs12->host_ia32_perf_global_ctrl);
8374
8375         /* Set L1 segment info according to Intel SDM
8376             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8377         seg = (struct kvm_segment) {
8378                 .base = 0,
8379                 .limit = 0xFFFFFFFF,
8380                 .selector = vmcs12->host_cs_selector,
8381                 .type = 11,
8382                 .present = 1,
8383                 .s = 1,
8384                 .g = 1
8385         };
8386         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8387                 seg.l = 1;
8388         else
8389                 seg.db = 1;
8390         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8391         seg = (struct kvm_segment) {
8392                 .base = 0,
8393                 .limit = 0xFFFFFFFF,
8394                 .type = 3,
8395                 .present = 1,
8396                 .s = 1,
8397                 .db = 1,
8398                 .g = 1
8399         };
8400         seg.selector = vmcs12->host_ds_selector;
8401         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8402         seg.selector = vmcs12->host_es_selector;
8403         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8404         seg.selector = vmcs12->host_ss_selector;
8405         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8406         seg.selector = vmcs12->host_fs_selector;
8407         seg.base = vmcs12->host_fs_base;
8408         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8409         seg.selector = vmcs12->host_gs_selector;
8410         seg.base = vmcs12->host_gs_base;
8411         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8412         seg = (struct kvm_segment) {
8413                 .base = vmcs12->host_tr_base,
8414                 .limit = 0x67,
8415                 .selector = vmcs12->host_tr_selector,
8416                 .type = 11,
8417                 .present = 1
8418         };
8419         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8420
8421         kvm_set_dr(vcpu, 7, 0x400);
8422         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8423 }
8424
8425 /*
8426  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8427  * and modify vmcs12 to make it see what it would expect to see there if
8428  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8429  */
8430 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8431 {
8432         struct vcpu_vmx *vmx = to_vmx(vcpu);
8433         int cpu;
8434         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8435
8436         /* trying to cancel vmlaunch/vmresume is a bug */
8437         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8438
8439         leave_guest_mode(vcpu);
8440         prepare_vmcs12(vcpu, vmcs12);
8441
8442         cpu = get_cpu();
8443         vmx->loaded_vmcs = &vmx->vmcs01;
8444         vmx_vcpu_put(vcpu);
8445         vmx_vcpu_load(vcpu, cpu);
8446         vcpu->cpu = cpu;
8447         put_cpu();
8448
8449         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8450         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8451         vmx_segment_cache_clear(vmx);
8452
8453         /* if no vmcs02 cache requested, remove the one we used */
8454         if (VMCS02_POOL_SIZE == 0)
8455                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8456
8457         load_vmcs12_host_state(vcpu, vmcs12);
8458
8459         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8460         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8461
8462         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8463         vmx->host_rsp = 0;
8464
8465         /* Unpin physical memory we referred to in vmcs02 */
8466         if (vmx->nested.apic_access_page) {
8467                 nested_release_page(vmx->nested.apic_access_page);
8468                 vmx->nested.apic_access_page = 0;
8469         }
8470
8471         /*
8472          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8473          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8474          * success or failure flag accordingly.
8475          */
8476         if (unlikely(vmx->fail)) {
8477                 vmx->fail = 0;
8478                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8479         } else
8480                 nested_vmx_succeed(vcpu);
8481         if (enable_shadow_vmcs)
8482                 vmx->nested.sync_shadow_vmcs = true;
8483 }
8484
8485 /*
8486  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8487  * 23.7 "VM-entry failures during or after loading guest state" (this also
8488  * lists the acceptable exit-reason and exit-qualification parameters).
8489  * It should only be called before L2 actually succeeded to run, and when
8490  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8491  */
8492 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8493                         struct vmcs12 *vmcs12,
8494                         u32 reason, unsigned long qualification)
8495 {
8496         load_vmcs12_host_state(vcpu, vmcs12);
8497         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8498         vmcs12->exit_qualification = qualification;
8499         nested_vmx_succeed(vcpu);
8500         if (enable_shadow_vmcs)
8501                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8502 }
8503
8504 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8505                                struct x86_instruction_info *info,
8506                                enum x86_intercept_stage stage)
8507 {
8508         return X86EMUL_CONTINUE;
8509 }
8510
8511 static struct kvm_x86_ops vmx_x86_ops = {
8512         .cpu_has_kvm_support = cpu_has_kvm_support,
8513         .disabled_by_bios = vmx_disabled_by_bios,
8514         .hardware_setup = hardware_setup,
8515         .hardware_unsetup = hardware_unsetup,
8516         .check_processor_compatibility = vmx_check_processor_compat,
8517         .hardware_enable = hardware_enable,
8518         .hardware_disable = hardware_disable,
8519         .cpu_has_accelerated_tpr = report_flexpriority,
8520
8521         .vcpu_create = vmx_create_vcpu,
8522         .vcpu_free = vmx_free_vcpu,
8523         .vcpu_reset = vmx_vcpu_reset,
8524
8525         .prepare_guest_switch = vmx_save_host_state,
8526         .vcpu_load = vmx_vcpu_load,
8527         .vcpu_put = vmx_vcpu_put,
8528
8529         .update_db_bp_intercept = update_exception_bitmap,
8530         .get_msr = vmx_get_msr,
8531         .set_msr = vmx_set_msr,
8532         .get_segment_base = vmx_get_segment_base,
8533         .get_segment = vmx_get_segment,
8534         .set_segment = vmx_set_segment,
8535         .get_cpl = vmx_get_cpl,
8536         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8537         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8538         .decache_cr3 = vmx_decache_cr3,
8539         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8540         .set_cr0 = vmx_set_cr0,
8541         .set_cr3 = vmx_set_cr3,
8542         .set_cr4 = vmx_set_cr4,
8543         .set_efer = vmx_set_efer,
8544         .get_idt = vmx_get_idt,
8545         .set_idt = vmx_set_idt,
8546         .get_gdt = vmx_get_gdt,
8547         .set_gdt = vmx_set_gdt,
8548         .set_dr7 = vmx_set_dr7,
8549         .cache_reg = vmx_cache_reg,
8550         .get_rflags = vmx_get_rflags,
8551         .set_rflags = vmx_set_rflags,
8552         .fpu_activate = vmx_fpu_activate,
8553         .fpu_deactivate = vmx_fpu_deactivate,
8554
8555         .tlb_flush = vmx_flush_tlb,
8556
8557         .run = vmx_vcpu_run,
8558         .handle_exit = vmx_handle_exit,
8559         .skip_emulated_instruction = skip_emulated_instruction,
8560         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8561         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8562         .patch_hypercall = vmx_patch_hypercall,
8563         .set_irq = vmx_inject_irq,
8564         .set_nmi = vmx_inject_nmi,
8565         .queue_exception = vmx_queue_exception,
8566         .cancel_injection = vmx_cancel_injection,
8567         .interrupt_allowed = vmx_interrupt_allowed,
8568         .nmi_allowed = vmx_nmi_allowed,
8569         .get_nmi_mask = vmx_get_nmi_mask,
8570         .set_nmi_mask = vmx_set_nmi_mask,
8571         .enable_nmi_window = enable_nmi_window,
8572         .enable_irq_window = enable_irq_window,
8573         .update_cr8_intercept = update_cr8_intercept,
8574         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8575         .vm_has_apicv = vmx_vm_has_apicv,
8576         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8577         .hwapic_irr_update = vmx_hwapic_irr_update,
8578         .hwapic_isr_update = vmx_hwapic_isr_update,
8579         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8580         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8581
8582         .set_tss_addr = vmx_set_tss_addr,
8583         .get_tdp_level = get_ept_level,
8584         .get_mt_mask = vmx_get_mt_mask,
8585
8586         .get_exit_info = vmx_get_exit_info,
8587
8588         .get_lpage_level = vmx_get_lpage_level,
8589
8590         .cpuid_update = vmx_cpuid_update,
8591
8592         .rdtscp_supported = vmx_rdtscp_supported,
8593         .invpcid_supported = vmx_invpcid_supported,
8594
8595         .set_supported_cpuid = vmx_set_supported_cpuid,
8596
8597         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8598
8599         .set_tsc_khz = vmx_set_tsc_khz,
8600         .read_tsc_offset = vmx_read_tsc_offset,
8601         .write_tsc_offset = vmx_write_tsc_offset,
8602         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8603         .compute_tsc_offset = vmx_compute_tsc_offset,
8604         .read_l1_tsc = vmx_read_l1_tsc,
8605
8606         .set_tdp_cr3 = vmx_set_cr3,
8607
8608         .check_intercept = vmx_check_intercept,
8609         .handle_external_intr = vmx_handle_external_intr,
8610 };
8611
8612 static int __init vmx_init(void)
8613 {
8614         int r, i, msr;
8615
8616         rdmsrl_safe(MSR_EFER, &host_efer);
8617
8618         for (i = 0; i < NR_VMX_MSR; ++i)
8619                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8620
8621         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8622         if (!vmx_io_bitmap_a)
8623                 return -ENOMEM;
8624
8625         r = -ENOMEM;
8626
8627         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8628         if (!vmx_io_bitmap_b)
8629                 goto out;
8630
8631         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8632         if (!vmx_msr_bitmap_legacy)
8633                 goto out1;
8634
8635         vmx_msr_bitmap_legacy_x2apic =
8636                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8637         if (!vmx_msr_bitmap_legacy_x2apic)
8638                 goto out2;
8639
8640         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8641         if (!vmx_msr_bitmap_longmode)
8642                 goto out3;
8643
8644         vmx_msr_bitmap_longmode_x2apic =
8645                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8646         if (!vmx_msr_bitmap_longmode_x2apic)
8647                 goto out4;
8648         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8649         if (!vmx_vmread_bitmap)
8650                 goto out5;
8651
8652         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8653         if (!vmx_vmwrite_bitmap)
8654                 goto out6;
8655
8656         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8657         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8658         /* shadowed read/write fields */
8659         for (i = 0; i < max_shadow_read_write_fields; i++) {
8660                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8661                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8662         }
8663         /* shadowed read only fields */
8664         for (i = 0; i < max_shadow_read_only_fields; i++)
8665                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8666
8667         /*
8668          * Allow direct access to the PC debug port (it is often used for I/O
8669          * delays, but the vmexits simply slow things down).
8670          */
8671         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8672         clear_bit(0x80, vmx_io_bitmap_a);
8673
8674         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8675
8676         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8677         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8678
8679         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8680
8681         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8682                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8683         if (r)
8684                 goto out7;
8685
8686 #ifdef CONFIG_KEXEC
8687         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8688                            crash_vmclear_local_loaded_vmcss);
8689 #endif
8690
8691         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8692         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8693         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8694         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8695         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8696         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8697         memcpy(vmx_msr_bitmap_legacy_x2apic,
8698                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8699         memcpy(vmx_msr_bitmap_longmode_x2apic,
8700                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8701
8702         if (enable_apicv) {
8703                 for (msr = 0x800; msr <= 0x8ff; msr++)
8704                         vmx_disable_intercept_msr_read_x2apic(msr);
8705
8706                 /* According SDM, in x2apic mode, the whole id reg is used.
8707                  * But in KVM, it only use the highest eight bits. Need to
8708                  * intercept it */
8709                 vmx_enable_intercept_msr_read_x2apic(0x802);
8710                 /* TMCCT */
8711                 vmx_enable_intercept_msr_read_x2apic(0x839);
8712                 /* TPR */
8713                 vmx_disable_intercept_msr_write_x2apic(0x808);
8714                 /* EOI */
8715                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8716                 /* SELF-IPI */
8717                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8718         }
8719
8720         if (enable_ept) {
8721                 kvm_mmu_set_mask_ptes(0ull,
8722                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8723                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8724                         0ull, VMX_EPT_EXECUTABLE_MASK);
8725                 ept_set_mmio_spte_mask();
8726                 kvm_enable_tdp();
8727         } else
8728                 kvm_disable_tdp();
8729
8730         return 0;
8731
8732 out7:
8733         free_page((unsigned long)vmx_vmwrite_bitmap);
8734 out6:
8735         free_page((unsigned long)vmx_vmread_bitmap);
8736 out5:
8737         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8738 out4:
8739         free_page((unsigned long)vmx_msr_bitmap_longmode);
8740 out3:
8741         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8742 out2:
8743         free_page((unsigned long)vmx_msr_bitmap_legacy);
8744 out1:
8745         free_page((unsigned long)vmx_io_bitmap_b);
8746 out:
8747         free_page((unsigned long)vmx_io_bitmap_a);
8748         return r;
8749 }
8750
8751 static void __exit vmx_exit(void)
8752 {
8753         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8754         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8755         free_page((unsigned long)vmx_msr_bitmap_legacy);
8756         free_page((unsigned long)vmx_msr_bitmap_longmode);
8757         free_page((unsigned long)vmx_io_bitmap_b);
8758         free_page((unsigned long)vmx_io_bitmap_a);
8759         free_page((unsigned long)vmx_vmwrite_bitmap);
8760         free_page((unsigned long)vmx_vmread_bitmap);
8761
8762 #ifdef CONFIG_KEXEC
8763         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8764         synchronize_rcu();
8765 #endif
8766
8767         kvm_exit();
8768 }
8769
8770 module_init(vmx_init)
8771 module_exit(vmx_exit)