7661eb17193643b0a5b89446f4a8491b1bb7a04c
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         u32 vm_entry_controls_shadow;
422         u32 vm_exit_controls_shadow;
423         /*
424          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
425          * non-nested (L1) guest, it always points to vmcs01. For a nested
426          * guest (L2), it points to a different VMCS.
427          */
428         struct loaded_vmcs    vmcs01;
429         struct loaded_vmcs   *loaded_vmcs;
430         bool                  __launched; /* temporary, used in vmx_vcpu_run */
431         struct msr_autoload {
432                 unsigned nr;
433                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
434                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
435         } msr_autoload;
436         struct {
437                 int           loaded;
438                 u16           fs_sel, gs_sel, ldt_sel;
439 #ifdef CONFIG_X86_64
440                 u16           ds_sel, es_sel;
441 #endif
442                 int           gs_ldt_reload_needed;
443                 int           fs_reload_needed;
444         } host_state;
445         struct {
446                 int vm86_active;
447                 ulong save_rflags;
448                 struct kvm_segment segs[8];
449         } rmode;
450         struct {
451                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
452                 struct kvm_save_segment {
453                         u16 selector;
454                         unsigned long base;
455                         u32 limit;
456                         u32 ar;
457                 } seg[8];
458         } segment_cache;
459         int vpid;
460         bool emulation_required;
461
462         /* Support for vnmi-less CPUs */
463         int soft_vnmi_blocked;
464         ktime_t entry_time;
465         s64 vnmi_blocked_time;
466         u32 exit_reason;
467
468         bool rdtscp_enabled;
469
470         /* Posted interrupt descriptor */
471         struct pi_desc pi_desc;
472
473         /* Support for a guest hypervisor (nested VMX) */
474         struct nested_vmx nested;
475 };
476
477 enum segment_cache_field {
478         SEG_FIELD_SEL = 0,
479         SEG_FIELD_BASE = 1,
480         SEG_FIELD_LIMIT = 2,
481         SEG_FIELD_AR = 3,
482
483         SEG_FIELD_NR = 4
484 };
485
486 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
487 {
488         return container_of(vcpu, struct vcpu_vmx, vcpu);
489 }
490
491 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
492 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
493 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
494                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
495
496
497 static const unsigned long shadow_read_only_fields[] = {
498         /*
499          * We do NOT shadow fields that are modified when L0
500          * traps and emulates any vmx instruction (e.g. VMPTRLD,
501          * VMXON...) executed by L1.
502          * For example, VM_INSTRUCTION_ERROR is read
503          * by L1 if a vmx instruction fails (part of the error path).
504          * Note the code assumes this logic. If for some reason
505          * we start shadowing these fields then we need to
506          * force a shadow sync when L0 emulates vmx instructions
507          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
508          * by nested_vmx_failValid)
509          */
510         VM_EXIT_REASON,
511         VM_EXIT_INTR_INFO,
512         VM_EXIT_INSTRUCTION_LEN,
513         IDT_VECTORING_INFO_FIELD,
514         IDT_VECTORING_ERROR_CODE,
515         VM_EXIT_INTR_ERROR_CODE,
516         EXIT_QUALIFICATION,
517         GUEST_LINEAR_ADDRESS,
518         GUEST_PHYSICAL_ADDRESS
519 };
520 static const int max_shadow_read_only_fields =
521         ARRAY_SIZE(shadow_read_only_fields);
522
523 static const unsigned long shadow_read_write_fields[] = {
524         GUEST_RIP,
525         GUEST_RSP,
526         GUEST_CR0,
527         GUEST_CR3,
528         GUEST_CR4,
529         GUEST_INTERRUPTIBILITY_INFO,
530         GUEST_RFLAGS,
531         GUEST_CS_SELECTOR,
532         GUEST_CS_AR_BYTES,
533         GUEST_CS_LIMIT,
534         GUEST_CS_BASE,
535         GUEST_ES_BASE,
536         CR0_GUEST_HOST_MASK,
537         CR0_READ_SHADOW,
538         CR4_READ_SHADOW,
539         TSC_OFFSET,
540         EXCEPTION_BITMAP,
541         CPU_BASED_VM_EXEC_CONTROL,
542         VM_ENTRY_EXCEPTION_ERROR_CODE,
543         VM_ENTRY_INTR_INFO_FIELD,
544         VM_ENTRY_INSTRUCTION_LEN,
545         VM_ENTRY_EXCEPTION_ERROR_CODE,
546         HOST_FS_BASE,
547         HOST_GS_BASE,
548         HOST_FS_SELECTOR,
549         HOST_GS_SELECTOR
550 };
551 static const int max_shadow_read_write_fields =
552         ARRAY_SIZE(shadow_read_write_fields);
553
554 static const unsigned short vmcs_field_to_offset_table[] = {
555         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
556         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
557         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
558         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
559         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
560         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
561         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
562         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
563         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
564         FIELD(HOST_ES_SELECTOR, host_es_selector),
565         FIELD(HOST_CS_SELECTOR, host_cs_selector),
566         FIELD(HOST_SS_SELECTOR, host_ss_selector),
567         FIELD(HOST_DS_SELECTOR, host_ds_selector),
568         FIELD(HOST_FS_SELECTOR, host_fs_selector),
569         FIELD(HOST_GS_SELECTOR, host_gs_selector),
570         FIELD(HOST_TR_SELECTOR, host_tr_selector),
571         FIELD64(IO_BITMAP_A, io_bitmap_a),
572         FIELD64(IO_BITMAP_B, io_bitmap_b),
573         FIELD64(MSR_BITMAP, msr_bitmap),
574         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
575         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
576         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
577         FIELD64(TSC_OFFSET, tsc_offset),
578         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
579         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
580         FIELD64(EPT_POINTER, ept_pointer),
581         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
582         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
583         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
584         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
585         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
586         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
587         FIELD64(GUEST_PDPTR0, guest_pdptr0),
588         FIELD64(GUEST_PDPTR1, guest_pdptr1),
589         FIELD64(GUEST_PDPTR2, guest_pdptr2),
590         FIELD64(GUEST_PDPTR3, guest_pdptr3),
591         FIELD64(HOST_IA32_PAT, host_ia32_pat),
592         FIELD64(HOST_IA32_EFER, host_ia32_efer),
593         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
594         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
595         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
596         FIELD(EXCEPTION_BITMAP, exception_bitmap),
597         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
598         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
599         FIELD(CR3_TARGET_COUNT, cr3_target_count),
600         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
601         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
602         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
603         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
604         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
605         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
606         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
607         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
608         FIELD(TPR_THRESHOLD, tpr_threshold),
609         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
610         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
611         FIELD(VM_EXIT_REASON, vm_exit_reason),
612         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
613         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
614         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
615         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
616         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
617         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
618         FIELD(GUEST_ES_LIMIT, guest_es_limit),
619         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
620         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
621         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
622         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
623         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
624         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
625         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
626         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
627         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
628         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
629         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
630         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
631         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
632         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
633         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
634         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
635         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
636         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
637         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
638         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
639         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
640         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
641         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
642         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
643         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
644         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
645         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
646         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
647         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
648         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
649         FIELD(EXIT_QUALIFICATION, exit_qualification),
650         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
651         FIELD(GUEST_CR0, guest_cr0),
652         FIELD(GUEST_CR3, guest_cr3),
653         FIELD(GUEST_CR4, guest_cr4),
654         FIELD(GUEST_ES_BASE, guest_es_base),
655         FIELD(GUEST_CS_BASE, guest_cs_base),
656         FIELD(GUEST_SS_BASE, guest_ss_base),
657         FIELD(GUEST_DS_BASE, guest_ds_base),
658         FIELD(GUEST_FS_BASE, guest_fs_base),
659         FIELD(GUEST_GS_BASE, guest_gs_base),
660         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
661         FIELD(GUEST_TR_BASE, guest_tr_base),
662         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
663         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
664         FIELD(GUEST_DR7, guest_dr7),
665         FIELD(GUEST_RSP, guest_rsp),
666         FIELD(GUEST_RIP, guest_rip),
667         FIELD(GUEST_RFLAGS, guest_rflags),
668         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
669         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
670         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
671         FIELD(HOST_CR0, host_cr0),
672         FIELD(HOST_CR3, host_cr3),
673         FIELD(HOST_CR4, host_cr4),
674         FIELD(HOST_FS_BASE, host_fs_base),
675         FIELD(HOST_GS_BASE, host_gs_base),
676         FIELD(HOST_TR_BASE, host_tr_base),
677         FIELD(HOST_GDTR_BASE, host_gdtr_base),
678         FIELD(HOST_IDTR_BASE, host_idtr_base),
679         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
680         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
681         FIELD(HOST_RSP, host_rsp),
682         FIELD(HOST_RIP, host_rip),
683 };
684 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
685
686 static inline short vmcs_field_to_offset(unsigned long field)
687 {
688         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
689                 return -1;
690         return vmcs_field_to_offset_table[field];
691 }
692
693 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
694 {
695         return to_vmx(vcpu)->nested.current_vmcs12;
696 }
697
698 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
699 {
700         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
701         if (is_error_page(page))
702                 return NULL;
703
704         return page;
705 }
706
707 static void nested_release_page(struct page *page)
708 {
709         kvm_release_page_dirty(page);
710 }
711
712 static void nested_release_page_clean(struct page *page)
713 {
714         kvm_release_page_clean(page);
715 }
716
717 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
718 static u64 construct_eptp(unsigned long root_hpa);
719 static void kvm_cpu_vmxon(u64 addr);
720 static void kvm_cpu_vmxoff(void);
721 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
722 static void vmx_set_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static void vmx_get_segment(struct kvm_vcpu *vcpu,
725                             struct kvm_segment *var, int seg);
726 static bool guest_state_valid(struct kvm_vcpu *vcpu);
727 static u32 vmx_segment_access_rights(struct kvm_segment *var);
728 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
729 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
730 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
731
732 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
733 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
734 /*
735  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
736  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
737  */
738 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
739 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
740
741 static unsigned long *vmx_io_bitmap_a;
742 static unsigned long *vmx_io_bitmap_b;
743 static unsigned long *vmx_msr_bitmap_legacy;
744 static unsigned long *vmx_msr_bitmap_longmode;
745 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
746 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
747 static unsigned long *vmx_vmread_bitmap;
748 static unsigned long *vmx_vmwrite_bitmap;
749
750 static bool cpu_has_load_ia32_efer;
751 static bool cpu_has_load_perf_global_ctrl;
752
753 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
754 static DEFINE_SPINLOCK(vmx_vpid_lock);
755
756 static struct vmcs_config {
757         int size;
758         int order;
759         u32 revision_id;
760         u32 pin_based_exec_ctrl;
761         u32 cpu_based_exec_ctrl;
762         u32 cpu_based_2nd_exec_ctrl;
763         u32 vmexit_ctrl;
764         u32 vmentry_ctrl;
765 } vmcs_config;
766
767 static struct vmx_capability {
768         u32 ept;
769         u32 vpid;
770 } vmx_capability;
771
772 #define VMX_SEGMENT_FIELD(seg)                                  \
773         [VCPU_SREG_##seg] = {                                   \
774                 .selector = GUEST_##seg##_SELECTOR,             \
775                 .base = GUEST_##seg##_BASE,                     \
776                 .limit = GUEST_##seg##_LIMIT,                   \
777                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
778         }
779
780 static const struct kvm_vmx_segment_field {
781         unsigned selector;
782         unsigned base;
783         unsigned limit;
784         unsigned ar_bytes;
785 } kvm_vmx_segment_fields[] = {
786         VMX_SEGMENT_FIELD(CS),
787         VMX_SEGMENT_FIELD(DS),
788         VMX_SEGMENT_FIELD(ES),
789         VMX_SEGMENT_FIELD(FS),
790         VMX_SEGMENT_FIELD(GS),
791         VMX_SEGMENT_FIELD(SS),
792         VMX_SEGMENT_FIELD(TR),
793         VMX_SEGMENT_FIELD(LDTR),
794 };
795
796 static u64 host_efer;
797
798 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
799
800 /*
801  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
802  * away by decrementing the array size.
803  */
804 static const u32 vmx_msr_index[] = {
805 #ifdef CONFIG_X86_64
806         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
807 #endif
808         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
809 };
810 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
811
812 static inline bool is_page_fault(u32 intr_info)
813 {
814         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
815                              INTR_INFO_VALID_MASK)) ==
816                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
817 }
818
819 static inline bool is_no_device(u32 intr_info)
820 {
821         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
822                              INTR_INFO_VALID_MASK)) ==
823                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
824 }
825
826 static inline bool is_invalid_opcode(u32 intr_info)
827 {
828         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
829                              INTR_INFO_VALID_MASK)) ==
830                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
831 }
832
833 static inline bool is_external_interrupt(u32 intr_info)
834 {
835         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
836                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
837 }
838
839 static inline bool is_machine_check(u32 intr_info)
840 {
841         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842                              INTR_INFO_VALID_MASK)) ==
843                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
844 }
845
846 static inline bool cpu_has_vmx_msr_bitmap(void)
847 {
848         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
849 }
850
851 static inline bool cpu_has_vmx_tpr_shadow(void)
852 {
853         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
854 }
855
856 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
857 {
858         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
859 }
860
861 static inline bool cpu_has_secondary_exec_ctrls(void)
862 {
863         return vmcs_config.cpu_based_exec_ctrl &
864                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
865 }
866
867 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
868 {
869         return vmcs_config.cpu_based_2nd_exec_ctrl &
870                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
871 }
872
873 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
874 {
875         return vmcs_config.cpu_based_2nd_exec_ctrl &
876                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
877 }
878
879 static inline bool cpu_has_vmx_apic_register_virt(void)
880 {
881         return vmcs_config.cpu_based_2nd_exec_ctrl &
882                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
883 }
884
885 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
886 {
887         return vmcs_config.cpu_based_2nd_exec_ctrl &
888                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
889 }
890
891 static inline bool cpu_has_vmx_posted_intr(void)
892 {
893         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
894 }
895
896 static inline bool cpu_has_vmx_apicv(void)
897 {
898         return cpu_has_vmx_apic_register_virt() &&
899                 cpu_has_vmx_virtual_intr_delivery() &&
900                 cpu_has_vmx_posted_intr();
901 }
902
903 static inline bool cpu_has_vmx_flexpriority(void)
904 {
905         return cpu_has_vmx_tpr_shadow() &&
906                 cpu_has_vmx_virtualize_apic_accesses();
907 }
908
909 static inline bool cpu_has_vmx_ept_execute_only(void)
910 {
911         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
912 }
913
914 static inline bool cpu_has_vmx_eptp_uncacheable(void)
915 {
916         return vmx_capability.ept & VMX_EPTP_UC_BIT;
917 }
918
919 static inline bool cpu_has_vmx_eptp_writeback(void)
920 {
921         return vmx_capability.ept & VMX_EPTP_WB_BIT;
922 }
923
924 static inline bool cpu_has_vmx_ept_2m_page(void)
925 {
926         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
927 }
928
929 static inline bool cpu_has_vmx_ept_1g_page(void)
930 {
931         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
932 }
933
934 static inline bool cpu_has_vmx_ept_4levels(void)
935 {
936         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
937 }
938
939 static inline bool cpu_has_vmx_ept_ad_bits(void)
940 {
941         return vmx_capability.ept & VMX_EPT_AD_BIT;
942 }
943
944 static inline bool cpu_has_vmx_invept_context(void)
945 {
946         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
947 }
948
949 static inline bool cpu_has_vmx_invept_global(void)
950 {
951         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
952 }
953
954 static inline bool cpu_has_vmx_invvpid_single(void)
955 {
956         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
957 }
958
959 static inline bool cpu_has_vmx_invvpid_global(void)
960 {
961         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
962 }
963
964 static inline bool cpu_has_vmx_ept(void)
965 {
966         return vmcs_config.cpu_based_2nd_exec_ctrl &
967                 SECONDARY_EXEC_ENABLE_EPT;
968 }
969
970 static inline bool cpu_has_vmx_unrestricted_guest(void)
971 {
972         return vmcs_config.cpu_based_2nd_exec_ctrl &
973                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
974 }
975
976 static inline bool cpu_has_vmx_ple(void)
977 {
978         return vmcs_config.cpu_based_2nd_exec_ctrl &
979                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
980 }
981
982 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
983 {
984         return flexpriority_enabled && irqchip_in_kernel(kvm);
985 }
986
987 static inline bool cpu_has_vmx_vpid(void)
988 {
989         return vmcs_config.cpu_based_2nd_exec_ctrl &
990                 SECONDARY_EXEC_ENABLE_VPID;
991 }
992
993 static inline bool cpu_has_vmx_rdtscp(void)
994 {
995         return vmcs_config.cpu_based_2nd_exec_ctrl &
996                 SECONDARY_EXEC_RDTSCP;
997 }
998
999 static inline bool cpu_has_vmx_invpcid(void)
1000 {
1001         return vmcs_config.cpu_based_2nd_exec_ctrl &
1002                 SECONDARY_EXEC_ENABLE_INVPCID;
1003 }
1004
1005 static inline bool cpu_has_virtual_nmis(void)
1006 {
1007         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1008 }
1009
1010 static inline bool cpu_has_vmx_wbinvd_exit(void)
1011 {
1012         return vmcs_config.cpu_based_2nd_exec_ctrl &
1013                 SECONDARY_EXEC_WBINVD_EXITING;
1014 }
1015
1016 static inline bool cpu_has_vmx_shadow_vmcs(void)
1017 {
1018         u64 vmx_msr;
1019         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1020         /* check if the cpu supports writing r/o exit information fields */
1021         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1022                 return false;
1023
1024         return vmcs_config.cpu_based_2nd_exec_ctrl &
1025                 SECONDARY_EXEC_SHADOW_VMCS;
1026 }
1027
1028 static inline bool report_flexpriority(void)
1029 {
1030         return flexpriority_enabled;
1031 }
1032
1033 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1034 {
1035         return vmcs12->cpu_based_vm_exec_control & bit;
1036 }
1037
1038 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1039 {
1040         return (vmcs12->cpu_based_vm_exec_control &
1041                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1042                 (vmcs12->secondary_vm_exec_control & bit);
1043 }
1044
1045 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1046 {
1047         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1048 }
1049
1050 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1051 {
1052         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1053 }
1054
1055 static inline bool is_exception(u32 intr_info)
1056 {
1057         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1058                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1059 }
1060
1061 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1062 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1063                         struct vmcs12 *vmcs12,
1064                         u32 reason, unsigned long qualification);
1065
1066 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1067 {
1068         int i;
1069
1070         for (i = 0; i < vmx->nmsrs; ++i)
1071                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1072                         return i;
1073         return -1;
1074 }
1075
1076 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1077 {
1078     struct {
1079         u64 vpid : 16;
1080         u64 rsvd : 48;
1081         u64 gva;
1082     } operand = { vpid, 0, gva };
1083
1084     asm volatile (__ex(ASM_VMX_INVVPID)
1085                   /* CF==1 or ZF==1 --> rc = -1 */
1086                   "; ja 1f ; ud2 ; 1:"
1087                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1088 }
1089
1090 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1091 {
1092         struct {
1093                 u64 eptp, gpa;
1094         } operand = {eptp, gpa};
1095
1096         asm volatile (__ex(ASM_VMX_INVEPT)
1097                         /* CF==1 or ZF==1 --> rc = -1 */
1098                         "; ja 1f ; ud2 ; 1:\n"
1099                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1100 }
1101
1102 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1103 {
1104         int i;
1105
1106         i = __find_msr_index(vmx, msr);
1107         if (i >= 0)
1108                 return &vmx->guest_msrs[i];
1109         return NULL;
1110 }
1111
1112 static void vmcs_clear(struct vmcs *vmcs)
1113 {
1114         u64 phys_addr = __pa(vmcs);
1115         u8 error;
1116
1117         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1118                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1119                       : "cc", "memory");
1120         if (error)
1121                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1122                        vmcs, phys_addr);
1123 }
1124
1125 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1126 {
1127         vmcs_clear(loaded_vmcs->vmcs);
1128         loaded_vmcs->cpu = -1;
1129         loaded_vmcs->launched = 0;
1130 }
1131
1132 static void vmcs_load(struct vmcs *vmcs)
1133 {
1134         u64 phys_addr = __pa(vmcs);
1135         u8 error;
1136
1137         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1138                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1139                         : "cc", "memory");
1140         if (error)
1141                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1142                        vmcs, phys_addr);
1143 }
1144
1145 #ifdef CONFIG_KEXEC
1146 /*
1147  * This bitmap is used to indicate whether the vmclear
1148  * operation is enabled on all cpus. All disabled by
1149  * default.
1150  */
1151 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1152
1153 static inline void crash_enable_local_vmclear(int cpu)
1154 {
1155         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1156 }
1157
1158 static inline void crash_disable_local_vmclear(int cpu)
1159 {
1160         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1161 }
1162
1163 static inline int crash_local_vmclear_enabled(int cpu)
1164 {
1165         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1166 }
1167
1168 static void crash_vmclear_local_loaded_vmcss(void)
1169 {
1170         int cpu = raw_smp_processor_id();
1171         struct loaded_vmcs *v;
1172
1173         if (!crash_local_vmclear_enabled(cpu))
1174                 return;
1175
1176         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1177                             loaded_vmcss_on_cpu_link)
1178                 vmcs_clear(v->vmcs);
1179 }
1180 #else
1181 static inline void crash_enable_local_vmclear(int cpu) { }
1182 static inline void crash_disable_local_vmclear(int cpu) { }
1183 #endif /* CONFIG_KEXEC */
1184
1185 static void __loaded_vmcs_clear(void *arg)
1186 {
1187         struct loaded_vmcs *loaded_vmcs = arg;
1188         int cpu = raw_smp_processor_id();
1189
1190         if (loaded_vmcs->cpu != cpu)
1191                 return; /* vcpu migration can race with cpu offline */
1192         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1193                 per_cpu(current_vmcs, cpu) = NULL;
1194         crash_disable_local_vmclear(cpu);
1195         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1196
1197         /*
1198          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1199          * is before setting loaded_vmcs->vcpu to -1 which is done in
1200          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1201          * then adds the vmcs into percpu list before it is deleted.
1202          */
1203         smp_wmb();
1204
1205         loaded_vmcs_init(loaded_vmcs);
1206         crash_enable_local_vmclear(cpu);
1207 }
1208
1209 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1210 {
1211         int cpu = loaded_vmcs->cpu;
1212
1213         if (cpu != -1)
1214                 smp_call_function_single(cpu,
1215                          __loaded_vmcs_clear, loaded_vmcs, 1);
1216 }
1217
1218 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1219 {
1220         if (vmx->vpid == 0)
1221                 return;
1222
1223         if (cpu_has_vmx_invvpid_single())
1224                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1225 }
1226
1227 static inline void vpid_sync_vcpu_global(void)
1228 {
1229         if (cpu_has_vmx_invvpid_global())
1230                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1231 }
1232
1233 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1234 {
1235         if (cpu_has_vmx_invvpid_single())
1236                 vpid_sync_vcpu_single(vmx);
1237         else
1238                 vpid_sync_vcpu_global();
1239 }
1240
1241 static inline void ept_sync_global(void)
1242 {
1243         if (cpu_has_vmx_invept_global())
1244                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1245 }
1246
1247 static inline void ept_sync_context(u64 eptp)
1248 {
1249         if (enable_ept) {
1250                 if (cpu_has_vmx_invept_context())
1251                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1252                 else
1253                         ept_sync_global();
1254         }
1255 }
1256
1257 static __always_inline unsigned long vmcs_readl(unsigned long field)
1258 {
1259         unsigned long value;
1260
1261         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1262                       : "=a"(value) : "d"(field) : "cc");
1263         return value;
1264 }
1265
1266 static __always_inline u16 vmcs_read16(unsigned long field)
1267 {
1268         return vmcs_readl(field);
1269 }
1270
1271 static __always_inline u32 vmcs_read32(unsigned long field)
1272 {
1273         return vmcs_readl(field);
1274 }
1275
1276 static __always_inline u64 vmcs_read64(unsigned long field)
1277 {
1278 #ifdef CONFIG_X86_64
1279         return vmcs_readl(field);
1280 #else
1281         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1282 #endif
1283 }
1284
1285 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1286 {
1287         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1288                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1289         dump_stack();
1290 }
1291
1292 static void vmcs_writel(unsigned long field, unsigned long value)
1293 {
1294         u8 error;
1295
1296         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1297                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1298         if (unlikely(error))
1299                 vmwrite_error(field, value);
1300 }
1301
1302 static void vmcs_write16(unsigned long field, u16 value)
1303 {
1304         vmcs_writel(field, value);
1305 }
1306
1307 static void vmcs_write32(unsigned long field, u32 value)
1308 {
1309         vmcs_writel(field, value);
1310 }
1311
1312 static void vmcs_write64(unsigned long field, u64 value)
1313 {
1314         vmcs_writel(field, value);
1315 #ifndef CONFIG_X86_64
1316         asm volatile ("");
1317         vmcs_writel(field+1, value >> 32);
1318 #endif
1319 }
1320
1321 static void vmcs_clear_bits(unsigned long field, u32 mask)
1322 {
1323         vmcs_writel(field, vmcs_readl(field) & ~mask);
1324 }
1325
1326 static void vmcs_set_bits(unsigned long field, u32 mask)
1327 {
1328         vmcs_writel(field, vmcs_readl(field) | mask);
1329 }
1330
1331 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1332 {
1333         vmcs_write32(VM_ENTRY_CONTROLS, val);
1334         vmx->vm_entry_controls_shadow = val;
1335 }
1336
1337 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1338 {
1339         if (vmx->vm_entry_controls_shadow != val)
1340                 vm_entry_controls_init(vmx, val);
1341 }
1342
1343 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1344 {
1345         return vmx->vm_entry_controls_shadow;
1346 }
1347
1348
1349 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1350 {
1351         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1352 }
1353
1354 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1355 {
1356         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1357 }
1358
1359 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1360 {
1361         vmcs_write32(VM_EXIT_CONTROLS, val);
1362         vmx->vm_exit_controls_shadow = val;
1363 }
1364
1365 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1366 {
1367         if (vmx->vm_exit_controls_shadow != val)
1368                 vm_exit_controls_init(vmx, val);
1369 }
1370
1371 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1372 {
1373         return vmx->vm_exit_controls_shadow;
1374 }
1375
1376
1377 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1378 {
1379         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1380 }
1381
1382 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1383 {
1384         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1385 }
1386
1387 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1388 {
1389         vmx->segment_cache.bitmask = 0;
1390 }
1391
1392 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1393                                        unsigned field)
1394 {
1395         bool ret;
1396         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1397
1398         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1399                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1400                 vmx->segment_cache.bitmask = 0;
1401         }
1402         ret = vmx->segment_cache.bitmask & mask;
1403         vmx->segment_cache.bitmask |= mask;
1404         return ret;
1405 }
1406
1407 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1408 {
1409         u16 *p = &vmx->segment_cache.seg[seg].selector;
1410
1411         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1412                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1413         return *p;
1414 }
1415
1416 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1417 {
1418         ulong *p = &vmx->segment_cache.seg[seg].base;
1419
1420         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1421                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1422         return *p;
1423 }
1424
1425 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1426 {
1427         u32 *p = &vmx->segment_cache.seg[seg].limit;
1428
1429         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1430                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1431         return *p;
1432 }
1433
1434 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1435 {
1436         u32 *p = &vmx->segment_cache.seg[seg].ar;
1437
1438         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1439                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1440         return *p;
1441 }
1442
1443 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1444 {
1445         u32 eb;
1446
1447         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1448              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1449         if ((vcpu->guest_debug &
1450              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1451             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1452                 eb |= 1u << BP_VECTOR;
1453         if (to_vmx(vcpu)->rmode.vm86_active)
1454                 eb = ~0;
1455         if (enable_ept)
1456                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1457         if (vcpu->fpu_active)
1458                 eb &= ~(1u << NM_VECTOR);
1459
1460         /* When we are running a nested L2 guest and L1 specified for it a
1461          * certain exception bitmap, we must trap the same exceptions and pass
1462          * them to L1. When running L2, we will only handle the exceptions
1463          * specified above if L1 did not want them.
1464          */
1465         if (is_guest_mode(vcpu))
1466                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1467
1468         vmcs_write32(EXCEPTION_BITMAP, eb);
1469 }
1470
1471 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1472                 unsigned long entry, unsigned long exit)
1473 {
1474         vm_entry_controls_clearbit(vmx, entry);
1475         vm_exit_controls_clearbit(vmx, exit);
1476 }
1477
1478 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1479 {
1480         unsigned i;
1481         struct msr_autoload *m = &vmx->msr_autoload;
1482
1483         switch (msr) {
1484         case MSR_EFER:
1485                 if (cpu_has_load_ia32_efer) {
1486                         clear_atomic_switch_msr_special(vmx,
1487                                         VM_ENTRY_LOAD_IA32_EFER,
1488                                         VM_EXIT_LOAD_IA32_EFER);
1489                         return;
1490                 }
1491                 break;
1492         case MSR_CORE_PERF_GLOBAL_CTRL:
1493                 if (cpu_has_load_perf_global_ctrl) {
1494                         clear_atomic_switch_msr_special(vmx,
1495                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1496                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1497                         return;
1498                 }
1499                 break;
1500         }
1501
1502         for (i = 0; i < m->nr; ++i)
1503                 if (m->guest[i].index == msr)
1504                         break;
1505
1506         if (i == m->nr)
1507                 return;
1508         --m->nr;
1509         m->guest[i] = m->guest[m->nr];
1510         m->host[i] = m->host[m->nr];
1511         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1512         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1513 }
1514
1515 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1516                 unsigned long entry, unsigned long exit,
1517                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1518                 u64 guest_val, u64 host_val)
1519 {
1520         vmcs_write64(guest_val_vmcs, guest_val);
1521         vmcs_write64(host_val_vmcs, host_val);
1522         vm_entry_controls_setbit(vmx, entry);
1523         vm_exit_controls_setbit(vmx, exit);
1524 }
1525
1526 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1527                                   u64 guest_val, u64 host_val)
1528 {
1529         unsigned i;
1530         struct msr_autoload *m = &vmx->msr_autoload;
1531
1532         switch (msr) {
1533         case MSR_EFER:
1534                 if (cpu_has_load_ia32_efer) {
1535                         add_atomic_switch_msr_special(vmx,
1536                                         VM_ENTRY_LOAD_IA32_EFER,
1537                                         VM_EXIT_LOAD_IA32_EFER,
1538                                         GUEST_IA32_EFER,
1539                                         HOST_IA32_EFER,
1540                                         guest_val, host_val);
1541                         return;
1542                 }
1543                 break;
1544         case MSR_CORE_PERF_GLOBAL_CTRL:
1545                 if (cpu_has_load_perf_global_ctrl) {
1546                         add_atomic_switch_msr_special(vmx,
1547                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1548                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1549                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1550                                         HOST_IA32_PERF_GLOBAL_CTRL,
1551                                         guest_val, host_val);
1552                         return;
1553                 }
1554                 break;
1555         }
1556
1557         for (i = 0; i < m->nr; ++i)
1558                 if (m->guest[i].index == msr)
1559                         break;
1560
1561         if (i == NR_AUTOLOAD_MSRS) {
1562                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1563                                 "Can't add msr %x\n", msr);
1564                 return;
1565         } else if (i == m->nr) {
1566                 ++m->nr;
1567                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1568                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1569         }
1570
1571         m->guest[i].index = msr;
1572         m->guest[i].value = guest_val;
1573         m->host[i].index = msr;
1574         m->host[i].value = host_val;
1575 }
1576
1577 static void reload_tss(void)
1578 {
1579         /*
1580          * VT restores TR but not its size.  Useless.
1581          */
1582         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1583         struct desc_struct *descs;
1584
1585         descs = (void *)gdt->address;
1586         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1587         load_TR_desc();
1588 }
1589
1590 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1591 {
1592         u64 guest_efer;
1593         u64 ignore_bits;
1594
1595         guest_efer = vmx->vcpu.arch.efer;
1596
1597         /*
1598          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1599          * outside long mode
1600          */
1601         ignore_bits = EFER_NX | EFER_SCE;
1602 #ifdef CONFIG_X86_64
1603         ignore_bits |= EFER_LMA | EFER_LME;
1604         /* SCE is meaningful only in long mode on Intel */
1605         if (guest_efer & EFER_LMA)
1606                 ignore_bits &= ~(u64)EFER_SCE;
1607 #endif
1608         guest_efer &= ~ignore_bits;
1609         guest_efer |= host_efer & ignore_bits;
1610         vmx->guest_msrs[efer_offset].data = guest_efer;
1611         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1612
1613         clear_atomic_switch_msr(vmx, MSR_EFER);
1614         /* On ept, can't emulate nx, and must switch nx atomically */
1615         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1616                 guest_efer = vmx->vcpu.arch.efer;
1617                 if (!(guest_efer & EFER_LMA))
1618                         guest_efer &= ~EFER_LME;
1619                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1620                 return false;
1621         }
1622
1623         return true;
1624 }
1625
1626 static unsigned long segment_base(u16 selector)
1627 {
1628         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1629         struct desc_struct *d;
1630         unsigned long table_base;
1631         unsigned long v;
1632
1633         if (!(selector & ~3))
1634                 return 0;
1635
1636         table_base = gdt->address;
1637
1638         if (selector & 4) {           /* from ldt */
1639                 u16 ldt_selector = kvm_read_ldt();
1640
1641                 if (!(ldt_selector & ~3))
1642                         return 0;
1643
1644                 table_base = segment_base(ldt_selector);
1645         }
1646         d = (struct desc_struct *)(table_base + (selector & ~7));
1647         v = get_desc_base(d);
1648 #ifdef CONFIG_X86_64
1649        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1650                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1651 #endif
1652         return v;
1653 }
1654
1655 static inline unsigned long kvm_read_tr_base(void)
1656 {
1657         u16 tr;
1658         asm("str %0" : "=g"(tr));
1659         return segment_base(tr);
1660 }
1661
1662 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1663 {
1664         struct vcpu_vmx *vmx = to_vmx(vcpu);
1665         int i;
1666
1667         if (vmx->host_state.loaded)
1668                 return;
1669
1670         vmx->host_state.loaded = 1;
1671         /*
1672          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1673          * allow segment selectors with cpl > 0 or ti == 1.
1674          */
1675         vmx->host_state.ldt_sel = kvm_read_ldt();
1676         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1677         savesegment(fs, vmx->host_state.fs_sel);
1678         if (!(vmx->host_state.fs_sel & 7)) {
1679                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1680                 vmx->host_state.fs_reload_needed = 0;
1681         } else {
1682                 vmcs_write16(HOST_FS_SELECTOR, 0);
1683                 vmx->host_state.fs_reload_needed = 1;
1684         }
1685         savesegment(gs, vmx->host_state.gs_sel);
1686         if (!(vmx->host_state.gs_sel & 7))
1687                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1688         else {
1689                 vmcs_write16(HOST_GS_SELECTOR, 0);
1690                 vmx->host_state.gs_ldt_reload_needed = 1;
1691         }
1692
1693 #ifdef CONFIG_X86_64
1694         savesegment(ds, vmx->host_state.ds_sel);
1695         savesegment(es, vmx->host_state.es_sel);
1696 #endif
1697
1698 #ifdef CONFIG_X86_64
1699         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1700         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1701 #else
1702         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1703         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1704 #endif
1705
1706 #ifdef CONFIG_X86_64
1707         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1708         if (is_long_mode(&vmx->vcpu))
1709                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1710 #endif
1711         for (i = 0; i < vmx->save_nmsrs; ++i)
1712                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1713                                    vmx->guest_msrs[i].data,
1714                                    vmx->guest_msrs[i].mask);
1715 }
1716
1717 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1718 {
1719         if (!vmx->host_state.loaded)
1720                 return;
1721
1722         ++vmx->vcpu.stat.host_state_reload;
1723         vmx->host_state.loaded = 0;
1724 #ifdef CONFIG_X86_64
1725         if (is_long_mode(&vmx->vcpu))
1726                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1727 #endif
1728         if (vmx->host_state.gs_ldt_reload_needed) {
1729                 kvm_load_ldt(vmx->host_state.ldt_sel);
1730 #ifdef CONFIG_X86_64
1731                 load_gs_index(vmx->host_state.gs_sel);
1732 #else
1733                 loadsegment(gs, vmx->host_state.gs_sel);
1734 #endif
1735         }
1736         if (vmx->host_state.fs_reload_needed)
1737                 loadsegment(fs, vmx->host_state.fs_sel);
1738 #ifdef CONFIG_X86_64
1739         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1740                 loadsegment(ds, vmx->host_state.ds_sel);
1741                 loadsegment(es, vmx->host_state.es_sel);
1742         }
1743 #endif
1744         reload_tss();
1745 #ifdef CONFIG_X86_64
1746         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1747 #endif
1748         /*
1749          * If the FPU is not active (through the host task or
1750          * the guest vcpu), then restore the cr0.TS bit.
1751          */
1752         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1753                 stts();
1754         load_gdt(&__get_cpu_var(host_gdt));
1755 }
1756
1757 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1758 {
1759         preempt_disable();
1760         __vmx_load_host_state(vmx);
1761         preempt_enable();
1762 }
1763
1764 /*
1765  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1766  * vcpu mutex is already taken.
1767  */
1768 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1769 {
1770         struct vcpu_vmx *vmx = to_vmx(vcpu);
1771         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1772
1773         if (!vmm_exclusive)
1774                 kvm_cpu_vmxon(phys_addr);
1775         else if (vmx->loaded_vmcs->cpu != cpu)
1776                 loaded_vmcs_clear(vmx->loaded_vmcs);
1777
1778         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1779                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1780                 vmcs_load(vmx->loaded_vmcs->vmcs);
1781         }
1782
1783         if (vmx->loaded_vmcs->cpu != cpu) {
1784                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1785                 unsigned long sysenter_esp;
1786
1787                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1788                 local_irq_disable();
1789                 crash_disable_local_vmclear(cpu);
1790
1791                 /*
1792                  * Read loaded_vmcs->cpu should be before fetching
1793                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1794                  * See the comments in __loaded_vmcs_clear().
1795                  */
1796                 smp_rmb();
1797
1798                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1799                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1800                 crash_enable_local_vmclear(cpu);
1801                 local_irq_enable();
1802
1803                 /*
1804                  * Linux uses per-cpu TSS and GDT, so set these when switching
1805                  * processors.
1806                  */
1807                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1808                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1809
1810                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1811                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1812                 vmx->loaded_vmcs->cpu = cpu;
1813         }
1814 }
1815
1816 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1817 {
1818         __vmx_load_host_state(to_vmx(vcpu));
1819         if (!vmm_exclusive) {
1820                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1821                 vcpu->cpu = -1;
1822                 kvm_cpu_vmxoff();
1823         }
1824 }
1825
1826 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1827 {
1828         ulong cr0;
1829
1830         if (vcpu->fpu_active)
1831                 return;
1832         vcpu->fpu_active = 1;
1833         cr0 = vmcs_readl(GUEST_CR0);
1834         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1835         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1836         vmcs_writel(GUEST_CR0, cr0);
1837         update_exception_bitmap(vcpu);
1838         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1839         if (is_guest_mode(vcpu))
1840                 vcpu->arch.cr0_guest_owned_bits &=
1841                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1842         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1843 }
1844
1845 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1846
1847 /*
1848  * Return the cr0 value that a nested guest would read. This is a combination
1849  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1850  * its hypervisor (cr0_read_shadow).
1851  */
1852 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1853 {
1854         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1855                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1856 }
1857 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1858 {
1859         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1860                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1861 }
1862
1863 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1864 {
1865         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1866          * set this *before* calling this function.
1867          */
1868         vmx_decache_cr0_guest_bits(vcpu);
1869         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1870         update_exception_bitmap(vcpu);
1871         vcpu->arch.cr0_guest_owned_bits = 0;
1872         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1873         if (is_guest_mode(vcpu)) {
1874                 /*
1875                  * L1's specified read shadow might not contain the TS bit,
1876                  * so now that we turned on shadowing of this bit, we need to
1877                  * set this bit of the shadow. Like in nested_vmx_run we need
1878                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1879                  * up-to-date here because we just decached cr0.TS (and we'll
1880                  * only update vmcs12->guest_cr0 on nested exit).
1881                  */
1882                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1884                         (vcpu->arch.cr0 & X86_CR0_TS);
1885                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1886         } else
1887                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1888 }
1889
1890 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1891 {
1892         unsigned long rflags, save_rflags;
1893
1894         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1895                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1896                 rflags = vmcs_readl(GUEST_RFLAGS);
1897                 if (to_vmx(vcpu)->rmode.vm86_active) {
1898                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1899                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1900                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1901                 }
1902                 to_vmx(vcpu)->rflags = rflags;
1903         }
1904         return to_vmx(vcpu)->rflags;
1905 }
1906
1907 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1908 {
1909         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1910         to_vmx(vcpu)->rflags = rflags;
1911         if (to_vmx(vcpu)->rmode.vm86_active) {
1912                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1913                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1914         }
1915         vmcs_writel(GUEST_RFLAGS, rflags);
1916 }
1917
1918 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1919 {
1920         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1921         int ret = 0;
1922
1923         if (interruptibility & GUEST_INTR_STATE_STI)
1924                 ret |= KVM_X86_SHADOW_INT_STI;
1925         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1926                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1927
1928         return ret & mask;
1929 }
1930
1931 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1932 {
1933         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1934         u32 interruptibility = interruptibility_old;
1935
1936         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1937
1938         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1939                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1940         else if (mask & KVM_X86_SHADOW_INT_STI)
1941                 interruptibility |= GUEST_INTR_STATE_STI;
1942
1943         if ((interruptibility != interruptibility_old))
1944                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1945 }
1946
1947 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1948 {
1949         unsigned long rip;
1950
1951         rip = kvm_rip_read(vcpu);
1952         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1953         kvm_rip_write(vcpu, rip);
1954
1955         /* skipping an emulated instruction also counts */
1956         vmx_set_interrupt_shadow(vcpu, 0);
1957 }
1958
1959 /*
1960  * KVM wants to inject page-faults which it got to the guest. This function
1961  * checks whether in a nested guest, we need to inject them to L1 or L2.
1962  */
1963 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
1964 {
1965         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1966
1967         if (!(vmcs12->exception_bitmap & (1u << nr)))
1968                 return 0;
1969
1970         nested_vmx_vmexit(vcpu);
1971         return 1;
1972 }
1973
1974 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1975                                 bool has_error_code, u32 error_code,
1976                                 bool reinject)
1977 {
1978         struct vcpu_vmx *vmx = to_vmx(vcpu);
1979         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1980
1981         if (!reinject && is_guest_mode(vcpu) &&
1982             nested_vmx_check_exception(vcpu, nr))
1983                 return;
1984
1985         if (has_error_code) {
1986                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1987                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1988         }
1989
1990         if (vmx->rmode.vm86_active) {
1991                 int inc_eip = 0;
1992                 if (kvm_exception_is_soft(nr))
1993                         inc_eip = vcpu->arch.event_exit_inst_len;
1994                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1995                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1996                 return;
1997         }
1998
1999         if (kvm_exception_is_soft(nr)) {
2000                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2001                              vmx->vcpu.arch.event_exit_inst_len);
2002                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2003         } else
2004                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2005
2006         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2007 }
2008
2009 static bool vmx_rdtscp_supported(void)
2010 {
2011         return cpu_has_vmx_rdtscp();
2012 }
2013
2014 static bool vmx_invpcid_supported(void)
2015 {
2016         return cpu_has_vmx_invpcid() && enable_ept;
2017 }
2018
2019 /*
2020  * Swap MSR entry in host/guest MSR entry array.
2021  */
2022 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2023 {
2024         struct shared_msr_entry tmp;
2025
2026         tmp = vmx->guest_msrs[to];
2027         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2028         vmx->guest_msrs[from] = tmp;
2029 }
2030
2031 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2032 {
2033         unsigned long *msr_bitmap;
2034
2035         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2036                 if (is_long_mode(vcpu))
2037                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2038                 else
2039                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2040         } else {
2041                 if (is_long_mode(vcpu))
2042                         msr_bitmap = vmx_msr_bitmap_longmode;
2043                 else
2044                         msr_bitmap = vmx_msr_bitmap_legacy;
2045         }
2046
2047         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2048 }
2049
2050 /*
2051  * Set up the vmcs to automatically save and restore system
2052  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2053  * mode, as fiddling with msrs is very expensive.
2054  */
2055 static void setup_msrs(struct vcpu_vmx *vmx)
2056 {
2057         int save_nmsrs, index;
2058
2059         save_nmsrs = 0;
2060 #ifdef CONFIG_X86_64
2061         if (is_long_mode(&vmx->vcpu)) {
2062                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2063                 if (index >= 0)
2064                         move_msr_up(vmx, index, save_nmsrs++);
2065                 index = __find_msr_index(vmx, MSR_LSTAR);
2066                 if (index >= 0)
2067                         move_msr_up(vmx, index, save_nmsrs++);
2068                 index = __find_msr_index(vmx, MSR_CSTAR);
2069                 if (index >= 0)
2070                         move_msr_up(vmx, index, save_nmsrs++);
2071                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2072                 if (index >= 0 && vmx->rdtscp_enabled)
2073                         move_msr_up(vmx, index, save_nmsrs++);
2074                 /*
2075                  * MSR_STAR is only needed on long mode guests, and only
2076                  * if efer.sce is enabled.
2077                  */
2078                 index = __find_msr_index(vmx, MSR_STAR);
2079                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2080                         move_msr_up(vmx, index, save_nmsrs++);
2081         }
2082 #endif
2083         index = __find_msr_index(vmx, MSR_EFER);
2084         if (index >= 0 && update_transition_efer(vmx, index))
2085                 move_msr_up(vmx, index, save_nmsrs++);
2086
2087         vmx->save_nmsrs = save_nmsrs;
2088
2089         if (cpu_has_vmx_msr_bitmap())
2090                 vmx_set_msr_bitmap(&vmx->vcpu);
2091 }
2092
2093 /*
2094  * reads and returns guest's timestamp counter "register"
2095  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2096  */
2097 static u64 guest_read_tsc(void)
2098 {
2099         u64 host_tsc, tsc_offset;
2100
2101         rdtscll(host_tsc);
2102         tsc_offset = vmcs_read64(TSC_OFFSET);
2103         return host_tsc + tsc_offset;
2104 }
2105
2106 /*
2107  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2108  * counter, even if a nested guest (L2) is currently running.
2109  */
2110 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2111 {
2112         u64 tsc_offset;
2113
2114         tsc_offset = is_guest_mode(vcpu) ?
2115                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2116                 vmcs_read64(TSC_OFFSET);
2117         return host_tsc + tsc_offset;
2118 }
2119
2120 /*
2121  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2122  * software catchup for faster rates on slower CPUs.
2123  */
2124 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2125 {
2126         if (!scale)
2127                 return;
2128
2129         if (user_tsc_khz > tsc_khz) {
2130                 vcpu->arch.tsc_catchup = 1;
2131                 vcpu->arch.tsc_always_catchup = 1;
2132         } else
2133                 WARN(1, "user requested TSC rate below hardware speed\n");
2134 }
2135
2136 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2137 {
2138         return vmcs_read64(TSC_OFFSET);
2139 }
2140
2141 /*
2142  * writes 'offset' into guest's timestamp counter offset register
2143  */
2144 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2145 {
2146         if (is_guest_mode(vcpu)) {
2147                 /*
2148                  * We're here if L1 chose not to trap WRMSR to TSC. According
2149                  * to the spec, this should set L1's TSC; The offset that L1
2150                  * set for L2 remains unchanged, and still needs to be added
2151                  * to the newly set TSC to get L2's TSC.
2152                  */
2153                 struct vmcs12 *vmcs12;
2154                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2155                 /* recalculate vmcs02.TSC_OFFSET: */
2156                 vmcs12 = get_vmcs12(vcpu);
2157                 vmcs_write64(TSC_OFFSET, offset +
2158                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2159                          vmcs12->tsc_offset : 0));
2160         } else {
2161                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2162                                            vmcs_read64(TSC_OFFSET), offset);
2163                 vmcs_write64(TSC_OFFSET, offset);
2164         }
2165 }
2166
2167 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2168 {
2169         u64 offset = vmcs_read64(TSC_OFFSET);
2170
2171         vmcs_write64(TSC_OFFSET, offset + adjustment);
2172         if (is_guest_mode(vcpu)) {
2173                 /* Even when running L2, the adjustment needs to apply to L1 */
2174                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2175         } else
2176                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2177                                            offset + adjustment);
2178 }
2179
2180 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2181 {
2182         return target_tsc - native_read_tsc();
2183 }
2184
2185 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2186 {
2187         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2188         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2189 }
2190
2191 /*
2192  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2193  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2194  * all guests if the "nested" module option is off, and can also be disabled
2195  * for a single guest by disabling its VMX cpuid bit.
2196  */
2197 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2198 {
2199         return nested && guest_cpuid_has_vmx(vcpu);
2200 }
2201
2202 /*
2203  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2204  * returned for the various VMX controls MSRs when nested VMX is enabled.
2205  * The same values should also be used to verify that vmcs12 control fields are
2206  * valid during nested entry from L1 to L2.
2207  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2208  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2209  * bit in the high half is on if the corresponding bit in the control field
2210  * may be on. See also vmx_control_verify().
2211  * TODO: allow these variables to be modified (downgraded) by module options
2212  * or other means.
2213  */
2214 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2215 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2216 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2217 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2218 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2219 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2220 static u32 nested_vmx_ept_caps;
2221 static __init void nested_vmx_setup_ctls_msrs(void)
2222 {
2223         /*
2224          * Note that as a general rule, the high half of the MSRs (bits in
2225          * the control fields which may be 1) should be initialized by the
2226          * intersection of the underlying hardware's MSR (i.e., features which
2227          * can be supported) and the list of features we want to expose -
2228          * because they are known to be properly supported in our code.
2229          * Also, usually, the low half of the MSRs (bits which must be 1) can
2230          * be set to 0, meaning that L1 may turn off any of these bits. The
2231          * reason is that if one of these bits is necessary, it will appear
2232          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2233          * fields of vmcs01 and vmcs02, will turn these bits off - and
2234          * nested_vmx_exit_handled() will not pass related exits to L1.
2235          * These rules have exceptions below.
2236          */
2237
2238         /* pin-based controls */
2239         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2240               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2241         /*
2242          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2243          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2244          */
2245         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2246         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2247                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2248                 PIN_BASED_VMX_PREEMPTION_TIMER;
2249         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2250
2251         /*
2252          * Exit controls
2253          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2254          * 17 must be 1.
2255          */
2256         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2257                 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2258         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2259         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2260         nested_vmx_exit_ctls_high &=
2261 #ifdef CONFIG_X86_64
2262                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2263 #endif
2264                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
2265                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2266         if (!(nested_vmx_pinbased_ctls_high & PIN_BASED_VMX_PREEMPTION_TIMER) ||
2267             !(nested_vmx_exit_ctls_high & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)) {
2268                 nested_vmx_exit_ctls_high &= ~VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
2269                 nested_vmx_pinbased_ctls_high &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2270         }
2271         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2272                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER);
2273
2274         /* entry controls */
2275         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2276                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2277         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2278         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2279         nested_vmx_entry_ctls_high &=
2280 #ifdef CONFIG_X86_64
2281                 VM_ENTRY_IA32E_MODE |
2282 #endif
2283                 VM_ENTRY_LOAD_IA32_PAT;
2284         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2285                                        VM_ENTRY_LOAD_IA32_EFER);
2286
2287         /* cpu-based controls */
2288         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2289                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2290         nested_vmx_procbased_ctls_low = 0;
2291         nested_vmx_procbased_ctls_high &=
2292                 CPU_BASED_VIRTUAL_INTR_PENDING |
2293                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2294                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2295                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2296                 CPU_BASED_CR3_STORE_EXITING |
2297 #ifdef CONFIG_X86_64
2298                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2299 #endif
2300                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2301                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2302                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2303                 CPU_BASED_PAUSE_EXITING |
2304                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2305         /*
2306          * We can allow some features even when not supported by the
2307          * hardware. For example, L1 can specify an MSR bitmap - and we
2308          * can use it to avoid exits to L1 - even when L0 runs L2
2309          * without MSR bitmaps.
2310          */
2311         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2312
2313         /* secondary cpu-based controls */
2314         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2315                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2316         nested_vmx_secondary_ctls_low = 0;
2317         nested_vmx_secondary_ctls_high &=
2318                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2319                 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2320                 SECONDARY_EXEC_WBINVD_EXITING;
2321
2322         if (enable_ept) {
2323                 /* nested EPT: emulate EPT also to L1 */
2324                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2325                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2326                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2327                          VMX_EPT_INVEPT_BIT;
2328                 nested_vmx_ept_caps &= vmx_capability.ept;
2329                 /*
2330                  * Since invept is completely emulated we support both global
2331                  * and context invalidation independent of what host cpu
2332                  * supports
2333                  */
2334                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2335                         VMX_EPT_EXTENT_CONTEXT_BIT;
2336         } else
2337                 nested_vmx_ept_caps = 0;
2338
2339         /* miscellaneous data */
2340         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2341         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2342                 VMX_MISC_SAVE_EFER_LMA;
2343         nested_vmx_misc_low |= VMX_MISC_ACTIVITY_HLT;
2344         nested_vmx_misc_high = 0;
2345 }
2346
2347 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2348 {
2349         /*
2350          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2351          */
2352         return ((control & high) | low) == control;
2353 }
2354
2355 static inline u64 vmx_control_msr(u32 low, u32 high)
2356 {
2357         return low | ((u64)high << 32);
2358 }
2359
2360 /*
2361  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2362  * also let it use VMX-specific MSRs.
2363  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2364  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2365  * like all other MSRs).
2366  */
2367 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2368 {
2369         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2370                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2371                 /*
2372                  * According to the spec, processors which do not support VMX
2373                  * should throw a #GP(0) when VMX capability MSRs are read.
2374                  */
2375                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2376                 return 1;
2377         }
2378
2379         switch (msr_index) {
2380         case MSR_IA32_FEATURE_CONTROL:
2381                 if (nested_vmx_allowed(vcpu)) {
2382                         *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2383                         break;
2384                 }
2385                 return 0;
2386         case MSR_IA32_VMX_BASIC:
2387                 /*
2388                  * This MSR reports some information about VMX support. We
2389                  * should return information about the VMX we emulate for the
2390                  * guest, and the VMCS structure we give it - not about the
2391                  * VMX support of the underlying hardware.
2392                  */
2393                 *pdata = VMCS12_REVISION |
2394                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2395                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2396                 break;
2397         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2398         case MSR_IA32_VMX_PINBASED_CTLS:
2399                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2400                                         nested_vmx_pinbased_ctls_high);
2401                 break;
2402         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2403         case MSR_IA32_VMX_PROCBASED_CTLS:
2404                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2405                                         nested_vmx_procbased_ctls_high);
2406                 break;
2407         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2408         case MSR_IA32_VMX_EXIT_CTLS:
2409                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2410                                         nested_vmx_exit_ctls_high);
2411                 break;
2412         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2413         case MSR_IA32_VMX_ENTRY_CTLS:
2414                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2415                                         nested_vmx_entry_ctls_high);
2416                 break;
2417         case MSR_IA32_VMX_MISC:
2418                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2419                                          nested_vmx_misc_high);
2420                 break;
2421         /*
2422          * These MSRs specify bits which the guest must keep fixed (on or off)
2423          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2424          * We picked the standard core2 setting.
2425          */
2426 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2427 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2428         case MSR_IA32_VMX_CR0_FIXED0:
2429                 *pdata = VMXON_CR0_ALWAYSON;
2430                 break;
2431         case MSR_IA32_VMX_CR0_FIXED1:
2432                 *pdata = -1ULL;
2433                 break;
2434         case MSR_IA32_VMX_CR4_FIXED0:
2435                 *pdata = VMXON_CR4_ALWAYSON;
2436                 break;
2437         case MSR_IA32_VMX_CR4_FIXED1:
2438                 *pdata = -1ULL;
2439                 break;
2440         case MSR_IA32_VMX_VMCS_ENUM:
2441                 *pdata = 0x1f;
2442                 break;
2443         case MSR_IA32_VMX_PROCBASED_CTLS2:
2444                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2445                                         nested_vmx_secondary_ctls_high);
2446                 break;
2447         case MSR_IA32_VMX_EPT_VPID_CAP:
2448                 /* Currently, no nested vpid support */
2449                 *pdata = nested_vmx_ept_caps;
2450                 break;
2451         default:
2452                 return 0;
2453         }
2454
2455         return 1;
2456 }
2457
2458 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2459 {
2460         u32 msr_index = msr_info->index;
2461         u64 data = msr_info->data;
2462         bool host_initialized = msr_info->host_initiated;
2463
2464         if (!nested_vmx_allowed(vcpu))
2465                 return 0;
2466
2467         if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2468                 if (!host_initialized &&
2469                                 to_vmx(vcpu)->nested.msr_ia32_feature_control
2470                                 & FEATURE_CONTROL_LOCKED)
2471                         return 0;
2472                 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2473                 return 1;
2474         }
2475
2476         /*
2477          * No need to treat VMX capability MSRs specially: If we don't handle
2478          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2479          */
2480         return 0;
2481 }
2482
2483 /*
2484  * Reads an msr value (of 'msr_index') into 'pdata'.
2485  * Returns 0 on success, non-0 otherwise.
2486  * Assumes vcpu_load() was already called.
2487  */
2488 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2489 {
2490         u64 data;
2491         struct shared_msr_entry *msr;
2492
2493         if (!pdata) {
2494                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2495                 return -EINVAL;
2496         }
2497
2498         switch (msr_index) {
2499 #ifdef CONFIG_X86_64
2500         case MSR_FS_BASE:
2501                 data = vmcs_readl(GUEST_FS_BASE);
2502                 break;
2503         case MSR_GS_BASE:
2504                 data = vmcs_readl(GUEST_GS_BASE);
2505                 break;
2506         case MSR_KERNEL_GS_BASE:
2507                 vmx_load_host_state(to_vmx(vcpu));
2508                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2509                 break;
2510 #endif
2511         case MSR_EFER:
2512                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2513         case MSR_IA32_TSC:
2514                 data = guest_read_tsc();
2515                 break;
2516         case MSR_IA32_SYSENTER_CS:
2517                 data = vmcs_read32(GUEST_SYSENTER_CS);
2518                 break;
2519         case MSR_IA32_SYSENTER_EIP:
2520                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2521                 break;
2522         case MSR_IA32_SYSENTER_ESP:
2523                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2524                 break;
2525         case MSR_TSC_AUX:
2526                 if (!to_vmx(vcpu)->rdtscp_enabled)
2527                         return 1;
2528                 /* Otherwise falls through */
2529         default:
2530                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2531                         return 0;
2532                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2533                 if (msr) {
2534                         data = msr->data;
2535                         break;
2536                 }
2537                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2538         }
2539
2540         *pdata = data;
2541         return 0;
2542 }
2543
2544 /*
2545  * Writes msr value into into the appropriate "register".
2546  * Returns 0 on success, non-0 otherwise.
2547  * Assumes vcpu_load() was already called.
2548  */
2549 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2550 {
2551         struct vcpu_vmx *vmx = to_vmx(vcpu);
2552         struct shared_msr_entry *msr;
2553         int ret = 0;
2554         u32 msr_index = msr_info->index;
2555         u64 data = msr_info->data;
2556
2557         switch (msr_index) {
2558         case MSR_EFER:
2559                 ret = kvm_set_msr_common(vcpu, msr_info);
2560                 break;
2561 #ifdef CONFIG_X86_64
2562         case MSR_FS_BASE:
2563                 vmx_segment_cache_clear(vmx);
2564                 vmcs_writel(GUEST_FS_BASE, data);
2565                 break;
2566         case MSR_GS_BASE:
2567                 vmx_segment_cache_clear(vmx);
2568                 vmcs_writel(GUEST_GS_BASE, data);
2569                 break;
2570         case MSR_KERNEL_GS_BASE:
2571                 vmx_load_host_state(vmx);
2572                 vmx->msr_guest_kernel_gs_base = data;
2573                 break;
2574 #endif
2575         case MSR_IA32_SYSENTER_CS:
2576                 vmcs_write32(GUEST_SYSENTER_CS, data);
2577                 break;
2578         case MSR_IA32_SYSENTER_EIP:
2579                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2580                 break;
2581         case MSR_IA32_SYSENTER_ESP:
2582                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2583                 break;
2584         case MSR_IA32_TSC:
2585                 kvm_write_tsc(vcpu, msr_info);
2586                 break;
2587         case MSR_IA32_CR_PAT:
2588                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2589                         vmcs_write64(GUEST_IA32_PAT, data);
2590                         vcpu->arch.pat = data;
2591                         break;
2592                 }
2593                 ret = kvm_set_msr_common(vcpu, msr_info);
2594                 break;
2595         case MSR_IA32_TSC_ADJUST:
2596                 ret = kvm_set_msr_common(vcpu, msr_info);
2597                 break;
2598         case MSR_TSC_AUX:
2599                 if (!vmx->rdtscp_enabled)
2600                         return 1;
2601                 /* Check reserved bit, higher 32 bits should be zero */
2602                 if ((data >> 32) != 0)
2603                         return 1;
2604                 /* Otherwise falls through */
2605         default:
2606                 if (vmx_set_vmx_msr(vcpu, msr_info))
2607                         break;
2608                 msr = find_msr_entry(vmx, msr_index);
2609                 if (msr) {
2610                         msr->data = data;
2611                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2612                                 preempt_disable();
2613                                 kvm_set_shared_msr(msr->index, msr->data,
2614                                                    msr->mask);
2615                                 preempt_enable();
2616                         }
2617                         break;
2618                 }
2619                 ret = kvm_set_msr_common(vcpu, msr_info);
2620         }
2621
2622         return ret;
2623 }
2624
2625 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2626 {
2627         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2628         switch (reg) {
2629         case VCPU_REGS_RSP:
2630                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2631                 break;
2632         case VCPU_REGS_RIP:
2633                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2634                 break;
2635         case VCPU_EXREG_PDPTR:
2636                 if (enable_ept)
2637                         ept_save_pdptrs(vcpu);
2638                 break;
2639         default:
2640                 break;
2641         }
2642 }
2643
2644 static __init int cpu_has_kvm_support(void)
2645 {
2646         return cpu_has_vmx();
2647 }
2648
2649 static __init int vmx_disabled_by_bios(void)
2650 {
2651         u64 msr;
2652
2653         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2654         if (msr & FEATURE_CONTROL_LOCKED) {
2655                 /* launched w/ TXT and VMX disabled */
2656                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2657                         && tboot_enabled())
2658                         return 1;
2659                 /* launched w/o TXT and VMX only enabled w/ TXT */
2660                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2661                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2662                         && !tboot_enabled()) {
2663                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2664                                 "activate TXT before enabling KVM\n");
2665                         return 1;
2666                 }
2667                 /* launched w/o TXT and VMX disabled */
2668                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2669                         && !tboot_enabled())
2670                         return 1;
2671         }
2672
2673         return 0;
2674 }
2675
2676 static void kvm_cpu_vmxon(u64 addr)
2677 {
2678         asm volatile (ASM_VMX_VMXON_RAX
2679                         : : "a"(&addr), "m"(addr)
2680                         : "memory", "cc");
2681 }
2682
2683 static int hardware_enable(void *garbage)
2684 {
2685         int cpu = raw_smp_processor_id();
2686         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2687         u64 old, test_bits;
2688
2689         if (read_cr4() & X86_CR4_VMXE)
2690                 return -EBUSY;
2691
2692         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2693
2694         /*
2695          * Now we can enable the vmclear operation in kdump
2696          * since the loaded_vmcss_on_cpu list on this cpu
2697          * has been initialized.
2698          *
2699          * Though the cpu is not in VMX operation now, there
2700          * is no problem to enable the vmclear operation
2701          * for the loaded_vmcss_on_cpu list is empty!
2702          */
2703         crash_enable_local_vmclear(cpu);
2704
2705         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2706
2707         test_bits = FEATURE_CONTROL_LOCKED;
2708         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2709         if (tboot_enabled())
2710                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2711
2712         if ((old & test_bits) != test_bits) {
2713                 /* enable and lock */
2714                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2715         }
2716         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2717
2718         if (vmm_exclusive) {
2719                 kvm_cpu_vmxon(phys_addr);
2720                 ept_sync_global();
2721         }
2722
2723         native_store_gdt(&__get_cpu_var(host_gdt));
2724
2725         return 0;
2726 }
2727
2728 static void vmclear_local_loaded_vmcss(void)
2729 {
2730         int cpu = raw_smp_processor_id();
2731         struct loaded_vmcs *v, *n;
2732
2733         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2734                                  loaded_vmcss_on_cpu_link)
2735                 __loaded_vmcs_clear(v);
2736 }
2737
2738
2739 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2740  * tricks.
2741  */
2742 static void kvm_cpu_vmxoff(void)
2743 {
2744         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2745 }
2746
2747 static void hardware_disable(void *garbage)
2748 {
2749         if (vmm_exclusive) {
2750                 vmclear_local_loaded_vmcss();
2751                 kvm_cpu_vmxoff();
2752         }
2753         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2754 }
2755
2756 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2757                                       u32 msr, u32 *result)
2758 {
2759         u32 vmx_msr_low, vmx_msr_high;
2760         u32 ctl = ctl_min | ctl_opt;
2761
2762         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2763
2764         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2765         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2766
2767         /* Ensure minimum (required) set of control bits are supported. */
2768         if (ctl_min & ~ctl)
2769                 return -EIO;
2770
2771         *result = ctl;
2772         return 0;
2773 }
2774
2775 static __init bool allow_1_setting(u32 msr, u32 ctl)
2776 {
2777         u32 vmx_msr_low, vmx_msr_high;
2778
2779         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2780         return vmx_msr_high & ctl;
2781 }
2782
2783 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2784 {
2785         u32 vmx_msr_low, vmx_msr_high;
2786         u32 min, opt, min2, opt2;
2787         u32 _pin_based_exec_control = 0;
2788         u32 _cpu_based_exec_control = 0;
2789         u32 _cpu_based_2nd_exec_control = 0;
2790         u32 _vmexit_control = 0;
2791         u32 _vmentry_control = 0;
2792
2793         min = CPU_BASED_HLT_EXITING |
2794 #ifdef CONFIG_X86_64
2795               CPU_BASED_CR8_LOAD_EXITING |
2796               CPU_BASED_CR8_STORE_EXITING |
2797 #endif
2798               CPU_BASED_CR3_LOAD_EXITING |
2799               CPU_BASED_CR3_STORE_EXITING |
2800               CPU_BASED_USE_IO_BITMAPS |
2801               CPU_BASED_MOV_DR_EXITING |
2802               CPU_BASED_USE_TSC_OFFSETING |
2803               CPU_BASED_MWAIT_EXITING |
2804               CPU_BASED_MONITOR_EXITING |
2805               CPU_BASED_INVLPG_EXITING |
2806               CPU_BASED_RDPMC_EXITING;
2807
2808         opt = CPU_BASED_TPR_SHADOW |
2809               CPU_BASED_USE_MSR_BITMAPS |
2810               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2811         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2812                                 &_cpu_based_exec_control) < 0)
2813                 return -EIO;
2814 #ifdef CONFIG_X86_64
2815         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2816                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2817                                            ~CPU_BASED_CR8_STORE_EXITING;
2818 #endif
2819         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2820                 min2 = 0;
2821                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2822                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2823                         SECONDARY_EXEC_WBINVD_EXITING |
2824                         SECONDARY_EXEC_ENABLE_VPID |
2825                         SECONDARY_EXEC_ENABLE_EPT |
2826                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2827                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2828                         SECONDARY_EXEC_RDTSCP |
2829                         SECONDARY_EXEC_ENABLE_INVPCID |
2830                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2831                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2832                         SECONDARY_EXEC_SHADOW_VMCS;
2833                 if (adjust_vmx_controls(min2, opt2,
2834                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2835                                         &_cpu_based_2nd_exec_control) < 0)
2836                         return -EIO;
2837         }
2838 #ifndef CONFIG_X86_64
2839         if (!(_cpu_based_2nd_exec_control &
2840                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2841                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2842 #endif
2843
2844         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2845                 _cpu_based_2nd_exec_control &= ~(
2846                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2847                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2848                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2849
2850         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2851                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2852                    enabled */
2853                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2854                                              CPU_BASED_CR3_STORE_EXITING |
2855                                              CPU_BASED_INVLPG_EXITING);
2856                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2857                       vmx_capability.ept, vmx_capability.vpid);
2858         }
2859
2860         min = 0;
2861 #ifdef CONFIG_X86_64
2862         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2863 #endif
2864         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2865                 VM_EXIT_ACK_INTR_ON_EXIT;
2866         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2867                                 &_vmexit_control) < 0)
2868                 return -EIO;
2869
2870         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2871         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2872         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2873                                 &_pin_based_exec_control) < 0)
2874                 return -EIO;
2875
2876         if (!(_cpu_based_2nd_exec_control &
2877                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2878                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2879                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2880
2881         min = 0;
2882         opt = VM_ENTRY_LOAD_IA32_PAT;
2883         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2884                                 &_vmentry_control) < 0)
2885                 return -EIO;
2886
2887         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2888
2889         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2890         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2891                 return -EIO;
2892
2893 #ifdef CONFIG_X86_64
2894         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2895         if (vmx_msr_high & (1u<<16))
2896                 return -EIO;
2897 #endif
2898
2899         /* Require Write-Back (WB) memory type for VMCS accesses. */
2900         if (((vmx_msr_high >> 18) & 15) != 6)
2901                 return -EIO;
2902
2903         vmcs_conf->size = vmx_msr_high & 0x1fff;
2904         vmcs_conf->order = get_order(vmcs_config.size);
2905         vmcs_conf->revision_id = vmx_msr_low;
2906
2907         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2908         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2909         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2910         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2911         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2912
2913         cpu_has_load_ia32_efer =
2914                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2915                                 VM_ENTRY_LOAD_IA32_EFER)
2916                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2917                                    VM_EXIT_LOAD_IA32_EFER);
2918
2919         cpu_has_load_perf_global_ctrl =
2920                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2921                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2922                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2923                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2924
2925         /*
2926          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2927          * but due to arrata below it can't be used. Workaround is to use
2928          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2929          *
2930          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2931          *
2932          * AAK155             (model 26)
2933          * AAP115             (model 30)
2934          * AAT100             (model 37)
2935          * BC86,AAY89,BD102   (model 44)
2936          * BA97               (model 46)
2937          *
2938          */
2939         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2940                 switch (boot_cpu_data.x86_model) {
2941                 case 26:
2942                 case 30:
2943                 case 37:
2944                 case 44:
2945                 case 46:
2946                         cpu_has_load_perf_global_ctrl = false;
2947                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2948                                         "does not work properly. Using workaround\n");
2949                         break;
2950                 default:
2951                         break;
2952                 }
2953         }
2954
2955         return 0;
2956 }
2957
2958 static struct vmcs *alloc_vmcs_cpu(int cpu)
2959 {
2960         int node = cpu_to_node(cpu);
2961         struct page *pages;
2962         struct vmcs *vmcs;
2963
2964         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2965         if (!pages)
2966                 return NULL;
2967         vmcs = page_address(pages);
2968         memset(vmcs, 0, vmcs_config.size);
2969         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2970         return vmcs;
2971 }
2972
2973 static struct vmcs *alloc_vmcs(void)
2974 {
2975         return alloc_vmcs_cpu(raw_smp_processor_id());
2976 }
2977
2978 static void free_vmcs(struct vmcs *vmcs)
2979 {
2980         free_pages((unsigned long)vmcs, vmcs_config.order);
2981 }
2982
2983 /*
2984  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2985  */
2986 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2987 {
2988         if (!loaded_vmcs->vmcs)
2989                 return;
2990         loaded_vmcs_clear(loaded_vmcs);
2991         free_vmcs(loaded_vmcs->vmcs);
2992         loaded_vmcs->vmcs = NULL;
2993 }
2994
2995 static void free_kvm_area(void)
2996 {
2997         int cpu;
2998
2999         for_each_possible_cpu(cpu) {
3000                 free_vmcs(per_cpu(vmxarea, cpu));
3001                 per_cpu(vmxarea, cpu) = NULL;
3002         }
3003 }
3004
3005 static __init int alloc_kvm_area(void)
3006 {
3007         int cpu;
3008
3009         for_each_possible_cpu(cpu) {
3010                 struct vmcs *vmcs;
3011
3012                 vmcs = alloc_vmcs_cpu(cpu);
3013                 if (!vmcs) {
3014                         free_kvm_area();
3015                         return -ENOMEM;
3016                 }
3017
3018                 per_cpu(vmxarea, cpu) = vmcs;
3019         }
3020         return 0;
3021 }
3022
3023 static __init int hardware_setup(void)
3024 {
3025         if (setup_vmcs_config(&vmcs_config) < 0)
3026                 return -EIO;
3027
3028         if (boot_cpu_has(X86_FEATURE_NX))
3029                 kvm_enable_efer_bits(EFER_NX);
3030
3031         if (!cpu_has_vmx_vpid())
3032                 enable_vpid = 0;
3033         if (!cpu_has_vmx_shadow_vmcs())
3034                 enable_shadow_vmcs = 0;
3035
3036         if (!cpu_has_vmx_ept() ||
3037             !cpu_has_vmx_ept_4levels()) {
3038                 enable_ept = 0;
3039                 enable_unrestricted_guest = 0;
3040                 enable_ept_ad_bits = 0;
3041         }
3042
3043         if (!cpu_has_vmx_ept_ad_bits())
3044                 enable_ept_ad_bits = 0;
3045
3046         if (!cpu_has_vmx_unrestricted_guest())
3047                 enable_unrestricted_guest = 0;
3048
3049         if (!cpu_has_vmx_flexpriority())
3050                 flexpriority_enabled = 0;
3051
3052         if (!cpu_has_vmx_tpr_shadow())
3053                 kvm_x86_ops->update_cr8_intercept = NULL;
3054
3055         if (enable_ept && !cpu_has_vmx_ept_2m_page())
3056                 kvm_disable_largepages();
3057
3058         if (!cpu_has_vmx_ple())
3059                 ple_gap = 0;
3060
3061         if (!cpu_has_vmx_apicv())
3062                 enable_apicv = 0;
3063
3064         if (enable_apicv)
3065                 kvm_x86_ops->update_cr8_intercept = NULL;
3066         else {
3067                 kvm_x86_ops->hwapic_irr_update = NULL;
3068                 kvm_x86_ops->deliver_posted_interrupt = NULL;
3069                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3070         }
3071
3072         if (nested)
3073                 nested_vmx_setup_ctls_msrs();
3074
3075         return alloc_kvm_area();
3076 }
3077
3078 static __exit void hardware_unsetup(void)
3079 {
3080         free_kvm_area();
3081 }
3082
3083 static bool emulation_required(struct kvm_vcpu *vcpu)
3084 {
3085         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3086 }
3087
3088 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3089                 struct kvm_segment *save)
3090 {
3091         if (!emulate_invalid_guest_state) {
3092                 /*
3093                  * CS and SS RPL should be equal during guest entry according
3094                  * to VMX spec, but in reality it is not always so. Since vcpu
3095                  * is in the middle of the transition from real mode to
3096                  * protected mode it is safe to assume that RPL 0 is a good
3097                  * default value.
3098                  */
3099                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3100                         save->selector &= ~SELECTOR_RPL_MASK;
3101                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3102                 save->s = 1;
3103         }
3104         vmx_set_segment(vcpu, save, seg);
3105 }
3106
3107 static void enter_pmode(struct kvm_vcpu *vcpu)
3108 {
3109         unsigned long flags;
3110         struct vcpu_vmx *vmx = to_vmx(vcpu);
3111
3112         /*
3113          * Update real mode segment cache. It may be not up-to-date if sement
3114          * register was written while vcpu was in a guest mode.
3115          */
3116         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3117         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3118         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3119         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3120         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3121         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3122
3123         vmx->rmode.vm86_active = 0;
3124
3125         vmx_segment_cache_clear(vmx);
3126
3127         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3128
3129         flags = vmcs_readl(GUEST_RFLAGS);
3130         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3131         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3132         vmcs_writel(GUEST_RFLAGS, flags);
3133
3134         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3135                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3136
3137         update_exception_bitmap(vcpu);
3138
3139         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3140         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3141         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3142         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3143         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3144         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3145
3146         /* CPL is always 0 when CPU enters protected mode */
3147         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3148         vmx->cpl = 0;
3149 }
3150
3151 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3152 {
3153         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3154         struct kvm_segment var = *save;
3155
3156         var.dpl = 0x3;
3157         if (seg == VCPU_SREG_CS)
3158                 var.type = 0x3;
3159
3160         if (!emulate_invalid_guest_state) {
3161                 var.selector = var.base >> 4;
3162                 var.base = var.base & 0xffff0;
3163                 var.limit = 0xffff;
3164                 var.g = 0;
3165                 var.db = 0;
3166                 var.present = 1;
3167                 var.s = 1;
3168                 var.l = 0;
3169                 var.unusable = 0;
3170                 var.type = 0x3;
3171                 var.avl = 0;
3172                 if (save->base & 0xf)
3173                         printk_once(KERN_WARNING "kvm: segment base is not "
3174                                         "paragraph aligned when entering "
3175                                         "protected mode (seg=%d)", seg);
3176         }
3177
3178         vmcs_write16(sf->selector, var.selector);
3179         vmcs_write32(sf->base, var.base);
3180         vmcs_write32(sf->limit, var.limit);
3181         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3182 }
3183
3184 static void enter_rmode(struct kvm_vcpu *vcpu)
3185 {
3186         unsigned long flags;
3187         struct vcpu_vmx *vmx = to_vmx(vcpu);
3188
3189         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3190         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3191         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3192         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3193         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3194         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3195         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3196
3197         vmx->rmode.vm86_active = 1;
3198
3199         /*
3200          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3201          * vcpu. Warn the user that an update is overdue.
3202          */
3203         if (!vcpu->kvm->arch.tss_addr)
3204                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3205                              "called before entering vcpu\n");
3206
3207         vmx_segment_cache_clear(vmx);
3208
3209         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3210         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3211         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3212
3213         flags = vmcs_readl(GUEST_RFLAGS);
3214         vmx->rmode.save_rflags = flags;
3215
3216         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3217
3218         vmcs_writel(GUEST_RFLAGS, flags);
3219         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3220         update_exception_bitmap(vcpu);
3221
3222         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3223         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3224         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3225         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3226         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3227         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3228
3229         kvm_mmu_reset_context(vcpu);
3230 }
3231
3232 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3233 {
3234         struct vcpu_vmx *vmx = to_vmx(vcpu);
3235         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3236
3237         if (!msr)
3238                 return;
3239
3240         /*
3241          * Force kernel_gs_base reloading before EFER changes, as control
3242          * of this msr depends on is_long_mode().
3243          */
3244         vmx_load_host_state(to_vmx(vcpu));
3245         vcpu->arch.efer = efer;
3246         if (efer & EFER_LMA) {
3247                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3248                 msr->data = efer;
3249         } else {
3250                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3251
3252                 msr->data = efer & ~EFER_LME;
3253         }
3254         setup_msrs(vmx);
3255 }
3256
3257 #ifdef CONFIG_X86_64
3258
3259 static void enter_lmode(struct kvm_vcpu *vcpu)
3260 {
3261         u32 guest_tr_ar;
3262
3263         vmx_segment_cache_clear(to_vmx(vcpu));
3264
3265         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3266         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3267                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3268                                      __func__);
3269                 vmcs_write32(GUEST_TR_AR_BYTES,
3270                              (guest_tr_ar & ~AR_TYPE_MASK)
3271                              | AR_TYPE_BUSY_64_TSS);
3272         }
3273         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3274 }
3275
3276 static void exit_lmode(struct kvm_vcpu *vcpu)
3277 {
3278         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3279         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3280 }
3281
3282 #endif
3283
3284 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3285 {
3286         vpid_sync_context(to_vmx(vcpu));
3287         if (enable_ept) {
3288                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3289                         return;
3290                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3291         }
3292 }
3293
3294 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3295 {
3296         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3297
3298         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3299         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3300 }
3301
3302 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3303 {
3304         if (enable_ept && is_paging(vcpu))
3305                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3306         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3307 }
3308
3309 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3310 {
3311         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3312
3313         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3314         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3315 }
3316
3317 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3318 {
3319         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3320
3321         if (!test_bit(VCPU_EXREG_PDPTR,
3322                       (unsigned long *)&vcpu->arch.regs_dirty))
3323                 return;
3324
3325         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3326                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3327                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3328                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3329                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3330         }
3331 }
3332
3333 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3334 {
3335         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3336
3337         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3338                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3339                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3340                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3341                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3342         }
3343
3344         __set_bit(VCPU_EXREG_PDPTR,
3345                   (unsigned long *)&vcpu->arch.regs_avail);
3346         __set_bit(VCPU_EXREG_PDPTR,
3347                   (unsigned long *)&vcpu->arch.regs_dirty);
3348 }
3349
3350 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3351
3352 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3353                                         unsigned long cr0,
3354                                         struct kvm_vcpu *vcpu)
3355 {
3356         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3357                 vmx_decache_cr3(vcpu);
3358         if (!(cr0 & X86_CR0_PG)) {
3359                 /* From paging/starting to nonpaging */
3360                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3361                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3362                              (CPU_BASED_CR3_LOAD_EXITING |
3363                               CPU_BASED_CR3_STORE_EXITING));
3364                 vcpu->arch.cr0 = cr0;
3365                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3366         } else if (!is_paging(vcpu)) {
3367                 /* From nonpaging to paging */
3368                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3369                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3370                              ~(CPU_BASED_CR3_LOAD_EXITING |
3371                                CPU_BASED_CR3_STORE_EXITING));
3372                 vcpu->arch.cr0 = cr0;
3373                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3374         }
3375
3376         if (!(cr0 & X86_CR0_WP))
3377                 *hw_cr0 &= ~X86_CR0_WP;
3378 }
3379
3380 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3381 {
3382         struct vcpu_vmx *vmx = to_vmx(vcpu);
3383         unsigned long hw_cr0;
3384
3385         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3386         if (enable_unrestricted_guest)
3387                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3388         else {
3389                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3390
3391                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3392                         enter_pmode(vcpu);
3393
3394                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3395                         enter_rmode(vcpu);
3396         }
3397
3398 #ifdef CONFIG_X86_64
3399         if (vcpu->arch.efer & EFER_LME) {
3400                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3401                         enter_lmode(vcpu);
3402                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3403                         exit_lmode(vcpu);
3404         }
3405 #endif
3406
3407         if (enable_ept)
3408                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3409
3410         if (!vcpu->fpu_active)
3411                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3412
3413         vmcs_writel(CR0_READ_SHADOW, cr0);
3414         vmcs_writel(GUEST_CR0, hw_cr0);
3415         vcpu->arch.cr0 = cr0;
3416
3417         /* depends on vcpu->arch.cr0 to be set to a new value */
3418         vmx->emulation_required = emulation_required(vcpu);
3419 }
3420
3421 static u64 construct_eptp(unsigned long root_hpa)
3422 {
3423         u64 eptp;
3424
3425         /* TODO write the value reading from MSR */
3426         eptp = VMX_EPT_DEFAULT_MT |
3427                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3428         if (enable_ept_ad_bits)
3429                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3430         eptp |= (root_hpa & PAGE_MASK);
3431
3432         return eptp;
3433 }
3434
3435 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3436 {
3437         unsigned long guest_cr3;
3438         u64 eptp;
3439
3440         guest_cr3 = cr3;
3441         if (enable_ept) {
3442                 eptp = construct_eptp(cr3);
3443                 vmcs_write64(EPT_POINTER, eptp);
3444                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3445                         guest_cr3 = kvm_read_cr3(vcpu);
3446                 else
3447                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3448                 ept_load_pdptrs(vcpu);
3449         }
3450
3451         vmx_flush_tlb(vcpu);
3452         vmcs_writel(GUEST_CR3, guest_cr3);
3453 }
3454
3455 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3456 {
3457         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3458                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3459
3460         if (cr4 & X86_CR4_VMXE) {
3461                 /*
3462                  * To use VMXON (and later other VMX instructions), a guest
3463                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3464                  * So basically the check on whether to allow nested VMX
3465                  * is here.
3466                  */
3467                 if (!nested_vmx_allowed(vcpu))
3468                         return 1;
3469         }
3470         if (to_vmx(vcpu)->nested.vmxon &&
3471             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3472                 return 1;
3473
3474         vcpu->arch.cr4 = cr4;
3475         if (enable_ept) {
3476                 if (!is_paging(vcpu)) {
3477                         hw_cr4 &= ~X86_CR4_PAE;
3478                         hw_cr4 |= X86_CR4_PSE;
3479                         /*
3480                          * SMEP is disabled if CPU is in non-paging mode in
3481                          * hardware. However KVM always uses paging mode to
3482                          * emulate guest non-paging mode with TDP.
3483                          * To emulate this behavior, SMEP needs to be manually
3484                          * disabled when guest switches to non-paging mode.
3485                          */
3486                         hw_cr4 &= ~X86_CR4_SMEP;
3487                 } else if (!(cr4 & X86_CR4_PAE)) {
3488                         hw_cr4 &= ~X86_CR4_PAE;
3489                 }
3490         }
3491
3492         vmcs_writel(CR4_READ_SHADOW, cr4);
3493         vmcs_writel(GUEST_CR4, hw_cr4);
3494         return 0;
3495 }
3496
3497 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3498                             struct kvm_segment *var, int seg)
3499 {
3500         struct vcpu_vmx *vmx = to_vmx(vcpu);
3501         u32 ar;
3502
3503         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3504                 *var = vmx->rmode.segs[seg];
3505                 if (seg == VCPU_SREG_TR
3506                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3507                         return;
3508                 var->base = vmx_read_guest_seg_base(vmx, seg);
3509                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3510                 return;
3511         }
3512         var->base = vmx_read_guest_seg_base(vmx, seg);
3513         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3514         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3515         ar = vmx_read_guest_seg_ar(vmx, seg);
3516         var->unusable = (ar >> 16) & 1;
3517         var->type = ar & 15;
3518         var->s = (ar >> 4) & 1;
3519         var->dpl = (ar >> 5) & 3;
3520         /*
3521          * Some userspaces do not preserve unusable property. Since usable
3522          * segment has to be present according to VMX spec we can use present
3523          * property to amend userspace bug by making unusable segment always
3524          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3525          * segment as unusable.
3526          */
3527         var->present = !var->unusable;
3528         var->avl = (ar >> 12) & 1;
3529         var->l = (ar >> 13) & 1;
3530         var->db = (ar >> 14) & 1;
3531         var->g = (ar >> 15) & 1;
3532 }
3533
3534 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3535 {
3536         struct kvm_segment s;
3537
3538         if (to_vmx(vcpu)->rmode.vm86_active) {
3539                 vmx_get_segment(vcpu, &s, seg);
3540                 return s.base;
3541         }
3542         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3543 }
3544
3545 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3546 {
3547         struct vcpu_vmx *vmx = to_vmx(vcpu);
3548
3549         if (!is_protmode(vcpu))
3550                 return 0;
3551
3552         if (!is_long_mode(vcpu)
3553             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3554                 return 3;
3555
3556         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3557                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3558                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3559         }
3560
3561         return vmx->cpl;
3562 }
3563
3564
3565 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3566 {
3567         u32 ar;
3568
3569         if (var->unusable || !var->present)
3570                 ar = 1 << 16;
3571         else {
3572                 ar = var->type & 15;
3573                 ar |= (var->s & 1) << 4;
3574                 ar |= (var->dpl & 3) << 5;
3575                 ar |= (var->present & 1) << 7;
3576                 ar |= (var->avl & 1) << 12;
3577                 ar |= (var->l & 1) << 13;
3578                 ar |= (var->db & 1) << 14;
3579                 ar |= (var->g & 1) << 15;
3580         }
3581
3582         return ar;
3583 }
3584
3585 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3586                             struct kvm_segment *var, int seg)
3587 {
3588         struct vcpu_vmx *vmx = to_vmx(vcpu);
3589         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3590
3591         vmx_segment_cache_clear(vmx);
3592         if (seg == VCPU_SREG_CS)
3593                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3594
3595         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3596                 vmx->rmode.segs[seg] = *var;
3597                 if (seg == VCPU_SREG_TR)
3598                         vmcs_write16(sf->selector, var->selector);
3599                 else if (var->s)
3600                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3601                 goto out;
3602         }
3603
3604         vmcs_writel(sf->base, var->base);
3605         vmcs_write32(sf->limit, var->limit);
3606         vmcs_write16(sf->selector, var->selector);
3607
3608         /*
3609          *   Fix the "Accessed" bit in AR field of segment registers for older
3610          * qemu binaries.
3611          *   IA32 arch specifies that at the time of processor reset the
3612          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3613          * is setting it to 0 in the userland code. This causes invalid guest
3614          * state vmexit when "unrestricted guest" mode is turned on.
3615          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3616          * tree. Newer qemu binaries with that qemu fix would not need this
3617          * kvm hack.
3618          */
3619         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3620                 var->type |= 0x1; /* Accessed */
3621
3622         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3623
3624 out:
3625         vmx->emulation_required |= emulation_required(vcpu);
3626 }
3627
3628 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3629 {
3630         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3631
3632         *db = (ar >> 14) & 1;
3633         *l = (ar >> 13) & 1;
3634 }
3635
3636 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3639         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3640 }
3641
3642 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3643 {
3644         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3645         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3646 }
3647
3648 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3649 {
3650         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3651         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3652 }
3653
3654 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3655 {
3656         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3657         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3658 }
3659
3660 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3661 {
3662         struct kvm_segment var;
3663         u32 ar;
3664
3665         vmx_get_segment(vcpu, &var, seg);
3666         var.dpl = 0x3;
3667         if (seg == VCPU_SREG_CS)
3668                 var.type = 0x3;
3669         ar = vmx_segment_access_rights(&var);
3670
3671         if (var.base != (var.selector << 4))
3672                 return false;
3673         if (var.limit != 0xffff)
3674                 return false;
3675         if (ar != 0xf3)
3676                 return false;
3677
3678         return true;
3679 }
3680
3681 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3682 {
3683         struct kvm_segment cs;
3684         unsigned int cs_rpl;
3685
3686         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3687         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3688
3689         if (cs.unusable)
3690                 return false;
3691         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3692                 return false;
3693         if (!cs.s)
3694                 return false;
3695         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3696                 if (cs.dpl > cs_rpl)
3697                         return false;
3698         } else {
3699                 if (cs.dpl != cs_rpl)
3700                         return false;
3701         }
3702         if (!cs.present)
3703                 return false;
3704
3705         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3706         return true;
3707 }
3708
3709 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3710 {
3711         struct kvm_segment ss;
3712         unsigned int ss_rpl;
3713
3714         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3715         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3716
3717         if (ss.unusable)
3718                 return true;
3719         if (ss.type != 3 && ss.type != 7)
3720                 return false;
3721         if (!ss.s)
3722                 return false;
3723         if (ss.dpl != ss_rpl) /* DPL != RPL */
3724                 return false;
3725         if (!ss.present)
3726                 return false;
3727
3728         return true;
3729 }
3730
3731 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3732 {
3733         struct kvm_segment var;
3734         unsigned int rpl;
3735
3736         vmx_get_segment(vcpu, &var, seg);
3737         rpl = var.selector & SELECTOR_RPL_MASK;
3738
3739         if (var.unusable)
3740                 return true;
3741         if (!var.s)
3742                 return false;
3743         if (!var.present)
3744                 return false;
3745         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3746                 if (var.dpl < rpl) /* DPL < RPL */
3747                         return false;
3748         }
3749
3750         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3751          * rights flags
3752          */
3753         return true;
3754 }
3755
3756 static bool tr_valid(struct kvm_vcpu *vcpu)
3757 {
3758         struct kvm_segment tr;
3759
3760         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3761
3762         if (tr.unusable)
3763                 return false;
3764         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3765                 return false;
3766         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3767                 return false;
3768         if (!tr.present)
3769                 return false;
3770
3771         return true;
3772 }
3773
3774 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3775 {
3776         struct kvm_segment ldtr;
3777
3778         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3779
3780         if (ldtr.unusable)
3781                 return true;
3782         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3783                 return false;
3784         if (ldtr.type != 2)
3785                 return false;
3786         if (!ldtr.present)
3787                 return false;
3788
3789         return true;
3790 }
3791
3792 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3793 {
3794         struct kvm_segment cs, ss;
3795
3796         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3797         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3798
3799         return ((cs.selector & SELECTOR_RPL_MASK) ==
3800                  (ss.selector & SELECTOR_RPL_MASK));
3801 }
3802
3803 /*
3804  * Check if guest state is valid. Returns true if valid, false if
3805  * not.
3806  * We assume that registers are always usable
3807  */
3808 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3809 {
3810         if (enable_unrestricted_guest)
3811                 return true;
3812
3813         /* real mode guest state checks */
3814         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3815                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3816                         return false;
3817                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3818                         return false;
3819                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3820                         return false;
3821                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3822                         return false;
3823                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3824                         return false;
3825                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3826                         return false;
3827         } else {
3828         /* protected mode guest state checks */
3829                 if (!cs_ss_rpl_check(vcpu))
3830                         return false;
3831                 if (!code_segment_valid(vcpu))
3832                         return false;
3833                 if (!stack_segment_valid(vcpu))
3834                         return false;
3835                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3836                         return false;
3837                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3838                         return false;
3839                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3840                         return false;
3841                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3842                         return false;
3843                 if (!tr_valid(vcpu))
3844                         return false;
3845                 if (!ldtr_valid(vcpu))
3846                         return false;
3847         }
3848         /* TODO:
3849          * - Add checks on RIP
3850          * - Add checks on RFLAGS
3851          */
3852
3853         return true;
3854 }
3855
3856 static int init_rmode_tss(struct kvm *kvm)
3857 {
3858         gfn_t fn;
3859         u16 data = 0;
3860         int r, idx, ret = 0;
3861
3862         idx = srcu_read_lock(&kvm->srcu);
3863         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3864         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3865         if (r < 0)
3866                 goto out;
3867         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3868         r = kvm_write_guest_page(kvm, fn++, &data,
3869                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3870         if (r < 0)
3871                 goto out;
3872         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3873         if (r < 0)
3874                 goto out;
3875         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3876         if (r < 0)
3877                 goto out;
3878         data = ~0;
3879         r = kvm_write_guest_page(kvm, fn, &data,
3880                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3881                                  sizeof(u8));
3882         if (r < 0)
3883                 goto out;
3884
3885         ret = 1;
3886 out:
3887         srcu_read_unlock(&kvm->srcu, idx);
3888         return ret;
3889 }
3890
3891 static int init_rmode_identity_map(struct kvm *kvm)
3892 {
3893         int i, idx, r, ret;
3894         pfn_t identity_map_pfn;
3895         u32 tmp;
3896
3897         if (!enable_ept)
3898                 return 1;
3899         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3900                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3901                         "haven't been allocated!\n");
3902                 return 0;
3903         }
3904         if (likely(kvm->arch.ept_identity_pagetable_done))
3905                 return 1;
3906         ret = 0;
3907         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3908         idx = srcu_read_lock(&kvm->srcu);
3909         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3910         if (r < 0)
3911                 goto out;
3912         /* Set up identity-mapping pagetable for EPT in real mode */
3913         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3914                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3915                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3916                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3917                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3918                 if (r < 0)
3919                         goto out;
3920         }
3921         kvm->arch.ept_identity_pagetable_done = true;
3922         ret = 1;
3923 out:
3924         srcu_read_unlock(&kvm->srcu, idx);
3925         return ret;
3926 }
3927
3928 static void seg_setup(int seg)
3929 {
3930         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3931         unsigned int ar;
3932
3933         vmcs_write16(sf->selector, 0);
3934         vmcs_writel(sf->base, 0);
3935         vmcs_write32(sf->limit, 0xffff);
3936         ar = 0x93;
3937         if (seg == VCPU_SREG_CS)
3938                 ar |= 0x08; /* code segment */
3939
3940         vmcs_write32(sf->ar_bytes, ar);
3941 }
3942
3943 static int alloc_apic_access_page(struct kvm *kvm)
3944 {
3945         struct page *page;
3946         struct kvm_userspace_memory_region kvm_userspace_mem;
3947         int r = 0;
3948
3949         mutex_lock(&kvm->slots_lock);
3950         if (kvm->arch.apic_access_page)
3951                 goto out;
3952         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3953         kvm_userspace_mem.flags = 0;
3954         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3955         kvm_userspace_mem.memory_size = PAGE_SIZE;
3956         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3957         if (r)
3958                 goto out;
3959
3960         page = gfn_to_page(kvm, 0xfee00);
3961         if (is_error_page(page)) {
3962                 r = -EFAULT;
3963                 goto out;
3964         }
3965
3966         kvm->arch.apic_access_page = page;
3967 out:
3968         mutex_unlock(&kvm->slots_lock);
3969         return r;
3970 }
3971
3972 static int alloc_identity_pagetable(struct kvm *kvm)
3973 {
3974         struct page *page;
3975         struct kvm_userspace_memory_region kvm_userspace_mem;
3976         int r = 0;
3977
3978         mutex_lock(&kvm->slots_lock);
3979         if (kvm->arch.ept_identity_pagetable)
3980                 goto out;
3981         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3982         kvm_userspace_mem.flags = 0;
3983         kvm_userspace_mem.guest_phys_addr =
3984                 kvm->arch.ept_identity_map_addr;
3985         kvm_userspace_mem.memory_size = PAGE_SIZE;
3986         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3987         if (r)
3988                 goto out;
3989
3990         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3991         if (is_error_page(page)) {
3992                 r = -EFAULT;
3993                 goto out;
3994         }
3995
3996         kvm->arch.ept_identity_pagetable = page;
3997 out:
3998         mutex_unlock(&kvm->slots_lock);
3999         return r;
4000 }
4001
4002 static void allocate_vpid(struct vcpu_vmx *vmx)
4003 {
4004         int vpid;
4005
4006         vmx->vpid = 0;
4007         if (!enable_vpid)
4008                 return;
4009         spin_lock(&vmx_vpid_lock);
4010         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4011         if (vpid < VMX_NR_VPIDS) {
4012                 vmx->vpid = vpid;
4013                 __set_bit(vpid, vmx_vpid_bitmap);
4014         }
4015         spin_unlock(&vmx_vpid_lock);
4016 }
4017
4018 static void free_vpid(struct vcpu_vmx *vmx)
4019 {
4020         if (!enable_vpid)
4021                 return;
4022         spin_lock(&vmx_vpid_lock);
4023         if (vmx->vpid != 0)
4024                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4025         spin_unlock(&vmx_vpid_lock);
4026 }
4027
4028 #define MSR_TYPE_R      1
4029 #define MSR_TYPE_W      2
4030 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4031                                                 u32 msr, int type)
4032 {
4033         int f = sizeof(unsigned long);
4034
4035         if (!cpu_has_vmx_msr_bitmap())
4036                 return;
4037
4038         /*
4039          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4040          * have the write-low and read-high bitmap offsets the wrong way round.
4041          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4042          */
4043         if (msr <= 0x1fff) {
4044                 if (type & MSR_TYPE_R)
4045                         /* read-low */
4046                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4047
4048                 if (type & MSR_TYPE_W)
4049                         /* write-low */
4050                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4051
4052         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4053                 msr &= 0x1fff;
4054                 if (type & MSR_TYPE_R)
4055                         /* read-high */
4056                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4057
4058                 if (type & MSR_TYPE_W)
4059                         /* write-high */
4060                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4061
4062         }
4063 }
4064
4065 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4066                                                 u32 msr, int type)
4067 {
4068         int f = sizeof(unsigned long);
4069
4070         if (!cpu_has_vmx_msr_bitmap())
4071                 return;
4072
4073         /*
4074          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4075          * have the write-low and read-high bitmap offsets the wrong way round.
4076          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4077          */
4078         if (msr <= 0x1fff) {
4079                 if (type & MSR_TYPE_R)
4080                         /* read-low */
4081                         __set_bit(msr, msr_bitmap + 0x000 / f);
4082
4083                 if (type & MSR_TYPE_W)
4084                         /* write-low */
4085                         __set_bit(msr, msr_bitmap + 0x800 / f);
4086
4087         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4088                 msr &= 0x1fff;
4089                 if (type & MSR_TYPE_R)
4090                         /* read-high */
4091                         __set_bit(msr, msr_bitmap + 0x400 / f);
4092
4093                 if (type & MSR_TYPE_W)
4094                         /* write-high */
4095                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4096
4097         }
4098 }
4099
4100 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4101 {
4102         if (!longmode_only)
4103                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4104                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4105         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4106                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4107 }
4108
4109 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4110 {
4111         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4112                         msr, MSR_TYPE_R);
4113         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4114                         msr, MSR_TYPE_R);
4115 }
4116
4117 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4118 {
4119         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4120                         msr, MSR_TYPE_R);
4121         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4122                         msr, MSR_TYPE_R);
4123 }
4124
4125 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4126 {
4127         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4128                         msr, MSR_TYPE_W);
4129         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4130                         msr, MSR_TYPE_W);
4131 }
4132
4133 static int vmx_vm_has_apicv(struct kvm *kvm)
4134 {
4135         return enable_apicv && irqchip_in_kernel(kvm);
4136 }
4137
4138 /*
4139  * Send interrupt to vcpu via posted interrupt way.
4140  * 1. If target vcpu is running(non-root mode), send posted interrupt
4141  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4142  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4143  * interrupt from PIR in next vmentry.
4144  */
4145 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4146 {
4147         struct vcpu_vmx *vmx = to_vmx(vcpu);
4148         int r;
4149
4150         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4151                 return;
4152
4153         r = pi_test_and_set_on(&vmx->pi_desc);
4154         kvm_make_request(KVM_REQ_EVENT, vcpu);
4155 #ifdef CONFIG_SMP
4156         if (!r && (vcpu->mode == IN_GUEST_MODE))
4157                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4158                                 POSTED_INTR_VECTOR);
4159         else
4160 #endif
4161                 kvm_vcpu_kick(vcpu);
4162 }
4163
4164 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4165 {
4166         struct vcpu_vmx *vmx = to_vmx(vcpu);
4167
4168         if (!pi_test_and_clear_on(&vmx->pi_desc))
4169                 return;
4170
4171         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4172 }
4173
4174 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4175 {
4176         return;
4177 }
4178
4179 /*
4180  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4181  * will not change in the lifetime of the guest.
4182  * Note that host-state that does change is set elsewhere. E.g., host-state
4183  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4184  */
4185 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4186 {
4187         u32 low32, high32;
4188         unsigned long tmpl;
4189         struct desc_ptr dt;
4190
4191         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4192         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4193         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4194
4195         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4196 #ifdef CONFIG_X86_64
4197         /*
4198          * Load null selectors, so we can avoid reloading them in
4199          * __vmx_load_host_state(), in case userspace uses the null selectors
4200          * too (the expected case).
4201          */
4202         vmcs_write16(HOST_DS_SELECTOR, 0);
4203         vmcs_write16(HOST_ES_SELECTOR, 0);
4204 #else
4205         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4206         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4207 #endif
4208         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4209         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4210
4211         native_store_idt(&dt);
4212         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4213         vmx->host_idt_base = dt.address;
4214
4215         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4216
4217         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4218         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4219         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4220         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4221
4222         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4223                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4224                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4225         }
4226 }
4227
4228 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4229 {
4230         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4231         if (enable_ept)
4232                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4233         if (is_guest_mode(&vmx->vcpu))
4234                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4235                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4236         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4237 }
4238
4239 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4240 {
4241         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4242
4243         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4244                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4245         return pin_based_exec_ctrl;
4246 }
4247
4248 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4249 {
4250         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4251         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4252                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4253 #ifdef CONFIG_X86_64
4254                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4255                                 CPU_BASED_CR8_LOAD_EXITING;
4256 #endif
4257         }
4258         if (!enable_ept)
4259                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4260                                 CPU_BASED_CR3_LOAD_EXITING  |
4261                                 CPU_BASED_INVLPG_EXITING;
4262         return exec_control;
4263 }
4264
4265 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4266 {
4267         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4268         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4269                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4270         if (vmx->vpid == 0)
4271                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4272         if (!enable_ept) {
4273                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4274                 enable_unrestricted_guest = 0;
4275                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4276                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4277         }
4278         if (!enable_unrestricted_guest)
4279                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4280         if (!ple_gap)
4281                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4282         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4283                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4284                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4285         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4286         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4287            (handle_vmptrld).
4288            We can NOT enable shadow_vmcs here because we don't have yet
4289            a current VMCS12
4290         */
4291         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4292         return exec_control;
4293 }
4294
4295 static void ept_set_mmio_spte_mask(void)
4296 {
4297         /*
4298          * EPT Misconfigurations can be generated if the value of bits 2:0
4299          * of an EPT paging-structure entry is 110b (write/execute).
4300          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4301          * spte.
4302          */
4303         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4304 }
4305
4306 /*
4307  * Sets up the vmcs for emulated real mode.
4308  */
4309 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4310 {
4311 #ifdef CONFIG_X86_64
4312         unsigned long a;
4313 #endif
4314         int i;
4315
4316         /* I/O */
4317         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4318         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4319
4320         if (enable_shadow_vmcs) {
4321                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4322                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4323         }
4324         if (cpu_has_vmx_msr_bitmap())
4325                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4326
4327         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4328
4329         /* Control */
4330         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4331
4332         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4333
4334         if (cpu_has_secondary_exec_ctrls()) {
4335                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4336                                 vmx_secondary_exec_control(vmx));
4337         }
4338
4339         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4340                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4341                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4342                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4343                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4344
4345                 vmcs_write16(GUEST_INTR_STATUS, 0);
4346
4347                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4348                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4349         }
4350
4351         if (ple_gap) {
4352                 vmcs_write32(PLE_GAP, ple_gap);
4353                 vmcs_write32(PLE_WINDOW, ple_window);
4354         }
4355
4356         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4357         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4358         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4359
4360         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4361         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4362         vmx_set_constant_host_state(vmx);
4363 #ifdef CONFIG_X86_64
4364         rdmsrl(MSR_FS_BASE, a);
4365         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4366         rdmsrl(MSR_GS_BASE, a);
4367         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4368 #else
4369         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4370         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4371 #endif
4372
4373         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4374         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4375         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4376         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4377         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4378
4379         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4380                 u32 msr_low, msr_high;
4381                 u64 host_pat;
4382                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4383                 host_pat = msr_low | ((u64) msr_high << 32);
4384                 /* Write the default value follow host pat */
4385                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4386                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4387                 vmx->vcpu.arch.pat = host_pat;
4388         }
4389
4390         for (i = 0; i < NR_VMX_MSR; ++i) {
4391                 u32 index = vmx_msr_index[i];
4392                 u32 data_low, data_high;
4393                 int j = vmx->nmsrs;
4394
4395                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4396                         continue;
4397                 if (wrmsr_safe(index, data_low, data_high) < 0)
4398                         continue;
4399                 vmx->guest_msrs[j].index = i;
4400                 vmx->guest_msrs[j].data = 0;
4401                 vmx->guest_msrs[j].mask = -1ull;
4402                 ++vmx->nmsrs;
4403         }
4404
4405
4406         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4407
4408         /* 22.2.1, 20.8.1 */
4409         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4410
4411         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4412         set_cr4_guest_host_mask(vmx);
4413
4414         return 0;
4415 }
4416
4417 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4418 {
4419         struct vcpu_vmx *vmx = to_vmx(vcpu);
4420         u64 msr;
4421
4422         vmx->rmode.vm86_active = 0;
4423
4424         vmx->soft_vnmi_blocked = 0;
4425
4426         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4427         kvm_set_cr8(&vmx->vcpu, 0);
4428         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4429         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4430                 msr |= MSR_IA32_APICBASE_BSP;
4431         kvm_set_apic_base(&vmx->vcpu, msr);
4432
4433         vmx_segment_cache_clear(vmx);
4434
4435         seg_setup(VCPU_SREG_CS);
4436         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4437         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4438
4439         seg_setup(VCPU_SREG_DS);
4440         seg_setup(VCPU_SREG_ES);
4441         seg_setup(VCPU_SREG_FS);
4442         seg_setup(VCPU_SREG_GS);
4443         seg_setup(VCPU_SREG_SS);
4444
4445         vmcs_write16(GUEST_TR_SELECTOR, 0);
4446         vmcs_writel(GUEST_TR_BASE, 0);
4447         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4448         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4449
4450         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4451         vmcs_writel(GUEST_LDTR_BASE, 0);
4452         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4453         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4454
4455         vmcs_write32(GUEST_SYSENTER_CS, 0);
4456         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4457         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4458
4459         vmcs_writel(GUEST_RFLAGS, 0x02);
4460         kvm_rip_write(vcpu, 0xfff0);
4461
4462         vmcs_writel(GUEST_GDTR_BASE, 0);
4463         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4464
4465         vmcs_writel(GUEST_IDTR_BASE, 0);
4466         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4467
4468         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4469         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4470         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4471
4472         /* Special registers */
4473         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4474
4475         setup_msrs(vmx);
4476
4477         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4478
4479         if (cpu_has_vmx_tpr_shadow()) {
4480                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4481                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4482                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4483                                      __pa(vmx->vcpu.arch.apic->regs));
4484                 vmcs_write32(TPR_THRESHOLD, 0);
4485         }
4486
4487         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4488                 vmcs_write64(APIC_ACCESS_ADDR,
4489                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4490
4491         if (vmx_vm_has_apicv(vcpu->kvm))
4492                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4493
4494         if (vmx->vpid != 0)
4495                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4496
4497         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4498         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4499         vmx_set_cr4(&vmx->vcpu, 0);
4500         vmx_set_efer(&vmx->vcpu, 0);
4501         vmx_fpu_activate(&vmx->vcpu);
4502         update_exception_bitmap(&vmx->vcpu);
4503
4504         vpid_sync_context(vmx);
4505 }
4506
4507 /*
4508  * In nested virtualization, check if L1 asked to exit on external interrupts.
4509  * For most existing hypervisors, this will always return true.
4510  */
4511 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4512 {
4513         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4514                 PIN_BASED_EXT_INTR_MASK;
4515 }
4516
4517 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4518 {
4519         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4520                 PIN_BASED_NMI_EXITING;
4521 }
4522
4523 static int enable_irq_window(struct kvm_vcpu *vcpu)
4524 {
4525         u32 cpu_based_vm_exec_control;
4526
4527         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4528                 /*
4529                  * We get here if vmx_interrupt_allowed() said we can't
4530                  * inject to L1 now because L2 must run. The caller will have
4531                  * to make L2 exit right after entry, so we can inject to L1
4532                  * more promptly.
4533                  */
4534                 return -EBUSY;
4535
4536         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4537         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4538         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4539         return 0;
4540 }
4541
4542 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4543 {
4544         u32 cpu_based_vm_exec_control;
4545
4546         if (!cpu_has_virtual_nmis())
4547                 return enable_irq_window(vcpu);
4548
4549         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4550                 return enable_irq_window(vcpu);
4551
4552         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4553         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4554         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4555         return 0;
4556 }
4557
4558 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4559 {
4560         struct vcpu_vmx *vmx = to_vmx(vcpu);
4561         uint32_t intr;
4562         int irq = vcpu->arch.interrupt.nr;
4563
4564         trace_kvm_inj_virq(irq);
4565
4566         ++vcpu->stat.irq_injections;
4567         if (vmx->rmode.vm86_active) {
4568                 int inc_eip = 0;
4569                 if (vcpu->arch.interrupt.soft)
4570                         inc_eip = vcpu->arch.event_exit_inst_len;
4571                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4572                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4573                 return;
4574         }
4575         intr = irq | INTR_INFO_VALID_MASK;
4576         if (vcpu->arch.interrupt.soft) {
4577                 intr |= INTR_TYPE_SOFT_INTR;
4578                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4579                              vmx->vcpu.arch.event_exit_inst_len);
4580         } else
4581                 intr |= INTR_TYPE_EXT_INTR;
4582         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4583 }
4584
4585 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4586 {
4587         struct vcpu_vmx *vmx = to_vmx(vcpu);
4588
4589         if (is_guest_mode(vcpu))
4590                 return;
4591
4592         if (!cpu_has_virtual_nmis()) {
4593                 /*
4594                  * Tracking the NMI-blocked state in software is built upon
4595                  * finding the next open IRQ window. This, in turn, depends on
4596                  * well-behaving guests: They have to keep IRQs disabled at
4597                  * least as long as the NMI handler runs. Otherwise we may
4598                  * cause NMI nesting, maybe breaking the guest. But as this is
4599                  * highly unlikely, we can live with the residual risk.
4600                  */
4601                 vmx->soft_vnmi_blocked = 1;
4602                 vmx->vnmi_blocked_time = 0;
4603         }
4604
4605         ++vcpu->stat.nmi_injections;
4606         vmx->nmi_known_unmasked = false;
4607         if (vmx->rmode.vm86_active) {
4608                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4609                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4610                 return;
4611         }
4612         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4613                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4614 }
4615
4616 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4617 {
4618         if (!cpu_has_virtual_nmis())
4619                 return to_vmx(vcpu)->soft_vnmi_blocked;
4620         if (to_vmx(vcpu)->nmi_known_unmasked)
4621                 return false;
4622         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4623 }
4624
4625 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4626 {
4627         struct vcpu_vmx *vmx = to_vmx(vcpu);
4628
4629         if (!cpu_has_virtual_nmis()) {
4630                 if (vmx->soft_vnmi_blocked != masked) {
4631                         vmx->soft_vnmi_blocked = masked;
4632                         vmx->vnmi_blocked_time = 0;
4633                 }
4634         } else {
4635                 vmx->nmi_known_unmasked = !masked;
4636                 if (masked)
4637                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4638                                       GUEST_INTR_STATE_NMI);
4639                 else
4640                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4641                                         GUEST_INTR_STATE_NMI);
4642         }
4643 }
4644
4645 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4646 {
4647         if (is_guest_mode(vcpu)) {
4648                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4649
4650                 if (to_vmx(vcpu)->nested.nested_run_pending)
4651                         return 0;
4652                 if (nested_exit_on_nmi(vcpu)) {
4653                         nested_vmx_vmexit(vcpu);
4654                         vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4655                         vmcs12->vm_exit_intr_info = NMI_VECTOR |
4656                                 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4657                         /*
4658                          * The NMI-triggered VM exit counts as injection:
4659                          * clear this one and block further NMIs.
4660                          */
4661                         vcpu->arch.nmi_pending = 0;
4662                         vmx_set_nmi_mask(vcpu, true);
4663                         return 0;
4664                 }
4665         }
4666
4667         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4668                 return 0;
4669
4670         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4671                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4672                    | GUEST_INTR_STATE_NMI));
4673 }
4674
4675 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4676 {
4677         if (is_guest_mode(vcpu)) {
4678                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4679
4680                 if (to_vmx(vcpu)->nested.nested_run_pending)
4681                         return 0;
4682                 if (nested_exit_on_intr(vcpu)) {
4683                         nested_vmx_vmexit(vcpu);
4684                         vmcs12->vm_exit_reason =
4685                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4686                         vmcs12->vm_exit_intr_info = 0;
4687                         /*
4688                          * fall through to normal code, but now in L1, not L2
4689                          */
4690                 }
4691         }
4692
4693         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4694                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4695                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4696 }
4697
4698 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4699 {
4700         int ret;
4701         struct kvm_userspace_memory_region tss_mem = {
4702                 .slot = TSS_PRIVATE_MEMSLOT,
4703                 .guest_phys_addr = addr,
4704                 .memory_size = PAGE_SIZE * 3,
4705                 .flags = 0,
4706         };
4707
4708         ret = kvm_set_memory_region(kvm, &tss_mem);
4709         if (ret)
4710                 return ret;
4711         kvm->arch.tss_addr = addr;
4712         if (!init_rmode_tss(kvm))
4713                 return  -ENOMEM;
4714
4715         return 0;
4716 }
4717
4718 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4719 {
4720         switch (vec) {
4721         case BP_VECTOR:
4722                 /*
4723                  * Update instruction length as we may reinject the exception
4724                  * from user space while in guest debugging mode.
4725                  */
4726                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4727                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4728                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4729                         return false;
4730                 /* fall through */
4731         case DB_VECTOR:
4732                 if (vcpu->guest_debug &
4733                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4734                         return false;
4735                 /* fall through */
4736         case DE_VECTOR:
4737         case OF_VECTOR:
4738         case BR_VECTOR:
4739         case UD_VECTOR:
4740         case DF_VECTOR:
4741         case SS_VECTOR:
4742         case GP_VECTOR:
4743         case MF_VECTOR:
4744                 return true;
4745         break;
4746         }
4747         return false;
4748 }
4749
4750 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4751                                   int vec, u32 err_code)
4752 {
4753         /*
4754          * Instruction with address size override prefix opcode 0x67
4755          * Cause the #SS fault with 0 error code in VM86 mode.
4756          */
4757         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4758                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4759                         if (vcpu->arch.halt_request) {
4760                                 vcpu->arch.halt_request = 0;
4761                                 return kvm_emulate_halt(vcpu);
4762                         }
4763                         return 1;
4764                 }
4765                 return 0;
4766         }
4767
4768         /*
4769          * Forward all other exceptions that are valid in real mode.
4770          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4771          *        the required debugging infrastructure rework.
4772          */
4773         kvm_queue_exception(vcpu, vec);
4774         return 1;
4775 }
4776
4777 /*
4778  * Trigger machine check on the host. We assume all the MSRs are already set up
4779  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4780  * We pass a fake environment to the machine check handler because we want
4781  * the guest to be always treated like user space, no matter what context
4782  * it used internally.
4783  */
4784 static void kvm_machine_check(void)
4785 {
4786 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4787         struct pt_regs regs = {
4788                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4789                 .flags = X86_EFLAGS_IF,
4790         };
4791
4792         do_machine_check(&regs, 0);
4793 #endif
4794 }
4795
4796 static int handle_machine_check(struct kvm_vcpu *vcpu)
4797 {
4798         /* already handled by vcpu_run */
4799         return 1;
4800 }
4801
4802 static int handle_exception(struct kvm_vcpu *vcpu)
4803 {
4804         struct vcpu_vmx *vmx = to_vmx(vcpu);
4805         struct kvm_run *kvm_run = vcpu->run;
4806         u32 intr_info, ex_no, error_code;
4807         unsigned long cr2, rip, dr6;
4808         u32 vect_info;
4809         enum emulation_result er;
4810
4811         vect_info = vmx->idt_vectoring_info;
4812         intr_info = vmx->exit_intr_info;
4813
4814         if (is_machine_check(intr_info))
4815                 return handle_machine_check(vcpu);
4816
4817         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4818                 return 1;  /* already handled by vmx_vcpu_run() */
4819
4820         if (is_no_device(intr_info)) {
4821                 vmx_fpu_activate(vcpu);
4822                 return 1;
4823         }
4824
4825         if (is_invalid_opcode(intr_info)) {
4826                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4827                 if (er != EMULATE_DONE)
4828                         kvm_queue_exception(vcpu, UD_VECTOR);
4829                 return 1;
4830         }
4831
4832         error_code = 0;
4833         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4834                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4835
4836         /*
4837          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4838          * MMIO, it is better to report an internal error.
4839          * See the comments in vmx_handle_exit.
4840          */
4841         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4842             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4843                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4844                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4845                 vcpu->run->internal.ndata = 2;
4846                 vcpu->run->internal.data[0] = vect_info;
4847                 vcpu->run->internal.data[1] = intr_info;
4848                 return 0;
4849         }
4850
4851         if (is_page_fault(intr_info)) {
4852                 /* EPT won't cause page fault directly */
4853                 BUG_ON(enable_ept);
4854                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4855                 trace_kvm_page_fault(cr2, error_code);
4856
4857                 if (kvm_event_needs_reinjection(vcpu))
4858                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4859                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4860         }
4861
4862         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4863
4864         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4865                 return handle_rmode_exception(vcpu, ex_no, error_code);
4866
4867         switch (ex_no) {
4868         case DB_VECTOR:
4869                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4870                 if (!(vcpu->guest_debug &
4871                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4872                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4873                         kvm_queue_exception(vcpu, DB_VECTOR);
4874                         return 1;
4875                 }
4876                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4877                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4878                 /* fall through */
4879         case BP_VECTOR:
4880                 /*
4881                  * Update instruction length as we may reinject #BP from
4882                  * user space while in guest debugging mode. Reading it for
4883                  * #DB as well causes no harm, it is not used in that case.
4884                  */
4885                 vmx->vcpu.arch.event_exit_inst_len =
4886                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4887                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4888                 rip = kvm_rip_read(vcpu);
4889                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4890                 kvm_run->debug.arch.exception = ex_no;
4891                 break;
4892         default:
4893                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4894                 kvm_run->ex.exception = ex_no;
4895                 kvm_run->ex.error_code = error_code;
4896                 break;
4897         }
4898         return 0;
4899 }
4900
4901 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4902 {
4903         ++vcpu->stat.irq_exits;
4904         return 1;
4905 }
4906
4907 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4908 {
4909         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4910         return 0;
4911 }
4912
4913 static int handle_io(struct kvm_vcpu *vcpu)
4914 {
4915         unsigned long exit_qualification;
4916         int size, in, string;
4917         unsigned port;
4918
4919         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4920         string = (exit_qualification & 16) != 0;
4921         in = (exit_qualification & 8) != 0;
4922
4923         ++vcpu->stat.io_exits;
4924
4925         if (string || in)
4926                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4927
4928         port = exit_qualification >> 16;
4929         size = (exit_qualification & 7) + 1;
4930         skip_emulated_instruction(vcpu);
4931
4932         return kvm_fast_pio_out(vcpu, size, port);
4933 }
4934
4935 static void
4936 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4937 {
4938         /*
4939          * Patch in the VMCALL instruction:
4940          */
4941         hypercall[0] = 0x0f;
4942         hypercall[1] = 0x01;
4943         hypercall[2] = 0xc1;
4944 }
4945
4946 static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
4947 {
4948         unsigned long always_on = VMXON_CR0_ALWAYSON;
4949
4950         if (nested_vmx_secondary_ctls_high &
4951                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4952             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4953                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
4954         return (val & always_on) == always_on;
4955 }
4956
4957 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4958 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4959 {
4960         if (is_guest_mode(vcpu)) {
4961                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4962                 unsigned long orig_val = val;
4963
4964                 /*
4965                  * We get here when L2 changed cr0 in a way that did not change
4966                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4967                  * but did change L0 shadowed bits. So we first calculate the
4968                  * effective cr0 value that L1 would like to write into the
4969                  * hardware. It consists of the L2-owned bits from the new
4970                  * value combined with the L1-owned bits from L1's guest_cr0.
4971                  */
4972                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4973                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4974
4975                 if (!nested_cr0_valid(vmcs12, val))
4976                         return 1;
4977
4978                 if (kvm_set_cr0(vcpu, val))
4979                         return 1;
4980                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4981                 return 0;
4982         } else {
4983                 if (to_vmx(vcpu)->nested.vmxon &&
4984                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4985                         return 1;
4986                 return kvm_set_cr0(vcpu, val);
4987         }
4988 }
4989
4990 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4991 {
4992         if (is_guest_mode(vcpu)) {
4993                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4994                 unsigned long orig_val = val;
4995
4996                 /* analogously to handle_set_cr0 */
4997                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4998                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4999                 if (kvm_set_cr4(vcpu, val))
5000                         return 1;
5001                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5002                 return 0;
5003         } else
5004                 return kvm_set_cr4(vcpu, val);
5005 }
5006
5007 /* called to set cr0 as approriate for clts instruction exit. */
5008 static void handle_clts(struct kvm_vcpu *vcpu)
5009 {
5010         if (is_guest_mode(vcpu)) {
5011                 /*
5012                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5013                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5014                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5015                  */
5016                 vmcs_writel(CR0_READ_SHADOW,
5017                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5018                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5019         } else
5020                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5021 }
5022
5023 static int handle_cr(struct kvm_vcpu *vcpu)
5024 {
5025         unsigned long exit_qualification, val;
5026         int cr;
5027         int reg;
5028         int err;
5029
5030         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5031         cr = exit_qualification & 15;
5032         reg = (exit_qualification >> 8) & 15;
5033         switch ((exit_qualification >> 4) & 3) {
5034         case 0: /* mov to cr */
5035                 val = kvm_register_read(vcpu, reg);
5036                 trace_kvm_cr_write(cr, val);
5037                 switch (cr) {
5038                 case 0:
5039                         err = handle_set_cr0(vcpu, val);
5040                         kvm_complete_insn_gp(vcpu, err);
5041                         return 1;
5042                 case 3:
5043                         err = kvm_set_cr3(vcpu, val);
5044                         kvm_complete_insn_gp(vcpu, err);
5045                         return 1;
5046                 case 4:
5047                         err = handle_set_cr4(vcpu, val);
5048                         kvm_complete_insn_gp(vcpu, err);
5049                         return 1;
5050                 case 8: {
5051                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5052                                 u8 cr8 = kvm_register_read(vcpu, reg);
5053                                 err = kvm_set_cr8(vcpu, cr8);
5054                                 kvm_complete_insn_gp(vcpu, err);
5055                                 if (irqchip_in_kernel(vcpu->kvm))
5056                                         return 1;
5057                                 if (cr8_prev <= cr8)
5058                                         return 1;
5059                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5060                                 return 0;
5061                         }
5062                 }
5063                 break;
5064         case 2: /* clts */
5065                 handle_clts(vcpu);
5066                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5067                 skip_emulated_instruction(vcpu);
5068                 vmx_fpu_activate(vcpu);
5069                 return 1;
5070         case 1: /*mov from cr*/
5071                 switch (cr) {
5072                 case 3:
5073                         val = kvm_read_cr3(vcpu);
5074                         kvm_register_write(vcpu, reg, val);
5075                         trace_kvm_cr_read(cr, val);
5076                         skip_emulated_instruction(vcpu);
5077                         return 1;
5078                 case 8:
5079                         val = kvm_get_cr8(vcpu);
5080                         kvm_register_write(vcpu, reg, val);
5081                         trace_kvm_cr_read(cr, val);
5082                         skip_emulated_instruction(vcpu);
5083                         return 1;
5084                 }
5085                 break;
5086         case 3: /* lmsw */
5087                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5088                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5089                 kvm_lmsw(vcpu, val);
5090
5091                 skip_emulated_instruction(vcpu);
5092                 return 1;
5093         default:
5094                 break;
5095         }
5096         vcpu->run->exit_reason = 0;
5097         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5098                (int)(exit_qualification >> 4) & 3, cr);
5099         return 0;
5100 }
5101
5102 static int handle_dr(struct kvm_vcpu *vcpu)
5103 {
5104         unsigned long exit_qualification;
5105         int dr, reg;
5106
5107         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5108         if (!kvm_require_cpl(vcpu, 0))
5109                 return 1;
5110         dr = vmcs_readl(GUEST_DR7);
5111         if (dr & DR7_GD) {
5112                 /*
5113                  * As the vm-exit takes precedence over the debug trap, we
5114                  * need to emulate the latter, either for the host or the
5115                  * guest debugging itself.
5116                  */
5117                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5118                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5119                         vcpu->run->debug.arch.dr7 = dr;
5120                         vcpu->run->debug.arch.pc =
5121                                 vmcs_readl(GUEST_CS_BASE) +
5122                                 vmcs_readl(GUEST_RIP);
5123                         vcpu->run->debug.arch.exception = DB_VECTOR;
5124                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5125                         return 0;
5126                 } else {
5127                         vcpu->arch.dr7 &= ~DR7_GD;
5128                         vcpu->arch.dr6 |= DR6_BD;
5129                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5130                         kvm_queue_exception(vcpu, DB_VECTOR);
5131                         return 1;
5132                 }
5133         }
5134
5135         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5136         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5137         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5138         if (exit_qualification & TYPE_MOV_FROM_DR) {
5139                 unsigned long val;
5140
5141                 if (kvm_get_dr(vcpu, dr, &val))
5142                         return 1;
5143                 kvm_register_write(vcpu, reg, val);
5144         } else
5145                 if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
5146                         return 1;
5147
5148         skip_emulated_instruction(vcpu);
5149         return 1;
5150 }
5151
5152 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5153 {
5154         vmcs_writel(GUEST_DR7, val);
5155 }
5156
5157 static int handle_cpuid(struct kvm_vcpu *vcpu)
5158 {
5159         kvm_emulate_cpuid(vcpu);
5160         return 1;
5161 }
5162
5163 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5164 {
5165         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5166         u64 data;
5167
5168         if (vmx_get_msr(vcpu, ecx, &data)) {
5169                 trace_kvm_msr_read_ex(ecx);
5170                 kvm_inject_gp(vcpu, 0);
5171                 return 1;
5172         }
5173
5174         trace_kvm_msr_read(ecx, data);
5175
5176         /* FIXME: handling of bits 32:63 of rax, rdx */
5177         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5178         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5179         skip_emulated_instruction(vcpu);
5180         return 1;
5181 }
5182
5183 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5184 {
5185         struct msr_data msr;
5186         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5187         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5188                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5189
5190         msr.data = data;
5191         msr.index = ecx;
5192         msr.host_initiated = false;
5193         if (vmx_set_msr(vcpu, &msr) != 0) {
5194                 trace_kvm_msr_write_ex(ecx, data);
5195                 kvm_inject_gp(vcpu, 0);
5196                 return 1;
5197         }
5198
5199         trace_kvm_msr_write(ecx, data);
5200         skip_emulated_instruction(vcpu);
5201         return 1;
5202 }
5203
5204 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5205 {
5206         kvm_make_request(KVM_REQ_EVENT, vcpu);
5207         return 1;
5208 }
5209
5210 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5211 {
5212         u32 cpu_based_vm_exec_control;
5213
5214         /* clear pending irq */
5215         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5216         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5217         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5218
5219         kvm_make_request(KVM_REQ_EVENT, vcpu);
5220
5221         ++vcpu->stat.irq_window_exits;
5222
5223         /*
5224          * If the user space waits to inject interrupts, exit as soon as
5225          * possible
5226          */
5227         if (!irqchip_in_kernel(vcpu->kvm) &&
5228             vcpu->run->request_interrupt_window &&
5229             !kvm_cpu_has_interrupt(vcpu)) {
5230                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5231                 return 0;
5232         }
5233         return 1;
5234 }
5235
5236 static int handle_halt(struct kvm_vcpu *vcpu)
5237 {
5238         skip_emulated_instruction(vcpu);
5239         return kvm_emulate_halt(vcpu);
5240 }
5241
5242 static int handle_vmcall(struct kvm_vcpu *vcpu)
5243 {
5244         skip_emulated_instruction(vcpu);
5245         kvm_emulate_hypercall(vcpu);
5246         return 1;
5247 }
5248
5249 static int handle_invd(struct kvm_vcpu *vcpu)
5250 {
5251         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5252 }
5253
5254 static int handle_invlpg(struct kvm_vcpu *vcpu)
5255 {
5256         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5257
5258         kvm_mmu_invlpg(vcpu, exit_qualification);
5259         skip_emulated_instruction(vcpu);
5260         return 1;
5261 }
5262
5263 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5264 {
5265         int err;
5266
5267         err = kvm_rdpmc(vcpu);
5268         kvm_complete_insn_gp(vcpu, err);
5269
5270         return 1;
5271 }
5272
5273 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5274 {
5275         skip_emulated_instruction(vcpu);
5276         kvm_emulate_wbinvd(vcpu);
5277         return 1;
5278 }
5279
5280 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5281 {
5282         u64 new_bv = kvm_read_edx_eax(vcpu);
5283         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5284
5285         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5286                 skip_emulated_instruction(vcpu);
5287         return 1;
5288 }
5289
5290 static int handle_apic_access(struct kvm_vcpu *vcpu)
5291 {
5292         if (likely(fasteoi)) {
5293                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5294                 int access_type, offset;
5295
5296                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5297                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5298                 /*
5299                  * Sane guest uses MOV to write EOI, with written value
5300                  * not cared. So make a short-circuit here by avoiding
5301                  * heavy instruction emulation.
5302                  */
5303                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5304                     (offset == APIC_EOI)) {
5305                         kvm_lapic_set_eoi(vcpu);
5306                         skip_emulated_instruction(vcpu);
5307                         return 1;
5308                 }
5309         }
5310         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5311 }
5312
5313 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5314 {
5315         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5316         int vector = exit_qualification & 0xff;
5317
5318         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5319         kvm_apic_set_eoi_accelerated(vcpu, vector);
5320         return 1;
5321 }
5322
5323 static int handle_apic_write(struct kvm_vcpu *vcpu)
5324 {
5325         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5326         u32 offset = exit_qualification & 0xfff;
5327
5328         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5329         kvm_apic_write_nodecode(vcpu, offset);
5330         return 1;
5331 }
5332
5333 static int handle_task_switch(struct kvm_vcpu *vcpu)
5334 {
5335         struct vcpu_vmx *vmx = to_vmx(vcpu);
5336         unsigned long exit_qualification;
5337         bool has_error_code = false;
5338         u32 error_code = 0;
5339         u16 tss_selector;
5340         int reason, type, idt_v, idt_index;
5341
5342         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5343         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5344         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5345
5346         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5347
5348         reason = (u32)exit_qualification >> 30;
5349         if (reason == TASK_SWITCH_GATE && idt_v) {
5350                 switch (type) {
5351                 case INTR_TYPE_NMI_INTR:
5352                         vcpu->arch.nmi_injected = false;
5353                         vmx_set_nmi_mask(vcpu, true);
5354                         break;
5355                 case INTR_TYPE_EXT_INTR:
5356                 case INTR_TYPE_SOFT_INTR:
5357                         kvm_clear_interrupt_queue(vcpu);
5358                         break;
5359                 case INTR_TYPE_HARD_EXCEPTION:
5360                         if (vmx->idt_vectoring_info &
5361                             VECTORING_INFO_DELIVER_CODE_MASK) {
5362                                 has_error_code = true;
5363                                 error_code =
5364                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5365                         }
5366                         /* fall through */
5367                 case INTR_TYPE_SOFT_EXCEPTION:
5368                         kvm_clear_exception_queue(vcpu);
5369                         break;
5370                 default:
5371                         break;
5372                 }
5373         }
5374         tss_selector = exit_qualification;
5375
5376         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5377                        type != INTR_TYPE_EXT_INTR &&
5378                        type != INTR_TYPE_NMI_INTR))
5379                 skip_emulated_instruction(vcpu);
5380
5381         if (kvm_task_switch(vcpu, tss_selector,
5382                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5383                             has_error_code, error_code) == EMULATE_FAIL) {
5384                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5385                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5386                 vcpu->run->internal.ndata = 0;
5387                 return 0;
5388         }
5389
5390         /* clear all local breakpoint enable flags */
5391         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5392
5393         /*
5394          * TODO: What about debug traps on tss switch?
5395          *       Are we supposed to inject them and update dr6?
5396          */
5397
5398         return 1;
5399 }
5400
5401 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5402 {
5403         unsigned long exit_qualification;
5404         gpa_t gpa;
5405         u32 error_code;
5406         int gla_validity;
5407
5408         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5409
5410         gla_validity = (exit_qualification >> 7) & 0x3;
5411         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5412                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5413                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5414                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5415                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5416                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5417                         (long unsigned int)exit_qualification);
5418                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5419                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5420                 return 0;
5421         }
5422
5423         /*
5424          * EPT violation happened while executing iret from NMI,
5425          * "blocked by NMI" bit has to be set before next VM entry.
5426          * There are errata that may cause this bit to not be set:
5427          * AAK134, BY25.
5428          */
5429         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5430                         cpu_has_virtual_nmis() &&
5431                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5432                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5433
5434         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5435         trace_kvm_page_fault(gpa, exit_qualification);
5436
5437         /* It is a write fault? */
5438         error_code = exit_qualification & (1U << 1);
5439         /* It is a fetch fault? */
5440         error_code |= (exit_qualification & (1U << 2)) << 2;
5441         /* ept page table is present? */
5442         error_code |= (exit_qualification >> 3) & 0x1;
5443
5444         vcpu->arch.exit_qualification = exit_qualification;
5445
5446         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5447 }
5448
5449 static u64 ept_rsvd_mask(u64 spte, int level)
5450 {
5451         int i;
5452         u64 mask = 0;
5453
5454         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5455                 mask |= (1ULL << i);
5456
5457         if (level > 2)
5458                 /* bits 7:3 reserved */
5459                 mask |= 0xf8;
5460         else if (level == 2) {
5461                 if (spte & (1ULL << 7))
5462                         /* 2MB ref, bits 20:12 reserved */
5463                         mask |= 0x1ff000;
5464                 else
5465                         /* bits 6:3 reserved */
5466                         mask |= 0x78;
5467         }
5468
5469         return mask;
5470 }
5471
5472 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5473                                        int level)
5474 {
5475         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5476
5477         /* 010b (write-only) */
5478         WARN_ON((spte & 0x7) == 0x2);
5479
5480         /* 110b (write/execute) */
5481         WARN_ON((spte & 0x7) == 0x6);
5482
5483         /* 100b (execute-only) and value not supported by logical processor */
5484         if (!cpu_has_vmx_ept_execute_only())
5485                 WARN_ON((spte & 0x7) == 0x4);
5486
5487         /* not 000b */
5488         if ((spte & 0x7)) {
5489                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5490
5491                 if (rsvd_bits != 0) {
5492                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5493                                          __func__, rsvd_bits);
5494                         WARN_ON(1);
5495                 }
5496
5497                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5498                         u64 ept_mem_type = (spte & 0x38) >> 3;
5499
5500                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5501                             ept_mem_type == 7) {
5502                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5503                                                 __func__, ept_mem_type);
5504                                 WARN_ON(1);
5505                         }
5506                 }
5507         }
5508 }
5509
5510 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5511 {
5512         u64 sptes[4];
5513         int nr_sptes, i, ret;
5514         gpa_t gpa;
5515
5516         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5517
5518         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5519         if (likely(ret == RET_MMIO_PF_EMULATE))
5520                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5521                                               EMULATE_DONE;
5522
5523         if (unlikely(ret == RET_MMIO_PF_INVALID))
5524                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5525
5526         if (unlikely(ret == RET_MMIO_PF_RETRY))
5527                 return 1;
5528
5529         /* It is the real ept misconfig */
5530         printk(KERN_ERR "EPT: Misconfiguration.\n");
5531         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5532
5533         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5534
5535         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5536                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5537
5538         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5539         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5540
5541         return 0;
5542 }
5543
5544 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5545 {
5546         u32 cpu_based_vm_exec_control;
5547
5548         /* clear pending NMI */
5549         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5550         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5551         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5552         ++vcpu->stat.nmi_window_exits;
5553         kvm_make_request(KVM_REQ_EVENT, vcpu);
5554
5555         return 1;
5556 }
5557
5558 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5559 {
5560         struct vcpu_vmx *vmx = to_vmx(vcpu);
5561         enum emulation_result err = EMULATE_DONE;
5562         int ret = 1;
5563         u32 cpu_exec_ctrl;
5564         bool intr_window_requested;
5565         unsigned count = 130;
5566
5567         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5568         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5569
5570         while (!guest_state_valid(vcpu) && count-- != 0) {
5571                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5572                         return handle_interrupt_window(&vmx->vcpu);
5573
5574                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5575                         return 1;
5576
5577                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5578
5579                 if (err == EMULATE_USER_EXIT) {
5580                         ++vcpu->stat.mmio_exits;
5581                         ret = 0;
5582                         goto out;
5583                 }
5584
5585                 if (err != EMULATE_DONE) {
5586                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5587                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5588                         vcpu->run->internal.ndata = 0;
5589                         return 0;
5590                 }
5591
5592                 if (vcpu->arch.halt_request) {
5593                         vcpu->arch.halt_request = 0;
5594                         ret = kvm_emulate_halt(vcpu);
5595                         goto out;
5596                 }
5597
5598                 if (signal_pending(current))
5599                         goto out;
5600                 if (need_resched())
5601                         schedule();
5602         }
5603
5604         vmx->emulation_required = emulation_required(vcpu);
5605 out:
5606         return ret;
5607 }
5608
5609 /*
5610  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5611  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5612  */
5613 static int handle_pause(struct kvm_vcpu *vcpu)
5614 {
5615         skip_emulated_instruction(vcpu);
5616         kvm_vcpu_on_spin(vcpu);
5617
5618         return 1;
5619 }
5620
5621 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5622 {
5623         kvm_queue_exception(vcpu, UD_VECTOR);
5624         return 1;
5625 }
5626
5627 /*
5628  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5629  * We could reuse a single VMCS for all the L2 guests, but we also want the
5630  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5631  * allows keeping them loaded on the processor, and in the future will allow
5632  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5633  * every entry if they never change.
5634  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5635  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5636  *
5637  * The following functions allocate and free a vmcs02 in this pool.
5638  */
5639
5640 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5641 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5642 {
5643         struct vmcs02_list *item;
5644         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5645                 if (item->vmptr == vmx->nested.current_vmptr) {
5646                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5647                         return &item->vmcs02;
5648                 }
5649
5650         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5651                 /* Recycle the least recently used VMCS. */
5652                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5653                         struct vmcs02_list, list);
5654                 item->vmptr = vmx->nested.current_vmptr;
5655                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5656                 return &item->vmcs02;
5657         }
5658
5659         /* Create a new VMCS */
5660         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5661         if (!item)
5662                 return NULL;
5663         item->vmcs02.vmcs = alloc_vmcs();
5664         if (!item->vmcs02.vmcs) {
5665                 kfree(item);
5666                 return NULL;
5667         }
5668         loaded_vmcs_init(&item->vmcs02);
5669         item->vmptr = vmx->nested.current_vmptr;
5670         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5671         vmx->nested.vmcs02_num++;
5672         return &item->vmcs02;
5673 }
5674
5675 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5676 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5677 {
5678         struct vmcs02_list *item;
5679         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5680                 if (item->vmptr == vmptr) {
5681                         free_loaded_vmcs(&item->vmcs02);
5682                         list_del(&item->list);
5683                         kfree(item);
5684                         vmx->nested.vmcs02_num--;
5685                         return;
5686                 }
5687 }
5688
5689 /*
5690  * Free all VMCSs saved for this vcpu, except the one pointed by
5691  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5692  * currently used, if running L2), and vmcs01 when running L2.
5693  */
5694 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5695 {
5696         struct vmcs02_list *item, *n;
5697         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5698                 if (vmx->loaded_vmcs != &item->vmcs02)
5699                         free_loaded_vmcs(&item->vmcs02);
5700                 list_del(&item->list);
5701                 kfree(item);
5702         }
5703         vmx->nested.vmcs02_num = 0;
5704
5705         if (vmx->loaded_vmcs != &vmx->vmcs01)
5706                 free_loaded_vmcs(&vmx->vmcs01);
5707 }
5708
5709 /*
5710  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5711  * set the success or error code of an emulated VMX instruction, as specified
5712  * by Vol 2B, VMX Instruction Reference, "Conventions".
5713  */
5714 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5715 {
5716         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5717                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5718                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5719 }
5720
5721 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5722 {
5723         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5724                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5725                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5726                         | X86_EFLAGS_CF);
5727 }
5728
5729 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5730                                         u32 vm_instruction_error)
5731 {
5732         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5733                 /*
5734                  * failValid writes the error number to the current VMCS, which
5735                  * can't be done there isn't a current VMCS.
5736                  */
5737                 nested_vmx_failInvalid(vcpu);
5738                 return;
5739         }
5740         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5741                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5742                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5743                         | X86_EFLAGS_ZF);
5744         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5745         /*
5746          * We don't need to force a shadow sync because
5747          * VM_INSTRUCTION_ERROR is not shadowed
5748          */
5749 }
5750
5751 /*
5752  * Emulate the VMXON instruction.
5753  * Currently, we just remember that VMX is active, and do not save or even
5754  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5755  * do not currently need to store anything in that guest-allocated memory
5756  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5757  * argument is different from the VMXON pointer (which the spec says they do).
5758  */
5759 static int handle_vmon(struct kvm_vcpu *vcpu)
5760 {
5761         struct kvm_segment cs;
5762         struct vcpu_vmx *vmx = to_vmx(vcpu);
5763         struct vmcs *shadow_vmcs;
5764         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5765                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5766
5767         /* The Intel VMX Instruction Reference lists a bunch of bits that
5768          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5769          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5770          * Otherwise, we should fail with #UD. We test these now:
5771          */
5772         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5773             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5774             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5775                 kvm_queue_exception(vcpu, UD_VECTOR);
5776                 return 1;
5777         }
5778
5779         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5780         if (is_long_mode(vcpu) && !cs.l) {
5781                 kvm_queue_exception(vcpu, UD_VECTOR);
5782                 return 1;
5783         }
5784
5785         if (vmx_get_cpl(vcpu)) {
5786                 kvm_inject_gp(vcpu, 0);
5787                 return 1;
5788         }
5789         if (vmx->nested.vmxon) {
5790                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5791                 skip_emulated_instruction(vcpu);
5792                 return 1;
5793         }
5794
5795         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5796                         != VMXON_NEEDED_FEATURES) {
5797                 kvm_inject_gp(vcpu, 0);
5798                 return 1;
5799         }
5800
5801         if (enable_shadow_vmcs) {
5802                 shadow_vmcs = alloc_vmcs();
5803                 if (!shadow_vmcs)
5804                         return -ENOMEM;
5805                 /* mark vmcs as shadow */
5806                 shadow_vmcs->revision_id |= (1u << 31);
5807                 /* init shadow vmcs */
5808                 vmcs_clear(shadow_vmcs);
5809                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5810         }
5811
5812         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5813         vmx->nested.vmcs02_num = 0;
5814
5815         vmx->nested.vmxon = true;
5816
5817         skip_emulated_instruction(vcpu);
5818         nested_vmx_succeed(vcpu);
5819         return 1;
5820 }
5821
5822 /*
5823  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5824  * for running VMX instructions (except VMXON, whose prerequisites are
5825  * slightly different). It also specifies what exception to inject otherwise.
5826  */
5827 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5828 {
5829         struct kvm_segment cs;
5830         struct vcpu_vmx *vmx = to_vmx(vcpu);
5831
5832         if (!vmx->nested.vmxon) {
5833                 kvm_queue_exception(vcpu, UD_VECTOR);
5834                 return 0;
5835         }
5836
5837         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5838         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5839             (is_long_mode(vcpu) && !cs.l)) {
5840                 kvm_queue_exception(vcpu, UD_VECTOR);
5841                 return 0;
5842         }
5843
5844         if (vmx_get_cpl(vcpu)) {
5845                 kvm_inject_gp(vcpu, 0);
5846                 return 0;
5847         }
5848
5849         return 1;
5850 }
5851
5852 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5853 {
5854         u32 exec_control;
5855         if (enable_shadow_vmcs) {
5856                 if (vmx->nested.current_vmcs12 != NULL) {
5857                         /* copy to memory all shadowed fields in case
5858                            they were modified */
5859                         copy_shadow_to_vmcs12(vmx);
5860                         vmx->nested.sync_shadow_vmcs = false;
5861                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5862                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5863                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5864                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5865                 }
5866         }
5867         kunmap(vmx->nested.current_vmcs12_page);
5868         nested_release_page(vmx->nested.current_vmcs12_page);
5869 }
5870
5871 /*
5872  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5873  * just stops using VMX.
5874  */
5875 static void free_nested(struct vcpu_vmx *vmx)
5876 {
5877         if (!vmx->nested.vmxon)
5878                 return;
5879         vmx->nested.vmxon = false;
5880         if (vmx->nested.current_vmptr != -1ull) {
5881                 nested_release_vmcs12(vmx);
5882                 vmx->nested.current_vmptr = -1ull;
5883                 vmx->nested.current_vmcs12 = NULL;
5884         }
5885         if (enable_shadow_vmcs)
5886                 free_vmcs(vmx->nested.current_shadow_vmcs);
5887         /* Unpin physical memory we referred to in current vmcs02 */
5888         if (vmx->nested.apic_access_page) {
5889                 nested_release_page(vmx->nested.apic_access_page);
5890                 vmx->nested.apic_access_page = 0;
5891         }
5892
5893         nested_free_all_saved_vmcss(vmx);
5894 }
5895
5896 /* Emulate the VMXOFF instruction */
5897 static int handle_vmoff(struct kvm_vcpu *vcpu)
5898 {
5899         if (!nested_vmx_check_permission(vcpu))
5900                 return 1;
5901         free_nested(to_vmx(vcpu));
5902         skip_emulated_instruction(vcpu);
5903         nested_vmx_succeed(vcpu);
5904         return 1;
5905 }
5906
5907 /*
5908  * Decode the memory-address operand of a vmx instruction, as recorded on an
5909  * exit caused by such an instruction (run by a guest hypervisor).
5910  * On success, returns 0. When the operand is invalid, returns 1 and throws
5911  * #UD or #GP.
5912  */
5913 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5914                                  unsigned long exit_qualification,
5915                                  u32 vmx_instruction_info, gva_t *ret)
5916 {
5917         /*
5918          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5919          * Execution", on an exit, vmx_instruction_info holds most of the
5920          * addressing components of the operand. Only the displacement part
5921          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5922          * For how an actual address is calculated from all these components,
5923          * refer to Vol. 1, "Operand Addressing".
5924          */
5925         int  scaling = vmx_instruction_info & 3;
5926         int  addr_size = (vmx_instruction_info >> 7) & 7;
5927         bool is_reg = vmx_instruction_info & (1u << 10);
5928         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5929         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5930         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5931         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5932         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5933
5934         if (is_reg) {
5935                 kvm_queue_exception(vcpu, UD_VECTOR);
5936                 return 1;
5937         }
5938
5939         /* Addr = segment_base + offset */
5940         /* offset = base + [index * scale] + displacement */
5941         *ret = vmx_get_segment_base(vcpu, seg_reg);
5942         if (base_is_valid)
5943                 *ret += kvm_register_read(vcpu, base_reg);
5944         if (index_is_valid)
5945                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5946         *ret += exit_qualification; /* holds the displacement */
5947
5948         if (addr_size == 1) /* 32 bit */
5949                 *ret &= 0xffffffff;
5950
5951         /*
5952          * TODO: throw #GP (and return 1) in various cases that the VM*
5953          * instructions require it - e.g., offset beyond segment limit,
5954          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5955          * address, and so on. Currently these are not checked.
5956          */
5957         return 0;
5958 }
5959
5960 /* Emulate the VMCLEAR instruction */
5961 static int handle_vmclear(struct kvm_vcpu *vcpu)
5962 {
5963         struct vcpu_vmx *vmx = to_vmx(vcpu);
5964         gva_t gva;
5965         gpa_t vmptr;
5966         struct vmcs12 *vmcs12;
5967         struct page *page;
5968         struct x86_exception e;
5969
5970         if (!nested_vmx_check_permission(vcpu))
5971                 return 1;
5972
5973         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5974                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5975                 return 1;
5976
5977         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5978                                 sizeof(vmptr), &e)) {
5979                 kvm_inject_page_fault(vcpu, &e);
5980                 return 1;
5981         }
5982
5983         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5984                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5985                 skip_emulated_instruction(vcpu);
5986                 return 1;
5987         }
5988
5989         if (vmptr == vmx->nested.current_vmptr) {
5990                 nested_release_vmcs12(vmx);
5991                 vmx->nested.current_vmptr = -1ull;
5992                 vmx->nested.current_vmcs12 = NULL;
5993         }
5994
5995         page = nested_get_page(vcpu, vmptr);
5996         if (page == NULL) {
5997                 /*
5998                  * For accurate processor emulation, VMCLEAR beyond available
5999                  * physical memory should do nothing at all. However, it is
6000                  * possible that a nested vmx bug, not a guest hypervisor bug,
6001                  * resulted in this case, so let's shut down before doing any
6002                  * more damage:
6003                  */
6004                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6005                 return 1;
6006         }
6007         vmcs12 = kmap(page);
6008         vmcs12->launch_state = 0;
6009         kunmap(page);
6010         nested_release_page(page);
6011
6012         nested_free_vmcs02(vmx, vmptr);
6013
6014         skip_emulated_instruction(vcpu);
6015         nested_vmx_succeed(vcpu);
6016         return 1;
6017 }
6018
6019 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6020
6021 /* Emulate the VMLAUNCH instruction */
6022 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6023 {
6024         return nested_vmx_run(vcpu, true);
6025 }
6026
6027 /* Emulate the VMRESUME instruction */
6028 static int handle_vmresume(struct kvm_vcpu *vcpu)
6029 {
6030
6031         return nested_vmx_run(vcpu, false);
6032 }
6033
6034 enum vmcs_field_type {
6035         VMCS_FIELD_TYPE_U16 = 0,
6036         VMCS_FIELD_TYPE_U64 = 1,
6037         VMCS_FIELD_TYPE_U32 = 2,
6038         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6039 };
6040
6041 static inline int vmcs_field_type(unsigned long field)
6042 {
6043         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6044                 return VMCS_FIELD_TYPE_U32;
6045         return (field >> 13) & 0x3 ;
6046 }
6047
6048 static inline int vmcs_field_readonly(unsigned long field)
6049 {
6050         return (((field >> 10) & 0x3) == 1);
6051 }
6052
6053 /*
6054  * Read a vmcs12 field. Since these can have varying lengths and we return
6055  * one type, we chose the biggest type (u64) and zero-extend the return value
6056  * to that size. Note that the caller, handle_vmread, might need to use only
6057  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6058  * 64-bit fields are to be returned).
6059  */
6060 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6061                                         unsigned long field, u64 *ret)
6062 {
6063         short offset = vmcs_field_to_offset(field);
6064         char *p;
6065
6066         if (offset < 0)
6067                 return 0;
6068
6069         p = ((char *)(get_vmcs12(vcpu))) + offset;
6070
6071         switch (vmcs_field_type(field)) {
6072         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6073                 *ret = *((natural_width *)p);
6074                 return 1;
6075         case VMCS_FIELD_TYPE_U16:
6076                 *ret = *((u16 *)p);
6077                 return 1;
6078         case VMCS_FIELD_TYPE_U32:
6079                 *ret = *((u32 *)p);
6080                 return 1;
6081         case VMCS_FIELD_TYPE_U64:
6082                 *ret = *((u64 *)p);
6083                 return 1;
6084         default:
6085                 return 0; /* can never happen. */
6086         }
6087 }
6088
6089
6090 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6091                                     unsigned long field, u64 field_value){
6092         short offset = vmcs_field_to_offset(field);
6093         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6094         if (offset < 0)
6095                 return false;
6096
6097         switch (vmcs_field_type(field)) {
6098         case VMCS_FIELD_TYPE_U16:
6099                 *(u16 *)p = field_value;
6100                 return true;
6101         case VMCS_FIELD_TYPE_U32:
6102                 *(u32 *)p = field_value;
6103                 return true;
6104         case VMCS_FIELD_TYPE_U64:
6105                 *(u64 *)p = field_value;
6106                 return true;
6107         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6108                 *(natural_width *)p = field_value;
6109                 return true;
6110         default:
6111                 return false; /* can never happen. */
6112         }
6113
6114 }
6115
6116 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6117 {
6118         int i;
6119         unsigned long field;
6120         u64 field_value;
6121         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6122         const unsigned long *fields = shadow_read_write_fields;
6123         const int num_fields = max_shadow_read_write_fields;
6124
6125         vmcs_load(shadow_vmcs);
6126
6127         for (i = 0; i < num_fields; i++) {
6128                 field = fields[i];
6129                 switch (vmcs_field_type(field)) {
6130                 case VMCS_FIELD_TYPE_U16:
6131                         field_value = vmcs_read16(field);
6132                         break;
6133                 case VMCS_FIELD_TYPE_U32:
6134                         field_value = vmcs_read32(field);
6135                         break;
6136                 case VMCS_FIELD_TYPE_U64:
6137                         field_value = vmcs_read64(field);
6138                         break;
6139                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6140                         field_value = vmcs_readl(field);
6141                         break;
6142                 }
6143                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6144         }
6145
6146         vmcs_clear(shadow_vmcs);
6147         vmcs_load(vmx->loaded_vmcs->vmcs);
6148 }
6149
6150 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6151 {
6152         const unsigned long *fields[] = {
6153                 shadow_read_write_fields,
6154                 shadow_read_only_fields
6155         };
6156         const int max_fields[] = {
6157                 max_shadow_read_write_fields,
6158                 max_shadow_read_only_fields
6159         };
6160         int i, q;
6161         unsigned long field;
6162         u64 field_value = 0;
6163         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6164
6165         vmcs_load(shadow_vmcs);
6166
6167         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6168                 for (i = 0; i < max_fields[q]; i++) {
6169                         field = fields[q][i];
6170                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6171
6172                         switch (vmcs_field_type(field)) {
6173                         case VMCS_FIELD_TYPE_U16:
6174                                 vmcs_write16(field, (u16)field_value);
6175                                 break;
6176                         case VMCS_FIELD_TYPE_U32:
6177                                 vmcs_write32(field, (u32)field_value);
6178                                 break;
6179                         case VMCS_FIELD_TYPE_U64:
6180                                 vmcs_write64(field, (u64)field_value);
6181                                 break;
6182                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6183                                 vmcs_writel(field, (long)field_value);
6184                                 break;
6185                         }
6186                 }
6187         }
6188
6189         vmcs_clear(shadow_vmcs);
6190         vmcs_load(vmx->loaded_vmcs->vmcs);
6191 }
6192
6193 /*
6194  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6195  * used before) all generate the same failure when it is missing.
6196  */
6197 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6198 {
6199         struct vcpu_vmx *vmx = to_vmx(vcpu);
6200         if (vmx->nested.current_vmptr == -1ull) {
6201                 nested_vmx_failInvalid(vcpu);
6202                 skip_emulated_instruction(vcpu);
6203                 return 0;
6204         }
6205         return 1;
6206 }
6207
6208 static int handle_vmread(struct kvm_vcpu *vcpu)
6209 {
6210         unsigned long field;
6211         u64 field_value;
6212         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6213         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6214         gva_t gva = 0;
6215
6216         if (!nested_vmx_check_permission(vcpu) ||
6217             !nested_vmx_check_vmcs12(vcpu))
6218                 return 1;
6219
6220         /* Decode instruction info and find the field to read */
6221         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6222         /* Read the field, zero-extended to a u64 field_value */
6223         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6224                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6225                 skip_emulated_instruction(vcpu);
6226                 return 1;
6227         }
6228         /*
6229          * Now copy part of this value to register or memory, as requested.
6230          * Note that the number of bits actually copied is 32 or 64 depending
6231          * on the guest's mode (32 or 64 bit), not on the given field's length.
6232          */
6233         if (vmx_instruction_info & (1u << 10)) {
6234                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6235                         field_value);
6236         } else {
6237                 if (get_vmx_mem_address(vcpu, exit_qualification,
6238                                 vmx_instruction_info, &gva))
6239                         return 1;
6240                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6241                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6242                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6243         }
6244
6245         nested_vmx_succeed(vcpu);
6246         skip_emulated_instruction(vcpu);
6247         return 1;
6248 }
6249
6250
6251 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6252 {
6253         unsigned long field;
6254         gva_t gva;
6255         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6256         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6257         /* The value to write might be 32 or 64 bits, depending on L1's long
6258          * mode, and eventually we need to write that into a field of several
6259          * possible lengths. The code below first zero-extends the value to 64
6260          * bit (field_value), and then copies only the approriate number of
6261          * bits into the vmcs12 field.
6262          */
6263         u64 field_value = 0;
6264         struct x86_exception e;
6265
6266         if (!nested_vmx_check_permission(vcpu) ||
6267             !nested_vmx_check_vmcs12(vcpu))
6268                 return 1;
6269
6270         if (vmx_instruction_info & (1u << 10))
6271                 field_value = kvm_register_read(vcpu,
6272                         (((vmx_instruction_info) >> 3) & 0xf));
6273         else {
6274                 if (get_vmx_mem_address(vcpu, exit_qualification,
6275                                 vmx_instruction_info, &gva))
6276                         return 1;
6277                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6278                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6279                         kvm_inject_page_fault(vcpu, &e);
6280                         return 1;
6281                 }
6282         }
6283
6284
6285         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6286         if (vmcs_field_readonly(field)) {
6287                 nested_vmx_failValid(vcpu,
6288                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6289                 skip_emulated_instruction(vcpu);
6290                 return 1;
6291         }
6292
6293         if (!vmcs12_write_any(vcpu, field, field_value)) {
6294                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6295                 skip_emulated_instruction(vcpu);
6296                 return 1;
6297         }
6298
6299         nested_vmx_succeed(vcpu);
6300         skip_emulated_instruction(vcpu);
6301         return 1;
6302 }
6303
6304 /* Emulate the VMPTRLD instruction */
6305 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6306 {
6307         struct vcpu_vmx *vmx = to_vmx(vcpu);
6308         gva_t gva;
6309         gpa_t vmptr;
6310         struct x86_exception e;
6311         u32 exec_control;
6312
6313         if (!nested_vmx_check_permission(vcpu))
6314                 return 1;
6315
6316         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6317                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6318                 return 1;
6319
6320         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6321                                 sizeof(vmptr), &e)) {
6322                 kvm_inject_page_fault(vcpu, &e);
6323                 return 1;
6324         }
6325
6326         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6327                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6328                 skip_emulated_instruction(vcpu);
6329                 return 1;
6330         }
6331
6332         if (vmx->nested.current_vmptr != vmptr) {
6333                 struct vmcs12 *new_vmcs12;
6334                 struct page *page;
6335                 page = nested_get_page(vcpu, vmptr);
6336                 if (page == NULL) {
6337                         nested_vmx_failInvalid(vcpu);
6338                         skip_emulated_instruction(vcpu);
6339                         return 1;
6340                 }
6341                 new_vmcs12 = kmap(page);
6342                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6343                         kunmap(page);
6344                         nested_release_page_clean(page);
6345                         nested_vmx_failValid(vcpu,
6346                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6347                         skip_emulated_instruction(vcpu);
6348                         return 1;
6349                 }
6350                 if (vmx->nested.current_vmptr != -1ull)
6351                         nested_release_vmcs12(vmx);
6352
6353                 vmx->nested.current_vmptr = vmptr;
6354                 vmx->nested.current_vmcs12 = new_vmcs12;
6355                 vmx->nested.current_vmcs12_page = page;
6356                 if (enable_shadow_vmcs) {
6357                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6358                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6359                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6360                         vmcs_write64(VMCS_LINK_POINTER,
6361                                      __pa(vmx->nested.current_shadow_vmcs));
6362                         vmx->nested.sync_shadow_vmcs = true;
6363                 }
6364         }
6365
6366         nested_vmx_succeed(vcpu);
6367         skip_emulated_instruction(vcpu);
6368         return 1;
6369 }
6370
6371 /* Emulate the VMPTRST instruction */
6372 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6373 {
6374         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6375         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6376         gva_t vmcs_gva;
6377         struct x86_exception e;
6378
6379         if (!nested_vmx_check_permission(vcpu))
6380                 return 1;
6381
6382         if (get_vmx_mem_address(vcpu, exit_qualification,
6383                         vmx_instruction_info, &vmcs_gva))
6384                 return 1;
6385         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6386         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6387                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6388                                  sizeof(u64), &e)) {
6389                 kvm_inject_page_fault(vcpu, &e);
6390                 return 1;
6391         }
6392         nested_vmx_succeed(vcpu);
6393         skip_emulated_instruction(vcpu);
6394         return 1;
6395 }
6396
6397 /* Emulate the INVEPT instruction */
6398 static int handle_invept(struct kvm_vcpu *vcpu)
6399 {
6400         u32 vmx_instruction_info, types;
6401         unsigned long type;
6402         gva_t gva;
6403         struct x86_exception e;
6404         struct {
6405                 u64 eptp, gpa;
6406         } operand;
6407         u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6408
6409         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6410             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6411                 kvm_queue_exception(vcpu, UD_VECTOR);
6412                 return 1;
6413         }
6414
6415         if (!nested_vmx_check_permission(vcpu))
6416                 return 1;
6417
6418         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6419                 kvm_queue_exception(vcpu, UD_VECTOR);
6420                 return 1;
6421         }
6422
6423         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6424         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6425
6426         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6427
6428         if (!(types & (1UL << type))) {
6429                 nested_vmx_failValid(vcpu,
6430                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6431                 return 1;
6432         }
6433
6434         /* According to the Intel VMX instruction reference, the memory
6435          * operand is read even if it isn't needed (e.g., for type==global)
6436          */
6437         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6438                         vmx_instruction_info, &gva))
6439                 return 1;
6440         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6441                                 sizeof(operand), &e)) {
6442                 kvm_inject_page_fault(vcpu, &e);
6443                 return 1;
6444         }
6445
6446         switch (type) {
6447         case VMX_EPT_EXTENT_CONTEXT:
6448                 if ((operand.eptp & eptp_mask) !=
6449                                 (nested_ept_get_cr3(vcpu) & eptp_mask))
6450                         break;
6451         case VMX_EPT_EXTENT_GLOBAL:
6452                 kvm_mmu_sync_roots(vcpu);
6453                 kvm_mmu_flush_tlb(vcpu);
6454                 nested_vmx_succeed(vcpu);
6455                 break;
6456         default:
6457                 BUG_ON(1);
6458                 break;
6459         }
6460
6461         skip_emulated_instruction(vcpu);
6462         return 1;
6463 }
6464
6465 /*
6466  * The exit handlers return 1 if the exit was handled fully and guest execution
6467  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6468  * to be done to userspace and return 0.
6469  */
6470 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6471         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6472         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6473         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6474         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6475         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6476         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6477         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6478         [EXIT_REASON_CPUID]                   = handle_cpuid,
6479         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6480         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6481         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6482         [EXIT_REASON_HLT]                     = handle_halt,
6483         [EXIT_REASON_INVD]                    = handle_invd,
6484         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6485         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6486         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6487         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6488         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6489         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6490         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6491         [EXIT_REASON_VMREAD]                  = handle_vmread,
6492         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6493         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6494         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6495         [EXIT_REASON_VMON]                    = handle_vmon,
6496         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6497         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6498         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6499         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6500         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6501         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6502         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6503         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6504         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6505         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6506         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6507         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6508         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6509         [EXIT_REASON_INVEPT]                  = handle_invept,
6510 };
6511
6512 static const int kvm_vmx_max_exit_handlers =
6513         ARRAY_SIZE(kvm_vmx_exit_handlers);
6514
6515 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6516                                        struct vmcs12 *vmcs12)
6517 {
6518         unsigned long exit_qualification;
6519         gpa_t bitmap, last_bitmap;
6520         unsigned int port;
6521         int size;
6522         u8 b;
6523
6524         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6525                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6526
6527         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6528
6529         port = exit_qualification >> 16;
6530         size = (exit_qualification & 7) + 1;
6531
6532         last_bitmap = (gpa_t)-1;
6533         b = -1;
6534
6535         while (size > 0) {
6536                 if (port < 0x8000)
6537                         bitmap = vmcs12->io_bitmap_a;
6538                 else if (port < 0x10000)
6539                         bitmap = vmcs12->io_bitmap_b;
6540                 else
6541                         return 1;
6542                 bitmap += (port & 0x7fff) / 8;
6543
6544                 if (last_bitmap != bitmap)
6545                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6546                                 return 1;
6547                 if (b & (1 << (port & 7)))
6548                         return 1;
6549
6550                 port++;
6551                 size--;
6552                 last_bitmap = bitmap;
6553         }
6554
6555         return 0;
6556 }
6557
6558 /*
6559  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6560  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6561  * disinterest in the current event (read or write a specific MSR) by using an
6562  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6563  */
6564 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6565         struct vmcs12 *vmcs12, u32 exit_reason)
6566 {
6567         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6568         gpa_t bitmap;
6569
6570         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6571                 return 1;
6572
6573         /*
6574          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6575          * for the four combinations of read/write and low/high MSR numbers.
6576          * First we need to figure out which of the four to use:
6577          */
6578         bitmap = vmcs12->msr_bitmap;
6579         if (exit_reason == EXIT_REASON_MSR_WRITE)
6580                 bitmap += 2048;
6581         if (msr_index >= 0xc0000000) {
6582                 msr_index -= 0xc0000000;
6583                 bitmap += 1024;
6584         }
6585
6586         /* Then read the msr_index'th bit from this bitmap: */
6587         if (msr_index < 1024*8) {
6588                 unsigned char b;
6589                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6590                         return 1;
6591                 return 1 & (b >> (msr_index & 7));
6592         } else
6593                 return 1; /* let L1 handle the wrong parameter */
6594 }
6595
6596 /*
6597  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6598  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6599  * intercept (via guest_host_mask etc.) the current event.
6600  */
6601 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6602         struct vmcs12 *vmcs12)
6603 {
6604         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6605         int cr = exit_qualification & 15;
6606         int reg = (exit_qualification >> 8) & 15;
6607         unsigned long val = kvm_register_read(vcpu, reg);
6608
6609         switch ((exit_qualification >> 4) & 3) {
6610         case 0: /* mov to cr */
6611                 switch (cr) {
6612                 case 0:
6613                         if (vmcs12->cr0_guest_host_mask &
6614                             (val ^ vmcs12->cr0_read_shadow))
6615                                 return 1;
6616                         break;
6617                 case 3:
6618                         if ((vmcs12->cr3_target_count >= 1 &&
6619                                         vmcs12->cr3_target_value0 == val) ||
6620                                 (vmcs12->cr3_target_count >= 2 &&
6621                                         vmcs12->cr3_target_value1 == val) ||
6622                                 (vmcs12->cr3_target_count >= 3 &&
6623                                         vmcs12->cr3_target_value2 == val) ||
6624                                 (vmcs12->cr3_target_count >= 4 &&
6625                                         vmcs12->cr3_target_value3 == val))
6626                                 return 0;
6627                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6628                                 return 1;
6629                         break;
6630                 case 4:
6631                         if (vmcs12->cr4_guest_host_mask &
6632                             (vmcs12->cr4_read_shadow ^ val))
6633                                 return 1;
6634                         break;
6635                 case 8:
6636                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6637                                 return 1;
6638                         break;
6639                 }
6640                 break;
6641         case 2: /* clts */
6642                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6643                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6644                         return 1;
6645                 break;
6646         case 1: /* mov from cr */
6647                 switch (cr) {
6648                 case 3:
6649                         if (vmcs12->cpu_based_vm_exec_control &
6650                             CPU_BASED_CR3_STORE_EXITING)
6651                                 return 1;
6652                         break;
6653                 case 8:
6654                         if (vmcs12->cpu_based_vm_exec_control &
6655                             CPU_BASED_CR8_STORE_EXITING)
6656                                 return 1;
6657                         break;
6658                 }
6659                 break;
6660         case 3: /* lmsw */
6661                 /*
6662                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6663                  * cr0. Other attempted changes are ignored, with no exit.
6664                  */
6665                 if (vmcs12->cr0_guest_host_mask & 0xe &
6666                     (val ^ vmcs12->cr0_read_shadow))
6667                         return 1;
6668                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6669                     !(vmcs12->cr0_read_shadow & 0x1) &&
6670                     (val & 0x1))
6671                         return 1;
6672                 break;
6673         }
6674         return 0;
6675 }
6676
6677 /*
6678  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6679  * should handle it ourselves in L0 (and then continue L2). Only call this
6680  * when in is_guest_mode (L2).
6681  */
6682 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6683 {
6684         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6685         struct vcpu_vmx *vmx = to_vmx(vcpu);
6686         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6687         u32 exit_reason = vmx->exit_reason;
6688
6689         if (vmx->nested.nested_run_pending)
6690                 return 0;
6691
6692         if (unlikely(vmx->fail)) {
6693                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6694                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6695                 return 1;
6696         }
6697
6698         switch (exit_reason) {
6699         case EXIT_REASON_EXCEPTION_NMI:
6700                 if (!is_exception(intr_info))
6701                         return 0;
6702                 else if (is_page_fault(intr_info))
6703                         return enable_ept;
6704                 else if (is_no_device(intr_info) &&
6705                          !(nested_read_cr0(vmcs12) & X86_CR0_TS))
6706                         return 0;
6707                 return vmcs12->exception_bitmap &
6708                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6709         case EXIT_REASON_EXTERNAL_INTERRUPT:
6710                 return 0;
6711         case EXIT_REASON_TRIPLE_FAULT:
6712                 return 1;
6713         case EXIT_REASON_PENDING_INTERRUPT:
6714                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6715         case EXIT_REASON_NMI_WINDOW:
6716                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6717         case EXIT_REASON_TASK_SWITCH:
6718                 return 1;
6719         case EXIT_REASON_CPUID:
6720                 return 1;
6721         case EXIT_REASON_HLT:
6722                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6723         case EXIT_REASON_INVD:
6724                 return 1;
6725         case EXIT_REASON_INVLPG:
6726                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6727         case EXIT_REASON_RDPMC:
6728                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6729         case EXIT_REASON_RDTSC:
6730                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6731         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6732         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6733         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6734         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6735         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6736         case EXIT_REASON_INVEPT:
6737                 /*
6738                  * VMX instructions trap unconditionally. This allows L1 to
6739                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6740                  */
6741                 return 1;
6742         case EXIT_REASON_CR_ACCESS:
6743                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6744         case EXIT_REASON_DR_ACCESS:
6745                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6746         case EXIT_REASON_IO_INSTRUCTION:
6747                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6748         case EXIT_REASON_MSR_READ:
6749         case EXIT_REASON_MSR_WRITE:
6750                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6751         case EXIT_REASON_INVALID_STATE:
6752                 return 1;
6753         case EXIT_REASON_MWAIT_INSTRUCTION:
6754                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6755         case EXIT_REASON_MONITOR_INSTRUCTION:
6756                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6757         case EXIT_REASON_PAUSE_INSTRUCTION:
6758                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6759                         nested_cpu_has2(vmcs12,
6760                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6761         case EXIT_REASON_MCE_DURING_VMENTRY:
6762                 return 0;
6763         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6764                 return 1;
6765         case EXIT_REASON_APIC_ACCESS:
6766                 return nested_cpu_has2(vmcs12,
6767                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6768         case EXIT_REASON_EPT_VIOLATION:
6769                 /*
6770                  * L0 always deals with the EPT violation. If nested EPT is
6771                  * used, and the nested mmu code discovers that the address is
6772                  * missing in the guest EPT table (EPT12), the EPT violation
6773                  * will be injected with nested_ept_inject_page_fault()
6774                  */
6775                 return 0;
6776         case EXIT_REASON_EPT_MISCONFIG:
6777                 /*
6778                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6779                  * table (shadow on EPT) or a merged EPT table that L0 built
6780                  * (EPT on EPT). So any problems with the structure of the
6781                  * table is L0's fault.
6782                  */
6783                 return 0;
6784         case EXIT_REASON_PREEMPTION_TIMER:
6785                 return vmcs12->pin_based_vm_exec_control &
6786                         PIN_BASED_VMX_PREEMPTION_TIMER;
6787         case EXIT_REASON_WBINVD:
6788                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6789         case EXIT_REASON_XSETBV:
6790                 return 1;
6791         default:
6792                 return 1;
6793         }
6794 }
6795
6796 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6797 {
6798         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6799         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6800 }
6801
6802 static void nested_adjust_preemption_timer(struct kvm_vcpu *vcpu)
6803 {
6804         u64 delta_tsc_l1;
6805         u32 preempt_val_l1, preempt_val_l2, preempt_scale;
6806
6807         if (!(get_vmcs12(vcpu)->pin_based_vm_exec_control &
6808                         PIN_BASED_VMX_PREEMPTION_TIMER))
6809                 return;
6810         preempt_scale = native_read_msr(MSR_IA32_VMX_MISC) &
6811                         MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE;
6812         preempt_val_l2 = vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
6813         delta_tsc_l1 = vmx_read_l1_tsc(vcpu, native_read_tsc())
6814                 - vcpu->arch.last_guest_tsc;
6815         preempt_val_l1 = delta_tsc_l1 >> preempt_scale;
6816         if (preempt_val_l2 <= preempt_val_l1)
6817                 preempt_val_l2 = 0;
6818         else
6819                 preempt_val_l2 -= preempt_val_l1;
6820         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, preempt_val_l2);
6821 }
6822
6823 /*
6824  * The guest has exited.  See if we can fix it or if we need userspace
6825  * assistance.
6826  */
6827 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6828 {
6829         struct vcpu_vmx *vmx = to_vmx(vcpu);
6830         u32 exit_reason = vmx->exit_reason;
6831         u32 vectoring_info = vmx->idt_vectoring_info;
6832
6833         /* If guest state is invalid, start emulating */
6834         if (vmx->emulation_required)
6835                 return handle_invalid_guest_state(vcpu);
6836
6837         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6838                 nested_vmx_vmexit(vcpu);
6839                 return 1;
6840         }
6841
6842         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6843                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6844                 vcpu->run->fail_entry.hardware_entry_failure_reason
6845                         = exit_reason;
6846                 return 0;
6847         }
6848
6849         if (unlikely(vmx->fail)) {
6850                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6851                 vcpu->run->fail_entry.hardware_entry_failure_reason
6852                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6853                 return 0;
6854         }
6855
6856         /*
6857          * Note:
6858          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6859          * delivery event since it indicates guest is accessing MMIO.
6860          * The vm-exit can be triggered again after return to guest that
6861          * will cause infinite loop.
6862          */
6863         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6864                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6865                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6866                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6867                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6868                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6869                 vcpu->run->internal.ndata = 2;
6870                 vcpu->run->internal.data[0] = vectoring_info;
6871                 vcpu->run->internal.data[1] = exit_reason;
6872                 return 0;
6873         }
6874
6875         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6876             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6877                                         get_vmcs12(vcpu))))) {
6878                 if (vmx_interrupt_allowed(vcpu)) {
6879                         vmx->soft_vnmi_blocked = 0;
6880                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6881                            vcpu->arch.nmi_pending) {
6882                         /*
6883                          * This CPU don't support us in finding the end of an
6884                          * NMI-blocked window if the guest runs with IRQs
6885                          * disabled. So we pull the trigger after 1 s of
6886                          * futile waiting, but inform the user about this.
6887                          */
6888                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6889                                "state on VCPU %d after 1 s timeout\n",
6890                                __func__, vcpu->vcpu_id);
6891                         vmx->soft_vnmi_blocked = 0;
6892                 }
6893         }
6894
6895         if (exit_reason < kvm_vmx_max_exit_handlers
6896             && kvm_vmx_exit_handlers[exit_reason])
6897                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6898         else {
6899                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6900                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6901         }
6902         return 0;
6903 }
6904
6905 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6906 {
6907         if (irr == -1 || tpr < irr) {
6908                 vmcs_write32(TPR_THRESHOLD, 0);
6909                 return;
6910         }
6911
6912         vmcs_write32(TPR_THRESHOLD, irr);
6913 }
6914
6915 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6916 {
6917         u32 sec_exec_control;
6918
6919         /*
6920          * There is not point to enable virtualize x2apic without enable
6921          * apicv
6922          */
6923         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6924                                 !vmx_vm_has_apicv(vcpu->kvm))
6925                 return;
6926
6927         if (!vm_need_tpr_shadow(vcpu->kvm))
6928                 return;
6929
6930         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6931
6932         if (set) {
6933                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6934                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6935         } else {
6936                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6937                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6938         }
6939         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6940
6941         vmx_set_msr_bitmap(vcpu);
6942 }
6943
6944 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6945 {
6946         u16 status;
6947         u8 old;
6948
6949         if (!vmx_vm_has_apicv(kvm))
6950                 return;
6951
6952         if (isr == -1)
6953                 isr = 0;
6954
6955         status = vmcs_read16(GUEST_INTR_STATUS);
6956         old = status >> 8;
6957         if (isr != old) {
6958                 status &= 0xff;
6959                 status |= isr << 8;
6960                 vmcs_write16(GUEST_INTR_STATUS, status);
6961         }
6962 }
6963
6964 static void vmx_set_rvi(int vector)
6965 {
6966         u16 status;
6967         u8 old;
6968
6969         status = vmcs_read16(GUEST_INTR_STATUS);
6970         old = (u8)status & 0xff;
6971         if ((u8)vector != old) {
6972                 status &= ~0xff;
6973                 status |= (u8)vector;
6974                 vmcs_write16(GUEST_INTR_STATUS, status);
6975         }
6976 }
6977
6978 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6979 {
6980         if (max_irr == -1)
6981                 return;
6982
6983         vmx_set_rvi(max_irr);
6984 }
6985
6986 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6987 {
6988         if (!vmx_vm_has_apicv(vcpu->kvm))
6989                 return;
6990
6991         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6992         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6993         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6994         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6995 }
6996
6997 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6998 {
6999         u32 exit_intr_info;
7000
7001         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7002               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7003                 return;
7004
7005         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7006         exit_intr_info = vmx->exit_intr_info;
7007
7008         /* Handle machine checks before interrupts are enabled */
7009         if (is_machine_check(exit_intr_info))
7010                 kvm_machine_check();
7011
7012         /* We need to handle NMIs before interrupts are enabled */
7013         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7014             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7015                 kvm_before_handle_nmi(&vmx->vcpu);
7016                 asm("int $2");
7017                 kvm_after_handle_nmi(&vmx->vcpu);
7018         }
7019 }
7020
7021 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7022 {
7023         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7024
7025         /*
7026          * If external interrupt exists, IF bit is set in rflags/eflags on the
7027          * interrupt stack frame, and interrupt will be enabled on a return
7028          * from interrupt handler.
7029          */
7030         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7031                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7032                 unsigned int vector;
7033                 unsigned long entry;
7034                 gate_desc *desc;
7035                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7036 #ifdef CONFIG_X86_64
7037                 unsigned long tmp;
7038 #endif
7039
7040                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7041                 desc = (gate_desc *)vmx->host_idt_base + vector;
7042                 entry = gate_offset(*desc);
7043                 asm volatile(
7044 #ifdef CONFIG_X86_64
7045                         "mov %%" _ASM_SP ", %[sp]\n\t"
7046                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7047                         "push $%c[ss]\n\t"
7048                         "push %[sp]\n\t"
7049 #endif
7050                         "pushf\n\t"
7051                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7052                         __ASM_SIZE(push) " $%c[cs]\n\t"
7053                         "call *%[entry]\n\t"
7054                         :
7055 #ifdef CONFIG_X86_64
7056                         [sp]"=&r"(tmp)
7057 #endif
7058                         :
7059                         [entry]"r"(entry),
7060                         [ss]"i"(__KERNEL_DS),
7061                         [cs]"i"(__KERNEL_CS)
7062                         );
7063         } else
7064                 local_irq_enable();
7065 }
7066
7067 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7068 {
7069         u32 exit_intr_info;
7070         bool unblock_nmi;
7071         u8 vector;
7072         bool idtv_info_valid;
7073
7074         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7075
7076         if (cpu_has_virtual_nmis()) {
7077                 if (vmx->nmi_known_unmasked)
7078                         return;
7079                 /*
7080                  * Can't use vmx->exit_intr_info since we're not sure what
7081                  * the exit reason is.
7082                  */
7083                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7084                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7085                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7086                 /*
7087                  * SDM 3: 27.7.1.2 (September 2008)
7088                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
7089                  * a guest IRET fault.
7090                  * SDM 3: 23.2.2 (September 2008)
7091                  * Bit 12 is undefined in any of the following cases:
7092                  *  If the VM exit sets the valid bit in the IDT-vectoring
7093                  *   information field.
7094                  *  If the VM exit is due to a double fault.
7095                  */
7096                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7097                     vector != DF_VECTOR && !idtv_info_valid)
7098                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7099                                       GUEST_INTR_STATE_NMI);
7100                 else
7101                         vmx->nmi_known_unmasked =
7102                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7103                                   & GUEST_INTR_STATE_NMI);
7104         } else if (unlikely(vmx->soft_vnmi_blocked))
7105                 vmx->vnmi_blocked_time +=
7106                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7107 }
7108
7109 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7110                                       u32 idt_vectoring_info,
7111                                       int instr_len_field,
7112                                       int error_code_field)
7113 {
7114         u8 vector;
7115         int type;
7116         bool idtv_info_valid;
7117
7118         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7119
7120         vcpu->arch.nmi_injected = false;
7121         kvm_clear_exception_queue(vcpu);
7122         kvm_clear_interrupt_queue(vcpu);
7123
7124         if (!idtv_info_valid)
7125                 return;
7126
7127         kvm_make_request(KVM_REQ_EVENT, vcpu);
7128
7129         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7130         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7131
7132         switch (type) {
7133         case INTR_TYPE_NMI_INTR:
7134                 vcpu->arch.nmi_injected = true;
7135                 /*
7136                  * SDM 3: 27.7.1.2 (September 2008)
7137                  * Clear bit "block by NMI" before VM entry if a NMI
7138                  * delivery faulted.
7139                  */
7140                 vmx_set_nmi_mask(vcpu, false);
7141                 break;
7142         case INTR_TYPE_SOFT_EXCEPTION:
7143                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7144                 /* fall through */
7145         case INTR_TYPE_HARD_EXCEPTION:
7146                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7147                         u32 err = vmcs_read32(error_code_field);
7148                         kvm_requeue_exception_e(vcpu, vector, err);
7149                 } else
7150                         kvm_requeue_exception(vcpu, vector);
7151                 break;
7152         case INTR_TYPE_SOFT_INTR:
7153                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7154                 /* fall through */
7155         case INTR_TYPE_EXT_INTR:
7156                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7157                 break;
7158         default:
7159                 break;
7160         }
7161 }
7162
7163 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7164 {
7165         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7166                                   VM_EXIT_INSTRUCTION_LEN,
7167                                   IDT_VECTORING_ERROR_CODE);
7168 }
7169
7170 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7171 {
7172         __vmx_complete_interrupts(vcpu,
7173                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7174                                   VM_ENTRY_INSTRUCTION_LEN,
7175                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7176
7177         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7178 }
7179
7180 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7181 {
7182         int i, nr_msrs;
7183         struct perf_guest_switch_msr *msrs;
7184
7185         msrs = perf_guest_get_msrs(&nr_msrs);
7186
7187         if (!msrs)
7188                 return;
7189
7190         for (i = 0; i < nr_msrs; i++)
7191                 if (msrs[i].host == msrs[i].guest)
7192                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7193                 else
7194                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7195                                         msrs[i].host);
7196 }
7197
7198 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7199 {
7200         struct vcpu_vmx *vmx = to_vmx(vcpu);
7201         unsigned long debugctlmsr;
7202
7203         /* Record the guest's net vcpu time for enforced NMI injections. */
7204         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7205                 vmx->entry_time = ktime_get();
7206
7207         /* Don't enter VMX if guest state is invalid, let the exit handler
7208            start emulation until we arrive back to a valid state */
7209         if (vmx->emulation_required)
7210                 return;
7211
7212         if (vmx->nested.sync_shadow_vmcs) {
7213                 copy_vmcs12_to_shadow(vmx);
7214                 vmx->nested.sync_shadow_vmcs = false;
7215         }
7216
7217         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7218                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7219         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7220                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7221
7222         /* When single-stepping over STI and MOV SS, we must clear the
7223          * corresponding interruptibility bits in the guest state. Otherwise
7224          * vmentry fails as it then expects bit 14 (BS) in pending debug
7225          * exceptions being set, but that's not correct for the guest debugging
7226          * case. */
7227         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7228                 vmx_set_interrupt_shadow(vcpu, 0);
7229
7230         atomic_switch_perf_msrs(vmx);
7231         debugctlmsr = get_debugctlmsr();
7232
7233         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending)
7234                 nested_adjust_preemption_timer(vcpu);
7235         vmx->__launched = vmx->loaded_vmcs->launched;
7236         asm(
7237                 /* Store host registers */
7238                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7239                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7240                 "push %%" _ASM_CX " \n\t"
7241                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7242                 "je 1f \n\t"
7243                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7244                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7245                 "1: \n\t"
7246                 /* Reload cr2 if changed */
7247                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7248                 "mov %%cr2, %%" _ASM_DX " \n\t"
7249                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7250                 "je 2f \n\t"
7251                 "mov %%" _ASM_AX", %%cr2 \n\t"
7252                 "2: \n\t"
7253                 /* Check if vmlaunch of vmresume is needed */
7254                 "cmpl $0, %c[launched](%0) \n\t"
7255                 /* Load guest registers.  Don't clobber flags. */
7256                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7257                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7258                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7259                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7260                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7261                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7262 #ifdef CONFIG_X86_64
7263                 "mov %c[r8](%0),  %%r8  \n\t"
7264                 "mov %c[r9](%0),  %%r9  \n\t"
7265                 "mov %c[r10](%0), %%r10 \n\t"
7266                 "mov %c[r11](%0), %%r11 \n\t"
7267                 "mov %c[r12](%0), %%r12 \n\t"
7268                 "mov %c[r13](%0), %%r13 \n\t"
7269                 "mov %c[r14](%0), %%r14 \n\t"
7270                 "mov %c[r15](%0), %%r15 \n\t"
7271 #endif
7272                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7273
7274                 /* Enter guest mode */
7275                 "jne 1f \n\t"
7276                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7277                 "jmp 2f \n\t"
7278                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7279                 "2: "
7280                 /* Save guest registers, load host registers, keep flags */
7281                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7282                 "pop %0 \n\t"
7283                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7284                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7285                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7286                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7287                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7288                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7289                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7290 #ifdef CONFIG_X86_64
7291                 "mov %%r8,  %c[r8](%0) \n\t"
7292                 "mov %%r9,  %c[r9](%0) \n\t"
7293                 "mov %%r10, %c[r10](%0) \n\t"
7294                 "mov %%r11, %c[r11](%0) \n\t"
7295                 "mov %%r12, %c[r12](%0) \n\t"
7296                 "mov %%r13, %c[r13](%0) \n\t"
7297                 "mov %%r14, %c[r14](%0) \n\t"
7298                 "mov %%r15, %c[r15](%0) \n\t"
7299 #endif
7300                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7301                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7302
7303                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7304                 "setbe %c[fail](%0) \n\t"
7305                 ".pushsection .rodata \n\t"
7306                 ".global vmx_return \n\t"
7307                 "vmx_return: " _ASM_PTR " 2b \n\t"
7308                 ".popsection"
7309               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7310                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7311                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7312                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7313                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7314                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7315                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7316                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7317                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7318                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7319                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7320 #ifdef CONFIG_X86_64
7321                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7322                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7323                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7324                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7325                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7326                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7327                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7328                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7329 #endif
7330                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7331                 [wordsize]"i"(sizeof(ulong))
7332               : "cc", "memory"
7333 #ifdef CONFIG_X86_64
7334                 , "rax", "rbx", "rdi", "rsi"
7335                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7336 #else
7337                 , "eax", "ebx", "edi", "esi"
7338 #endif
7339               );
7340
7341         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7342         if (debugctlmsr)
7343                 update_debugctlmsr(debugctlmsr);
7344
7345 #ifndef CONFIG_X86_64
7346         /*
7347          * The sysexit path does not restore ds/es, so we must set them to
7348          * a reasonable value ourselves.
7349          *
7350          * We can't defer this to vmx_load_host_state() since that function
7351          * may be executed in interrupt context, which saves and restore segments
7352          * around it, nullifying its effect.
7353          */
7354         loadsegment(ds, __USER_DS);
7355         loadsegment(es, __USER_DS);
7356 #endif
7357
7358         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7359                                   | (1 << VCPU_EXREG_RFLAGS)
7360                                   | (1 << VCPU_EXREG_CPL)
7361                                   | (1 << VCPU_EXREG_PDPTR)
7362                                   | (1 << VCPU_EXREG_SEGMENTS)
7363                                   | (1 << VCPU_EXREG_CR3));
7364         vcpu->arch.regs_dirty = 0;
7365
7366         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7367
7368         vmx->loaded_vmcs->launched = 1;
7369
7370         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7371         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7372
7373         /*
7374          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7375          * we did not inject a still-pending event to L1 now because of
7376          * nested_run_pending, we need to re-enable this bit.
7377          */
7378         if (vmx->nested.nested_run_pending)
7379                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7380
7381         vmx->nested.nested_run_pending = 0;
7382
7383         vmx_complete_atomic_exit(vmx);
7384         vmx_recover_nmi_blocking(vmx);
7385         vmx_complete_interrupts(vmx);
7386 }
7387
7388 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7389 {
7390         struct vcpu_vmx *vmx = to_vmx(vcpu);
7391
7392         free_vpid(vmx);
7393         free_loaded_vmcs(vmx->loaded_vmcs);
7394         free_nested(vmx);
7395         kfree(vmx->guest_msrs);
7396         kvm_vcpu_uninit(vcpu);
7397         kmem_cache_free(kvm_vcpu_cache, vmx);
7398 }
7399
7400 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7401 {
7402         int err;
7403         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7404         int cpu;
7405
7406         if (!vmx)
7407                 return ERR_PTR(-ENOMEM);
7408
7409         allocate_vpid(vmx);
7410
7411         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7412         if (err)
7413                 goto free_vcpu;
7414
7415         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7416         err = -ENOMEM;
7417         if (!vmx->guest_msrs) {
7418                 goto uninit_vcpu;
7419         }
7420
7421         vmx->loaded_vmcs = &vmx->vmcs01;
7422         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7423         if (!vmx->loaded_vmcs->vmcs)
7424                 goto free_msrs;
7425         if (!vmm_exclusive)
7426                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7427         loaded_vmcs_init(vmx->loaded_vmcs);
7428         if (!vmm_exclusive)
7429                 kvm_cpu_vmxoff();
7430
7431         cpu = get_cpu();
7432         vmx_vcpu_load(&vmx->vcpu, cpu);
7433         vmx->vcpu.cpu = cpu;
7434         err = vmx_vcpu_setup(vmx);
7435         vmx_vcpu_put(&vmx->vcpu);
7436         put_cpu();
7437         if (err)
7438                 goto free_vmcs;
7439         if (vm_need_virtualize_apic_accesses(kvm)) {
7440                 err = alloc_apic_access_page(kvm);
7441                 if (err)
7442                         goto free_vmcs;
7443         }
7444
7445         if (enable_ept) {
7446                 if (!kvm->arch.ept_identity_map_addr)
7447                         kvm->arch.ept_identity_map_addr =
7448                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7449                 err = -ENOMEM;
7450                 if (alloc_identity_pagetable(kvm) != 0)
7451                         goto free_vmcs;
7452                 if (!init_rmode_identity_map(kvm))
7453                         goto free_vmcs;
7454         }
7455
7456         vmx->nested.current_vmptr = -1ull;
7457         vmx->nested.current_vmcs12 = NULL;
7458
7459         return &vmx->vcpu;
7460
7461 free_vmcs:
7462         free_loaded_vmcs(vmx->loaded_vmcs);
7463 free_msrs:
7464         kfree(vmx->guest_msrs);
7465 uninit_vcpu:
7466         kvm_vcpu_uninit(&vmx->vcpu);
7467 free_vcpu:
7468         free_vpid(vmx);
7469         kmem_cache_free(kvm_vcpu_cache, vmx);
7470         return ERR_PTR(err);
7471 }
7472
7473 static void __init vmx_check_processor_compat(void *rtn)
7474 {
7475         struct vmcs_config vmcs_conf;
7476
7477         *(int *)rtn = 0;
7478         if (setup_vmcs_config(&vmcs_conf) < 0)
7479                 *(int *)rtn = -EIO;
7480         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7481                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7482                                 smp_processor_id());
7483                 *(int *)rtn = -EIO;
7484         }
7485 }
7486
7487 static int get_ept_level(void)
7488 {
7489         return VMX_EPT_DEFAULT_GAW + 1;
7490 }
7491
7492 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7493 {
7494         u64 ret;
7495
7496         /* For VT-d and EPT combination
7497          * 1. MMIO: always map as UC
7498          * 2. EPT with VT-d:
7499          *   a. VT-d without snooping control feature: can't guarantee the
7500          *      result, try to trust guest.
7501          *   b. VT-d with snooping control feature: snooping control feature of
7502          *      VT-d engine can guarantee the cache correctness. Just set it
7503          *      to WB to keep consistent with host. So the same as item 3.
7504          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7505          *    consistent with host MTRR
7506          */
7507         if (is_mmio)
7508                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7509         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7510                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7511                       VMX_EPT_MT_EPTE_SHIFT;
7512         else
7513                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7514                         | VMX_EPT_IPAT_BIT;
7515
7516         return ret;
7517 }
7518
7519 static int vmx_get_lpage_level(void)
7520 {
7521         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7522                 return PT_DIRECTORY_LEVEL;
7523         else
7524                 /* For shadow and EPT supported 1GB page */
7525                 return PT_PDPE_LEVEL;
7526 }
7527
7528 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7529 {
7530         struct kvm_cpuid_entry2 *best;
7531         struct vcpu_vmx *vmx = to_vmx(vcpu);
7532         u32 exec_control;
7533
7534         vmx->rdtscp_enabled = false;
7535         if (vmx_rdtscp_supported()) {
7536                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7537                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7538                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7539                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7540                                 vmx->rdtscp_enabled = true;
7541                         else {
7542                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7543                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7544                                                 exec_control);
7545                         }
7546                 }
7547         }
7548
7549         /* Exposing INVPCID only when PCID is exposed */
7550         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7551         if (vmx_invpcid_supported() &&
7552             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7553             guest_cpuid_has_pcid(vcpu)) {
7554                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7555                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7556                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7557                              exec_control);
7558         } else {
7559                 if (cpu_has_secondary_exec_ctrls()) {
7560                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7561                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7562                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7563                                      exec_control);
7564                 }
7565                 if (best)
7566                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7567         }
7568 }
7569
7570 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7571 {
7572         if (func == 1 && nested)
7573                 entry->ecx |= bit(X86_FEATURE_VMX);
7574 }
7575
7576 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7577                 struct x86_exception *fault)
7578 {
7579         struct vmcs12 *vmcs12;
7580         nested_vmx_vmexit(vcpu);
7581         vmcs12 = get_vmcs12(vcpu);
7582
7583         if (fault->error_code & PFERR_RSVD_MASK)
7584                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7585         else
7586                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7587         vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7588         vmcs12->guest_physical_address = fault->address;
7589 }
7590
7591 /* Callbacks for nested_ept_init_mmu_context: */
7592
7593 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7594 {
7595         /* return the page table to be shadowed - in our case, EPT12 */
7596         return get_vmcs12(vcpu)->ept_pointer;
7597 }
7598
7599 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7600 {
7601         kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7602                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7603
7604         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7605         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7606         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7607
7608         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7609 }
7610
7611 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7612 {
7613         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7614 }
7615
7616 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7617                 struct x86_exception *fault)
7618 {
7619         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7620
7621         WARN_ON(!is_guest_mode(vcpu));
7622
7623         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7624         if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7625                 nested_vmx_vmexit(vcpu);
7626         else
7627                 kvm_inject_page_fault(vcpu, fault);
7628 }
7629
7630 /*
7631  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7632  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7633  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7634  * guest in a way that will both be appropriate to L1's requests, and our
7635  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7636  * function also has additional necessary side-effects, like setting various
7637  * vcpu->arch fields.
7638  */
7639 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7640 {
7641         struct vcpu_vmx *vmx = to_vmx(vcpu);
7642         u32 exec_control;
7643         u32 exit_control;
7644
7645         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7646         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7647         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7648         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7649         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7650         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7651         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7652         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7653         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7654         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7655         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7656         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7657         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7658         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7659         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7660         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7661         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7662         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7663         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7664         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7665         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7666         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7667         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7668         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7669         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7670         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7671         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7672         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7673         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7674         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7675         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7676         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7677         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7678         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7679         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7680         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7681
7682         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7683         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7684                 vmcs12->vm_entry_intr_info_field);
7685         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7686                 vmcs12->vm_entry_exception_error_code);
7687         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7688                 vmcs12->vm_entry_instruction_len);
7689         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7690                 vmcs12->guest_interruptibility_info);
7691         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7692         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7693         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7694         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7695                 vmcs12->guest_pending_dbg_exceptions);
7696         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7697         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7698
7699         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7700
7701         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7702                 (vmcs_config.pin_based_exec_ctrl |
7703                  vmcs12->pin_based_vm_exec_control));
7704
7705         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7706                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7707                              vmcs12->vmx_preemption_timer_value);
7708
7709         /*
7710          * Whether page-faults are trapped is determined by a combination of
7711          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7712          * If enable_ept, L0 doesn't care about page faults and we should
7713          * set all of these to L1's desires. However, if !enable_ept, L0 does
7714          * care about (at least some) page faults, and because it is not easy
7715          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7716          * to exit on each and every L2 page fault. This is done by setting
7717          * MASK=MATCH=0 and (see below) EB.PF=1.
7718          * Note that below we don't need special code to set EB.PF beyond the
7719          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7720          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7721          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7722          *
7723          * A problem with this approach (when !enable_ept) is that L1 may be
7724          * injected with more page faults than it asked for. This could have
7725          * caused problems, but in practice existing hypervisors don't care.
7726          * To fix this, we will need to emulate the PFEC checking (on the L1
7727          * page tables), using walk_addr(), when injecting PFs to L1.
7728          */
7729         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7730                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7731         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7732                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7733
7734         if (cpu_has_secondary_exec_ctrls()) {
7735                 u32 exec_control = vmx_secondary_exec_control(vmx);
7736                 if (!vmx->rdtscp_enabled)
7737                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7738                 /* Take the following fields only from vmcs12 */
7739                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7740                 if (nested_cpu_has(vmcs12,
7741                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7742                         exec_control |= vmcs12->secondary_vm_exec_control;
7743
7744                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7745                         /*
7746                          * Translate L1 physical address to host physical
7747                          * address for vmcs02. Keep the page pinned, so this
7748                          * physical address remains valid. We keep a reference
7749                          * to it so we can release it later.
7750                          */
7751                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7752                                 nested_release_page(vmx->nested.apic_access_page);
7753                         vmx->nested.apic_access_page =
7754                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7755                         /*
7756                          * If translation failed, no matter: This feature asks
7757                          * to exit when accessing the given address, and if it
7758                          * can never be accessed, this feature won't do
7759                          * anything anyway.
7760                          */
7761                         if (!vmx->nested.apic_access_page)
7762                                 exec_control &=
7763                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7764                         else
7765                                 vmcs_write64(APIC_ACCESS_ADDR,
7766                                   page_to_phys(vmx->nested.apic_access_page));
7767                 } else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
7768                         exec_control |=
7769                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7770                         vmcs_write64(APIC_ACCESS_ADDR,
7771                                 page_to_phys(vcpu->kvm->arch.apic_access_page));
7772                 }
7773
7774                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7775         }
7776
7777
7778         /*
7779          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7780          * Some constant fields are set here by vmx_set_constant_host_state().
7781          * Other fields are different per CPU, and will be set later when
7782          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7783          */
7784         vmx_set_constant_host_state(vmx);
7785
7786         /*
7787          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7788          * entry, but only if the current (host) sp changed from the value
7789          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7790          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7791          * here we just force the write to happen on entry.
7792          */
7793         vmx->host_rsp = 0;
7794
7795         exec_control = vmx_exec_control(vmx); /* L0's desires */
7796         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7797         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7798         exec_control &= ~CPU_BASED_TPR_SHADOW;
7799         exec_control |= vmcs12->cpu_based_vm_exec_control;
7800         /*
7801          * Merging of IO and MSR bitmaps not currently supported.
7802          * Rather, exit every time.
7803          */
7804         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7805         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7806         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7807
7808         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7809
7810         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7811          * bitwise-or of what L1 wants to trap for L2, and what we want to
7812          * trap. Note that CR0.TS also needs updating - we do this later.
7813          */
7814         update_exception_bitmap(vcpu);
7815         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7816         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7817
7818         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7819          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7820          * bits are further modified by vmx_set_efer() below.
7821          */
7822         exit_control = vmcs_config.vmexit_ctrl;
7823         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7824                 exit_control |= VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
7825         vm_exit_controls_init(vmx, exit_control);
7826
7827         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7828          * emulated by vmx_set_efer(), below.
7829          */
7830         vm_entry_controls_init(vmx, 
7831                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7832                         ~VM_ENTRY_IA32E_MODE) |
7833                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7834
7835         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7836                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7837                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7838         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7839                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7840
7841
7842         set_cr4_guest_host_mask(vmx);
7843
7844         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7845                 vmcs_write64(TSC_OFFSET,
7846                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7847         else
7848                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7849
7850         if (enable_vpid) {
7851                 /*
7852                  * Trivially support vpid by letting L2s share their parent
7853                  * L1's vpid. TODO: move to a more elaborate solution, giving
7854                  * each L2 its own vpid and exposing the vpid feature to L1.
7855                  */
7856                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7857                 vmx_flush_tlb(vcpu);
7858         }
7859
7860         if (nested_cpu_has_ept(vmcs12)) {
7861                 kvm_mmu_unload(vcpu);
7862                 nested_ept_init_mmu_context(vcpu);
7863         }
7864
7865         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7866                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7867         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7868                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7869         else
7870                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7871         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7872         vmx_set_efer(vcpu, vcpu->arch.efer);
7873
7874         /*
7875          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7876          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7877          * The CR0_READ_SHADOW is what L2 should have expected to read given
7878          * the specifications by L1; It's not enough to take
7879          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7880          * have more bits than L1 expected.
7881          */
7882         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7883         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7884
7885         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7886         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7887
7888         /* shadow page tables on either EPT or shadow page tables */
7889         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7890         kvm_mmu_reset_context(vcpu);
7891
7892         if (!enable_ept)
7893                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
7894
7895         /*
7896          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7897          */
7898         if (enable_ept) {
7899                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7900                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7901                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7902                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7903         }
7904
7905         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7906         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7907 }
7908
7909 /*
7910  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7911  * for running an L2 nested guest.
7912  */
7913 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7914 {
7915         struct vmcs12 *vmcs12;
7916         struct vcpu_vmx *vmx = to_vmx(vcpu);
7917         int cpu;
7918         struct loaded_vmcs *vmcs02;
7919         bool ia32e;
7920
7921         if (!nested_vmx_check_permission(vcpu) ||
7922             !nested_vmx_check_vmcs12(vcpu))
7923                 return 1;
7924
7925         skip_emulated_instruction(vcpu);
7926         vmcs12 = get_vmcs12(vcpu);
7927
7928         if (enable_shadow_vmcs)
7929                 copy_shadow_to_vmcs12(vmx);
7930
7931         /*
7932          * The nested entry process starts with enforcing various prerequisites
7933          * on vmcs12 as required by the Intel SDM, and act appropriately when
7934          * they fail: As the SDM explains, some conditions should cause the
7935          * instruction to fail, while others will cause the instruction to seem
7936          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7937          * To speed up the normal (success) code path, we should avoid checking
7938          * for misconfigurations which will anyway be caught by the processor
7939          * when using the merged vmcs02.
7940          */
7941         if (vmcs12->launch_state == launch) {
7942                 nested_vmx_failValid(vcpu,
7943                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7944                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7945                 return 1;
7946         }
7947
7948         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
7949             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
7950                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7951                 return 1;
7952         }
7953
7954         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7955                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7956                 /*TODO: Also verify bits beyond physical address width are 0*/
7957                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7958                 return 1;
7959         }
7960
7961         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7962                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7963                 /*TODO: Also verify bits beyond physical address width are 0*/
7964                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7965                 return 1;
7966         }
7967
7968         if (vmcs12->vm_entry_msr_load_count > 0 ||
7969             vmcs12->vm_exit_msr_load_count > 0 ||
7970             vmcs12->vm_exit_msr_store_count > 0) {
7971                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7972                                     __func__);
7973                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7974                 return 1;
7975         }
7976
7977         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7978               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7979             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7980               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7981             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7982               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7983             !vmx_control_verify(vmcs12->vm_exit_controls,
7984               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7985             !vmx_control_verify(vmcs12->vm_entry_controls,
7986               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7987         {
7988                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7989                 return 1;
7990         }
7991
7992         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7993             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7994                 nested_vmx_failValid(vcpu,
7995                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7996                 return 1;
7997         }
7998
7999         if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8000             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8001                 nested_vmx_entry_failure(vcpu, vmcs12,
8002                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8003                 return 1;
8004         }
8005         if (vmcs12->vmcs_link_pointer != -1ull) {
8006                 nested_vmx_entry_failure(vcpu, vmcs12,
8007                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8008                 return 1;
8009         }
8010
8011         /*
8012          * If the load IA32_EFER VM-entry control is 1, the following checks
8013          * are performed on the field for the IA32_EFER MSR:
8014          * - Bits reserved in the IA32_EFER MSR must be 0.
8015          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8016          *   the IA-32e mode guest VM-exit control. It must also be identical
8017          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8018          *   CR0.PG) is 1.
8019          */
8020         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8021                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8022                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8023                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8024                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8025                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8026                         nested_vmx_entry_failure(vcpu, vmcs12,
8027                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8028                         return 1;
8029                 }
8030         }
8031
8032         /*
8033          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8034          * IA32_EFER MSR must be 0 in the field for that register. In addition,
8035          * the values of the LMA and LME bits in the field must each be that of
8036          * the host address-space size VM-exit control.
8037          */
8038         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8039                 ia32e = (vmcs12->vm_exit_controls &
8040                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8041                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8042                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8043                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8044                         nested_vmx_entry_failure(vcpu, vmcs12,
8045                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8046                         return 1;
8047                 }
8048         }
8049
8050         /*
8051          * We're finally done with prerequisite checking, and can start with
8052          * the nested entry.
8053          */
8054
8055         vmcs02 = nested_get_current_vmcs02(vmx);
8056         if (!vmcs02)
8057                 return -ENOMEM;
8058
8059         enter_guest_mode(vcpu);
8060
8061         vmx->nested.nested_run_pending = 1;
8062
8063         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8064
8065         cpu = get_cpu();
8066         vmx->loaded_vmcs = vmcs02;
8067         vmx_vcpu_put(vcpu);
8068         vmx_vcpu_load(vcpu, cpu);
8069         vcpu->cpu = cpu;
8070         put_cpu();
8071
8072         vmx_segment_cache_clear(vmx);
8073
8074         vmcs12->launch_state = 1;
8075
8076         prepare_vmcs02(vcpu, vmcs12);
8077
8078         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8079                 return kvm_emulate_halt(vcpu);
8080
8081         /*
8082          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8083          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8084          * returned as far as L1 is concerned. It will only return (and set
8085          * the success flag) when L2 exits (see nested_vmx_vmexit()).
8086          */
8087         return 1;
8088 }
8089
8090 /*
8091  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8092  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8093  * This function returns the new value we should put in vmcs12.guest_cr0.
8094  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8095  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8096  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8097  *     didn't trap the bit, because if L1 did, so would L0).
8098  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8099  *     been modified by L2, and L1 knows it. So just leave the old value of
8100  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8101  *     isn't relevant, because if L0 traps this bit it can set it to anything.
8102  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8103  *     changed these bits, and therefore they need to be updated, but L0
8104  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8105  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8106  */
8107 static inline unsigned long
8108 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8109 {
8110         return
8111         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8112         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8113         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8114                         vcpu->arch.cr0_guest_owned_bits));
8115 }
8116
8117 static inline unsigned long
8118 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8119 {
8120         return
8121         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8122         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8123         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8124                         vcpu->arch.cr4_guest_owned_bits));
8125 }
8126
8127 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8128                                        struct vmcs12 *vmcs12)
8129 {
8130         u32 idt_vectoring;
8131         unsigned int nr;
8132
8133         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8134                 nr = vcpu->arch.exception.nr;
8135                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8136
8137                 if (kvm_exception_is_soft(nr)) {
8138                         vmcs12->vm_exit_instruction_len =
8139                                 vcpu->arch.event_exit_inst_len;
8140                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8141                 } else
8142                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8143
8144                 if (vcpu->arch.exception.has_error_code) {
8145                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8146                         vmcs12->idt_vectoring_error_code =
8147                                 vcpu->arch.exception.error_code;
8148                 }
8149
8150                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8151         } else if (vcpu->arch.nmi_injected) {
8152                 vmcs12->idt_vectoring_info_field =
8153                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8154         } else if (vcpu->arch.interrupt.pending) {
8155                 nr = vcpu->arch.interrupt.nr;
8156                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8157
8158                 if (vcpu->arch.interrupt.soft) {
8159                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8160                         vmcs12->vm_entry_instruction_len =
8161                                 vcpu->arch.event_exit_inst_len;
8162                 } else
8163                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8164
8165                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8166         }
8167 }
8168
8169 /*
8170  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8171  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8172  * and this function updates it to reflect the changes to the guest state while
8173  * L2 was running (and perhaps made some exits which were handled directly by L0
8174  * without going back to L1), and to reflect the exit reason.
8175  * Note that we do not have to copy here all VMCS fields, just those that
8176  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8177  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8178  * which already writes to vmcs12 directly.
8179  */
8180 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8181 {
8182         /* update guest state fields: */
8183         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8184         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8185
8186         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8187         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8188         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8189         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8190
8191         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8192         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8193         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8194         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8195         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8196         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8197         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8198         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8199         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8200         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8201         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8202         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8203         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8204         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8205         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8206         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8207         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8208         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8209         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8210         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8211         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8212         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8213         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8214         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8215         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8216         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8217         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8218         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8219         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8220         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8221         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8222         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8223         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8224         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8225         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8226         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8227
8228         vmcs12->guest_interruptibility_info =
8229                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8230         vmcs12->guest_pending_dbg_exceptions =
8231                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8232
8233         if ((vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) &&
8234             (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER))
8235                 vmcs12->vmx_preemption_timer_value =
8236                         vmcs_read32(VMX_PREEMPTION_TIMER_VALUE);
8237
8238         /*
8239          * In some cases (usually, nested EPT), L2 is allowed to change its
8240          * own CR3 without exiting. If it has changed it, we must keep it.
8241          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8242          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8243          *
8244          * Additionally, restore L2's PDPTR to vmcs12.
8245          */
8246         if (enable_ept) {
8247                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8248                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8249                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8250                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8251                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8252         }
8253
8254         vmcs12->vm_entry_controls =
8255                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8256                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8257
8258         /* TODO: These cannot have changed unless we have MSR bitmaps and
8259          * the relevant bit asks not to trap the change */
8260         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8261         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8262                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8263         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8264                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
8265         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8266         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8267         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8268
8269         /* update exit information fields: */
8270
8271         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8272         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8273
8274         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8275         if ((vmcs12->vm_exit_intr_info &
8276              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8277             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8278                 vmcs12->vm_exit_intr_error_code =
8279                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8280         vmcs12->idt_vectoring_info_field = 0;
8281         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8282         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8283
8284         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8285                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8286                  * instead of reading the real value. */
8287                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8288
8289                 /*
8290                  * Transfer the event that L0 or L1 may wanted to inject into
8291                  * L2 to IDT_VECTORING_INFO_FIELD.
8292                  */
8293                 vmcs12_save_pending_event(vcpu, vmcs12);
8294         }
8295
8296         /*
8297          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8298          * preserved above and would only end up incorrectly in L1.
8299          */
8300         vcpu->arch.nmi_injected = false;
8301         kvm_clear_exception_queue(vcpu);
8302         kvm_clear_interrupt_queue(vcpu);
8303 }
8304
8305 /*
8306  * A part of what we need to when the nested L2 guest exits and we want to
8307  * run its L1 parent, is to reset L1's guest state to the host state specified
8308  * in vmcs12.
8309  * This function is to be called not only on normal nested exit, but also on
8310  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8311  * Failures During or After Loading Guest State").
8312  * This function should be called when the active VMCS is L1's (vmcs01).
8313  */
8314 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8315                                    struct vmcs12 *vmcs12)
8316 {
8317         struct kvm_segment seg;
8318
8319         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8320                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8321         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8322                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8323         else
8324                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8325         vmx_set_efer(vcpu, vcpu->arch.efer);
8326
8327         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8328         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8329         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8330         /*
8331          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8332          * actually changed, because it depends on the current state of
8333          * fpu_active (which may have changed).
8334          * Note that vmx_set_cr0 refers to efer set above.
8335          */
8336         vmx_set_cr0(vcpu, vmcs12->host_cr0);
8337         /*
8338          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8339          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8340          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8341          */
8342         update_exception_bitmap(vcpu);
8343         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8344         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8345
8346         /*
8347          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8348          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8349          */
8350         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8351         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8352
8353         if (nested_cpu_has_ept(vmcs12))
8354                 nested_ept_uninit_mmu_context(vcpu);
8355
8356         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8357         kvm_mmu_reset_context(vcpu);
8358
8359         if (!enable_ept)
8360                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8361
8362         if (enable_vpid) {
8363                 /*
8364                  * Trivially support vpid by letting L2s share their parent
8365                  * L1's vpid. TODO: move to a more elaborate solution, giving
8366                  * each L2 its own vpid and exposing the vpid feature to L1.
8367                  */
8368                 vmx_flush_tlb(vcpu);
8369         }
8370
8371
8372         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8373         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8374         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8375         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8376         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8377
8378         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8379                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8380                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8381         }
8382         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8383                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8384                         vmcs12->host_ia32_perf_global_ctrl);
8385
8386         /* Set L1 segment info according to Intel SDM
8387             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8388         seg = (struct kvm_segment) {
8389                 .base = 0,
8390                 .limit = 0xFFFFFFFF,
8391                 .selector = vmcs12->host_cs_selector,
8392                 .type = 11,
8393                 .present = 1,
8394                 .s = 1,
8395                 .g = 1
8396         };
8397         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8398                 seg.l = 1;
8399         else
8400                 seg.db = 1;
8401         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8402         seg = (struct kvm_segment) {
8403                 .base = 0,
8404                 .limit = 0xFFFFFFFF,
8405                 .type = 3,
8406                 .present = 1,
8407                 .s = 1,
8408                 .db = 1,
8409                 .g = 1
8410         };
8411         seg.selector = vmcs12->host_ds_selector;
8412         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8413         seg.selector = vmcs12->host_es_selector;
8414         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8415         seg.selector = vmcs12->host_ss_selector;
8416         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8417         seg.selector = vmcs12->host_fs_selector;
8418         seg.base = vmcs12->host_fs_base;
8419         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8420         seg.selector = vmcs12->host_gs_selector;
8421         seg.base = vmcs12->host_gs_base;
8422         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8423         seg = (struct kvm_segment) {
8424                 .base = vmcs12->host_tr_base,
8425                 .limit = 0x67,
8426                 .selector = vmcs12->host_tr_selector,
8427                 .type = 11,
8428                 .present = 1
8429         };
8430         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8431
8432         kvm_set_dr(vcpu, 7, 0x400);
8433         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8434 }
8435
8436 /*
8437  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8438  * and modify vmcs12 to make it see what it would expect to see there if
8439  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8440  */
8441 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8442 {
8443         struct vcpu_vmx *vmx = to_vmx(vcpu);
8444         int cpu;
8445         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8446
8447         /* trying to cancel vmlaunch/vmresume is a bug */
8448         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8449
8450         leave_guest_mode(vcpu);
8451         prepare_vmcs12(vcpu, vmcs12);
8452
8453         cpu = get_cpu();
8454         vmx->loaded_vmcs = &vmx->vmcs01;
8455         vmx_vcpu_put(vcpu);
8456         vmx_vcpu_load(vcpu, cpu);
8457         vcpu->cpu = cpu;
8458         put_cpu();
8459
8460         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8461         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8462         vmx_segment_cache_clear(vmx);
8463
8464         /* if no vmcs02 cache requested, remove the one we used */
8465         if (VMCS02_POOL_SIZE == 0)
8466                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8467
8468         load_vmcs12_host_state(vcpu, vmcs12);
8469
8470         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8471         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8472
8473         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8474         vmx->host_rsp = 0;
8475
8476         /* Unpin physical memory we referred to in vmcs02 */
8477         if (vmx->nested.apic_access_page) {
8478                 nested_release_page(vmx->nested.apic_access_page);
8479                 vmx->nested.apic_access_page = 0;
8480         }
8481
8482         /*
8483          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8484          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8485          * success or failure flag accordingly.
8486          */
8487         if (unlikely(vmx->fail)) {
8488                 vmx->fail = 0;
8489                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8490         } else
8491                 nested_vmx_succeed(vcpu);
8492         if (enable_shadow_vmcs)
8493                 vmx->nested.sync_shadow_vmcs = true;
8494 }
8495
8496 /*
8497  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8498  * 23.7 "VM-entry failures during or after loading guest state" (this also
8499  * lists the acceptable exit-reason and exit-qualification parameters).
8500  * It should only be called before L2 actually succeeded to run, and when
8501  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8502  */
8503 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8504                         struct vmcs12 *vmcs12,
8505                         u32 reason, unsigned long qualification)
8506 {
8507         load_vmcs12_host_state(vcpu, vmcs12);
8508         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8509         vmcs12->exit_qualification = qualification;
8510         nested_vmx_succeed(vcpu);
8511         if (enable_shadow_vmcs)
8512                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8513 }
8514
8515 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8516                                struct x86_instruction_info *info,
8517                                enum x86_intercept_stage stage)
8518 {
8519         return X86EMUL_CONTINUE;
8520 }
8521
8522 static struct kvm_x86_ops vmx_x86_ops = {
8523         .cpu_has_kvm_support = cpu_has_kvm_support,
8524         .disabled_by_bios = vmx_disabled_by_bios,
8525         .hardware_setup = hardware_setup,
8526         .hardware_unsetup = hardware_unsetup,
8527         .check_processor_compatibility = vmx_check_processor_compat,
8528         .hardware_enable = hardware_enable,
8529         .hardware_disable = hardware_disable,
8530         .cpu_has_accelerated_tpr = report_flexpriority,
8531
8532         .vcpu_create = vmx_create_vcpu,
8533         .vcpu_free = vmx_free_vcpu,
8534         .vcpu_reset = vmx_vcpu_reset,
8535
8536         .prepare_guest_switch = vmx_save_host_state,
8537         .vcpu_load = vmx_vcpu_load,
8538         .vcpu_put = vmx_vcpu_put,
8539
8540         .update_db_bp_intercept = update_exception_bitmap,
8541         .get_msr = vmx_get_msr,
8542         .set_msr = vmx_set_msr,
8543         .get_segment_base = vmx_get_segment_base,
8544         .get_segment = vmx_get_segment,
8545         .set_segment = vmx_set_segment,
8546         .get_cpl = vmx_get_cpl,
8547         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8548         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8549         .decache_cr3 = vmx_decache_cr3,
8550         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8551         .set_cr0 = vmx_set_cr0,
8552         .set_cr3 = vmx_set_cr3,
8553         .set_cr4 = vmx_set_cr4,
8554         .set_efer = vmx_set_efer,
8555         .get_idt = vmx_get_idt,
8556         .set_idt = vmx_set_idt,
8557         .get_gdt = vmx_get_gdt,
8558         .set_gdt = vmx_set_gdt,
8559         .set_dr7 = vmx_set_dr7,
8560         .cache_reg = vmx_cache_reg,
8561         .get_rflags = vmx_get_rflags,
8562         .set_rflags = vmx_set_rflags,
8563         .fpu_activate = vmx_fpu_activate,
8564         .fpu_deactivate = vmx_fpu_deactivate,
8565
8566         .tlb_flush = vmx_flush_tlb,
8567
8568         .run = vmx_vcpu_run,
8569         .handle_exit = vmx_handle_exit,
8570         .skip_emulated_instruction = skip_emulated_instruction,
8571         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8572         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8573         .patch_hypercall = vmx_patch_hypercall,
8574         .set_irq = vmx_inject_irq,
8575         .set_nmi = vmx_inject_nmi,
8576         .queue_exception = vmx_queue_exception,
8577         .cancel_injection = vmx_cancel_injection,
8578         .interrupt_allowed = vmx_interrupt_allowed,
8579         .nmi_allowed = vmx_nmi_allowed,
8580         .get_nmi_mask = vmx_get_nmi_mask,
8581         .set_nmi_mask = vmx_set_nmi_mask,
8582         .enable_nmi_window = enable_nmi_window,
8583         .enable_irq_window = enable_irq_window,
8584         .update_cr8_intercept = update_cr8_intercept,
8585         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8586         .vm_has_apicv = vmx_vm_has_apicv,
8587         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8588         .hwapic_irr_update = vmx_hwapic_irr_update,
8589         .hwapic_isr_update = vmx_hwapic_isr_update,
8590         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8591         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8592
8593         .set_tss_addr = vmx_set_tss_addr,
8594         .get_tdp_level = get_ept_level,
8595         .get_mt_mask = vmx_get_mt_mask,
8596
8597         .get_exit_info = vmx_get_exit_info,
8598
8599         .get_lpage_level = vmx_get_lpage_level,
8600
8601         .cpuid_update = vmx_cpuid_update,
8602
8603         .rdtscp_supported = vmx_rdtscp_supported,
8604         .invpcid_supported = vmx_invpcid_supported,
8605
8606         .set_supported_cpuid = vmx_set_supported_cpuid,
8607
8608         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8609
8610         .set_tsc_khz = vmx_set_tsc_khz,
8611         .read_tsc_offset = vmx_read_tsc_offset,
8612         .write_tsc_offset = vmx_write_tsc_offset,
8613         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8614         .compute_tsc_offset = vmx_compute_tsc_offset,
8615         .read_l1_tsc = vmx_read_l1_tsc,
8616
8617         .set_tdp_cr3 = vmx_set_cr3,
8618
8619         .check_intercept = vmx_check_intercept,
8620         .handle_external_intr = vmx_handle_external_intr,
8621 };
8622
8623 static int __init vmx_init(void)
8624 {
8625         int r, i, msr;
8626
8627         rdmsrl_safe(MSR_EFER, &host_efer);
8628
8629         for (i = 0; i < NR_VMX_MSR; ++i)
8630                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8631
8632         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8633         if (!vmx_io_bitmap_a)
8634                 return -ENOMEM;
8635
8636         r = -ENOMEM;
8637
8638         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8639         if (!vmx_io_bitmap_b)
8640                 goto out;
8641
8642         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8643         if (!vmx_msr_bitmap_legacy)
8644                 goto out1;
8645
8646         vmx_msr_bitmap_legacy_x2apic =
8647                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8648         if (!vmx_msr_bitmap_legacy_x2apic)
8649                 goto out2;
8650
8651         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8652         if (!vmx_msr_bitmap_longmode)
8653                 goto out3;
8654
8655         vmx_msr_bitmap_longmode_x2apic =
8656                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8657         if (!vmx_msr_bitmap_longmode_x2apic)
8658                 goto out4;
8659         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8660         if (!vmx_vmread_bitmap)
8661                 goto out5;
8662
8663         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8664         if (!vmx_vmwrite_bitmap)
8665                 goto out6;
8666
8667         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8668         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8669         /* shadowed read/write fields */
8670         for (i = 0; i < max_shadow_read_write_fields; i++) {
8671                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8672                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8673         }
8674         /* shadowed read only fields */
8675         for (i = 0; i < max_shadow_read_only_fields; i++)
8676                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8677
8678         /*
8679          * Allow direct access to the PC debug port (it is often used for I/O
8680          * delays, but the vmexits simply slow things down).
8681          */
8682         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8683         clear_bit(0x80, vmx_io_bitmap_a);
8684
8685         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8686
8687         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8688         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8689
8690         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8691
8692         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8693                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8694         if (r)
8695                 goto out7;
8696
8697 #ifdef CONFIG_KEXEC
8698         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8699                            crash_vmclear_local_loaded_vmcss);
8700 #endif
8701
8702         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8703         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8704         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8705         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8706         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8707         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8708         memcpy(vmx_msr_bitmap_legacy_x2apic,
8709                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8710         memcpy(vmx_msr_bitmap_longmode_x2apic,
8711                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8712
8713         if (enable_apicv) {
8714                 for (msr = 0x800; msr <= 0x8ff; msr++)
8715                         vmx_disable_intercept_msr_read_x2apic(msr);
8716
8717                 /* According SDM, in x2apic mode, the whole id reg is used.
8718                  * But in KVM, it only use the highest eight bits. Need to
8719                  * intercept it */
8720                 vmx_enable_intercept_msr_read_x2apic(0x802);
8721                 /* TMCCT */
8722                 vmx_enable_intercept_msr_read_x2apic(0x839);
8723                 /* TPR */
8724                 vmx_disable_intercept_msr_write_x2apic(0x808);
8725                 /* EOI */
8726                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8727                 /* SELF-IPI */
8728                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8729         }
8730
8731         if (enable_ept) {
8732                 kvm_mmu_set_mask_ptes(0ull,
8733                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8734                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8735                         0ull, VMX_EPT_EXECUTABLE_MASK);
8736                 ept_set_mmio_spte_mask();
8737                 kvm_enable_tdp();
8738         } else
8739                 kvm_disable_tdp();
8740
8741         return 0;
8742
8743 out7:
8744         free_page((unsigned long)vmx_vmwrite_bitmap);
8745 out6:
8746         free_page((unsigned long)vmx_vmread_bitmap);
8747 out5:
8748         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8749 out4:
8750         free_page((unsigned long)vmx_msr_bitmap_longmode);
8751 out3:
8752         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8753 out2:
8754         free_page((unsigned long)vmx_msr_bitmap_legacy);
8755 out1:
8756         free_page((unsigned long)vmx_io_bitmap_b);
8757 out:
8758         free_page((unsigned long)vmx_io_bitmap_a);
8759         return r;
8760 }
8761
8762 static void __exit vmx_exit(void)
8763 {
8764         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8765         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8766         free_page((unsigned long)vmx_msr_bitmap_legacy);
8767         free_page((unsigned long)vmx_msr_bitmap_longmode);
8768         free_page((unsigned long)vmx_io_bitmap_b);
8769         free_page((unsigned long)vmx_io_bitmap_a);
8770         free_page((unsigned long)vmx_vmwrite_bitmap);
8771         free_page((unsigned long)vmx_vmread_bitmap);
8772
8773 #ifdef CONFIG_KEXEC
8774         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8775         synchronize_rcu();
8776 #endif
8777
8778         kvm_exit();
8779 }
8780
8781 module_init(vmx_init)
8782 module_exit(vmx_exit)