KVM: unbreak userspace that does not sets tss address
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
76         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
77 #define KVM_GUEST_CR0_MASK                                              \
78         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
79 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
80         (X86_CR0_WP | X86_CR0_NE)
81 #define KVM_VM_CR0_ALWAYS_ON                                            \
82         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
83 #define KVM_CR4_GUEST_OWNED_BITS                                      \
84         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
85          | X86_CR4_OSXMMEXCPT)
86
87 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
88 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
89
90 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
91
92 /*
93  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
94  * ple_gap:    upper bound on the amount of time between two successive
95  *             executions of PAUSE in a loop. Also indicate if ple enabled.
96  *             According to test, this time is usually smaller than 128 cycles.
97  * ple_window: upper bound on the amount of time a guest is allowed to execute
98  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
99  *             less than 2^12 cycles
100  * Time is measured based on a counter that runs at the same rate as the TSC,
101  * refer SDM volume 3b section 21.6.13 & 22.1.3.
102  */
103 #define KVM_VMX_DEFAULT_PLE_GAP    128
104 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
105 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
106 module_param(ple_gap, int, S_IRUGO);
107
108 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
109 module_param(ple_window, int, S_IRUGO);
110
111 #define NR_AUTOLOAD_MSRS 1
112
113 struct vmcs {
114         u32 revision_id;
115         u32 abort;
116         char data[0];
117 };
118
119 struct shared_msr_entry {
120         unsigned index;
121         u64 data;
122         u64 mask;
123 };
124
125 struct vcpu_vmx {
126         struct kvm_vcpu       vcpu;
127         struct list_head      local_vcpus_link;
128         unsigned long         host_rsp;
129         int                   launched;
130         u8                    fail;
131         u32                   exit_intr_info;
132         u32                   idt_vectoring_info;
133         struct shared_msr_entry *guest_msrs;
134         int                   nmsrs;
135         int                   save_nmsrs;
136 #ifdef CONFIG_X86_64
137         u64                   msr_host_kernel_gs_base;
138         u64                   msr_guest_kernel_gs_base;
139 #endif
140         struct vmcs          *vmcs;
141         struct msr_autoload {
142                 unsigned nr;
143                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
144                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
145         } msr_autoload;
146         struct {
147                 int           loaded;
148                 u16           fs_sel, gs_sel, ldt_sel;
149                 int           gs_ldt_reload_needed;
150                 int           fs_reload_needed;
151         } host_state;
152         struct {
153                 int vm86_active;
154                 ulong save_rflags;
155                 struct kvm_save_segment {
156                         u16 selector;
157                         unsigned long base;
158                         u32 limit;
159                         u32 ar;
160                 } tr, es, ds, fs, gs;
161         } rmode;
162         int vpid;
163         bool emulation_required;
164
165         /* Support for vnmi-less CPUs */
166         int soft_vnmi_blocked;
167         ktime_t entry_time;
168         s64 vnmi_blocked_time;
169         u32 exit_reason;
170
171         bool rdtscp_enabled;
172 };
173
174 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
175 {
176         return container_of(vcpu, struct vcpu_vmx, vcpu);
177 }
178
179 static u64 construct_eptp(unsigned long root_hpa);
180 static void kvm_cpu_vmxon(u64 addr);
181 static void kvm_cpu_vmxoff(void);
182 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
183 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
184
185 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
186 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
187 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
188 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
189
190 static unsigned long *vmx_io_bitmap_a;
191 static unsigned long *vmx_io_bitmap_b;
192 static unsigned long *vmx_msr_bitmap_legacy;
193 static unsigned long *vmx_msr_bitmap_longmode;
194
195 static bool cpu_has_load_ia32_efer;
196
197 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
198 static DEFINE_SPINLOCK(vmx_vpid_lock);
199
200 static struct vmcs_config {
201         int size;
202         int order;
203         u32 revision_id;
204         u32 pin_based_exec_ctrl;
205         u32 cpu_based_exec_ctrl;
206         u32 cpu_based_2nd_exec_ctrl;
207         u32 vmexit_ctrl;
208         u32 vmentry_ctrl;
209 } vmcs_config;
210
211 static struct vmx_capability {
212         u32 ept;
213         u32 vpid;
214 } vmx_capability;
215
216 #define VMX_SEGMENT_FIELD(seg)                                  \
217         [VCPU_SREG_##seg] = {                                   \
218                 .selector = GUEST_##seg##_SELECTOR,             \
219                 .base = GUEST_##seg##_BASE,                     \
220                 .limit = GUEST_##seg##_LIMIT,                   \
221                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
222         }
223
224 static struct kvm_vmx_segment_field {
225         unsigned selector;
226         unsigned base;
227         unsigned limit;
228         unsigned ar_bytes;
229 } kvm_vmx_segment_fields[] = {
230         VMX_SEGMENT_FIELD(CS),
231         VMX_SEGMENT_FIELD(DS),
232         VMX_SEGMENT_FIELD(ES),
233         VMX_SEGMENT_FIELD(FS),
234         VMX_SEGMENT_FIELD(GS),
235         VMX_SEGMENT_FIELD(SS),
236         VMX_SEGMENT_FIELD(TR),
237         VMX_SEGMENT_FIELD(LDTR),
238 };
239
240 static u64 host_efer;
241
242 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
243
244 /*
245  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
246  * away by decrementing the array size.
247  */
248 static const u32 vmx_msr_index[] = {
249 #ifdef CONFIG_X86_64
250         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
251 #endif
252         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
253 };
254 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
255
256 static inline bool is_page_fault(u32 intr_info)
257 {
258         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
259                              INTR_INFO_VALID_MASK)) ==
260                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
261 }
262
263 static inline bool is_no_device(u32 intr_info)
264 {
265         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
266                              INTR_INFO_VALID_MASK)) ==
267                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
268 }
269
270 static inline bool is_invalid_opcode(u32 intr_info)
271 {
272         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
273                              INTR_INFO_VALID_MASK)) ==
274                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
275 }
276
277 static inline bool is_external_interrupt(u32 intr_info)
278 {
279         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
280                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
281 }
282
283 static inline bool is_machine_check(u32 intr_info)
284 {
285         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
286                              INTR_INFO_VALID_MASK)) ==
287                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
288 }
289
290 static inline bool cpu_has_vmx_msr_bitmap(void)
291 {
292         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
293 }
294
295 static inline bool cpu_has_vmx_tpr_shadow(void)
296 {
297         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
298 }
299
300 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
301 {
302         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
303 }
304
305 static inline bool cpu_has_secondary_exec_ctrls(void)
306 {
307         return vmcs_config.cpu_based_exec_ctrl &
308                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
309 }
310
311 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
312 {
313         return vmcs_config.cpu_based_2nd_exec_ctrl &
314                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
315 }
316
317 static inline bool cpu_has_vmx_flexpriority(void)
318 {
319         return cpu_has_vmx_tpr_shadow() &&
320                 cpu_has_vmx_virtualize_apic_accesses();
321 }
322
323 static inline bool cpu_has_vmx_ept_execute_only(void)
324 {
325         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
326 }
327
328 static inline bool cpu_has_vmx_eptp_uncacheable(void)
329 {
330         return vmx_capability.ept & VMX_EPTP_UC_BIT;
331 }
332
333 static inline bool cpu_has_vmx_eptp_writeback(void)
334 {
335         return vmx_capability.ept & VMX_EPTP_WB_BIT;
336 }
337
338 static inline bool cpu_has_vmx_ept_2m_page(void)
339 {
340         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
341 }
342
343 static inline bool cpu_has_vmx_ept_1g_page(void)
344 {
345         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
346 }
347
348 static inline bool cpu_has_vmx_ept_4levels(void)
349 {
350         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
351 }
352
353 static inline bool cpu_has_vmx_invept_individual_addr(void)
354 {
355         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
356 }
357
358 static inline bool cpu_has_vmx_invept_context(void)
359 {
360         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
361 }
362
363 static inline bool cpu_has_vmx_invept_global(void)
364 {
365         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
366 }
367
368 static inline bool cpu_has_vmx_invvpid_single(void)
369 {
370         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
371 }
372
373 static inline bool cpu_has_vmx_invvpid_global(void)
374 {
375         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
376 }
377
378 static inline bool cpu_has_vmx_ept(void)
379 {
380         return vmcs_config.cpu_based_2nd_exec_ctrl &
381                 SECONDARY_EXEC_ENABLE_EPT;
382 }
383
384 static inline bool cpu_has_vmx_unrestricted_guest(void)
385 {
386         return vmcs_config.cpu_based_2nd_exec_ctrl &
387                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
388 }
389
390 static inline bool cpu_has_vmx_ple(void)
391 {
392         return vmcs_config.cpu_based_2nd_exec_ctrl &
393                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
394 }
395
396 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
397 {
398         return flexpriority_enabled && irqchip_in_kernel(kvm);
399 }
400
401 static inline bool cpu_has_vmx_vpid(void)
402 {
403         return vmcs_config.cpu_based_2nd_exec_ctrl &
404                 SECONDARY_EXEC_ENABLE_VPID;
405 }
406
407 static inline bool cpu_has_vmx_rdtscp(void)
408 {
409         return vmcs_config.cpu_based_2nd_exec_ctrl &
410                 SECONDARY_EXEC_RDTSCP;
411 }
412
413 static inline bool cpu_has_virtual_nmis(void)
414 {
415         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
416 }
417
418 static inline bool cpu_has_vmx_wbinvd_exit(void)
419 {
420         return vmcs_config.cpu_based_2nd_exec_ctrl &
421                 SECONDARY_EXEC_WBINVD_EXITING;
422 }
423
424 static inline bool report_flexpriority(void)
425 {
426         return flexpriority_enabled;
427 }
428
429 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
430 {
431         int i;
432
433         for (i = 0; i < vmx->nmsrs; ++i)
434                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
435                         return i;
436         return -1;
437 }
438
439 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
440 {
441     struct {
442         u64 vpid : 16;
443         u64 rsvd : 48;
444         u64 gva;
445     } operand = { vpid, 0, gva };
446
447     asm volatile (__ex(ASM_VMX_INVVPID)
448                   /* CF==1 or ZF==1 --> rc = -1 */
449                   "; ja 1f ; ud2 ; 1:"
450                   : : "a"(&operand), "c"(ext) : "cc", "memory");
451 }
452
453 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
454 {
455         struct {
456                 u64 eptp, gpa;
457         } operand = {eptp, gpa};
458
459         asm volatile (__ex(ASM_VMX_INVEPT)
460                         /* CF==1 or ZF==1 --> rc = -1 */
461                         "; ja 1f ; ud2 ; 1:\n"
462                         : : "a" (&operand), "c" (ext) : "cc", "memory");
463 }
464
465 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
466 {
467         int i;
468
469         i = __find_msr_index(vmx, msr);
470         if (i >= 0)
471                 return &vmx->guest_msrs[i];
472         return NULL;
473 }
474
475 static void vmcs_clear(struct vmcs *vmcs)
476 {
477         u64 phys_addr = __pa(vmcs);
478         u8 error;
479
480         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
481                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
482                       : "cc", "memory");
483         if (error)
484                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
485                        vmcs, phys_addr);
486 }
487
488 static void vmcs_load(struct vmcs *vmcs)
489 {
490         u64 phys_addr = __pa(vmcs);
491         u8 error;
492
493         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
494                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
495                         : "cc", "memory");
496         if (error)
497                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
498                        vmcs, phys_addr);
499 }
500
501 static void __vcpu_clear(void *arg)
502 {
503         struct vcpu_vmx *vmx = arg;
504         int cpu = raw_smp_processor_id();
505
506         if (vmx->vcpu.cpu == cpu)
507                 vmcs_clear(vmx->vmcs);
508         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
509                 per_cpu(current_vmcs, cpu) = NULL;
510         list_del(&vmx->local_vcpus_link);
511         vmx->vcpu.cpu = -1;
512         vmx->launched = 0;
513 }
514
515 static void vcpu_clear(struct vcpu_vmx *vmx)
516 {
517         if (vmx->vcpu.cpu == -1)
518                 return;
519         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
520 }
521
522 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
523 {
524         if (vmx->vpid == 0)
525                 return;
526
527         if (cpu_has_vmx_invvpid_single())
528                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
529 }
530
531 static inline void vpid_sync_vcpu_global(void)
532 {
533         if (cpu_has_vmx_invvpid_global())
534                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
535 }
536
537 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
538 {
539         if (cpu_has_vmx_invvpid_single())
540                 vpid_sync_vcpu_single(vmx);
541         else
542                 vpid_sync_vcpu_global();
543 }
544
545 static inline void ept_sync_global(void)
546 {
547         if (cpu_has_vmx_invept_global())
548                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
549 }
550
551 static inline void ept_sync_context(u64 eptp)
552 {
553         if (enable_ept) {
554                 if (cpu_has_vmx_invept_context())
555                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
556                 else
557                         ept_sync_global();
558         }
559 }
560
561 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
562 {
563         if (enable_ept) {
564                 if (cpu_has_vmx_invept_individual_addr())
565                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
566                                         eptp, gpa);
567                 else
568                         ept_sync_context(eptp);
569         }
570 }
571
572 static unsigned long vmcs_readl(unsigned long field)
573 {
574         unsigned long value = 0;
575
576         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
577                       : "+a"(value) : "d"(field) : "cc");
578         return value;
579 }
580
581 static u16 vmcs_read16(unsigned long field)
582 {
583         return vmcs_readl(field);
584 }
585
586 static u32 vmcs_read32(unsigned long field)
587 {
588         return vmcs_readl(field);
589 }
590
591 static u64 vmcs_read64(unsigned long field)
592 {
593 #ifdef CONFIG_X86_64
594         return vmcs_readl(field);
595 #else
596         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
597 #endif
598 }
599
600 static noinline void vmwrite_error(unsigned long field, unsigned long value)
601 {
602         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
603                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
604         dump_stack();
605 }
606
607 static void vmcs_writel(unsigned long field, unsigned long value)
608 {
609         u8 error;
610
611         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
612                        : "=q"(error) : "a"(value), "d"(field) : "cc");
613         if (unlikely(error))
614                 vmwrite_error(field, value);
615 }
616
617 static void vmcs_write16(unsigned long field, u16 value)
618 {
619         vmcs_writel(field, value);
620 }
621
622 static void vmcs_write32(unsigned long field, u32 value)
623 {
624         vmcs_writel(field, value);
625 }
626
627 static void vmcs_write64(unsigned long field, u64 value)
628 {
629         vmcs_writel(field, value);
630 #ifndef CONFIG_X86_64
631         asm volatile ("");
632         vmcs_writel(field+1, value >> 32);
633 #endif
634 }
635
636 static void vmcs_clear_bits(unsigned long field, u32 mask)
637 {
638         vmcs_writel(field, vmcs_readl(field) & ~mask);
639 }
640
641 static void vmcs_set_bits(unsigned long field, u32 mask)
642 {
643         vmcs_writel(field, vmcs_readl(field) | mask);
644 }
645
646 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
647 {
648         u32 eb;
649
650         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
651              (1u << NM_VECTOR) | (1u << DB_VECTOR);
652         if ((vcpu->guest_debug &
653              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
654             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
655                 eb |= 1u << BP_VECTOR;
656         if (to_vmx(vcpu)->rmode.vm86_active)
657                 eb = ~0;
658         if (enable_ept)
659                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
660         if (vcpu->fpu_active)
661                 eb &= ~(1u << NM_VECTOR);
662         vmcs_write32(EXCEPTION_BITMAP, eb);
663 }
664
665 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
666 {
667         unsigned i;
668         struct msr_autoload *m = &vmx->msr_autoload;
669
670         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
671                 vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
672                 vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
673                 return;
674         }
675
676         for (i = 0; i < m->nr; ++i)
677                 if (m->guest[i].index == msr)
678                         break;
679
680         if (i == m->nr)
681                 return;
682         --m->nr;
683         m->guest[i] = m->guest[m->nr];
684         m->host[i] = m->host[m->nr];
685         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
686         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
687 }
688
689 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
690                                   u64 guest_val, u64 host_val)
691 {
692         unsigned i;
693         struct msr_autoload *m = &vmx->msr_autoload;
694
695         if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
696                 vmcs_write64(GUEST_IA32_EFER, guest_val);
697                 vmcs_write64(HOST_IA32_EFER, host_val);
698                 vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
699                 vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
700                 return;
701         }
702
703         for (i = 0; i < m->nr; ++i)
704                 if (m->guest[i].index == msr)
705                         break;
706
707         if (i == m->nr) {
708                 ++m->nr;
709                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
710                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
711         }
712
713         m->guest[i].index = msr;
714         m->guest[i].value = guest_val;
715         m->host[i].index = msr;
716         m->host[i].value = host_val;
717 }
718
719 static void reload_tss(void)
720 {
721         /*
722          * VT restores TR but not its size.  Useless.
723          */
724         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
725         struct desc_struct *descs;
726
727         descs = (void *)gdt->address;
728         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
729         load_TR_desc();
730 }
731
732 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
733 {
734         u64 guest_efer;
735         u64 ignore_bits;
736
737         guest_efer = vmx->vcpu.arch.efer;
738
739         /*
740          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
741          * outside long mode
742          */
743         ignore_bits = EFER_NX | EFER_SCE;
744 #ifdef CONFIG_X86_64
745         ignore_bits |= EFER_LMA | EFER_LME;
746         /* SCE is meaningful only in long mode on Intel */
747         if (guest_efer & EFER_LMA)
748                 ignore_bits &= ~(u64)EFER_SCE;
749 #endif
750         guest_efer &= ~ignore_bits;
751         guest_efer |= host_efer & ignore_bits;
752         vmx->guest_msrs[efer_offset].data = guest_efer;
753         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
754
755         clear_atomic_switch_msr(vmx, MSR_EFER);
756         /* On ept, can't emulate nx, and must switch nx atomically */
757         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
758                 guest_efer = vmx->vcpu.arch.efer;
759                 if (!(guest_efer & EFER_LMA))
760                         guest_efer &= ~EFER_LME;
761                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
762                 return false;
763         }
764
765         return true;
766 }
767
768 static unsigned long segment_base(u16 selector)
769 {
770         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
771         struct desc_struct *d;
772         unsigned long table_base;
773         unsigned long v;
774
775         if (!(selector & ~3))
776                 return 0;
777
778         table_base = gdt->address;
779
780         if (selector & 4) {           /* from ldt */
781                 u16 ldt_selector = kvm_read_ldt();
782
783                 if (!(ldt_selector & ~3))
784                         return 0;
785
786                 table_base = segment_base(ldt_selector);
787         }
788         d = (struct desc_struct *)(table_base + (selector & ~7));
789         v = get_desc_base(d);
790 #ifdef CONFIG_X86_64
791        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
792                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
793 #endif
794         return v;
795 }
796
797 static inline unsigned long kvm_read_tr_base(void)
798 {
799         u16 tr;
800         asm("str %0" : "=g"(tr));
801         return segment_base(tr);
802 }
803
804 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
805 {
806         struct vcpu_vmx *vmx = to_vmx(vcpu);
807         int i;
808
809         if (vmx->host_state.loaded)
810                 return;
811
812         vmx->host_state.loaded = 1;
813         /*
814          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
815          * allow segment selectors with cpl > 0 or ti == 1.
816          */
817         vmx->host_state.ldt_sel = kvm_read_ldt();
818         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
819         savesegment(fs, vmx->host_state.fs_sel);
820         if (!(vmx->host_state.fs_sel & 7)) {
821                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
822                 vmx->host_state.fs_reload_needed = 0;
823         } else {
824                 vmcs_write16(HOST_FS_SELECTOR, 0);
825                 vmx->host_state.fs_reload_needed = 1;
826         }
827         savesegment(gs, vmx->host_state.gs_sel);
828         if (!(vmx->host_state.gs_sel & 7))
829                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
830         else {
831                 vmcs_write16(HOST_GS_SELECTOR, 0);
832                 vmx->host_state.gs_ldt_reload_needed = 1;
833         }
834
835 #ifdef CONFIG_X86_64
836         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
837         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
838 #else
839         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
840         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
841 #endif
842
843 #ifdef CONFIG_X86_64
844         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
845         if (is_long_mode(&vmx->vcpu))
846                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
847 #endif
848         for (i = 0; i < vmx->save_nmsrs; ++i)
849                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
850                                    vmx->guest_msrs[i].data,
851                                    vmx->guest_msrs[i].mask);
852 }
853
854 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
855 {
856         if (!vmx->host_state.loaded)
857                 return;
858
859         ++vmx->vcpu.stat.host_state_reload;
860         vmx->host_state.loaded = 0;
861 #ifdef CONFIG_X86_64
862         if (is_long_mode(&vmx->vcpu))
863                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
864 #endif
865         if (vmx->host_state.gs_ldt_reload_needed) {
866                 kvm_load_ldt(vmx->host_state.ldt_sel);
867 #ifdef CONFIG_X86_64
868                 load_gs_index(vmx->host_state.gs_sel);
869 #else
870                 loadsegment(gs, vmx->host_state.gs_sel);
871 #endif
872         }
873         if (vmx->host_state.fs_reload_needed)
874                 loadsegment(fs, vmx->host_state.fs_sel);
875         reload_tss();
876 #ifdef CONFIG_X86_64
877         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
878 #endif
879         if (current_thread_info()->status & TS_USEDFPU)
880                 clts();
881         load_gdt(&__get_cpu_var(host_gdt));
882 }
883
884 static void vmx_load_host_state(struct vcpu_vmx *vmx)
885 {
886         preempt_disable();
887         __vmx_load_host_state(vmx);
888         preempt_enable();
889 }
890
891 /*
892  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
893  * vcpu mutex is already taken.
894  */
895 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
896 {
897         struct vcpu_vmx *vmx = to_vmx(vcpu);
898         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
899
900         if (!vmm_exclusive)
901                 kvm_cpu_vmxon(phys_addr);
902         else if (vcpu->cpu != cpu)
903                 vcpu_clear(vmx);
904
905         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
906                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
907                 vmcs_load(vmx->vmcs);
908         }
909
910         if (vcpu->cpu != cpu) {
911                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
912                 unsigned long sysenter_esp;
913
914                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
915                 local_irq_disable();
916                 list_add(&vmx->local_vcpus_link,
917                          &per_cpu(vcpus_on_cpu, cpu));
918                 local_irq_enable();
919
920                 /*
921                  * Linux uses per-cpu TSS and GDT, so set these when switching
922                  * processors.
923                  */
924                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
925                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
926
927                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
928                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
929         }
930 }
931
932 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
933 {
934         __vmx_load_host_state(to_vmx(vcpu));
935         if (!vmm_exclusive) {
936                 __vcpu_clear(to_vmx(vcpu));
937                 kvm_cpu_vmxoff();
938         }
939 }
940
941 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
942 {
943         ulong cr0;
944
945         if (vcpu->fpu_active)
946                 return;
947         vcpu->fpu_active = 1;
948         cr0 = vmcs_readl(GUEST_CR0);
949         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
950         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
951         vmcs_writel(GUEST_CR0, cr0);
952         update_exception_bitmap(vcpu);
953         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
954         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
955 }
956
957 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
958
959 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
960 {
961         vmx_decache_cr0_guest_bits(vcpu);
962         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
963         update_exception_bitmap(vcpu);
964         vcpu->arch.cr0_guest_owned_bits = 0;
965         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
966         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
967 }
968
969 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
970 {
971         unsigned long rflags, save_rflags;
972
973         rflags = vmcs_readl(GUEST_RFLAGS);
974         if (to_vmx(vcpu)->rmode.vm86_active) {
975                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
976                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
977                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
978         }
979         return rflags;
980 }
981
982 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
983 {
984         if (to_vmx(vcpu)->rmode.vm86_active) {
985                 to_vmx(vcpu)->rmode.save_rflags = rflags;
986                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
987         }
988         vmcs_writel(GUEST_RFLAGS, rflags);
989 }
990
991 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
992 {
993         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
994         int ret = 0;
995
996         if (interruptibility & GUEST_INTR_STATE_STI)
997                 ret |= KVM_X86_SHADOW_INT_STI;
998         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
999                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1000
1001         return ret & mask;
1002 }
1003
1004 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1005 {
1006         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1007         u32 interruptibility = interruptibility_old;
1008
1009         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1010
1011         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1012                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1013         else if (mask & KVM_X86_SHADOW_INT_STI)
1014                 interruptibility |= GUEST_INTR_STATE_STI;
1015
1016         if ((interruptibility != interruptibility_old))
1017                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1018 }
1019
1020 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1021 {
1022         unsigned long rip;
1023
1024         rip = kvm_rip_read(vcpu);
1025         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1026         kvm_rip_write(vcpu, rip);
1027
1028         /* skipping an emulated instruction also counts */
1029         vmx_set_interrupt_shadow(vcpu, 0);
1030 }
1031
1032 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1033 {
1034         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1035          * explicitly skip the instruction because if the HLT state is set, then
1036          * the instruction is already executing and RIP has already been
1037          * advanced. */
1038         if (!yield_on_hlt &&
1039             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1040                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1041 }
1042
1043 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1044                                 bool has_error_code, u32 error_code,
1045                                 bool reinject)
1046 {
1047         struct vcpu_vmx *vmx = to_vmx(vcpu);
1048         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1049
1050         if (has_error_code) {
1051                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1052                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1053         }
1054
1055         if (vmx->rmode.vm86_active) {
1056                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1057                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1058                 return;
1059         }
1060
1061         if (kvm_exception_is_soft(nr)) {
1062                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1063                              vmx->vcpu.arch.event_exit_inst_len);
1064                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1065         } else
1066                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1067
1068         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1069         vmx_clear_hlt(vcpu);
1070 }
1071
1072 static bool vmx_rdtscp_supported(void)
1073 {
1074         return cpu_has_vmx_rdtscp();
1075 }
1076
1077 /*
1078  * Swap MSR entry in host/guest MSR entry array.
1079  */
1080 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1081 {
1082         struct shared_msr_entry tmp;
1083
1084         tmp = vmx->guest_msrs[to];
1085         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1086         vmx->guest_msrs[from] = tmp;
1087 }
1088
1089 /*
1090  * Set up the vmcs to automatically save and restore system
1091  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1092  * mode, as fiddling with msrs is very expensive.
1093  */
1094 static void setup_msrs(struct vcpu_vmx *vmx)
1095 {
1096         int save_nmsrs, index;
1097         unsigned long *msr_bitmap;
1098
1099         vmx_load_host_state(vmx);
1100         save_nmsrs = 0;
1101 #ifdef CONFIG_X86_64
1102         if (is_long_mode(&vmx->vcpu)) {
1103                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1104                 if (index >= 0)
1105                         move_msr_up(vmx, index, save_nmsrs++);
1106                 index = __find_msr_index(vmx, MSR_LSTAR);
1107                 if (index >= 0)
1108                         move_msr_up(vmx, index, save_nmsrs++);
1109                 index = __find_msr_index(vmx, MSR_CSTAR);
1110                 if (index >= 0)
1111                         move_msr_up(vmx, index, save_nmsrs++);
1112                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1113                 if (index >= 0 && vmx->rdtscp_enabled)
1114                         move_msr_up(vmx, index, save_nmsrs++);
1115                 /*
1116                  * MSR_STAR is only needed on long mode guests, and only
1117                  * if efer.sce is enabled.
1118                  */
1119                 index = __find_msr_index(vmx, MSR_STAR);
1120                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1121                         move_msr_up(vmx, index, save_nmsrs++);
1122         }
1123 #endif
1124         index = __find_msr_index(vmx, MSR_EFER);
1125         if (index >= 0 && update_transition_efer(vmx, index))
1126                 move_msr_up(vmx, index, save_nmsrs++);
1127
1128         vmx->save_nmsrs = save_nmsrs;
1129
1130         if (cpu_has_vmx_msr_bitmap()) {
1131                 if (is_long_mode(&vmx->vcpu))
1132                         msr_bitmap = vmx_msr_bitmap_longmode;
1133                 else
1134                         msr_bitmap = vmx_msr_bitmap_legacy;
1135
1136                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1137         }
1138 }
1139
1140 /*
1141  * reads and returns guest's timestamp counter "register"
1142  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1143  */
1144 static u64 guest_read_tsc(void)
1145 {
1146         u64 host_tsc, tsc_offset;
1147
1148         rdtscll(host_tsc);
1149         tsc_offset = vmcs_read64(TSC_OFFSET);
1150         return host_tsc + tsc_offset;
1151 }
1152
1153 /*
1154  * writes 'offset' into guest's timestamp counter offset register
1155  */
1156 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1157 {
1158         vmcs_write64(TSC_OFFSET, offset);
1159 }
1160
1161 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1162 {
1163         u64 offset = vmcs_read64(TSC_OFFSET);
1164         vmcs_write64(TSC_OFFSET, offset + adjustment);
1165 }
1166
1167 /*
1168  * Reads an msr value (of 'msr_index') into 'pdata'.
1169  * Returns 0 on success, non-0 otherwise.
1170  * Assumes vcpu_load() was already called.
1171  */
1172 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1173 {
1174         u64 data;
1175         struct shared_msr_entry *msr;
1176
1177         if (!pdata) {
1178                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1179                 return -EINVAL;
1180         }
1181
1182         switch (msr_index) {
1183 #ifdef CONFIG_X86_64
1184         case MSR_FS_BASE:
1185                 data = vmcs_readl(GUEST_FS_BASE);
1186                 break;
1187         case MSR_GS_BASE:
1188                 data = vmcs_readl(GUEST_GS_BASE);
1189                 break;
1190         case MSR_KERNEL_GS_BASE:
1191                 vmx_load_host_state(to_vmx(vcpu));
1192                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1193                 break;
1194 #endif
1195         case MSR_EFER:
1196                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1197         case MSR_IA32_TSC:
1198                 data = guest_read_tsc();
1199                 break;
1200         case MSR_IA32_SYSENTER_CS:
1201                 data = vmcs_read32(GUEST_SYSENTER_CS);
1202                 break;
1203         case MSR_IA32_SYSENTER_EIP:
1204                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1205                 break;
1206         case MSR_IA32_SYSENTER_ESP:
1207                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1208                 break;
1209         case MSR_TSC_AUX:
1210                 if (!to_vmx(vcpu)->rdtscp_enabled)
1211                         return 1;
1212                 /* Otherwise falls through */
1213         default:
1214                 vmx_load_host_state(to_vmx(vcpu));
1215                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1216                 if (msr) {
1217                         vmx_load_host_state(to_vmx(vcpu));
1218                         data = msr->data;
1219                         break;
1220                 }
1221                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1222         }
1223
1224         *pdata = data;
1225         return 0;
1226 }
1227
1228 /*
1229  * Writes msr value into into the appropriate "register".
1230  * Returns 0 on success, non-0 otherwise.
1231  * Assumes vcpu_load() was already called.
1232  */
1233 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1234 {
1235         struct vcpu_vmx *vmx = to_vmx(vcpu);
1236         struct shared_msr_entry *msr;
1237         int ret = 0;
1238
1239         switch (msr_index) {
1240         case MSR_EFER:
1241                 vmx_load_host_state(vmx);
1242                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1243                 break;
1244 #ifdef CONFIG_X86_64
1245         case MSR_FS_BASE:
1246                 vmcs_writel(GUEST_FS_BASE, data);
1247                 break;
1248         case MSR_GS_BASE:
1249                 vmcs_writel(GUEST_GS_BASE, data);
1250                 break;
1251         case MSR_KERNEL_GS_BASE:
1252                 vmx_load_host_state(vmx);
1253                 vmx->msr_guest_kernel_gs_base = data;
1254                 break;
1255 #endif
1256         case MSR_IA32_SYSENTER_CS:
1257                 vmcs_write32(GUEST_SYSENTER_CS, data);
1258                 break;
1259         case MSR_IA32_SYSENTER_EIP:
1260                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1261                 break;
1262         case MSR_IA32_SYSENTER_ESP:
1263                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1264                 break;
1265         case MSR_IA32_TSC:
1266                 kvm_write_tsc(vcpu, data);
1267                 break;
1268         case MSR_IA32_CR_PAT:
1269                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1270                         vmcs_write64(GUEST_IA32_PAT, data);
1271                         vcpu->arch.pat = data;
1272                         break;
1273                 }
1274                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1275                 break;
1276         case MSR_TSC_AUX:
1277                 if (!vmx->rdtscp_enabled)
1278                         return 1;
1279                 /* Check reserved bit, higher 32 bits should be zero */
1280                 if ((data >> 32) != 0)
1281                         return 1;
1282                 /* Otherwise falls through */
1283         default:
1284                 msr = find_msr_entry(vmx, msr_index);
1285                 if (msr) {
1286                         vmx_load_host_state(vmx);
1287                         msr->data = data;
1288                         break;
1289                 }
1290                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1291         }
1292
1293         return ret;
1294 }
1295
1296 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1297 {
1298         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1299         switch (reg) {
1300         case VCPU_REGS_RSP:
1301                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1302                 break;
1303         case VCPU_REGS_RIP:
1304                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1305                 break;
1306         case VCPU_EXREG_PDPTR:
1307                 if (enable_ept)
1308                         ept_save_pdptrs(vcpu);
1309                 break;
1310         default:
1311                 break;
1312         }
1313 }
1314
1315 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1316 {
1317         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1318                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1319         else
1320                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1321
1322         update_exception_bitmap(vcpu);
1323 }
1324
1325 static __init int cpu_has_kvm_support(void)
1326 {
1327         return cpu_has_vmx();
1328 }
1329
1330 static __init int vmx_disabled_by_bios(void)
1331 {
1332         u64 msr;
1333
1334         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1335         if (msr & FEATURE_CONTROL_LOCKED) {
1336                 /* launched w/ TXT and VMX disabled */
1337                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1338                         && tboot_enabled())
1339                         return 1;
1340                 /* launched w/o TXT and VMX only enabled w/ TXT */
1341                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1342                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1343                         && !tboot_enabled()) {
1344                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1345                                 "activate TXT before enabling KVM\n");
1346                         return 1;
1347                 }
1348                 /* launched w/o TXT and VMX disabled */
1349                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1350                         && !tboot_enabled())
1351                         return 1;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static void kvm_cpu_vmxon(u64 addr)
1358 {
1359         asm volatile (ASM_VMX_VMXON_RAX
1360                         : : "a"(&addr), "m"(addr)
1361                         : "memory", "cc");
1362 }
1363
1364 static int hardware_enable(void *garbage)
1365 {
1366         int cpu = raw_smp_processor_id();
1367         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1368         u64 old, test_bits;
1369
1370         if (read_cr4() & X86_CR4_VMXE)
1371                 return -EBUSY;
1372
1373         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1374         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1375
1376         test_bits = FEATURE_CONTROL_LOCKED;
1377         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1378         if (tboot_enabled())
1379                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1380
1381         if ((old & test_bits) != test_bits) {
1382                 /* enable and lock */
1383                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1384         }
1385         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1386
1387         if (vmm_exclusive) {
1388                 kvm_cpu_vmxon(phys_addr);
1389                 ept_sync_global();
1390         }
1391
1392         store_gdt(&__get_cpu_var(host_gdt));
1393
1394         return 0;
1395 }
1396
1397 static void vmclear_local_vcpus(void)
1398 {
1399         int cpu = raw_smp_processor_id();
1400         struct vcpu_vmx *vmx, *n;
1401
1402         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1403                                  local_vcpus_link)
1404                 __vcpu_clear(vmx);
1405 }
1406
1407
1408 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1409  * tricks.
1410  */
1411 static void kvm_cpu_vmxoff(void)
1412 {
1413         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1414 }
1415
1416 static void hardware_disable(void *garbage)
1417 {
1418         if (vmm_exclusive) {
1419                 vmclear_local_vcpus();
1420                 kvm_cpu_vmxoff();
1421         }
1422         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1423 }
1424
1425 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1426                                       u32 msr, u32 *result)
1427 {
1428         u32 vmx_msr_low, vmx_msr_high;
1429         u32 ctl = ctl_min | ctl_opt;
1430
1431         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1432
1433         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1434         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1435
1436         /* Ensure minimum (required) set of control bits are supported. */
1437         if (ctl_min & ~ctl)
1438                 return -EIO;
1439
1440         *result = ctl;
1441         return 0;
1442 }
1443
1444 static __init bool allow_1_setting(u32 msr, u32 ctl)
1445 {
1446         u32 vmx_msr_low, vmx_msr_high;
1447
1448         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1449         return vmx_msr_high & ctl;
1450 }
1451
1452 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1453 {
1454         u32 vmx_msr_low, vmx_msr_high;
1455         u32 min, opt, min2, opt2;
1456         u32 _pin_based_exec_control = 0;
1457         u32 _cpu_based_exec_control = 0;
1458         u32 _cpu_based_2nd_exec_control = 0;
1459         u32 _vmexit_control = 0;
1460         u32 _vmentry_control = 0;
1461
1462         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1463         opt = PIN_BASED_VIRTUAL_NMIS;
1464         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1465                                 &_pin_based_exec_control) < 0)
1466                 return -EIO;
1467
1468         min =
1469 #ifdef CONFIG_X86_64
1470               CPU_BASED_CR8_LOAD_EXITING |
1471               CPU_BASED_CR8_STORE_EXITING |
1472 #endif
1473               CPU_BASED_CR3_LOAD_EXITING |
1474               CPU_BASED_CR3_STORE_EXITING |
1475               CPU_BASED_USE_IO_BITMAPS |
1476               CPU_BASED_MOV_DR_EXITING |
1477               CPU_BASED_USE_TSC_OFFSETING |
1478               CPU_BASED_MWAIT_EXITING |
1479               CPU_BASED_MONITOR_EXITING |
1480               CPU_BASED_INVLPG_EXITING;
1481
1482         if (yield_on_hlt)
1483                 min |= CPU_BASED_HLT_EXITING;
1484
1485         opt = CPU_BASED_TPR_SHADOW |
1486               CPU_BASED_USE_MSR_BITMAPS |
1487               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1488         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1489                                 &_cpu_based_exec_control) < 0)
1490                 return -EIO;
1491 #ifdef CONFIG_X86_64
1492         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1493                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1494                                            ~CPU_BASED_CR8_STORE_EXITING;
1495 #endif
1496         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1497                 min2 = 0;
1498                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1499                         SECONDARY_EXEC_WBINVD_EXITING |
1500                         SECONDARY_EXEC_ENABLE_VPID |
1501                         SECONDARY_EXEC_ENABLE_EPT |
1502                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1503                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1504                         SECONDARY_EXEC_RDTSCP;
1505                 if (adjust_vmx_controls(min2, opt2,
1506                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1507                                         &_cpu_based_2nd_exec_control) < 0)
1508                         return -EIO;
1509         }
1510 #ifndef CONFIG_X86_64
1511         if (!(_cpu_based_2nd_exec_control &
1512                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1513                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1514 #endif
1515         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1516                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1517                    enabled */
1518                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1519                                              CPU_BASED_CR3_STORE_EXITING |
1520                                              CPU_BASED_INVLPG_EXITING);
1521                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1522                       vmx_capability.ept, vmx_capability.vpid);
1523         }
1524
1525         min = 0;
1526 #ifdef CONFIG_X86_64
1527         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1528 #endif
1529         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1530         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1531                                 &_vmexit_control) < 0)
1532                 return -EIO;
1533
1534         min = 0;
1535         opt = VM_ENTRY_LOAD_IA32_PAT;
1536         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1537                                 &_vmentry_control) < 0)
1538                 return -EIO;
1539
1540         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1541
1542         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1543         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1544                 return -EIO;
1545
1546 #ifdef CONFIG_X86_64
1547         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1548         if (vmx_msr_high & (1u<<16))
1549                 return -EIO;
1550 #endif
1551
1552         /* Require Write-Back (WB) memory type for VMCS accesses. */
1553         if (((vmx_msr_high >> 18) & 15) != 6)
1554                 return -EIO;
1555
1556         vmcs_conf->size = vmx_msr_high & 0x1fff;
1557         vmcs_conf->order = get_order(vmcs_config.size);
1558         vmcs_conf->revision_id = vmx_msr_low;
1559
1560         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1561         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1562         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1563         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1564         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1565
1566         cpu_has_load_ia32_efer =
1567                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
1568                                 VM_ENTRY_LOAD_IA32_EFER)
1569                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
1570                                    VM_EXIT_LOAD_IA32_EFER);
1571
1572         return 0;
1573 }
1574
1575 static struct vmcs *alloc_vmcs_cpu(int cpu)
1576 {
1577         int node = cpu_to_node(cpu);
1578         struct page *pages;
1579         struct vmcs *vmcs;
1580
1581         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1582         if (!pages)
1583                 return NULL;
1584         vmcs = page_address(pages);
1585         memset(vmcs, 0, vmcs_config.size);
1586         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1587         return vmcs;
1588 }
1589
1590 static struct vmcs *alloc_vmcs(void)
1591 {
1592         return alloc_vmcs_cpu(raw_smp_processor_id());
1593 }
1594
1595 static void free_vmcs(struct vmcs *vmcs)
1596 {
1597         free_pages((unsigned long)vmcs, vmcs_config.order);
1598 }
1599
1600 static void free_kvm_area(void)
1601 {
1602         int cpu;
1603
1604         for_each_possible_cpu(cpu) {
1605                 free_vmcs(per_cpu(vmxarea, cpu));
1606                 per_cpu(vmxarea, cpu) = NULL;
1607         }
1608 }
1609
1610 static __init int alloc_kvm_area(void)
1611 {
1612         int cpu;
1613
1614         for_each_possible_cpu(cpu) {
1615                 struct vmcs *vmcs;
1616
1617                 vmcs = alloc_vmcs_cpu(cpu);
1618                 if (!vmcs) {
1619                         free_kvm_area();
1620                         return -ENOMEM;
1621                 }
1622
1623                 per_cpu(vmxarea, cpu) = vmcs;
1624         }
1625         return 0;
1626 }
1627
1628 static __init int hardware_setup(void)
1629 {
1630         if (setup_vmcs_config(&vmcs_config) < 0)
1631                 return -EIO;
1632
1633         if (boot_cpu_has(X86_FEATURE_NX))
1634                 kvm_enable_efer_bits(EFER_NX);
1635
1636         if (!cpu_has_vmx_vpid())
1637                 enable_vpid = 0;
1638
1639         if (!cpu_has_vmx_ept() ||
1640             !cpu_has_vmx_ept_4levels()) {
1641                 enable_ept = 0;
1642                 enable_unrestricted_guest = 0;
1643         }
1644
1645         if (!cpu_has_vmx_unrestricted_guest())
1646                 enable_unrestricted_guest = 0;
1647
1648         if (!cpu_has_vmx_flexpriority())
1649                 flexpriority_enabled = 0;
1650
1651         if (!cpu_has_vmx_tpr_shadow())
1652                 kvm_x86_ops->update_cr8_intercept = NULL;
1653
1654         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1655                 kvm_disable_largepages();
1656
1657         if (!cpu_has_vmx_ple())
1658                 ple_gap = 0;
1659
1660         return alloc_kvm_area();
1661 }
1662
1663 static __exit void hardware_unsetup(void)
1664 {
1665         free_kvm_area();
1666 }
1667
1668 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1669 {
1670         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1671
1672         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1673                 vmcs_write16(sf->selector, save->selector);
1674                 vmcs_writel(sf->base, save->base);
1675                 vmcs_write32(sf->limit, save->limit);
1676                 vmcs_write32(sf->ar_bytes, save->ar);
1677         } else {
1678                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1679                         << AR_DPL_SHIFT;
1680                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1681         }
1682 }
1683
1684 static void enter_pmode(struct kvm_vcpu *vcpu)
1685 {
1686         unsigned long flags;
1687         struct vcpu_vmx *vmx = to_vmx(vcpu);
1688
1689         vmx->emulation_required = 1;
1690         vmx->rmode.vm86_active = 0;
1691
1692         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
1693         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1694         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1695         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1696
1697         flags = vmcs_readl(GUEST_RFLAGS);
1698         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1699         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1700         vmcs_writel(GUEST_RFLAGS, flags);
1701
1702         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1703                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1704
1705         update_exception_bitmap(vcpu);
1706
1707         if (emulate_invalid_guest_state)
1708                 return;
1709
1710         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1711         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1712         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1713         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1714
1715         vmcs_write16(GUEST_SS_SELECTOR, 0);
1716         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1717
1718         vmcs_write16(GUEST_CS_SELECTOR,
1719                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1720         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1721 }
1722
1723 static gva_t rmode_tss_base(struct kvm *kvm)
1724 {
1725         if (!kvm->arch.tss_addr) {
1726                 struct kvm_memslots *slots;
1727                 gfn_t base_gfn;
1728
1729                 slots = kvm_memslots(kvm);
1730                 base_gfn = slots->memslots[0].base_gfn +
1731                                  kvm->memslots->memslots[0].npages - 3;
1732                 return base_gfn << PAGE_SHIFT;
1733         }
1734         return kvm->arch.tss_addr;
1735 }
1736
1737 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1738 {
1739         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1740
1741         save->selector = vmcs_read16(sf->selector);
1742         save->base = vmcs_readl(sf->base);
1743         save->limit = vmcs_read32(sf->limit);
1744         save->ar = vmcs_read32(sf->ar_bytes);
1745         vmcs_write16(sf->selector, save->base >> 4);
1746         vmcs_write32(sf->base, save->base & 0xffff0);
1747         vmcs_write32(sf->limit, 0xffff);
1748         vmcs_write32(sf->ar_bytes, 0xf3);
1749         if (save->base & 0xf)
1750                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
1751                             " aligned when entering protected mode (seg=%d)",
1752                             seg);
1753 }
1754
1755 static void enter_rmode(struct kvm_vcpu *vcpu)
1756 {
1757         unsigned long flags;
1758         struct vcpu_vmx *vmx = to_vmx(vcpu);
1759
1760         if (enable_unrestricted_guest)
1761                 return;
1762
1763         vmx->emulation_required = 1;
1764         vmx->rmode.vm86_active = 1;
1765
1766         /*
1767          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
1768          * vcpu. Call it here with phys address pointing 16M below 4G.
1769          */
1770         if (!vcpu->kvm->arch.tss_addr) {
1771                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
1772                              "called before entering vcpu\n");
1773                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1774                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
1775                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1776         }
1777
1778         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
1779         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1780         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1781
1782         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1783         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1784
1785         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1786         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1787
1788         flags = vmcs_readl(GUEST_RFLAGS);
1789         vmx->rmode.save_rflags = flags;
1790
1791         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1792
1793         vmcs_writel(GUEST_RFLAGS, flags);
1794         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1795         update_exception_bitmap(vcpu);
1796
1797         if (emulate_invalid_guest_state)
1798                 goto continue_rmode;
1799
1800         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1801         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1802         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1803
1804         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1805         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1806         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1807                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1808         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1809
1810         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1811         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1812         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1813         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1814
1815 continue_rmode:
1816         kvm_mmu_reset_context(vcpu);
1817 }
1818
1819 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1820 {
1821         struct vcpu_vmx *vmx = to_vmx(vcpu);
1822         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1823
1824         if (!msr)
1825                 return;
1826
1827         /*
1828          * Force kernel_gs_base reloading before EFER changes, as control
1829          * of this msr depends on is_long_mode().
1830          */
1831         vmx_load_host_state(to_vmx(vcpu));
1832         vcpu->arch.efer = efer;
1833         if (efer & EFER_LMA) {
1834                 vmcs_write32(VM_ENTRY_CONTROLS,
1835                              vmcs_read32(VM_ENTRY_CONTROLS) |
1836                              VM_ENTRY_IA32E_MODE);
1837                 msr->data = efer;
1838         } else {
1839                 vmcs_write32(VM_ENTRY_CONTROLS,
1840                              vmcs_read32(VM_ENTRY_CONTROLS) &
1841                              ~VM_ENTRY_IA32E_MODE);
1842
1843                 msr->data = efer & ~EFER_LME;
1844         }
1845         setup_msrs(vmx);
1846 }
1847
1848 #ifdef CONFIG_X86_64
1849
1850 static void enter_lmode(struct kvm_vcpu *vcpu)
1851 {
1852         u32 guest_tr_ar;
1853
1854         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1855         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1856                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1857                        __func__);
1858                 vmcs_write32(GUEST_TR_AR_BYTES,
1859                              (guest_tr_ar & ~AR_TYPE_MASK)
1860                              | AR_TYPE_BUSY_64_TSS);
1861         }
1862         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1863 }
1864
1865 static void exit_lmode(struct kvm_vcpu *vcpu)
1866 {
1867         vmcs_write32(VM_ENTRY_CONTROLS,
1868                      vmcs_read32(VM_ENTRY_CONTROLS)
1869                      & ~VM_ENTRY_IA32E_MODE);
1870         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1871 }
1872
1873 #endif
1874
1875 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1876 {
1877         vpid_sync_context(to_vmx(vcpu));
1878         if (enable_ept) {
1879                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1880                         return;
1881                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1882         }
1883 }
1884
1885 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1886 {
1887         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1888
1889         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1890         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1891 }
1892
1893 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
1894 {
1895         if (enable_ept && is_paging(vcpu))
1896                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
1897         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1898 }
1899
1900 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1901 {
1902         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1903
1904         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1905         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1906 }
1907
1908 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1909 {
1910         if (!test_bit(VCPU_EXREG_PDPTR,
1911                       (unsigned long *)&vcpu->arch.regs_dirty))
1912                 return;
1913
1914         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1915                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1916                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1917                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1918                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1919         }
1920 }
1921
1922 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1923 {
1924         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1925                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1926                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1927                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1928                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1929         }
1930
1931         __set_bit(VCPU_EXREG_PDPTR,
1932                   (unsigned long *)&vcpu->arch.regs_avail);
1933         __set_bit(VCPU_EXREG_PDPTR,
1934                   (unsigned long *)&vcpu->arch.regs_dirty);
1935 }
1936
1937 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1938
1939 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1940                                         unsigned long cr0,
1941                                         struct kvm_vcpu *vcpu)
1942 {
1943         vmx_decache_cr3(vcpu);
1944         if (!(cr0 & X86_CR0_PG)) {
1945                 /* From paging/starting to nonpaging */
1946                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1947                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1948                              (CPU_BASED_CR3_LOAD_EXITING |
1949                               CPU_BASED_CR3_STORE_EXITING));
1950                 vcpu->arch.cr0 = cr0;
1951                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1952         } else if (!is_paging(vcpu)) {
1953                 /* From nonpaging to paging */
1954                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1955                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1956                              ~(CPU_BASED_CR3_LOAD_EXITING |
1957                                CPU_BASED_CR3_STORE_EXITING));
1958                 vcpu->arch.cr0 = cr0;
1959                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1960         }
1961
1962         if (!(cr0 & X86_CR0_WP))
1963                 *hw_cr0 &= ~X86_CR0_WP;
1964 }
1965
1966 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1967 {
1968         struct vcpu_vmx *vmx = to_vmx(vcpu);
1969         unsigned long hw_cr0;
1970
1971         if (enable_unrestricted_guest)
1972                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1973                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1974         else
1975                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1976
1977         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1978                 enter_pmode(vcpu);
1979
1980         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1981                 enter_rmode(vcpu);
1982
1983 #ifdef CONFIG_X86_64
1984         if (vcpu->arch.efer & EFER_LME) {
1985                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1986                         enter_lmode(vcpu);
1987                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1988                         exit_lmode(vcpu);
1989         }
1990 #endif
1991
1992         if (enable_ept)
1993                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1994
1995         if (!vcpu->fpu_active)
1996                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1997
1998         vmcs_writel(CR0_READ_SHADOW, cr0);
1999         vmcs_writel(GUEST_CR0, hw_cr0);
2000         vcpu->arch.cr0 = cr0;
2001 }
2002
2003 static u64 construct_eptp(unsigned long root_hpa)
2004 {
2005         u64 eptp;
2006
2007         /* TODO write the value reading from MSR */
2008         eptp = VMX_EPT_DEFAULT_MT |
2009                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2010         eptp |= (root_hpa & PAGE_MASK);
2011
2012         return eptp;
2013 }
2014
2015 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2016 {
2017         unsigned long guest_cr3;
2018         u64 eptp;
2019
2020         guest_cr3 = cr3;
2021         if (enable_ept) {
2022                 eptp = construct_eptp(cr3);
2023                 vmcs_write64(EPT_POINTER, eptp);
2024                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
2025                         vcpu->kvm->arch.ept_identity_map_addr;
2026                 ept_load_pdptrs(vcpu);
2027         }
2028
2029         vmx_flush_tlb(vcpu);
2030         vmcs_writel(GUEST_CR3, guest_cr3);
2031 }
2032
2033 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2034 {
2035         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
2036                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
2037
2038         vcpu->arch.cr4 = cr4;
2039         if (enable_ept) {
2040                 if (!is_paging(vcpu)) {
2041                         hw_cr4 &= ~X86_CR4_PAE;
2042                         hw_cr4 |= X86_CR4_PSE;
2043                 } else if (!(cr4 & X86_CR4_PAE)) {
2044                         hw_cr4 &= ~X86_CR4_PAE;
2045                 }
2046         }
2047
2048         vmcs_writel(CR4_READ_SHADOW, cr4);
2049         vmcs_writel(GUEST_CR4, hw_cr4);
2050 }
2051
2052 static void vmx_get_segment(struct kvm_vcpu *vcpu,
2053                             struct kvm_segment *var, int seg)
2054 {
2055         struct vcpu_vmx *vmx = to_vmx(vcpu);
2056         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2057         struct kvm_save_segment *save;
2058         u32 ar;
2059
2060         if (vmx->rmode.vm86_active
2061             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
2062                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
2063                 || seg == VCPU_SREG_GS)
2064             && !emulate_invalid_guest_state) {
2065                 switch (seg) {
2066                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
2067                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
2068                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
2069                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
2070                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
2071                 default: BUG();
2072                 }
2073                 var->selector = save->selector;
2074                 var->base = save->base;
2075                 var->limit = save->limit;
2076                 ar = save->ar;
2077                 if (seg == VCPU_SREG_TR
2078                     || var->selector == vmcs_read16(sf->selector))
2079                         goto use_saved_rmode_seg;
2080         }
2081         var->base = vmcs_readl(sf->base);
2082         var->limit = vmcs_read32(sf->limit);
2083         var->selector = vmcs_read16(sf->selector);
2084         ar = vmcs_read32(sf->ar_bytes);
2085 use_saved_rmode_seg:
2086         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
2087                 ar = 0;
2088         var->type = ar & 15;
2089         var->s = (ar >> 4) & 1;
2090         var->dpl = (ar >> 5) & 3;
2091         var->present = (ar >> 7) & 1;
2092         var->avl = (ar >> 12) & 1;
2093         var->l = (ar >> 13) & 1;
2094         var->db = (ar >> 14) & 1;
2095         var->g = (ar >> 15) & 1;
2096         var->unusable = (ar >> 16) & 1;
2097 }
2098
2099 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2100 {
2101         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2102         struct kvm_segment s;
2103
2104         if (to_vmx(vcpu)->rmode.vm86_active) {
2105                 vmx_get_segment(vcpu, &s, seg);
2106                 return s.base;
2107         }
2108         return vmcs_readl(sf->base);
2109 }
2110
2111 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2112 {
2113         if (!is_protmode(vcpu))
2114                 return 0;
2115
2116         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2117                 return 3;
2118
2119         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2120 }
2121
2122 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2123 {
2124         u32 ar;
2125
2126         if (var->unusable)
2127                 ar = 1 << 16;
2128         else {
2129                 ar = var->type & 15;
2130                 ar |= (var->s & 1) << 4;
2131                 ar |= (var->dpl & 3) << 5;
2132                 ar |= (var->present & 1) << 7;
2133                 ar |= (var->avl & 1) << 12;
2134                 ar |= (var->l & 1) << 13;
2135                 ar |= (var->db & 1) << 14;
2136                 ar |= (var->g & 1) << 15;
2137         }
2138         if (ar == 0) /* a 0 value means unusable */
2139                 ar = AR_UNUSABLE_MASK;
2140
2141         return ar;
2142 }
2143
2144 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2145                             struct kvm_segment *var, int seg)
2146 {
2147         struct vcpu_vmx *vmx = to_vmx(vcpu);
2148         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2149         u32 ar;
2150
2151         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2152                 vmcs_write16(sf->selector, var->selector);
2153                 vmx->rmode.tr.selector = var->selector;
2154                 vmx->rmode.tr.base = var->base;
2155                 vmx->rmode.tr.limit = var->limit;
2156                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2157                 return;
2158         }
2159         vmcs_writel(sf->base, var->base);
2160         vmcs_write32(sf->limit, var->limit);
2161         vmcs_write16(sf->selector, var->selector);
2162         if (vmx->rmode.vm86_active && var->s) {
2163                 /*
2164                  * Hack real-mode segments into vm86 compatibility.
2165                  */
2166                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2167                         vmcs_writel(sf->base, 0xf0000);
2168                 ar = 0xf3;
2169         } else
2170                 ar = vmx_segment_access_rights(var);
2171
2172         /*
2173          *   Fix the "Accessed" bit in AR field of segment registers for older
2174          * qemu binaries.
2175          *   IA32 arch specifies that at the time of processor reset the
2176          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2177          * is setting it to 0 in the usedland code. This causes invalid guest
2178          * state vmexit when "unrestricted guest" mode is turned on.
2179          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2180          * tree. Newer qemu binaries with that qemu fix would not need this
2181          * kvm hack.
2182          */
2183         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2184                 ar |= 0x1; /* Accessed */
2185
2186         vmcs_write32(sf->ar_bytes, ar);
2187 }
2188
2189 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2190 {
2191         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2192
2193         *db = (ar >> 14) & 1;
2194         *l = (ar >> 13) & 1;
2195 }
2196
2197 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2198 {
2199         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2200         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2201 }
2202
2203 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2204 {
2205         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2206         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2207 }
2208
2209 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2210 {
2211         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2212         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2213 }
2214
2215 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2216 {
2217         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2218         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2219 }
2220
2221 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2222 {
2223         struct kvm_segment var;
2224         u32 ar;
2225
2226         vmx_get_segment(vcpu, &var, seg);
2227         ar = vmx_segment_access_rights(&var);
2228
2229         if (var.base != (var.selector << 4))
2230                 return false;
2231         if (var.limit != 0xffff)
2232                 return false;
2233         if (ar != 0xf3)
2234                 return false;
2235
2236         return true;
2237 }
2238
2239 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2240 {
2241         struct kvm_segment cs;
2242         unsigned int cs_rpl;
2243
2244         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2245         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2246
2247         if (cs.unusable)
2248                 return false;
2249         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2250                 return false;
2251         if (!cs.s)
2252                 return false;
2253         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2254                 if (cs.dpl > cs_rpl)
2255                         return false;
2256         } else {
2257                 if (cs.dpl != cs_rpl)
2258                         return false;
2259         }
2260         if (!cs.present)
2261                 return false;
2262
2263         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2264         return true;
2265 }
2266
2267 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2268 {
2269         struct kvm_segment ss;
2270         unsigned int ss_rpl;
2271
2272         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2273         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2274
2275         if (ss.unusable)
2276                 return true;
2277         if (ss.type != 3 && ss.type != 7)
2278                 return false;
2279         if (!ss.s)
2280                 return false;
2281         if (ss.dpl != ss_rpl) /* DPL != RPL */
2282                 return false;
2283         if (!ss.present)
2284                 return false;
2285
2286         return true;
2287 }
2288
2289 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2290 {
2291         struct kvm_segment var;
2292         unsigned int rpl;
2293
2294         vmx_get_segment(vcpu, &var, seg);
2295         rpl = var.selector & SELECTOR_RPL_MASK;
2296
2297         if (var.unusable)
2298                 return true;
2299         if (!var.s)
2300                 return false;
2301         if (!var.present)
2302                 return false;
2303         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2304                 if (var.dpl < rpl) /* DPL < RPL */
2305                         return false;
2306         }
2307
2308         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2309          * rights flags
2310          */
2311         return true;
2312 }
2313
2314 static bool tr_valid(struct kvm_vcpu *vcpu)
2315 {
2316         struct kvm_segment tr;
2317
2318         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2319
2320         if (tr.unusable)
2321                 return false;
2322         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2323                 return false;
2324         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2325                 return false;
2326         if (!tr.present)
2327                 return false;
2328
2329         return true;
2330 }
2331
2332 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2333 {
2334         struct kvm_segment ldtr;
2335
2336         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2337
2338         if (ldtr.unusable)
2339                 return true;
2340         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2341                 return false;
2342         if (ldtr.type != 2)
2343                 return false;
2344         if (!ldtr.present)
2345                 return false;
2346
2347         return true;
2348 }
2349
2350 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2351 {
2352         struct kvm_segment cs, ss;
2353
2354         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2355         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2356
2357         return ((cs.selector & SELECTOR_RPL_MASK) ==
2358                  (ss.selector & SELECTOR_RPL_MASK));
2359 }
2360
2361 /*
2362  * Check if guest state is valid. Returns true if valid, false if
2363  * not.
2364  * We assume that registers are always usable
2365  */
2366 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2367 {
2368         /* real mode guest state checks */
2369         if (!is_protmode(vcpu)) {
2370                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2371                         return false;
2372                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2373                         return false;
2374                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2375                         return false;
2376                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2377                         return false;
2378                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2379                         return false;
2380                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2381                         return false;
2382         } else {
2383         /* protected mode guest state checks */
2384                 if (!cs_ss_rpl_check(vcpu))
2385                         return false;
2386                 if (!code_segment_valid(vcpu))
2387                         return false;
2388                 if (!stack_segment_valid(vcpu))
2389                         return false;
2390                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2391                         return false;
2392                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2393                         return false;
2394                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2395                         return false;
2396                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2397                         return false;
2398                 if (!tr_valid(vcpu))
2399                         return false;
2400                 if (!ldtr_valid(vcpu))
2401                         return false;
2402         }
2403         /* TODO:
2404          * - Add checks on RIP
2405          * - Add checks on RFLAGS
2406          */
2407
2408         return true;
2409 }
2410
2411 static int init_rmode_tss(struct kvm *kvm)
2412 {
2413         gfn_t fn;
2414         u16 data = 0;
2415         int r, idx, ret = 0;
2416
2417         idx = srcu_read_lock(&kvm->srcu);
2418         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2419         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2420         if (r < 0)
2421                 goto out;
2422         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2423         r = kvm_write_guest_page(kvm, fn++, &data,
2424                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2425         if (r < 0)
2426                 goto out;
2427         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2428         if (r < 0)
2429                 goto out;
2430         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2431         if (r < 0)
2432                 goto out;
2433         data = ~0;
2434         r = kvm_write_guest_page(kvm, fn, &data,
2435                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2436                                  sizeof(u8));
2437         if (r < 0)
2438                 goto out;
2439
2440         ret = 1;
2441 out:
2442         srcu_read_unlock(&kvm->srcu, idx);
2443         return ret;
2444 }
2445
2446 static int init_rmode_identity_map(struct kvm *kvm)
2447 {
2448         int i, idx, r, ret;
2449         pfn_t identity_map_pfn;
2450         u32 tmp;
2451
2452         if (!enable_ept)
2453                 return 1;
2454         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2455                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2456                         "haven't been allocated!\n");
2457                 return 0;
2458         }
2459         if (likely(kvm->arch.ept_identity_pagetable_done))
2460                 return 1;
2461         ret = 0;
2462         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2463         idx = srcu_read_lock(&kvm->srcu);
2464         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2465         if (r < 0)
2466                 goto out;
2467         /* Set up identity-mapping pagetable for EPT in real mode */
2468         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2469                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2470                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2471                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2472                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2473                 if (r < 0)
2474                         goto out;
2475         }
2476         kvm->arch.ept_identity_pagetable_done = true;
2477         ret = 1;
2478 out:
2479         srcu_read_unlock(&kvm->srcu, idx);
2480         return ret;
2481 }
2482
2483 static void seg_setup(int seg)
2484 {
2485         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2486         unsigned int ar;
2487
2488         vmcs_write16(sf->selector, 0);
2489         vmcs_writel(sf->base, 0);
2490         vmcs_write32(sf->limit, 0xffff);
2491         if (enable_unrestricted_guest) {
2492                 ar = 0x93;
2493                 if (seg == VCPU_SREG_CS)
2494                         ar |= 0x08; /* code segment */
2495         } else
2496                 ar = 0xf3;
2497
2498         vmcs_write32(sf->ar_bytes, ar);
2499 }
2500
2501 static int alloc_apic_access_page(struct kvm *kvm)
2502 {
2503         struct kvm_userspace_memory_region kvm_userspace_mem;
2504         int r = 0;
2505
2506         mutex_lock(&kvm->slots_lock);
2507         if (kvm->arch.apic_access_page)
2508                 goto out;
2509         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2510         kvm_userspace_mem.flags = 0;
2511         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2512         kvm_userspace_mem.memory_size = PAGE_SIZE;
2513         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2514         if (r)
2515                 goto out;
2516
2517         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2518 out:
2519         mutex_unlock(&kvm->slots_lock);
2520         return r;
2521 }
2522
2523 static int alloc_identity_pagetable(struct kvm *kvm)
2524 {
2525         struct kvm_userspace_memory_region kvm_userspace_mem;
2526         int r = 0;
2527
2528         mutex_lock(&kvm->slots_lock);
2529         if (kvm->arch.ept_identity_pagetable)
2530                 goto out;
2531         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2532         kvm_userspace_mem.flags = 0;
2533         kvm_userspace_mem.guest_phys_addr =
2534                 kvm->arch.ept_identity_map_addr;
2535         kvm_userspace_mem.memory_size = PAGE_SIZE;
2536         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2537         if (r)
2538                 goto out;
2539
2540         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2541                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2542 out:
2543         mutex_unlock(&kvm->slots_lock);
2544         return r;
2545 }
2546
2547 static void allocate_vpid(struct vcpu_vmx *vmx)
2548 {
2549         int vpid;
2550
2551         vmx->vpid = 0;
2552         if (!enable_vpid)
2553                 return;
2554         spin_lock(&vmx_vpid_lock);
2555         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2556         if (vpid < VMX_NR_VPIDS) {
2557                 vmx->vpid = vpid;
2558                 __set_bit(vpid, vmx_vpid_bitmap);
2559         }
2560         spin_unlock(&vmx_vpid_lock);
2561 }
2562
2563 static void free_vpid(struct vcpu_vmx *vmx)
2564 {
2565         if (!enable_vpid)
2566                 return;
2567         spin_lock(&vmx_vpid_lock);
2568         if (vmx->vpid != 0)
2569                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2570         spin_unlock(&vmx_vpid_lock);
2571 }
2572
2573 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2574 {
2575         int f = sizeof(unsigned long);
2576
2577         if (!cpu_has_vmx_msr_bitmap())
2578                 return;
2579
2580         /*
2581          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2582          * have the write-low and read-high bitmap offsets the wrong way round.
2583          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2584          */
2585         if (msr <= 0x1fff) {
2586                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2587                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2588         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2589                 msr &= 0x1fff;
2590                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2591                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2592         }
2593 }
2594
2595 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2596 {
2597         if (!longmode_only)
2598                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2599         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2600 }
2601
2602 /*
2603  * Sets up the vmcs for emulated real mode.
2604  */
2605 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2606 {
2607         u32 host_sysenter_cs, msr_low, msr_high;
2608         u32 junk;
2609         u64 host_pat;
2610         unsigned long a;
2611         struct desc_ptr dt;
2612         int i;
2613         unsigned long kvm_vmx_return;
2614         u32 exec_control;
2615
2616         /* I/O */
2617         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2618         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2619
2620         if (cpu_has_vmx_msr_bitmap())
2621                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2622
2623         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2624
2625         /* Control */
2626         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2627                 vmcs_config.pin_based_exec_ctrl);
2628
2629         exec_control = vmcs_config.cpu_based_exec_ctrl;
2630         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2631                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2632 #ifdef CONFIG_X86_64
2633                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2634                                 CPU_BASED_CR8_LOAD_EXITING;
2635 #endif
2636         }
2637         if (!enable_ept)
2638                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2639                                 CPU_BASED_CR3_LOAD_EXITING  |
2640                                 CPU_BASED_INVLPG_EXITING;
2641         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2642
2643         if (cpu_has_secondary_exec_ctrls()) {
2644                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2645                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2646                         exec_control &=
2647                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2648                 if (vmx->vpid == 0)
2649                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2650                 if (!enable_ept) {
2651                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2652                         enable_unrestricted_guest = 0;
2653                 }
2654                 if (!enable_unrestricted_guest)
2655                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2656                 if (!ple_gap)
2657                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2658                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2659         }
2660
2661         if (ple_gap) {
2662                 vmcs_write32(PLE_GAP, ple_gap);
2663                 vmcs_write32(PLE_WINDOW, ple_window);
2664         }
2665
2666         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2667         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2668         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2669
2670         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2671         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2672         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2673
2674         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2675         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2676         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2677         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2678         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2679         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2680 #ifdef CONFIG_X86_64
2681         rdmsrl(MSR_FS_BASE, a);
2682         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2683         rdmsrl(MSR_GS_BASE, a);
2684         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2685 #else
2686         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2687         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2688 #endif
2689
2690         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2691
2692         native_store_idt(&dt);
2693         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2694
2695         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2696         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2697         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2698         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2699         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2700         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2701         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2702
2703         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2704         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2705         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2706         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2707         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2708         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2709
2710         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2711                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2712                 host_pat = msr_low | ((u64) msr_high << 32);
2713                 vmcs_write64(HOST_IA32_PAT, host_pat);
2714         }
2715         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2716                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2717                 host_pat = msr_low | ((u64) msr_high << 32);
2718                 /* Write the default value follow host pat */
2719                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2720                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2721                 vmx->vcpu.arch.pat = host_pat;
2722         }
2723
2724         for (i = 0; i < NR_VMX_MSR; ++i) {
2725                 u32 index = vmx_msr_index[i];
2726                 u32 data_low, data_high;
2727                 int j = vmx->nmsrs;
2728
2729                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2730                         continue;
2731                 if (wrmsr_safe(index, data_low, data_high) < 0)
2732                         continue;
2733                 vmx->guest_msrs[j].index = i;
2734                 vmx->guest_msrs[j].data = 0;
2735                 vmx->guest_msrs[j].mask = -1ull;
2736                 ++vmx->nmsrs;
2737         }
2738
2739         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2740
2741         /* 22.2.1, 20.8.1 */
2742         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2743
2744         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2745         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2746         if (enable_ept)
2747                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2748         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2749
2750         kvm_write_tsc(&vmx->vcpu, 0);
2751
2752         return 0;
2753 }
2754
2755 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2756 {
2757         struct vcpu_vmx *vmx = to_vmx(vcpu);
2758         u64 msr;
2759         int ret;
2760
2761         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2762
2763         vmx->rmode.vm86_active = 0;
2764
2765         vmx->soft_vnmi_blocked = 0;
2766
2767         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2768         kvm_set_cr8(&vmx->vcpu, 0);
2769         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2770         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2771                 msr |= MSR_IA32_APICBASE_BSP;
2772         kvm_set_apic_base(&vmx->vcpu, msr);
2773
2774         ret = fx_init(&vmx->vcpu);
2775         if (ret != 0)
2776                 goto out;
2777
2778         seg_setup(VCPU_SREG_CS);
2779         /*
2780          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2781          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2782          */
2783         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2784                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2785                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2786         } else {
2787                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2788                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2789         }
2790
2791         seg_setup(VCPU_SREG_DS);
2792         seg_setup(VCPU_SREG_ES);
2793         seg_setup(VCPU_SREG_FS);
2794         seg_setup(VCPU_SREG_GS);
2795         seg_setup(VCPU_SREG_SS);
2796
2797         vmcs_write16(GUEST_TR_SELECTOR, 0);
2798         vmcs_writel(GUEST_TR_BASE, 0);
2799         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2800         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2801
2802         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2803         vmcs_writel(GUEST_LDTR_BASE, 0);
2804         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2805         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2806
2807         vmcs_write32(GUEST_SYSENTER_CS, 0);
2808         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2809         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2810
2811         vmcs_writel(GUEST_RFLAGS, 0x02);
2812         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2813                 kvm_rip_write(vcpu, 0xfff0);
2814         else
2815                 kvm_rip_write(vcpu, 0);
2816         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2817
2818         vmcs_writel(GUEST_DR7, 0x400);
2819
2820         vmcs_writel(GUEST_GDTR_BASE, 0);
2821         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2822
2823         vmcs_writel(GUEST_IDTR_BASE, 0);
2824         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2825
2826         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2827         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2828         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2829
2830         /* Special registers */
2831         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2832
2833         setup_msrs(vmx);
2834
2835         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2836
2837         if (cpu_has_vmx_tpr_shadow()) {
2838                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2839                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2840                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2841                                      __pa(vmx->vcpu.arch.apic->regs));
2842                 vmcs_write32(TPR_THRESHOLD, 0);
2843         }
2844
2845         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2846                 vmcs_write64(APIC_ACCESS_ADDR,
2847                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2848
2849         if (vmx->vpid != 0)
2850                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2851
2852         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2853         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2854         vmx_set_cr4(&vmx->vcpu, 0);
2855         vmx_set_efer(&vmx->vcpu, 0);
2856         vmx_fpu_activate(&vmx->vcpu);
2857         update_exception_bitmap(&vmx->vcpu);
2858
2859         vpid_sync_context(vmx);
2860
2861         ret = 0;
2862
2863         /* HACK: Don't enable emulation on guest boot/reset */
2864         vmx->emulation_required = 0;
2865
2866 out:
2867         return ret;
2868 }
2869
2870 static void enable_irq_window(struct kvm_vcpu *vcpu)
2871 {
2872         u32 cpu_based_vm_exec_control;
2873
2874         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2875         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2876         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2877 }
2878
2879 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2880 {
2881         u32 cpu_based_vm_exec_control;
2882
2883         if (!cpu_has_virtual_nmis()) {
2884                 enable_irq_window(vcpu);
2885                 return;
2886         }
2887
2888         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2889                 enable_irq_window(vcpu);
2890                 return;
2891         }
2892         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2893         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2894         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2895 }
2896
2897 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2898 {
2899         struct vcpu_vmx *vmx = to_vmx(vcpu);
2900         uint32_t intr;
2901         int irq = vcpu->arch.interrupt.nr;
2902
2903         trace_kvm_inj_virq(irq);
2904
2905         ++vcpu->stat.irq_injections;
2906         if (vmx->rmode.vm86_active) {
2907                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2908                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2909                 return;
2910         }
2911         intr = irq | INTR_INFO_VALID_MASK;
2912         if (vcpu->arch.interrupt.soft) {
2913                 intr |= INTR_TYPE_SOFT_INTR;
2914                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2915                              vmx->vcpu.arch.event_exit_inst_len);
2916         } else
2917                 intr |= INTR_TYPE_EXT_INTR;
2918         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2919         vmx_clear_hlt(vcpu);
2920 }
2921
2922 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2923 {
2924         struct vcpu_vmx *vmx = to_vmx(vcpu);
2925
2926         if (!cpu_has_virtual_nmis()) {
2927                 /*
2928                  * Tracking the NMI-blocked state in software is built upon
2929                  * finding the next open IRQ window. This, in turn, depends on
2930                  * well-behaving guests: They have to keep IRQs disabled at
2931                  * least as long as the NMI handler runs. Otherwise we may
2932                  * cause NMI nesting, maybe breaking the guest. But as this is
2933                  * highly unlikely, we can live with the residual risk.
2934                  */
2935                 vmx->soft_vnmi_blocked = 1;
2936                 vmx->vnmi_blocked_time = 0;
2937         }
2938
2939         ++vcpu->stat.nmi_injections;
2940         if (vmx->rmode.vm86_active) {
2941                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2942                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2943                 return;
2944         }
2945         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2946                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2947         vmx_clear_hlt(vcpu);
2948 }
2949
2950 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2951 {
2952         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2953                 return 0;
2954
2955         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2956                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2957                    | GUEST_INTR_STATE_NMI));
2958 }
2959
2960 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2961 {
2962         if (!cpu_has_virtual_nmis())
2963                 return to_vmx(vcpu)->soft_vnmi_blocked;
2964         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2965 }
2966
2967 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2968 {
2969         struct vcpu_vmx *vmx = to_vmx(vcpu);
2970
2971         if (!cpu_has_virtual_nmis()) {
2972                 if (vmx->soft_vnmi_blocked != masked) {
2973                         vmx->soft_vnmi_blocked = masked;
2974                         vmx->vnmi_blocked_time = 0;
2975                 }
2976         } else {
2977                 if (masked)
2978                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2979                                       GUEST_INTR_STATE_NMI);
2980                 else
2981                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2982                                         GUEST_INTR_STATE_NMI);
2983         }
2984 }
2985
2986 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2987 {
2988         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2989                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2990                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2991 }
2992
2993 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2994 {
2995         int ret;
2996         struct kvm_userspace_memory_region tss_mem = {
2997                 .slot = TSS_PRIVATE_MEMSLOT,
2998                 .guest_phys_addr = addr,
2999                 .memory_size = PAGE_SIZE * 3,
3000                 .flags = 0,
3001         };
3002
3003         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
3004         if (ret)
3005                 return ret;
3006         kvm->arch.tss_addr = addr;
3007         if (!init_rmode_tss(kvm))
3008                 return  -ENOMEM;
3009
3010         return 0;
3011 }
3012
3013 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
3014                                   int vec, u32 err_code)
3015 {
3016         /*
3017          * Instruction with address size override prefix opcode 0x67
3018          * Cause the #SS fault with 0 error code in VM86 mode.
3019          */
3020         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
3021                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
3022                         return 1;
3023         /*
3024          * Forward all other exceptions that are valid in real mode.
3025          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
3026          *        the required debugging infrastructure rework.
3027          */
3028         switch (vec) {
3029         case DB_VECTOR:
3030                 if (vcpu->guest_debug &
3031                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
3032                         return 0;
3033                 kvm_queue_exception(vcpu, vec);
3034                 return 1;
3035         case BP_VECTOR:
3036                 /*
3037                  * Update instruction length as we may reinject the exception
3038                  * from user space while in guest debugging mode.
3039                  */
3040                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
3041                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3042                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
3043                         return 0;
3044                 /* fall through */
3045         case DE_VECTOR:
3046         case OF_VECTOR:
3047         case BR_VECTOR:
3048         case UD_VECTOR:
3049         case DF_VECTOR:
3050         case SS_VECTOR:
3051         case GP_VECTOR:
3052         case MF_VECTOR:
3053                 kvm_queue_exception(vcpu, vec);
3054                 return 1;
3055         }
3056         return 0;
3057 }
3058
3059 /*
3060  * Trigger machine check on the host. We assume all the MSRs are already set up
3061  * by the CPU and that we still run on the same CPU as the MCE occurred on.
3062  * We pass a fake environment to the machine check handler because we want
3063  * the guest to be always treated like user space, no matter what context
3064  * it used internally.
3065  */
3066 static void kvm_machine_check(void)
3067 {
3068 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
3069         struct pt_regs regs = {
3070                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
3071                 .flags = X86_EFLAGS_IF,
3072         };
3073
3074         do_machine_check(&regs, 0);
3075 #endif
3076 }
3077
3078 static int handle_machine_check(struct kvm_vcpu *vcpu)
3079 {
3080         /* already handled by vcpu_run */
3081         return 1;
3082 }
3083
3084 static int handle_exception(struct kvm_vcpu *vcpu)
3085 {
3086         struct vcpu_vmx *vmx = to_vmx(vcpu);
3087         struct kvm_run *kvm_run = vcpu->run;
3088         u32 intr_info, ex_no, error_code;
3089         unsigned long cr2, rip, dr6;
3090         u32 vect_info;
3091         enum emulation_result er;
3092
3093         vect_info = vmx->idt_vectoring_info;
3094         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3095
3096         if (is_machine_check(intr_info))
3097                 return handle_machine_check(vcpu);
3098
3099         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3100             !is_page_fault(intr_info)) {
3101                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3102                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3103                 vcpu->run->internal.ndata = 2;
3104                 vcpu->run->internal.data[0] = vect_info;
3105                 vcpu->run->internal.data[1] = intr_info;
3106                 return 0;
3107         }
3108
3109         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3110                 return 1;  /* already handled by vmx_vcpu_run() */
3111
3112         if (is_no_device(intr_info)) {
3113                 vmx_fpu_activate(vcpu);
3114                 return 1;
3115         }
3116
3117         if (is_invalid_opcode(intr_info)) {
3118                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
3119                 if (er != EMULATE_DONE)
3120                         kvm_queue_exception(vcpu, UD_VECTOR);
3121                 return 1;
3122         }
3123
3124         error_code = 0;
3125         rip = kvm_rip_read(vcpu);
3126         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3127                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3128         if (is_page_fault(intr_info)) {
3129                 /* EPT won't cause page fault directly */
3130                 if (enable_ept)
3131                         BUG();
3132                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3133                 trace_kvm_page_fault(cr2, error_code);
3134
3135                 if (kvm_event_needs_reinjection(vcpu))
3136                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3137                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
3138         }
3139
3140         if (vmx->rmode.vm86_active &&
3141             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3142                                                                 error_code)) {
3143                 if (vcpu->arch.halt_request) {
3144                         vcpu->arch.halt_request = 0;
3145                         return kvm_emulate_halt(vcpu);
3146                 }
3147                 return 1;
3148         }
3149
3150         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3151         switch (ex_no) {
3152         case DB_VECTOR:
3153                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3154                 if (!(vcpu->guest_debug &
3155                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3156                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3157                         kvm_queue_exception(vcpu, DB_VECTOR);
3158                         return 1;
3159                 }
3160                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3161                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3162                 /* fall through */
3163         case BP_VECTOR:
3164                 /*
3165                  * Update instruction length as we may reinject #BP from
3166                  * user space while in guest debugging mode. Reading it for
3167                  * #DB as well causes no harm, it is not used in that case.
3168                  */
3169                 vmx->vcpu.arch.event_exit_inst_len =
3170                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3171                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3172                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3173                 kvm_run->debug.arch.exception = ex_no;
3174                 break;
3175         default:
3176                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3177                 kvm_run->ex.exception = ex_no;
3178                 kvm_run->ex.error_code = error_code;
3179                 break;
3180         }
3181         return 0;
3182 }
3183
3184 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3185 {
3186         ++vcpu->stat.irq_exits;
3187         return 1;
3188 }
3189
3190 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3191 {
3192         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3193         return 0;
3194 }
3195
3196 static int handle_io(struct kvm_vcpu *vcpu)
3197 {
3198         unsigned long exit_qualification;
3199         int size, in, string;
3200         unsigned port;
3201
3202         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3203         string = (exit_qualification & 16) != 0;
3204         in = (exit_qualification & 8) != 0;
3205
3206         ++vcpu->stat.io_exits;
3207
3208         if (string || in)
3209                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
3210
3211         port = exit_qualification >> 16;
3212         size = (exit_qualification & 7) + 1;
3213         skip_emulated_instruction(vcpu);
3214
3215         return kvm_fast_pio_out(vcpu, size, port);
3216 }
3217
3218 static void
3219 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3220 {
3221         /*
3222          * Patch in the VMCALL instruction:
3223          */
3224         hypercall[0] = 0x0f;
3225         hypercall[1] = 0x01;
3226         hypercall[2] = 0xc1;
3227 }
3228
3229 static int handle_cr(struct kvm_vcpu *vcpu)
3230 {
3231         unsigned long exit_qualification, val;
3232         int cr;
3233         int reg;
3234         int err;
3235
3236         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3237         cr = exit_qualification & 15;
3238         reg = (exit_qualification >> 8) & 15;
3239         switch ((exit_qualification >> 4) & 3) {
3240         case 0: /* mov to cr */
3241                 val = kvm_register_read(vcpu, reg);
3242                 trace_kvm_cr_write(cr, val);
3243                 switch (cr) {
3244                 case 0:
3245                         err = kvm_set_cr0(vcpu, val);
3246                         kvm_complete_insn_gp(vcpu, err);
3247                         return 1;
3248                 case 3:
3249                         err = kvm_set_cr3(vcpu, val);
3250                         kvm_complete_insn_gp(vcpu, err);
3251                         return 1;
3252                 case 4:
3253                         err = kvm_set_cr4(vcpu, val);
3254                         kvm_complete_insn_gp(vcpu, err);
3255                         return 1;
3256                 case 8: {
3257                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3258                                 u8 cr8 = kvm_register_read(vcpu, reg);
3259                                 err = kvm_set_cr8(vcpu, cr8);
3260                                 kvm_complete_insn_gp(vcpu, err);
3261                                 if (irqchip_in_kernel(vcpu->kvm))
3262                                         return 1;
3263                                 if (cr8_prev <= cr8)
3264                                         return 1;
3265                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3266                                 return 0;
3267                         }
3268                 };
3269                 break;
3270         case 2: /* clts */
3271                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3272                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3273                 skip_emulated_instruction(vcpu);
3274                 vmx_fpu_activate(vcpu);
3275                 return 1;
3276         case 1: /*mov from cr*/
3277                 switch (cr) {
3278                 case 3:
3279                         val = kvm_read_cr3(vcpu);
3280                         kvm_register_write(vcpu, reg, val);
3281                         trace_kvm_cr_read(cr, val);
3282                         skip_emulated_instruction(vcpu);
3283                         return 1;
3284                 case 8:
3285                         val = kvm_get_cr8(vcpu);
3286                         kvm_register_write(vcpu, reg, val);
3287                         trace_kvm_cr_read(cr, val);
3288                         skip_emulated_instruction(vcpu);
3289                         return 1;
3290                 }
3291                 break;
3292         case 3: /* lmsw */
3293                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3294                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3295                 kvm_lmsw(vcpu, val);
3296
3297                 skip_emulated_instruction(vcpu);
3298                 return 1;
3299         default:
3300                 break;
3301         }
3302         vcpu->run->exit_reason = 0;
3303         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3304                (int)(exit_qualification >> 4) & 3, cr);
3305         return 0;
3306 }
3307
3308 static int handle_dr(struct kvm_vcpu *vcpu)
3309 {
3310         unsigned long exit_qualification;
3311         int dr, reg;
3312
3313         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3314         if (!kvm_require_cpl(vcpu, 0))
3315                 return 1;
3316         dr = vmcs_readl(GUEST_DR7);
3317         if (dr & DR7_GD) {
3318                 /*
3319                  * As the vm-exit takes precedence over the debug trap, we
3320                  * need to emulate the latter, either for the host or the
3321                  * guest debugging itself.
3322                  */
3323                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3324                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3325                         vcpu->run->debug.arch.dr7 = dr;
3326                         vcpu->run->debug.arch.pc =
3327                                 vmcs_readl(GUEST_CS_BASE) +
3328                                 vmcs_readl(GUEST_RIP);
3329                         vcpu->run->debug.arch.exception = DB_VECTOR;
3330                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3331                         return 0;
3332                 } else {
3333                         vcpu->arch.dr7 &=