2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
38 #include <asm/virtext.h>
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64 enable_unrestricted_guest, bool, S_IRUGO);
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
76 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK \
78 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
80 (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON \
82 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS \
84 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
93 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94 * ple_gap: upper bound on the amount of time between two successive
95 * executions of PAUSE in a loop. Also indicate if ple enabled.
96 * According to test, this time is usually smaller than 128 cycles.
97 * ple_window: upper bound on the amount of time a guest is allowed to execute
98 * in a PAUSE loop. Tests indicate that most spinlocks are held for
99 * less than 2^12 cycles
100 * Time is measured based on a counter that runs at the same rate as the TSC,
101 * refer SDM volume 3b section 21.6.13 & 22.1.3.
103 #define KVM_VMX_DEFAULT_PLE_GAP 128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
111 #define NR_AUTOLOAD_MSRS 1
119 struct shared_msr_entry {
126 struct kvm_vcpu vcpu;
127 struct list_head local_vcpus_link;
128 unsigned long host_rsp;
132 u32 idt_vectoring_info;
133 struct shared_msr_entry *guest_msrs;
137 u64 msr_host_kernel_gs_base;
138 u64 msr_guest_kernel_gs_base;
141 struct msr_autoload {
143 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
148 u16 fs_sel, gs_sel, ldt_sel;
149 int gs_ldt_reload_needed;
150 int fs_reload_needed;
155 struct kvm_save_segment {
160 } tr, es, ds, fs, gs;
163 bool emulation_required;
165 /* Support for vnmi-less CPUs */
166 int soft_vnmi_blocked;
168 s64 vnmi_blocked_time;
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
176 return container_of(vcpu, struct vcpu_vmx, vcpu);
179 static u64 construct_eptp(unsigned long root_hpa);
180 static void kvm_cpu_vmxon(u64 addr);
181 static void kvm_cpu_vmxoff(void);
182 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
183 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
190 static unsigned long *vmx_io_bitmap_a;
191 static unsigned long *vmx_io_bitmap_b;
192 static unsigned long *vmx_msr_bitmap_legacy;
193 static unsigned long *vmx_msr_bitmap_longmode;
195 static bool cpu_has_load_ia32_efer;
197 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
198 static DEFINE_SPINLOCK(vmx_vpid_lock);
200 static struct vmcs_config {
204 u32 pin_based_exec_ctrl;
205 u32 cpu_based_exec_ctrl;
206 u32 cpu_based_2nd_exec_ctrl;
211 static struct vmx_capability {
216 #define VMX_SEGMENT_FIELD(seg) \
217 [VCPU_SREG_##seg] = { \
218 .selector = GUEST_##seg##_SELECTOR, \
219 .base = GUEST_##seg##_BASE, \
220 .limit = GUEST_##seg##_LIMIT, \
221 .ar_bytes = GUEST_##seg##_AR_BYTES, \
224 static struct kvm_vmx_segment_field {
229 } kvm_vmx_segment_fields[] = {
230 VMX_SEGMENT_FIELD(CS),
231 VMX_SEGMENT_FIELD(DS),
232 VMX_SEGMENT_FIELD(ES),
233 VMX_SEGMENT_FIELD(FS),
234 VMX_SEGMENT_FIELD(GS),
235 VMX_SEGMENT_FIELD(SS),
236 VMX_SEGMENT_FIELD(TR),
237 VMX_SEGMENT_FIELD(LDTR),
240 static u64 host_efer;
242 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
245 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
246 * away by decrementing the array size.
248 static const u32 vmx_msr_index[] = {
250 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
252 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
254 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
256 static inline bool is_page_fault(u32 intr_info)
258 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
259 INTR_INFO_VALID_MASK)) ==
260 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
263 static inline bool is_no_device(u32 intr_info)
265 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
266 INTR_INFO_VALID_MASK)) ==
267 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
270 static inline bool is_invalid_opcode(u32 intr_info)
272 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
273 INTR_INFO_VALID_MASK)) ==
274 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
277 static inline bool is_external_interrupt(u32 intr_info)
279 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
280 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
283 static inline bool is_machine_check(u32 intr_info)
285 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
286 INTR_INFO_VALID_MASK)) ==
287 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
290 static inline bool cpu_has_vmx_msr_bitmap(void)
292 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
295 static inline bool cpu_has_vmx_tpr_shadow(void)
297 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
300 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
302 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
305 static inline bool cpu_has_secondary_exec_ctrls(void)
307 return vmcs_config.cpu_based_exec_ctrl &
308 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
311 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
313 return vmcs_config.cpu_based_2nd_exec_ctrl &
314 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
317 static inline bool cpu_has_vmx_flexpriority(void)
319 return cpu_has_vmx_tpr_shadow() &&
320 cpu_has_vmx_virtualize_apic_accesses();
323 static inline bool cpu_has_vmx_ept_execute_only(void)
325 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
328 static inline bool cpu_has_vmx_eptp_uncacheable(void)
330 return vmx_capability.ept & VMX_EPTP_UC_BIT;
333 static inline bool cpu_has_vmx_eptp_writeback(void)
335 return vmx_capability.ept & VMX_EPTP_WB_BIT;
338 static inline bool cpu_has_vmx_ept_2m_page(void)
340 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
343 static inline bool cpu_has_vmx_ept_1g_page(void)
345 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
348 static inline bool cpu_has_vmx_ept_4levels(void)
350 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
353 static inline bool cpu_has_vmx_invept_individual_addr(void)
355 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
358 static inline bool cpu_has_vmx_invept_context(void)
360 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
363 static inline bool cpu_has_vmx_invept_global(void)
365 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
368 static inline bool cpu_has_vmx_invvpid_single(void)
370 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
373 static inline bool cpu_has_vmx_invvpid_global(void)
375 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
378 static inline bool cpu_has_vmx_ept(void)
380 return vmcs_config.cpu_based_2nd_exec_ctrl &
381 SECONDARY_EXEC_ENABLE_EPT;
384 static inline bool cpu_has_vmx_unrestricted_guest(void)
386 return vmcs_config.cpu_based_2nd_exec_ctrl &
387 SECONDARY_EXEC_UNRESTRICTED_GUEST;
390 static inline bool cpu_has_vmx_ple(void)
392 return vmcs_config.cpu_based_2nd_exec_ctrl &
393 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
396 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
398 return flexpriority_enabled && irqchip_in_kernel(kvm);
401 static inline bool cpu_has_vmx_vpid(void)
403 return vmcs_config.cpu_based_2nd_exec_ctrl &
404 SECONDARY_EXEC_ENABLE_VPID;
407 static inline bool cpu_has_vmx_rdtscp(void)
409 return vmcs_config.cpu_based_2nd_exec_ctrl &
410 SECONDARY_EXEC_RDTSCP;
413 static inline bool cpu_has_virtual_nmis(void)
415 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
418 static inline bool cpu_has_vmx_wbinvd_exit(void)
420 return vmcs_config.cpu_based_2nd_exec_ctrl &
421 SECONDARY_EXEC_WBINVD_EXITING;
424 static inline bool report_flexpriority(void)
426 return flexpriority_enabled;
429 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
433 for (i = 0; i < vmx->nmsrs; ++i)
434 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
439 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
445 } operand = { vpid, 0, gva };
447 asm volatile (__ex(ASM_VMX_INVVPID)
448 /* CF==1 or ZF==1 --> rc = -1 */
450 : : "a"(&operand), "c"(ext) : "cc", "memory");
453 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
457 } operand = {eptp, gpa};
459 asm volatile (__ex(ASM_VMX_INVEPT)
460 /* CF==1 or ZF==1 --> rc = -1 */
461 "; ja 1f ; ud2 ; 1:\n"
462 : : "a" (&operand), "c" (ext) : "cc", "memory");
465 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
469 i = __find_msr_index(vmx, msr);
471 return &vmx->guest_msrs[i];
475 static void vmcs_clear(struct vmcs *vmcs)
477 u64 phys_addr = __pa(vmcs);
480 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
481 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
484 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
488 static void vmcs_load(struct vmcs *vmcs)
490 u64 phys_addr = __pa(vmcs);
493 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
494 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
497 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
501 static void __vcpu_clear(void *arg)
503 struct vcpu_vmx *vmx = arg;
504 int cpu = raw_smp_processor_id();
506 if (vmx->vcpu.cpu == cpu)
507 vmcs_clear(vmx->vmcs);
508 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
509 per_cpu(current_vmcs, cpu) = NULL;
510 list_del(&vmx->local_vcpus_link);
515 static void vcpu_clear(struct vcpu_vmx *vmx)
517 if (vmx->vcpu.cpu == -1)
519 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
522 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
527 if (cpu_has_vmx_invvpid_single())
528 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
531 static inline void vpid_sync_vcpu_global(void)
533 if (cpu_has_vmx_invvpid_global())
534 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
537 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
539 if (cpu_has_vmx_invvpid_single())
540 vpid_sync_vcpu_single(vmx);
542 vpid_sync_vcpu_global();
545 static inline void ept_sync_global(void)
547 if (cpu_has_vmx_invept_global())
548 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
551 static inline void ept_sync_context(u64 eptp)
554 if (cpu_has_vmx_invept_context())
555 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
561 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
564 if (cpu_has_vmx_invept_individual_addr())
565 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
568 ept_sync_context(eptp);
572 static unsigned long vmcs_readl(unsigned long field)
574 unsigned long value = 0;
576 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
577 : "+a"(value) : "d"(field) : "cc");
581 static u16 vmcs_read16(unsigned long field)
583 return vmcs_readl(field);
586 static u32 vmcs_read32(unsigned long field)
588 return vmcs_readl(field);
591 static u64 vmcs_read64(unsigned long field)
594 return vmcs_readl(field);
596 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
600 static noinline void vmwrite_error(unsigned long field, unsigned long value)
602 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
603 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
607 static void vmcs_writel(unsigned long field, unsigned long value)
611 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
612 : "=q"(error) : "a"(value), "d"(field) : "cc");
614 vmwrite_error(field, value);
617 static void vmcs_write16(unsigned long field, u16 value)
619 vmcs_writel(field, value);
622 static void vmcs_write32(unsigned long field, u32 value)
624 vmcs_writel(field, value);
627 static void vmcs_write64(unsigned long field, u64 value)
629 vmcs_writel(field, value);
630 #ifndef CONFIG_X86_64
632 vmcs_writel(field+1, value >> 32);
636 static void vmcs_clear_bits(unsigned long field, u32 mask)
638 vmcs_writel(field, vmcs_readl(field) & ~mask);
641 static void vmcs_set_bits(unsigned long field, u32 mask)
643 vmcs_writel(field, vmcs_readl(field) | mask);
646 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
650 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
651 (1u << NM_VECTOR) | (1u << DB_VECTOR);
652 if ((vcpu->guest_debug &
653 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
654 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
655 eb |= 1u << BP_VECTOR;
656 if (to_vmx(vcpu)->rmode.vm86_active)
659 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
660 if (vcpu->fpu_active)
661 eb &= ~(1u << NM_VECTOR);
662 vmcs_write32(EXCEPTION_BITMAP, eb);
665 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
668 struct msr_autoload *m = &vmx->msr_autoload;
670 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
671 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
672 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
676 for (i = 0; i < m->nr; ++i)
677 if (m->guest[i].index == msr)
683 m->guest[i] = m->guest[m->nr];
684 m->host[i] = m->host[m->nr];
685 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
686 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
689 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
690 u64 guest_val, u64 host_val)
693 struct msr_autoload *m = &vmx->msr_autoload;
695 if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
696 vmcs_write64(GUEST_IA32_EFER, guest_val);
697 vmcs_write64(HOST_IA32_EFER, host_val);
698 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
699 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
703 for (i = 0; i < m->nr; ++i)
704 if (m->guest[i].index == msr)
709 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
710 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
713 m->guest[i].index = msr;
714 m->guest[i].value = guest_val;
715 m->host[i].index = msr;
716 m->host[i].value = host_val;
719 static void reload_tss(void)
722 * VT restores TR but not its size. Useless.
724 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
725 struct desc_struct *descs;
727 descs = (void *)gdt->address;
728 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
732 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
737 guest_efer = vmx->vcpu.arch.efer;
740 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
743 ignore_bits = EFER_NX | EFER_SCE;
745 ignore_bits |= EFER_LMA | EFER_LME;
746 /* SCE is meaningful only in long mode on Intel */
747 if (guest_efer & EFER_LMA)
748 ignore_bits &= ~(u64)EFER_SCE;
750 guest_efer &= ~ignore_bits;
751 guest_efer |= host_efer & ignore_bits;
752 vmx->guest_msrs[efer_offset].data = guest_efer;
753 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
755 clear_atomic_switch_msr(vmx, MSR_EFER);
756 /* On ept, can't emulate nx, and must switch nx atomically */
757 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
758 guest_efer = vmx->vcpu.arch.efer;
759 if (!(guest_efer & EFER_LMA))
760 guest_efer &= ~EFER_LME;
761 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
768 static unsigned long segment_base(u16 selector)
770 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
771 struct desc_struct *d;
772 unsigned long table_base;
775 if (!(selector & ~3))
778 table_base = gdt->address;
780 if (selector & 4) { /* from ldt */
781 u16 ldt_selector = kvm_read_ldt();
783 if (!(ldt_selector & ~3))
786 table_base = segment_base(ldt_selector);
788 d = (struct desc_struct *)(table_base + (selector & ~7));
789 v = get_desc_base(d);
791 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
792 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
797 static inline unsigned long kvm_read_tr_base(void)
800 asm("str %0" : "=g"(tr));
801 return segment_base(tr);
804 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
806 struct vcpu_vmx *vmx = to_vmx(vcpu);
809 if (vmx->host_state.loaded)
812 vmx->host_state.loaded = 1;
814 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
815 * allow segment selectors with cpl > 0 or ti == 1.
817 vmx->host_state.ldt_sel = kvm_read_ldt();
818 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
819 savesegment(fs, vmx->host_state.fs_sel);
820 if (!(vmx->host_state.fs_sel & 7)) {
821 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
822 vmx->host_state.fs_reload_needed = 0;
824 vmcs_write16(HOST_FS_SELECTOR, 0);
825 vmx->host_state.fs_reload_needed = 1;
827 savesegment(gs, vmx->host_state.gs_sel);
828 if (!(vmx->host_state.gs_sel & 7))
829 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
831 vmcs_write16(HOST_GS_SELECTOR, 0);
832 vmx->host_state.gs_ldt_reload_needed = 1;
836 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
837 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
839 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
840 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
844 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
845 if (is_long_mode(&vmx->vcpu))
846 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
848 for (i = 0; i < vmx->save_nmsrs; ++i)
849 kvm_set_shared_msr(vmx->guest_msrs[i].index,
850 vmx->guest_msrs[i].data,
851 vmx->guest_msrs[i].mask);
854 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
856 if (!vmx->host_state.loaded)
859 ++vmx->vcpu.stat.host_state_reload;
860 vmx->host_state.loaded = 0;
862 if (is_long_mode(&vmx->vcpu))
863 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
865 if (vmx->host_state.gs_ldt_reload_needed) {
866 kvm_load_ldt(vmx->host_state.ldt_sel);
868 load_gs_index(vmx->host_state.gs_sel);
870 loadsegment(gs, vmx->host_state.gs_sel);
873 if (vmx->host_state.fs_reload_needed)
874 loadsegment(fs, vmx->host_state.fs_sel);
877 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
879 if (current_thread_info()->status & TS_USEDFPU)
881 load_gdt(&__get_cpu_var(host_gdt));
884 static void vmx_load_host_state(struct vcpu_vmx *vmx)
887 __vmx_load_host_state(vmx);
892 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
893 * vcpu mutex is already taken.
895 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
897 struct vcpu_vmx *vmx = to_vmx(vcpu);
898 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
901 kvm_cpu_vmxon(phys_addr);
902 else if (vcpu->cpu != cpu)
905 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
906 per_cpu(current_vmcs, cpu) = vmx->vmcs;
907 vmcs_load(vmx->vmcs);
910 if (vcpu->cpu != cpu) {
911 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912 unsigned long sysenter_esp;
914 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
916 list_add(&vmx->local_vcpus_link,
917 &per_cpu(vcpus_on_cpu, cpu));
921 * Linux uses per-cpu TSS and GDT, so set these when switching
924 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
925 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
927 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
928 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
932 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
934 __vmx_load_host_state(to_vmx(vcpu));
935 if (!vmm_exclusive) {
936 __vcpu_clear(to_vmx(vcpu));
941 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
945 if (vcpu->fpu_active)
947 vcpu->fpu_active = 1;
948 cr0 = vmcs_readl(GUEST_CR0);
949 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
950 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
951 vmcs_writel(GUEST_CR0, cr0);
952 update_exception_bitmap(vcpu);
953 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
954 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
959 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
961 vmx_decache_cr0_guest_bits(vcpu);
962 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
963 update_exception_bitmap(vcpu);
964 vcpu->arch.cr0_guest_owned_bits = 0;
965 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
966 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
969 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
971 unsigned long rflags, save_rflags;
973 rflags = vmcs_readl(GUEST_RFLAGS);
974 if (to_vmx(vcpu)->rmode.vm86_active) {
975 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
976 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
977 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
982 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
984 if (to_vmx(vcpu)->rmode.vm86_active) {
985 to_vmx(vcpu)->rmode.save_rflags = rflags;
986 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
988 vmcs_writel(GUEST_RFLAGS, rflags);
991 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
993 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
996 if (interruptibility & GUEST_INTR_STATE_STI)
997 ret |= KVM_X86_SHADOW_INT_STI;
998 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
999 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1006 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1007 u32 interruptibility = interruptibility_old;
1009 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1011 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1012 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1013 else if (mask & KVM_X86_SHADOW_INT_STI)
1014 interruptibility |= GUEST_INTR_STATE_STI;
1016 if ((interruptibility != interruptibility_old))
1017 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1020 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1024 rip = kvm_rip_read(vcpu);
1025 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1026 kvm_rip_write(vcpu, rip);
1028 /* skipping an emulated instruction also counts */
1029 vmx_set_interrupt_shadow(vcpu, 0);
1032 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1034 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1035 * explicitly skip the instruction because if the HLT state is set, then
1036 * the instruction is already executing and RIP has already been
1038 if (!yield_on_hlt &&
1039 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1040 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1043 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1044 bool has_error_code, u32 error_code,
1047 struct vcpu_vmx *vmx = to_vmx(vcpu);
1048 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1050 if (has_error_code) {
1051 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1052 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1055 if (vmx->rmode.vm86_active) {
1056 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1057 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1061 if (kvm_exception_is_soft(nr)) {
1062 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1063 vmx->vcpu.arch.event_exit_inst_len);
1064 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1066 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1068 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1069 vmx_clear_hlt(vcpu);
1072 static bool vmx_rdtscp_supported(void)
1074 return cpu_has_vmx_rdtscp();
1078 * Swap MSR entry in host/guest MSR entry array.
1080 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1082 struct shared_msr_entry tmp;
1084 tmp = vmx->guest_msrs[to];
1085 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1086 vmx->guest_msrs[from] = tmp;
1090 * Set up the vmcs to automatically save and restore system
1091 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1092 * mode, as fiddling with msrs is very expensive.
1094 static void setup_msrs(struct vcpu_vmx *vmx)
1096 int save_nmsrs, index;
1097 unsigned long *msr_bitmap;
1099 vmx_load_host_state(vmx);
1101 #ifdef CONFIG_X86_64
1102 if (is_long_mode(&vmx->vcpu)) {
1103 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1105 move_msr_up(vmx, index, save_nmsrs++);
1106 index = __find_msr_index(vmx, MSR_LSTAR);
1108 move_msr_up(vmx, index, save_nmsrs++);
1109 index = __find_msr_index(vmx, MSR_CSTAR);
1111 move_msr_up(vmx, index, save_nmsrs++);
1112 index = __find_msr_index(vmx, MSR_TSC_AUX);
1113 if (index >= 0 && vmx->rdtscp_enabled)
1114 move_msr_up(vmx, index, save_nmsrs++);
1116 * MSR_STAR is only needed on long mode guests, and only
1117 * if efer.sce is enabled.
1119 index = __find_msr_index(vmx, MSR_STAR);
1120 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1121 move_msr_up(vmx, index, save_nmsrs++);
1124 index = __find_msr_index(vmx, MSR_EFER);
1125 if (index >= 0 && update_transition_efer(vmx, index))
1126 move_msr_up(vmx, index, save_nmsrs++);
1128 vmx->save_nmsrs = save_nmsrs;
1130 if (cpu_has_vmx_msr_bitmap()) {
1131 if (is_long_mode(&vmx->vcpu))
1132 msr_bitmap = vmx_msr_bitmap_longmode;
1134 msr_bitmap = vmx_msr_bitmap_legacy;
1136 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1141 * reads and returns guest's timestamp counter "register"
1142 * guest_tsc = host_tsc + tsc_offset -- 21.3
1144 static u64 guest_read_tsc(void)
1146 u64 host_tsc, tsc_offset;
1149 tsc_offset = vmcs_read64(TSC_OFFSET);
1150 return host_tsc + tsc_offset;
1154 * writes 'offset' into guest's timestamp counter offset register
1156 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1158 vmcs_write64(TSC_OFFSET, offset);
1161 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1163 u64 offset = vmcs_read64(TSC_OFFSET);
1164 vmcs_write64(TSC_OFFSET, offset + adjustment);
1168 * Reads an msr value (of 'msr_index') into 'pdata'.
1169 * Returns 0 on success, non-0 otherwise.
1170 * Assumes vcpu_load() was already called.
1172 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1175 struct shared_msr_entry *msr;
1178 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1182 switch (msr_index) {
1183 #ifdef CONFIG_X86_64
1185 data = vmcs_readl(GUEST_FS_BASE);
1188 data = vmcs_readl(GUEST_GS_BASE);
1190 case MSR_KERNEL_GS_BASE:
1191 vmx_load_host_state(to_vmx(vcpu));
1192 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1196 return kvm_get_msr_common(vcpu, msr_index, pdata);
1198 data = guest_read_tsc();
1200 case MSR_IA32_SYSENTER_CS:
1201 data = vmcs_read32(GUEST_SYSENTER_CS);
1203 case MSR_IA32_SYSENTER_EIP:
1204 data = vmcs_readl(GUEST_SYSENTER_EIP);
1206 case MSR_IA32_SYSENTER_ESP:
1207 data = vmcs_readl(GUEST_SYSENTER_ESP);
1210 if (!to_vmx(vcpu)->rdtscp_enabled)
1212 /* Otherwise falls through */
1214 vmx_load_host_state(to_vmx(vcpu));
1215 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1217 vmx_load_host_state(to_vmx(vcpu));
1221 return kvm_get_msr_common(vcpu, msr_index, pdata);
1229 * Writes msr value into into the appropriate "register".
1230 * Returns 0 on success, non-0 otherwise.
1231 * Assumes vcpu_load() was already called.
1233 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1235 struct vcpu_vmx *vmx = to_vmx(vcpu);
1236 struct shared_msr_entry *msr;
1239 switch (msr_index) {
1241 vmx_load_host_state(vmx);
1242 ret = kvm_set_msr_common(vcpu, msr_index, data);
1244 #ifdef CONFIG_X86_64
1246 vmcs_writel(GUEST_FS_BASE, data);
1249 vmcs_writel(GUEST_GS_BASE, data);
1251 case MSR_KERNEL_GS_BASE:
1252 vmx_load_host_state(vmx);
1253 vmx->msr_guest_kernel_gs_base = data;
1256 case MSR_IA32_SYSENTER_CS:
1257 vmcs_write32(GUEST_SYSENTER_CS, data);
1259 case MSR_IA32_SYSENTER_EIP:
1260 vmcs_writel(GUEST_SYSENTER_EIP, data);
1262 case MSR_IA32_SYSENTER_ESP:
1263 vmcs_writel(GUEST_SYSENTER_ESP, data);
1266 kvm_write_tsc(vcpu, data);
1268 case MSR_IA32_CR_PAT:
1269 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1270 vmcs_write64(GUEST_IA32_PAT, data);
1271 vcpu->arch.pat = data;
1274 ret = kvm_set_msr_common(vcpu, msr_index, data);
1277 if (!vmx->rdtscp_enabled)
1279 /* Check reserved bit, higher 32 bits should be zero */
1280 if ((data >> 32) != 0)
1282 /* Otherwise falls through */
1284 msr = find_msr_entry(vmx, msr_index);
1286 vmx_load_host_state(vmx);
1290 ret = kvm_set_msr_common(vcpu, msr_index, data);
1296 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1298 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1301 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1304 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1306 case VCPU_EXREG_PDPTR:
1308 ept_save_pdptrs(vcpu);
1315 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1317 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1318 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1320 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1322 update_exception_bitmap(vcpu);
1325 static __init int cpu_has_kvm_support(void)
1327 return cpu_has_vmx();
1330 static __init int vmx_disabled_by_bios(void)
1334 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1335 if (msr & FEATURE_CONTROL_LOCKED) {
1336 /* launched w/ TXT and VMX disabled */
1337 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1340 /* launched w/o TXT and VMX only enabled w/ TXT */
1341 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1342 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1343 && !tboot_enabled()) {
1344 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1345 "activate TXT before enabling KVM\n");
1348 /* launched w/o TXT and VMX disabled */
1349 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1350 && !tboot_enabled())
1357 static void kvm_cpu_vmxon(u64 addr)
1359 asm volatile (ASM_VMX_VMXON_RAX
1360 : : "a"(&addr), "m"(addr)
1364 static int hardware_enable(void *garbage)
1366 int cpu = raw_smp_processor_id();
1367 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1370 if (read_cr4() & X86_CR4_VMXE)
1373 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1374 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1376 test_bits = FEATURE_CONTROL_LOCKED;
1377 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1378 if (tboot_enabled())
1379 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1381 if ((old & test_bits) != test_bits) {
1382 /* enable and lock */
1383 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1385 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1387 if (vmm_exclusive) {
1388 kvm_cpu_vmxon(phys_addr);
1392 store_gdt(&__get_cpu_var(host_gdt));
1397 static void vmclear_local_vcpus(void)
1399 int cpu = raw_smp_processor_id();
1400 struct vcpu_vmx *vmx, *n;
1402 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1408 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1411 static void kvm_cpu_vmxoff(void)
1413 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1416 static void hardware_disable(void *garbage)
1418 if (vmm_exclusive) {
1419 vmclear_local_vcpus();
1422 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1425 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1426 u32 msr, u32 *result)
1428 u32 vmx_msr_low, vmx_msr_high;
1429 u32 ctl = ctl_min | ctl_opt;
1431 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1433 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1434 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1436 /* Ensure minimum (required) set of control bits are supported. */
1444 static __init bool allow_1_setting(u32 msr, u32 ctl)
1446 u32 vmx_msr_low, vmx_msr_high;
1448 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1449 return vmx_msr_high & ctl;
1452 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1454 u32 vmx_msr_low, vmx_msr_high;
1455 u32 min, opt, min2, opt2;
1456 u32 _pin_based_exec_control = 0;
1457 u32 _cpu_based_exec_control = 0;
1458 u32 _cpu_based_2nd_exec_control = 0;
1459 u32 _vmexit_control = 0;
1460 u32 _vmentry_control = 0;
1462 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1463 opt = PIN_BASED_VIRTUAL_NMIS;
1464 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1465 &_pin_based_exec_control) < 0)
1469 #ifdef CONFIG_X86_64
1470 CPU_BASED_CR8_LOAD_EXITING |
1471 CPU_BASED_CR8_STORE_EXITING |
1473 CPU_BASED_CR3_LOAD_EXITING |
1474 CPU_BASED_CR3_STORE_EXITING |
1475 CPU_BASED_USE_IO_BITMAPS |
1476 CPU_BASED_MOV_DR_EXITING |
1477 CPU_BASED_USE_TSC_OFFSETING |
1478 CPU_BASED_MWAIT_EXITING |
1479 CPU_BASED_MONITOR_EXITING |
1480 CPU_BASED_INVLPG_EXITING;
1483 min |= CPU_BASED_HLT_EXITING;
1485 opt = CPU_BASED_TPR_SHADOW |
1486 CPU_BASED_USE_MSR_BITMAPS |
1487 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1488 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1489 &_cpu_based_exec_control) < 0)
1491 #ifdef CONFIG_X86_64
1492 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1493 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1494 ~CPU_BASED_CR8_STORE_EXITING;
1496 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1498 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1499 SECONDARY_EXEC_WBINVD_EXITING |
1500 SECONDARY_EXEC_ENABLE_VPID |
1501 SECONDARY_EXEC_ENABLE_EPT |
1502 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1503 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1504 SECONDARY_EXEC_RDTSCP;
1505 if (adjust_vmx_controls(min2, opt2,
1506 MSR_IA32_VMX_PROCBASED_CTLS2,
1507 &_cpu_based_2nd_exec_control) < 0)
1510 #ifndef CONFIG_X86_64
1511 if (!(_cpu_based_2nd_exec_control &
1512 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1513 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1515 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1516 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1518 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1519 CPU_BASED_CR3_STORE_EXITING |
1520 CPU_BASED_INVLPG_EXITING);
1521 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1522 vmx_capability.ept, vmx_capability.vpid);
1526 #ifdef CONFIG_X86_64
1527 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1529 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1530 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1531 &_vmexit_control) < 0)
1535 opt = VM_ENTRY_LOAD_IA32_PAT;
1536 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1537 &_vmentry_control) < 0)
1540 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1542 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1543 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1546 #ifdef CONFIG_X86_64
1547 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1548 if (vmx_msr_high & (1u<<16))
1552 /* Require Write-Back (WB) memory type for VMCS accesses. */
1553 if (((vmx_msr_high >> 18) & 15) != 6)
1556 vmcs_conf->size = vmx_msr_high & 0x1fff;
1557 vmcs_conf->order = get_order(vmcs_config.size);
1558 vmcs_conf->revision_id = vmx_msr_low;
1560 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1561 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1562 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1563 vmcs_conf->vmexit_ctrl = _vmexit_control;
1564 vmcs_conf->vmentry_ctrl = _vmentry_control;
1566 cpu_has_load_ia32_efer =
1567 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1568 VM_ENTRY_LOAD_IA32_EFER)
1569 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1570 VM_EXIT_LOAD_IA32_EFER);
1575 static struct vmcs *alloc_vmcs_cpu(int cpu)
1577 int node = cpu_to_node(cpu);
1581 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1584 vmcs = page_address(pages);
1585 memset(vmcs, 0, vmcs_config.size);
1586 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1590 static struct vmcs *alloc_vmcs(void)
1592 return alloc_vmcs_cpu(raw_smp_processor_id());
1595 static void free_vmcs(struct vmcs *vmcs)
1597 free_pages((unsigned long)vmcs, vmcs_config.order);
1600 static void free_kvm_area(void)
1604 for_each_possible_cpu(cpu) {
1605 free_vmcs(per_cpu(vmxarea, cpu));
1606 per_cpu(vmxarea, cpu) = NULL;
1610 static __init int alloc_kvm_area(void)
1614 for_each_possible_cpu(cpu) {
1617 vmcs = alloc_vmcs_cpu(cpu);
1623 per_cpu(vmxarea, cpu) = vmcs;
1628 static __init int hardware_setup(void)
1630 if (setup_vmcs_config(&vmcs_config) < 0)
1633 if (boot_cpu_has(X86_FEATURE_NX))
1634 kvm_enable_efer_bits(EFER_NX);
1636 if (!cpu_has_vmx_vpid())
1639 if (!cpu_has_vmx_ept() ||
1640 !cpu_has_vmx_ept_4levels()) {
1642 enable_unrestricted_guest = 0;
1645 if (!cpu_has_vmx_unrestricted_guest())
1646 enable_unrestricted_guest = 0;
1648 if (!cpu_has_vmx_flexpriority())
1649 flexpriority_enabled = 0;
1651 if (!cpu_has_vmx_tpr_shadow())
1652 kvm_x86_ops->update_cr8_intercept = NULL;
1654 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1655 kvm_disable_largepages();
1657 if (!cpu_has_vmx_ple())
1660 return alloc_kvm_area();
1663 static __exit void hardware_unsetup(void)
1668 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1670 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1672 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1673 vmcs_write16(sf->selector, save->selector);
1674 vmcs_writel(sf->base, save->base);
1675 vmcs_write32(sf->limit, save->limit);
1676 vmcs_write32(sf->ar_bytes, save->ar);
1678 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1680 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1684 static void enter_pmode(struct kvm_vcpu *vcpu)
1686 unsigned long flags;
1687 struct vcpu_vmx *vmx = to_vmx(vcpu);
1689 vmx->emulation_required = 1;
1690 vmx->rmode.vm86_active = 0;
1692 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1693 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1694 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1695 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1697 flags = vmcs_readl(GUEST_RFLAGS);
1698 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1699 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1700 vmcs_writel(GUEST_RFLAGS, flags);
1702 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1703 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1705 update_exception_bitmap(vcpu);
1707 if (emulate_invalid_guest_state)
1710 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1711 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1712 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1713 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1715 vmcs_write16(GUEST_SS_SELECTOR, 0);
1716 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1718 vmcs_write16(GUEST_CS_SELECTOR,
1719 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1720 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1723 static gva_t rmode_tss_base(struct kvm *kvm)
1725 if (!kvm->arch.tss_addr) {
1726 struct kvm_memslots *slots;
1729 slots = kvm_memslots(kvm);
1730 base_gfn = slots->memslots[0].base_gfn +
1731 kvm->memslots->memslots[0].npages - 3;
1732 return base_gfn << PAGE_SHIFT;
1734 return kvm->arch.tss_addr;
1737 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1739 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1741 save->selector = vmcs_read16(sf->selector);
1742 save->base = vmcs_readl(sf->base);
1743 save->limit = vmcs_read32(sf->limit);
1744 save->ar = vmcs_read32(sf->ar_bytes);
1745 vmcs_write16(sf->selector, save->base >> 4);
1746 vmcs_write32(sf->base, save->base & 0xffff0);
1747 vmcs_write32(sf->limit, 0xffff);
1748 vmcs_write32(sf->ar_bytes, 0xf3);
1749 if (save->base & 0xf)
1750 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1751 " aligned when entering protected mode (seg=%d)",
1755 static void enter_rmode(struct kvm_vcpu *vcpu)
1757 unsigned long flags;
1758 struct vcpu_vmx *vmx = to_vmx(vcpu);
1760 if (enable_unrestricted_guest)
1763 vmx->emulation_required = 1;
1764 vmx->rmode.vm86_active = 1;
1767 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1768 * vcpu. Call it here with phys address pointing 16M below 4G.
1770 if (!vcpu->kvm->arch.tss_addr) {
1771 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1772 "called before entering vcpu\n");
1773 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1774 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1775 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1778 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1779 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1780 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1782 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1783 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1785 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1786 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1788 flags = vmcs_readl(GUEST_RFLAGS);
1789 vmx->rmode.save_rflags = flags;
1791 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1793 vmcs_writel(GUEST_RFLAGS, flags);
1794 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1795 update_exception_bitmap(vcpu);
1797 if (emulate_invalid_guest_state)
1798 goto continue_rmode;
1800 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1801 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1802 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1804 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1805 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1806 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1807 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1808 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1810 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1811 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1812 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1813 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1816 kvm_mmu_reset_context(vcpu);
1819 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1821 struct vcpu_vmx *vmx = to_vmx(vcpu);
1822 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1828 * Force kernel_gs_base reloading before EFER changes, as control
1829 * of this msr depends on is_long_mode().
1831 vmx_load_host_state(to_vmx(vcpu));
1832 vcpu->arch.efer = efer;
1833 if (efer & EFER_LMA) {
1834 vmcs_write32(VM_ENTRY_CONTROLS,
1835 vmcs_read32(VM_ENTRY_CONTROLS) |
1836 VM_ENTRY_IA32E_MODE);
1839 vmcs_write32(VM_ENTRY_CONTROLS,
1840 vmcs_read32(VM_ENTRY_CONTROLS) &
1841 ~VM_ENTRY_IA32E_MODE);
1843 msr->data = efer & ~EFER_LME;
1848 #ifdef CONFIG_X86_64
1850 static void enter_lmode(struct kvm_vcpu *vcpu)
1854 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1855 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1856 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1858 vmcs_write32(GUEST_TR_AR_BYTES,
1859 (guest_tr_ar & ~AR_TYPE_MASK)
1860 | AR_TYPE_BUSY_64_TSS);
1862 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1865 static void exit_lmode(struct kvm_vcpu *vcpu)
1867 vmcs_write32(VM_ENTRY_CONTROLS,
1868 vmcs_read32(VM_ENTRY_CONTROLS)
1869 & ~VM_ENTRY_IA32E_MODE);
1870 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1875 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1877 vpid_sync_context(to_vmx(vcpu));
1879 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1881 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1885 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1887 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1889 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1890 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1893 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1895 if (enable_ept && is_paging(vcpu))
1896 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1897 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1900 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1902 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1904 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1905 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1908 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1910 if (!test_bit(VCPU_EXREG_PDPTR,
1911 (unsigned long *)&vcpu->arch.regs_dirty))
1914 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1915 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1916 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1917 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1918 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1922 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1924 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1925 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1926 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1927 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1928 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1931 __set_bit(VCPU_EXREG_PDPTR,
1932 (unsigned long *)&vcpu->arch.regs_avail);
1933 __set_bit(VCPU_EXREG_PDPTR,
1934 (unsigned long *)&vcpu->arch.regs_dirty);
1937 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1939 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1941 struct kvm_vcpu *vcpu)
1943 vmx_decache_cr3(vcpu);
1944 if (!(cr0 & X86_CR0_PG)) {
1945 /* From paging/starting to nonpaging */
1946 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1947 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1948 (CPU_BASED_CR3_LOAD_EXITING |
1949 CPU_BASED_CR3_STORE_EXITING));
1950 vcpu->arch.cr0 = cr0;
1951 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1952 } else if (!is_paging(vcpu)) {
1953 /* From nonpaging to paging */
1954 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1955 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1956 ~(CPU_BASED_CR3_LOAD_EXITING |
1957 CPU_BASED_CR3_STORE_EXITING));
1958 vcpu->arch.cr0 = cr0;
1959 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1962 if (!(cr0 & X86_CR0_WP))
1963 *hw_cr0 &= ~X86_CR0_WP;
1966 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1968 struct vcpu_vmx *vmx = to_vmx(vcpu);
1969 unsigned long hw_cr0;
1971 if (enable_unrestricted_guest)
1972 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1973 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1975 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1977 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1980 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1983 #ifdef CONFIG_X86_64
1984 if (vcpu->arch.efer & EFER_LME) {
1985 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1987 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1993 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1995 if (!vcpu->fpu_active)
1996 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1998 vmcs_writel(CR0_READ_SHADOW, cr0);
1999 vmcs_writel(GUEST_CR0, hw_cr0);
2000 vcpu->arch.cr0 = cr0;
2003 static u64 construct_eptp(unsigned long root_hpa)
2007 /* TODO write the value reading from MSR */
2008 eptp = VMX_EPT_DEFAULT_MT |
2009 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2010 eptp |= (root_hpa & PAGE_MASK);
2015 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2017 unsigned long guest_cr3;
2022 eptp = construct_eptp(cr3);
2023 vmcs_write64(EPT_POINTER, eptp);
2024 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2025 vcpu->kvm->arch.ept_identity_map_addr;
2026 ept_load_pdptrs(vcpu);
2029 vmx_flush_tlb(vcpu);
2030 vmcs_writel(GUEST_CR3, guest_cr3);
2033 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2035 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2036 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2038 vcpu->arch.cr4 = cr4;
2040 if (!is_paging(vcpu)) {
2041 hw_cr4 &= ~X86_CR4_PAE;
2042 hw_cr4 |= X86_CR4_PSE;
2043 } else if (!(cr4 & X86_CR4_PAE)) {
2044 hw_cr4 &= ~X86_CR4_PAE;
2048 vmcs_writel(CR4_READ_SHADOW, cr4);
2049 vmcs_writel(GUEST_CR4, hw_cr4);
2052 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2053 struct kvm_segment *var, int seg)
2055 struct vcpu_vmx *vmx = to_vmx(vcpu);
2056 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2057 struct kvm_save_segment *save;
2060 if (vmx->rmode.vm86_active
2061 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2062 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2063 || seg == VCPU_SREG_GS)
2064 && !emulate_invalid_guest_state) {
2066 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2067 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2068 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2069 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2070 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2073 var->selector = save->selector;
2074 var->base = save->base;
2075 var->limit = save->limit;
2077 if (seg == VCPU_SREG_TR
2078 || var->selector == vmcs_read16(sf->selector))
2079 goto use_saved_rmode_seg;
2081 var->base = vmcs_readl(sf->base);
2082 var->limit = vmcs_read32(sf->limit);
2083 var->selector = vmcs_read16(sf->selector);
2084 ar = vmcs_read32(sf->ar_bytes);
2085 use_saved_rmode_seg:
2086 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2088 var->type = ar & 15;
2089 var->s = (ar >> 4) & 1;
2090 var->dpl = (ar >> 5) & 3;
2091 var->present = (ar >> 7) & 1;
2092 var->avl = (ar >> 12) & 1;
2093 var->l = (ar >> 13) & 1;
2094 var->db = (ar >> 14) & 1;
2095 var->g = (ar >> 15) & 1;
2096 var->unusable = (ar >> 16) & 1;
2099 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2101 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2102 struct kvm_segment s;
2104 if (to_vmx(vcpu)->rmode.vm86_active) {
2105 vmx_get_segment(vcpu, &s, seg);
2108 return vmcs_readl(sf->base);
2111 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2113 if (!is_protmode(vcpu))
2116 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2119 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2122 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2129 ar = var->type & 15;
2130 ar |= (var->s & 1) << 4;
2131 ar |= (var->dpl & 3) << 5;
2132 ar |= (var->present & 1) << 7;
2133 ar |= (var->avl & 1) << 12;
2134 ar |= (var->l & 1) << 13;
2135 ar |= (var->db & 1) << 14;
2136 ar |= (var->g & 1) << 15;
2138 if (ar == 0) /* a 0 value means unusable */
2139 ar = AR_UNUSABLE_MASK;
2144 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2145 struct kvm_segment *var, int seg)
2147 struct vcpu_vmx *vmx = to_vmx(vcpu);
2148 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2151 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2152 vmcs_write16(sf->selector, var->selector);
2153 vmx->rmode.tr.selector = var->selector;
2154 vmx->rmode.tr.base = var->base;
2155 vmx->rmode.tr.limit = var->limit;
2156 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2159 vmcs_writel(sf->base, var->base);
2160 vmcs_write32(sf->limit, var->limit);
2161 vmcs_write16(sf->selector, var->selector);
2162 if (vmx->rmode.vm86_active && var->s) {
2164 * Hack real-mode segments into vm86 compatibility.
2166 if (var->base == 0xffff0000 && var->selector == 0xf000)
2167 vmcs_writel(sf->base, 0xf0000);
2170 ar = vmx_segment_access_rights(var);
2173 * Fix the "Accessed" bit in AR field of segment registers for older
2175 * IA32 arch specifies that at the time of processor reset the
2176 * "Accessed" bit in the AR field of segment registers is 1. And qemu
2177 * is setting it to 0 in the usedland code. This causes invalid guest
2178 * state vmexit when "unrestricted guest" mode is turned on.
2179 * Fix for this setup issue in cpu_reset is being pushed in the qemu
2180 * tree. Newer qemu binaries with that qemu fix would not need this
2183 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2184 ar |= 0x1; /* Accessed */
2186 vmcs_write32(sf->ar_bytes, ar);
2189 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2191 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2193 *db = (ar >> 14) & 1;
2194 *l = (ar >> 13) & 1;
2197 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2199 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2200 dt->address = vmcs_readl(GUEST_IDTR_BASE);
2203 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2205 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2206 vmcs_writel(GUEST_IDTR_BASE, dt->address);
2209 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2211 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2212 dt->address = vmcs_readl(GUEST_GDTR_BASE);
2215 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2217 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2218 vmcs_writel(GUEST_GDTR_BASE, dt->address);
2221 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2223 struct kvm_segment var;
2226 vmx_get_segment(vcpu, &var, seg);
2227 ar = vmx_segment_access_rights(&var);
2229 if (var.base != (var.selector << 4))
2231 if (var.limit != 0xffff)
2239 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2241 struct kvm_segment cs;
2242 unsigned int cs_rpl;
2244 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2245 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2249 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2253 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2254 if (cs.dpl > cs_rpl)
2257 if (cs.dpl != cs_rpl)
2263 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2267 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2269 struct kvm_segment ss;
2270 unsigned int ss_rpl;
2272 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2273 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2277 if (ss.type != 3 && ss.type != 7)
2281 if (ss.dpl != ss_rpl) /* DPL != RPL */
2289 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2291 struct kvm_segment var;
2294 vmx_get_segment(vcpu, &var, seg);
2295 rpl = var.selector & SELECTOR_RPL_MASK;
2303 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2304 if (var.dpl < rpl) /* DPL < RPL */
2308 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2314 static bool tr_valid(struct kvm_vcpu *vcpu)
2316 struct kvm_segment tr;
2318 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2322 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2324 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2332 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2334 struct kvm_segment ldtr;
2336 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2340 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2350 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2352 struct kvm_segment cs, ss;
2354 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2355 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2357 return ((cs.selector & SELECTOR_RPL_MASK) ==
2358 (ss.selector & SELECTOR_RPL_MASK));
2362 * Check if guest state is valid. Returns true if valid, false if
2364 * We assume that registers are always usable
2366 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2368 /* real mode guest state checks */
2369 if (!is_protmode(vcpu)) {
2370 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2372 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2374 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2376 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2378 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2380 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2383 /* protected mode guest state checks */
2384 if (!cs_ss_rpl_check(vcpu))
2386 if (!code_segment_valid(vcpu))
2388 if (!stack_segment_valid(vcpu))
2390 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2392 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2394 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2396 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2398 if (!tr_valid(vcpu))
2400 if (!ldtr_valid(vcpu))
2404 * - Add checks on RIP
2405 * - Add checks on RFLAGS
2411 static int init_rmode_tss(struct kvm *kvm)
2415 int r, idx, ret = 0;
2417 idx = srcu_read_lock(&kvm->srcu);
2418 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2419 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2422 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2423 r = kvm_write_guest_page(kvm, fn++, &data,
2424 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2427 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2430 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2434 r = kvm_write_guest_page(kvm, fn, &data,
2435 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2442 srcu_read_unlock(&kvm->srcu, idx);
2446 static int init_rmode_identity_map(struct kvm *kvm)
2449 pfn_t identity_map_pfn;
2454 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2455 printk(KERN_ERR "EPT: identity-mapping pagetable "
2456 "haven't been allocated!\n");
2459 if (likely(kvm->arch.ept_identity_pagetable_done))
2462 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2463 idx = srcu_read_lock(&kvm->srcu);
2464 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2467 /* Set up identity-mapping pagetable for EPT in real mode */
2468 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2469 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2470 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2471 r = kvm_write_guest_page(kvm, identity_map_pfn,
2472 &tmp, i * sizeof(tmp), sizeof(tmp));
2476 kvm->arch.ept_identity_pagetable_done = true;
2479 srcu_read_unlock(&kvm->srcu, idx);
2483 static void seg_setup(int seg)
2485 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2488 vmcs_write16(sf->selector, 0);
2489 vmcs_writel(sf->base, 0);
2490 vmcs_write32(sf->limit, 0xffff);
2491 if (enable_unrestricted_guest) {
2493 if (seg == VCPU_SREG_CS)
2494 ar |= 0x08; /* code segment */
2498 vmcs_write32(sf->ar_bytes, ar);
2501 static int alloc_apic_access_page(struct kvm *kvm)
2503 struct kvm_userspace_memory_region kvm_userspace_mem;
2506 mutex_lock(&kvm->slots_lock);
2507 if (kvm->arch.apic_access_page)
2509 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2510 kvm_userspace_mem.flags = 0;
2511 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2512 kvm_userspace_mem.memory_size = PAGE_SIZE;
2513 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2517 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2519 mutex_unlock(&kvm->slots_lock);
2523 static int alloc_identity_pagetable(struct kvm *kvm)
2525 struct kvm_userspace_memory_region kvm_userspace_mem;
2528 mutex_lock(&kvm->slots_lock);
2529 if (kvm->arch.ept_identity_pagetable)
2531 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2532 kvm_userspace_mem.flags = 0;
2533 kvm_userspace_mem.guest_phys_addr =
2534 kvm->arch.ept_identity_map_addr;
2535 kvm_userspace_mem.memory_size = PAGE_SIZE;
2536 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2540 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2541 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2543 mutex_unlock(&kvm->slots_lock);
2547 static void allocate_vpid(struct vcpu_vmx *vmx)
2554 spin_lock(&vmx_vpid_lock);
2555 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2556 if (vpid < VMX_NR_VPIDS) {
2558 __set_bit(vpid, vmx_vpid_bitmap);
2560 spin_unlock(&vmx_vpid_lock);
2563 static void free_vpid(struct vcpu_vmx *vmx)
2567 spin_lock(&vmx_vpid_lock);
2569 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2570 spin_unlock(&vmx_vpid_lock);
2573 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2575 int f = sizeof(unsigned long);
2577 if (!cpu_has_vmx_msr_bitmap())
2581 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2582 * have the write-low and read-high bitmap offsets the wrong way round.
2583 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2585 if (msr <= 0x1fff) {
2586 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2587 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2588 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2590 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2591 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2595 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2598 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2599 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2603 * Sets up the vmcs for emulated real mode.
2605 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2607 u32 host_sysenter_cs, msr_low, msr_high;
2613 unsigned long kvm_vmx_return;
2617 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2618 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2620 if (cpu_has_vmx_msr_bitmap())
2621 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2623 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2626 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2627 vmcs_config.pin_based_exec_ctrl);
2629 exec_control = vmcs_config.cpu_based_exec_ctrl;
2630 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2631 exec_control &= ~CPU_BASED_TPR_SHADOW;
2632 #ifdef CONFIG_X86_64
2633 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2634 CPU_BASED_CR8_LOAD_EXITING;
2638 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2639 CPU_BASED_CR3_LOAD_EXITING |
2640 CPU_BASED_INVLPG_EXITING;
2641 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2643 if (cpu_has_secondary_exec_ctrls()) {
2644 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2645 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2647 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2649 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2651 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2652 enable_unrestricted_guest = 0;
2654 if (!enable_unrestricted_guest)
2655 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2657 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2658 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2662 vmcs_write32(PLE_GAP, ple_gap);
2663 vmcs_write32(PLE_WINDOW, ple_window);
2666 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2667 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2668 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2670 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
2671 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2672 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2674 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2675 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2676 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2677 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
2678 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
2679 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2680 #ifdef CONFIG_X86_64
2681 rdmsrl(MSR_FS_BASE, a);
2682 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2683 rdmsrl(MSR_GS_BASE, a);
2684 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2686 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2687 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2690 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2692 native_store_idt(&dt);
2693 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2695 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2696 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2697 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2698 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2699 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2700 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2701 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2703 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2704 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2705 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2706 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2707 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2708 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2710 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2711 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2712 host_pat = msr_low | ((u64) msr_high << 32);
2713 vmcs_write64(HOST_IA32_PAT, host_pat);
2715 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2716 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2717 host_pat = msr_low | ((u64) msr_high << 32);
2718 /* Write the default value follow host pat */
2719 vmcs_write64(GUEST_IA32_PAT, host_pat);
2720 /* Keep arch.pat sync with GUEST_IA32_PAT */
2721 vmx->vcpu.arch.pat = host_pat;
2724 for (i = 0; i < NR_VMX_MSR; ++i) {
2725 u32 index = vmx_msr_index[i];
2726 u32 data_low, data_high;
2729 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2731 if (wrmsr_safe(index, data_low, data_high) < 0)
2733 vmx->guest_msrs[j].index = i;
2734 vmx->guest_msrs[j].data = 0;
2735 vmx->guest_msrs[j].mask = -1ull;
2739 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2741 /* 22.2.1, 20.8.1 */
2742 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2744 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2745 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2747 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2748 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2750 kvm_write_tsc(&vmx->vcpu, 0);
2755 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2757 struct vcpu_vmx *vmx = to_vmx(vcpu);
2761 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2763 vmx->rmode.vm86_active = 0;
2765 vmx->soft_vnmi_blocked = 0;
2767 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2768 kvm_set_cr8(&vmx->vcpu, 0);
2769 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2770 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2771 msr |= MSR_IA32_APICBASE_BSP;
2772 kvm_set_apic_base(&vmx->vcpu, msr);
2774 ret = fx_init(&vmx->vcpu);
2778 seg_setup(VCPU_SREG_CS);
2780 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2781 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2783 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2784 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2785 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2787 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2788 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2791 seg_setup(VCPU_SREG_DS);
2792 seg_setup(VCPU_SREG_ES);
2793 seg_setup(VCPU_SREG_FS);
2794 seg_setup(VCPU_SREG_GS);
2795 seg_setup(VCPU_SREG_SS);
2797 vmcs_write16(GUEST_TR_SELECTOR, 0);
2798 vmcs_writel(GUEST_TR_BASE, 0);
2799 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2800 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2802 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2803 vmcs_writel(GUEST_LDTR_BASE, 0);
2804 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2805 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2807 vmcs_write32(GUEST_SYSENTER_CS, 0);
2808 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2809 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2811 vmcs_writel(GUEST_RFLAGS, 0x02);
2812 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2813 kvm_rip_write(vcpu, 0xfff0);
2815 kvm_rip_write(vcpu, 0);
2816 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2818 vmcs_writel(GUEST_DR7, 0x400);
2820 vmcs_writel(GUEST_GDTR_BASE, 0);
2821 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2823 vmcs_writel(GUEST_IDTR_BASE, 0);
2824 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2826 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2827 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2828 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2830 /* Special registers */
2831 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2835 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2837 if (cpu_has_vmx_tpr_shadow()) {
2838 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2839 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2840 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2841 __pa(vmx->vcpu.arch.apic->regs));
2842 vmcs_write32(TPR_THRESHOLD, 0);
2845 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2846 vmcs_write64(APIC_ACCESS_ADDR,
2847 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2850 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2852 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2853 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2854 vmx_set_cr4(&vmx->vcpu, 0);
2855 vmx_set_efer(&vmx->vcpu, 0);
2856 vmx_fpu_activate(&vmx->vcpu);
2857 update_exception_bitmap(&vmx->vcpu);
2859 vpid_sync_context(vmx);
2863 /* HACK: Don't enable emulation on guest boot/reset */
2864 vmx->emulation_required = 0;
2870 static void enable_irq_window(struct kvm_vcpu *vcpu)
2872 u32 cpu_based_vm_exec_control;
2874 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2875 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2876 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2879 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2881 u32 cpu_based_vm_exec_control;
2883 if (!cpu_has_virtual_nmis()) {
2884 enable_irq_window(vcpu);
2888 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2889 enable_irq_window(vcpu);
2892 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2893 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2894 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2897 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2899 struct vcpu_vmx *vmx = to_vmx(vcpu);
2901 int irq = vcpu->arch.interrupt.nr;
2903 trace_kvm_inj_virq(irq);
2905 ++vcpu->stat.irq_injections;
2906 if (vmx->rmode.vm86_active) {
2907 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2908 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2911 intr = irq | INTR_INFO_VALID_MASK;
2912 if (vcpu->arch.interrupt.soft) {
2913 intr |= INTR_TYPE_SOFT_INTR;
2914 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2915 vmx->vcpu.arch.event_exit_inst_len);
2917 intr |= INTR_TYPE_EXT_INTR;
2918 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2919 vmx_clear_hlt(vcpu);
2922 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2924 struct vcpu_vmx *vmx = to_vmx(vcpu);
2926 if (!cpu_has_virtual_nmis()) {
2928 * Tracking the NMI-blocked state in software is built upon
2929 * finding the next open IRQ window. This, in turn, depends on
2930 * well-behaving guests: They have to keep IRQs disabled at
2931 * least as long as the NMI handler runs. Otherwise we may
2932 * cause NMI nesting, maybe breaking the guest. But as this is
2933 * highly unlikely, we can live with the residual risk.
2935 vmx->soft_vnmi_blocked = 1;
2936 vmx->vnmi_blocked_time = 0;
2939 ++vcpu->stat.nmi_injections;
2940 if (vmx->rmode.vm86_active) {
2941 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2942 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2945 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2946 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2947 vmx_clear_hlt(vcpu);
2950 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2952 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2955 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2956 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2957 | GUEST_INTR_STATE_NMI));
2960 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2962 if (!cpu_has_virtual_nmis())
2963 return to_vmx(vcpu)->soft_vnmi_blocked;
2964 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2967 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2969 struct vcpu_vmx *vmx = to_vmx(vcpu);
2971 if (!cpu_has_virtual_nmis()) {
2972 if (vmx->soft_vnmi_blocked != masked) {
2973 vmx->soft_vnmi_blocked = masked;
2974 vmx->vnmi_blocked_time = 0;
2978 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2979 GUEST_INTR_STATE_NMI);
2981 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2982 GUEST_INTR_STATE_NMI);
2986 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2988 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2989 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2990 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2993 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2996 struct kvm_userspace_memory_region tss_mem = {
2997 .slot = TSS_PRIVATE_MEMSLOT,
2998 .guest_phys_addr = addr,
2999 .memory_size = PAGE_SIZE * 3,
3003 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3006 kvm->arch.tss_addr = addr;
3007 if (!init_rmode_tss(kvm))
3013 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3014 int vec, u32 err_code)
3017 * Instruction with address size override prefix opcode 0x67
3018 * Cause the #SS fault with 0 error code in VM86 mode.
3020 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3021 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3024 * Forward all other exceptions that are valid in real mode.
3025 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3026 * the required debugging infrastructure rework.
3030 if (vcpu->guest_debug &
3031 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3033 kvm_queue_exception(vcpu, vec);
3037 * Update instruction length as we may reinject the exception
3038 * from user space while in guest debugging mode.
3040 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3041 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3042 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3053 kvm_queue_exception(vcpu, vec);
3060 * Trigger machine check on the host. We assume all the MSRs are already set up
3061 * by the CPU and that we still run on the same CPU as the MCE occurred on.
3062 * We pass a fake environment to the machine check handler because we want
3063 * the guest to be always treated like user space, no matter what context
3064 * it used internally.
3066 static void kvm_machine_check(void)
3068 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3069 struct pt_regs regs = {
3070 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3071 .flags = X86_EFLAGS_IF,
3074 do_machine_check(®s, 0);
3078 static int handle_machine_check(struct kvm_vcpu *vcpu)
3080 /* already handled by vcpu_run */
3084 static int handle_exception(struct kvm_vcpu *vcpu)
3086 struct vcpu_vmx *vmx = to_vmx(vcpu);
3087 struct kvm_run *kvm_run = vcpu->run;
3088 u32 intr_info, ex_no, error_code;
3089 unsigned long cr2, rip, dr6;
3091 enum emulation_result er;
3093 vect_info = vmx->idt_vectoring_info;
3094 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3096 if (is_machine_check(intr_info))
3097 return handle_machine_check(vcpu);
3099 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3100 !is_page_fault(intr_info)) {
3101 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3102 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3103 vcpu->run->internal.ndata = 2;
3104 vcpu->run->internal.data[0] = vect_info;
3105 vcpu->run->internal.data[1] = intr_info;
3109 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3110 return 1; /* already handled by vmx_vcpu_run() */
3112 if (is_no_device(intr_info)) {
3113 vmx_fpu_activate(vcpu);
3117 if (is_invalid_opcode(intr_info)) {
3118 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3119 if (er != EMULATE_DONE)
3120 kvm_queue_exception(vcpu, UD_VECTOR);
3125 rip = kvm_rip_read(vcpu);
3126 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3127 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3128 if (is_page_fault(intr_info)) {
3129 /* EPT won't cause page fault directly */
3132 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3133 trace_kvm_page_fault(cr2, error_code);
3135 if (kvm_event_needs_reinjection(vcpu))
3136 kvm_mmu_unprotect_page_virt(vcpu, cr2);
3137 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3140 if (vmx->rmode.vm86_active &&
3141 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3143 if (vcpu->arch.halt_request) {
3144 vcpu->arch.halt_request = 0;
3145 return kvm_emulate_halt(vcpu);
3150 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3153 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3154 if (!(vcpu->guest_debug &
3155 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3156 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3157 kvm_queue_exception(vcpu, DB_VECTOR);
3160 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3161 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3165 * Update instruction length as we may reinject #BP from
3166 * user space while in guest debugging mode. Reading it for
3167 * #DB as well causes no harm, it is not used in that case.
3169 vmx->vcpu.arch.event_exit_inst_len =
3170 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3171 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3172 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3173 kvm_run->debug.arch.exception = ex_no;
3176 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3177 kvm_run->ex.exception = ex_no;
3178 kvm_run->ex.error_code = error_code;
3184 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3186 ++vcpu->stat.irq_exits;
3190 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3192 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3196 static int handle_io(struct kvm_vcpu *vcpu)
3198 unsigned long exit_qualification;
3199 int size, in, string;
3202 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3203 string = (exit_qualification & 16) != 0;
3204 in = (exit_qualification & 8) != 0;
3206 ++vcpu->stat.io_exits;
3209 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3211 port = exit_qualification >> 16;
3212 size = (exit_qualification & 7) + 1;
3213 skip_emulated_instruction(vcpu);
3215 return kvm_fast_pio_out(vcpu, size, port);
3219 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3222 * Patch in the VMCALL instruction:
3224 hypercall[0] = 0x0f;
3225 hypercall[1] = 0x01;
3226 hypercall[2] = 0xc1;
3229 static int handle_cr(struct kvm_vcpu *vcpu)
3231 unsigned long exit_qualification, val;
3236 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3237 cr = exit_qualification & 15;
3238 reg = (exit_qualification >> 8) & 15;
3239 switch ((exit_qualification >> 4) & 3) {
3240 case 0: /* mov to cr */
3241 val = kvm_register_read(vcpu, reg);
3242 trace_kvm_cr_write(cr, val);
3245 err = kvm_set_cr0(vcpu, val);
3246 kvm_complete_insn_gp(vcpu, err);
3249 err = kvm_set_cr3(vcpu, val);
3250 kvm_complete_insn_gp(vcpu, err);
3253 err = kvm_set_cr4(vcpu, val);
3254 kvm_complete_insn_gp(vcpu, err);
3257 u8 cr8_prev = kvm_get_cr8(vcpu);
3258 u8 cr8 = kvm_register_read(vcpu, reg);
3259 err = kvm_set_cr8(vcpu, cr8);
3260 kvm_complete_insn_gp(vcpu, err);
3261 if (irqchip_in_kernel(vcpu->kvm))
3263 if (cr8_prev <= cr8)
3265 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3271 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3272 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3273 skip_emulated_instruction(vcpu);
3274 vmx_fpu_activate(vcpu);
3276 case 1: /*mov from cr*/
3279 val = kvm_read_cr3(vcpu);
3280 kvm_register_write(vcpu, reg, val);
3281 trace_kvm_cr_read(cr, val);
3282 skip_emulated_instruction(vcpu);
3285 val = kvm_get_cr8(vcpu);
3286 kvm_register_write(vcpu, reg, val);
3287 trace_kvm_cr_read(cr, val);
3288 skip_emulated_instruction(vcpu);
3293 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3294 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3295 kvm_lmsw(vcpu, val);
3297 skip_emulated_instruction(vcpu);
3302 vcpu->run->exit_reason = 0;
3303 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3304 (int)(exit_qualification >> 4) & 3, cr);
3308 static int handle_dr(struct kvm_vcpu *vcpu)
3310 unsigned long exit_qualification;
3313 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3314 if (!kvm_require_cpl(vcpu, 0))
3316 dr = vmcs_readl(GUEST_DR7);
3319 * As the vm-exit takes precedence over the debug trap, we
3320 * need to emulate the latter, either for the host or the
3321 * guest debugging itself.
3323 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3324 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3325 vcpu->run->debug.arch.dr7 = dr;
3326 vcpu->run->debug.arch.pc =
3327 vmcs_readl(GUEST_CS_BASE) +
3328 vmcs_readl(GUEST_RIP);
3329 vcpu->run->debug.arch.exception = DB_VECTOR;
3330 vcpu->run->exit_reason = KVM_EXIT_DEBUG;