Merge branch 'tip/perf/jump-label-2' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34
35 #include <asm/virtext.h>
36 #include "trace.h"
37
38 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39
40 MODULE_AUTHOR("Qumranet");
41 MODULE_LICENSE("GPL");
42
43 #define IOPM_ALLOC_ORDER 2
44 #define MSRPM_ALLOC_ORDER 1
45
46 #define SEG_TYPE_LDT 2
47 #define SEG_TYPE_BUSY_TSS16 3
48
49 #define SVM_FEATURE_NPT            (1 <<  0)
50 #define SVM_FEATURE_LBRV           (1 <<  1)
51 #define SVM_FEATURE_SVML           (1 <<  2)
52 #define SVM_FEATURE_NRIP           (1 <<  3)
53 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
54
55 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
56 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
57 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
58
59 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
60
61 static bool erratum_383_found __read_mostly;
62
63 static const u32 host_save_user_msrs[] = {
64 #ifdef CONFIG_X86_64
65         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
66         MSR_FS_BASE,
67 #endif
68         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
69 };
70
71 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
72
73 struct kvm_vcpu;
74
75 struct nested_state {
76         struct vmcb *hsave;
77         u64 hsave_msr;
78         u64 vm_cr_msr;
79         u64 vmcb;
80
81         /* These are the merged vectors */
82         u32 *msrpm;
83
84         /* gpa pointers to the real vectors */
85         u64 vmcb_msrpm;
86         u64 vmcb_iopm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /*
92          * If we vmexit during an instruction emulation we need this to restore
93          * the l1 guest rip after the emulation
94          */
95         unsigned long vmexit_rip;
96         unsigned long vmexit_rsp;
97         unsigned long vmexit_rax;
98
99         /* cache for intercepts of the guest */
100         u16 intercept_cr_read;
101         u16 intercept_cr_write;
102         u16 intercept_dr_read;
103         u16 intercept_dr_write;
104         u32 intercept_exceptions;
105         u64 intercept;
106
107         /* Nested Paging related state */
108         u64 nested_cr3;
109 };
110
111 #define MSRPM_OFFSETS   16
112 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
113
114 struct vcpu_svm {
115         struct kvm_vcpu vcpu;
116         struct vmcb *vmcb;
117         unsigned long vmcb_pa;
118         struct svm_cpu_data *svm_data;
119         uint64_t asid_generation;
120         uint64_t sysenter_esp;
121         uint64_t sysenter_eip;
122
123         u64 next_rip;
124
125         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
126         u64 host_gs_base;
127
128         u32 *msrpm;
129
130         struct nested_state nested;
131
132         bool nmi_singlestep;
133
134         unsigned int3_injected;
135         unsigned long int3_rip;
136 };
137
138 #define MSR_INVALID                     0xffffffffU
139
140 static struct svm_direct_access_msrs {
141         u32 index;   /* Index of the MSR */
142         bool always; /* True if intercept is always on */
143 } direct_access_msrs[] = {
144         { .index = MSR_STAR,                            .always = true  },
145         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
146 #ifdef CONFIG_X86_64
147         { .index = MSR_GS_BASE,                         .always = true  },
148         { .index = MSR_FS_BASE,                         .always = true  },
149         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
150         { .index = MSR_LSTAR,                           .always = true  },
151         { .index = MSR_CSTAR,                           .always = true  },
152         { .index = MSR_SYSCALL_MASK,                    .always = true  },
153 #endif
154         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
155         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
156         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
157         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
158         { .index = MSR_INVALID,                         .always = false },
159 };
160
161 /* enable NPT for AMD64 and X86 with PAE */
162 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
163 static bool npt_enabled = true;
164 #else
165 static bool npt_enabled;
166 #endif
167 static int npt = 1;
168
169 module_param(npt, int, S_IRUGO);
170
171 static int nested = 1;
172 module_param(nested, int, S_IRUGO);
173
174 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
175 static void svm_complete_interrupts(struct vcpu_svm *svm);
176
177 static int nested_svm_exit_handled(struct vcpu_svm *svm);
178 static int nested_svm_intercept(struct vcpu_svm *svm);
179 static int nested_svm_vmexit(struct vcpu_svm *svm);
180 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
181                                       bool has_error_code, u32 error_code);
182
183 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
184 {
185         return container_of(vcpu, struct vcpu_svm, vcpu);
186 }
187
188 static inline bool is_nested(struct vcpu_svm *svm)
189 {
190         return svm->nested.vmcb;
191 }
192
193 static inline void enable_gif(struct vcpu_svm *svm)
194 {
195         svm->vcpu.arch.hflags |= HF_GIF_MASK;
196 }
197
198 static inline void disable_gif(struct vcpu_svm *svm)
199 {
200         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
201 }
202
203 static inline bool gif_set(struct vcpu_svm *svm)
204 {
205         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
206 }
207
208 static unsigned long iopm_base;
209
210 struct kvm_ldttss_desc {
211         u16 limit0;
212         u16 base0;
213         unsigned base1:8, type:5, dpl:2, p:1;
214         unsigned limit1:4, zero0:3, g:1, base2:8;
215         u32 base3;
216         u32 zero1;
217 } __attribute__((packed));
218
219 struct svm_cpu_data {
220         int cpu;
221
222         u64 asid_generation;
223         u32 max_asid;
224         u32 next_asid;
225         struct kvm_ldttss_desc *tss_desc;
226
227         struct page *save_area;
228 };
229
230 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
231 static uint32_t svm_features;
232
233 struct svm_init_data {
234         int cpu;
235         int r;
236 };
237
238 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
239
240 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
241 #define MSRS_RANGE_SIZE 2048
242 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
243
244 static u32 svm_msrpm_offset(u32 msr)
245 {
246         u32 offset;
247         int i;
248
249         for (i = 0; i < NUM_MSR_MAPS; i++) {
250                 if (msr < msrpm_ranges[i] ||
251                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
252                         continue;
253
254                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
255                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
256
257                 /* Now we have the u8 offset - but need the u32 offset */
258                 return offset / 4;
259         }
260
261         /* MSR not in any range */
262         return MSR_INVALID;
263 }
264
265 #define MAX_INST_SIZE 15
266
267 static inline u32 svm_has(u32 feat)
268 {
269         return svm_features & feat;
270 }
271
272 static inline void clgi(void)
273 {
274         asm volatile (__ex(SVM_CLGI));
275 }
276
277 static inline void stgi(void)
278 {
279         asm volatile (__ex(SVM_STGI));
280 }
281
282 static inline void invlpga(unsigned long addr, u32 asid)
283 {
284         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
285 }
286
287 static inline void force_new_asid(struct kvm_vcpu *vcpu)
288 {
289         to_svm(vcpu)->asid_generation--;
290 }
291
292 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
293 {
294         force_new_asid(vcpu);
295 }
296
297 static int get_npt_level(void)
298 {
299 #ifdef CONFIG_X86_64
300         return PT64_ROOT_LEVEL;
301 #else
302         return PT32E_ROOT_LEVEL;
303 #endif
304 }
305
306 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
307 {
308         vcpu->arch.efer = efer;
309         if (!npt_enabled && !(efer & EFER_LMA))
310                 efer &= ~EFER_LME;
311
312         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
313 }
314
315 static int is_external_interrupt(u32 info)
316 {
317         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
318         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
319 }
320
321 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
322 {
323         struct vcpu_svm *svm = to_svm(vcpu);
324         u32 ret = 0;
325
326         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
327                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
328         return ret & mask;
329 }
330
331 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
332 {
333         struct vcpu_svm *svm = to_svm(vcpu);
334
335         if (mask == 0)
336                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
337         else
338                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
339
340 }
341
342 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
343 {
344         struct vcpu_svm *svm = to_svm(vcpu);
345
346         if (svm->vmcb->control.next_rip != 0)
347                 svm->next_rip = svm->vmcb->control.next_rip;
348
349         if (!svm->next_rip) {
350                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
351                                 EMULATE_DONE)
352                         printk(KERN_DEBUG "%s: NOP\n", __func__);
353                 return;
354         }
355         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
356                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
357                        __func__, kvm_rip_read(vcpu), svm->next_rip);
358
359         kvm_rip_write(vcpu, svm->next_rip);
360         svm_set_interrupt_shadow(vcpu, 0);
361 }
362
363 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
364                                 bool has_error_code, u32 error_code,
365                                 bool reinject)
366 {
367         struct vcpu_svm *svm = to_svm(vcpu);
368
369         /*
370          * If we are within a nested VM we'd better #VMEXIT and let the guest
371          * handle the exception
372          */
373         if (!reinject &&
374             nested_svm_check_exception(svm, nr, has_error_code, error_code))
375                 return;
376
377         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
378                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
379
380                 /*
381                  * For guest debugging where we have to reinject #BP if some
382                  * INT3 is guest-owned:
383                  * Emulate nRIP by moving RIP forward. Will fail if injection
384                  * raises a fault that is not intercepted. Still better than
385                  * failing in all cases.
386                  */
387                 skip_emulated_instruction(&svm->vcpu);
388                 rip = kvm_rip_read(&svm->vcpu);
389                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
390                 svm->int3_injected = rip - old_rip;
391         }
392
393         svm->vmcb->control.event_inj = nr
394                 | SVM_EVTINJ_VALID
395                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
396                 | SVM_EVTINJ_TYPE_EXEPT;
397         svm->vmcb->control.event_inj_err = error_code;
398 }
399
400 static void svm_init_erratum_383(void)
401 {
402         u32 low, high;
403         int err;
404         u64 val;
405
406         if (!cpu_has_amd_erratum(amd_erratum_383))
407                 return;
408
409         /* Use _safe variants to not break nested virtualization */
410         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
411         if (err)
412                 return;
413
414         val |= (1ULL << 47);
415
416         low  = lower_32_bits(val);
417         high = upper_32_bits(val);
418
419         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
420
421         erratum_383_found = true;
422 }
423
424 static int has_svm(void)
425 {
426         const char *msg;
427
428         if (!cpu_has_svm(&msg)) {
429                 printk(KERN_INFO "has_svm: %s\n", msg);
430                 return 0;
431         }
432
433         return 1;
434 }
435
436 static void svm_hardware_disable(void *garbage)
437 {
438         cpu_svm_disable();
439 }
440
441 static int svm_hardware_enable(void *garbage)
442 {
443
444         struct svm_cpu_data *sd;
445         uint64_t efer;
446         struct desc_ptr gdt_descr;
447         struct desc_struct *gdt;
448         int me = raw_smp_processor_id();
449
450         rdmsrl(MSR_EFER, efer);
451         if (efer & EFER_SVME)
452                 return -EBUSY;
453
454         if (!has_svm()) {
455                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
456                        me);
457                 return -EINVAL;
458         }
459         sd = per_cpu(svm_data, me);
460
461         if (!sd) {
462                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
463                        me);
464                 return -EINVAL;
465         }
466
467         sd->asid_generation = 1;
468         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
469         sd->next_asid = sd->max_asid + 1;
470
471         native_store_gdt(&gdt_descr);
472         gdt = (struct desc_struct *)gdt_descr.address;
473         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
474
475         wrmsrl(MSR_EFER, efer | EFER_SVME);
476
477         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
478
479         svm_init_erratum_383();
480
481         return 0;
482 }
483
484 static void svm_cpu_uninit(int cpu)
485 {
486         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
487
488         if (!sd)
489                 return;
490
491         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
492         __free_page(sd->save_area);
493         kfree(sd);
494 }
495
496 static int svm_cpu_init(int cpu)
497 {
498         struct svm_cpu_data *sd;
499         int r;
500
501         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
502         if (!sd)
503                 return -ENOMEM;
504         sd->cpu = cpu;
505         sd->save_area = alloc_page(GFP_KERNEL);
506         r = -ENOMEM;
507         if (!sd->save_area)
508                 goto err_1;
509
510         per_cpu(svm_data, cpu) = sd;
511
512         return 0;
513
514 err_1:
515         kfree(sd);
516         return r;
517
518 }
519
520 static bool valid_msr_intercept(u32 index)
521 {
522         int i;
523
524         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
525                 if (direct_access_msrs[i].index == index)
526                         return true;
527
528         return false;
529 }
530
531 static void set_msr_interception(u32 *msrpm, unsigned msr,
532                                  int read, int write)
533 {
534         u8 bit_read, bit_write;
535         unsigned long tmp;
536         u32 offset;
537
538         /*
539          * If this warning triggers extend the direct_access_msrs list at the
540          * beginning of the file
541          */
542         WARN_ON(!valid_msr_intercept(msr));
543
544         offset    = svm_msrpm_offset(msr);
545         bit_read  = 2 * (msr & 0x0f);
546         bit_write = 2 * (msr & 0x0f) + 1;
547         tmp       = msrpm[offset];
548
549         BUG_ON(offset == MSR_INVALID);
550
551         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
552         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
553
554         msrpm[offset] = tmp;
555 }
556
557 static void svm_vcpu_init_msrpm(u32 *msrpm)
558 {
559         int i;
560
561         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
562
563         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
564                 if (!direct_access_msrs[i].always)
565                         continue;
566
567                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
568         }
569 }
570
571 static void add_msr_offset(u32 offset)
572 {
573         int i;
574
575         for (i = 0; i < MSRPM_OFFSETS; ++i) {
576
577                 /* Offset already in list? */
578                 if (msrpm_offsets[i] == offset)
579                         return;
580
581                 /* Slot used by another offset? */
582                 if (msrpm_offsets[i] != MSR_INVALID)
583                         continue;
584
585                 /* Add offset to list */
586                 msrpm_offsets[i] = offset;
587
588                 return;
589         }
590
591         /*
592          * If this BUG triggers the msrpm_offsets table has an overflow. Just
593          * increase MSRPM_OFFSETS in this case.
594          */
595         BUG();
596 }
597
598 static void init_msrpm_offsets(void)
599 {
600         int i;
601
602         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
603
604         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
605                 u32 offset;
606
607                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
608                 BUG_ON(offset == MSR_INVALID);
609
610                 add_msr_offset(offset);
611         }
612 }
613
614 static void svm_enable_lbrv(struct vcpu_svm *svm)
615 {
616         u32 *msrpm = svm->msrpm;
617
618         svm->vmcb->control.lbr_ctl = 1;
619         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
620         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
621         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
622         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
623 }
624
625 static void svm_disable_lbrv(struct vcpu_svm *svm)
626 {
627         u32 *msrpm = svm->msrpm;
628
629         svm->vmcb->control.lbr_ctl = 0;
630         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
631         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
632         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
633         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
634 }
635
636 static __init int svm_hardware_setup(void)
637 {
638         int cpu;
639         struct page *iopm_pages;
640         void *iopm_va;
641         int r;
642
643         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
644
645         if (!iopm_pages)
646                 return -ENOMEM;
647
648         iopm_va = page_address(iopm_pages);
649         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
650         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
651
652         init_msrpm_offsets();
653
654         if (boot_cpu_has(X86_FEATURE_NX))
655                 kvm_enable_efer_bits(EFER_NX);
656
657         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
658                 kvm_enable_efer_bits(EFER_FFXSR);
659
660         if (nested) {
661                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
662                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
663         }
664
665         for_each_possible_cpu(cpu) {
666                 r = svm_cpu_init(cpu);
667                 if (r)
668                         goto err;
669         }
670
671         svm_features = cpuid_edx(SVM_CPUID_FUNC);
672
673         if (!svm_has(SVM_FEATURE_NPT))
674                 npt_enabled = false;
675
676         if (npt_enabled && !npt) {
677                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
678                 npt_enabled = false;
679         }
680
681         if (npt_enabled) {
682                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
683                 kvm_enable_tdp();
684         } else
685                 kvm_disable_tdp();
686
687         return 0;
688
689 err:
690         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
691         iopm_base = 0;
692         return r;
693 }
694
695 static __exit void svm_hardware_unsetup(void)
696 {
697         int cpu;
698
699         for_each_possible_cpu(cpu)
700                 svm_cpu_uninit(cpu);
701
702         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
703         iopm_base = 0;
704 }
705
706 static void init_seg(struct vmcb_seg *seg)
707 {
708         seg->selector = 0;
709         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
710                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
711         seg->limit = 0xffff;
712         seg->base = 0;
713 }
714
715 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
716 {
717         seg->selector = 0;
718         seg->attrib = SVM_SELECTOR_P_MASK | type;
719         seg->limit = 0xffff;
720         seg->base = 0;
721 }
722
723 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
724 {
725         struct vcpu_svm *svm = to_svm(vcpu);
726         u64 g_tsc_offset = 0;
727
728         if (is_nested(svm)) {
729                 g_tsc_offset = svm->vmcb->control.tsc_offset -
730                                svm->nested.hsave->control.tsc_offset;
731                 svm->nested.hsave->control.tsc_offset = offset;
732         }
733
734         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
735 }
736
737 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
738 {
739         struct vcpu_svm *svm = to_svm(vcpu);
740
741         svm->vmcb->control.tsc_offset += adjustment;
742         if (is_nested(svm))
743                 svm->nested.hsave->control.tsc_offset += adjustment;
744 }
745
746 static void init_vmcb(struct vcpu_svm *svm)
747 {
748         struct vmcb_control_area *control = &svm->vmcb->control;
749         struct vmcb_save_area *save = &svm->vmcb->save;
750
751         svm->vcpu.fpu_active = 1;
752
753         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
754                                         INTERCEPT_CR3_MASK |
755                                         INTERCEPT_CR4_MASK;
756
757         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
758                                         INTERCEPT_CR3_MASK |
759                                         INTERCEPT_CR4_MASK |
760                                         INTERCEPT_CR8_MASK;
761
762         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
763                                         INTERCEPT_DR1_MASK |
764                                         INTERCEPT_DR2_MASK |
765                                         INTERCEPT_DR3_MASK |
766                                         INTERCEPT_DR4_MASK |
767                                         INTERCEPT_DR5_MASK |
768                                         INTERCEPT_DR6_MASK |
769                                         INTERCEPT_DR7_MASK;
770
771         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
772                                         INTERCEPT_DR1_MASK |
773                                         INTERCEPT_DR2_MASK |
774                                         INTERCEPT_DR3_MASK |
775                                         INTERCEPT_DR4_MASK |
776                                         INTERCEPT_DR5_MASK |
777                                         INTERCEPT_DR6_MASK |
778                                         INTERCEPT_DR7_MASK;
779
780         control->intercept_exceptions = (1 << PF_VECTOR) |
781                                         (1 << UD_VECTOR) |
782                                         (1 << MC_VECTOR);
783
784
785         control->intercept =    (1ULL << INTERCEPT_INTR) |
786                                 (1ULL << INTERCEPT_NMI) |
787                                 (1ULL << INTERCEPT_SMI) |
788                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
789                                 (1ULL << INTERCEPT_CPUID) |
790                                 (1ULL << INTERCEPT_INVD) |
791                                 (1ULL << INTERCEPT_HLT) |
792                                 (1ULL << INTERCEPT_INVLPG) |
793                                 (1ULL << INTERCEPT_INVLPGA) |
794                                 (1ULL << INTERCEPT_IOIO_PROT) |
795                                 (1ULL << INTERCEPT_MSR_PROT) |
796                                 (1ULL << INTERCEPT_TASK_SWITCH) |
797                                 (1ULL << INTERCEPT_SHUTDOWN) |
798                                 (1ULL << INTERCEPT_VMRUN) |
799                                 (1ULL << INTERCEPT_VMMCALL) |
800                                 (1ULL << INTERCEPT_VMLOAD) |
801                                 (1ULL << INTERCEPT_VMSAVE) |
802                                 (1ULL << INTERCEPT_STGI) |
803                                 (1ULL << INTERCEPT_CLGI) |
804                                 (1ULL << INTERCEPT_SKINIT) |
805                                 (1ULL << INTERCEPT_WBINVD) |
806                                 (1ULL << INTERCEPT_MONITOR) |
807                                 (1ULL << INTERCEPT_MWAIT);
808
809         control->iopm_base_pa = iopm_base;
810         control->msrpm_base_pa = __pa(svm->msrpm);
811         control->int_ctl = V_INTR_MASKING_MASK;
812
813         init_seg(&save->es);
814         init_seg(&save->ss);
815         init_seg(&save->ds);
816         init_seg(&save->fs);
817         init_seg(&save->gs);
818
819         save->cs.selector = 0xf000;
820         /* Executable/Readable Code Segment */
821         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
822                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
823         save->cs.limit = 0xffff;
824         /*
825          * cs.base should really be 0xffff0000, but vmx can't handle that, so
826          * be consistent with it.
827          *
828          * Replace when we have real mode working for vmx.
829          */
830         save->cs.base = 0xf0000;
831
832         save->gdtr.limit = 0xffff;
833         save->idtr.limit = 0xffff;
834
835         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
836         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
837
838         svm_set_efer(&svm->vcpu, 0);
839         save->dr6 = 0xffff0ff0;
840         save->dr7 = 0x400;
841         save->rflags = 2;
842         save->rip = 0x0000fff0;
843         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
844
845         /*
846          * This is the guest-visible cr0 value.
847          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
848          */
849         svm->vcpu.arch.cr0 = 0;
850         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
851
852         save->cr4 = X86_CR4_PAE;
853         /* rdx = ?? */
854
855         if (npt_enabled) {
856                 /* Setup VMCB for Nested Paging */
857                 control->nested_ctl = 1;
858                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
859                                         (1ULL << INTERCEPT_INVLPG));
860                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
861                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
862                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
863                 save->g_pat = 0x0007040600070406ULL;
864                 save->cr3 = 0;
865                 save->cr4 = 0;
866         }
867         force_new_asid(&svm->vcpu);
868
869         svm->nested.vmcb = 0;
870         svm->vcpu.arch.hflags = 0;
871
872         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
873                 control->pause_filter_count = 3000;
874                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
875         }
876
877         enable_gif(svm);
878 }
879
880 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
881 {
882         struct vcpu_svm *svm = to_svm(vcpu);
883
884         init_vmcb(svm);
885
886         if (!kvm_vcpu_is_bsp(vcpu)) {
887                 kvm_rip_write(vcpu, 0);
888                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
889                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
890         }
891         vcpu->arch.regs_avail = ~0;
892         vcpu->arch.regs_dirty = ~0;
893
894         return 0;
895 }
896
897 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
898 {
899         struct vcpu_svm *svm;
900         struct page *page;
901         struct page *msrpm_pages;
902         struct page *hsave_page;
903         struct page *nested_msrpm_pages;
904         int err;
905
906         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
907         if (!svm) {
908                 err = -ENOMEM;
909                 goto out;
910         }
911
912         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
913         if (err)
914                 goto free_svm;
915
916         err = -ENOMEM;
917         page = alloc_page(GFP_KERNEL);
918         if (!page)
919                 goto uninit;
920
921         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
922         if (!msrpm_pages)
923                 goto free_page1;
924
925         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
926         if (!nested_msrpm_pages)
927                 goto free_page2;
928
929         hsave_page = alloc_page(GFP_KERNEL);
930         if (!hsave_page)
931                 goto free_page3;
932
933         svm->nested.hsave = page_address(hsave_page);
934
935         svm->msrpm = page_address(msrpm_pages);
936         svm_vcpu_init_msrpm(svm->msrpm);
937
938         svm->nested.msrpm = page_address(nested_msrpm_pages);
939         svm_vcpu_init_msrpm(svm->nested.msrpm);
940
941         svm->vmcb = page_address(page);
942         clear_page(svm->vmcb);
943         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
944         svm->asid_generation = 0;
945         init_vmcb(svm);
946         kvm_write_tsc(&svm->vcpu, 0);
947
948         err = fx_init(&svm->vcpu);
949         if (err)
950                 goto free_page4;
951
952         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
953         if (kvm_vcpu_is_bsp(&svm->vcpu))
954                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
955
956         return &svm->vcpu;
957
958 free_page4:
959         __free_page(hsave_page);
960 free_page3:
961         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
962 free_page2:
963         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
964 free_page1:
965         __free_page(page);
966 uninit:
967         kvm_vcpu_uninit(&svm->vcpu);
968 free_svm:
969         kmem_cache_free(kvm_vcpu_cache, svm);
970 out:
971         return ERR_PTR(err);
972 }
973
974 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
975 {
976         struct vcpu_svm *svm = to_svm(vcpu);
977
978         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
979         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
980         __free_page(virt_to_page(svm->nested.hsave));
981         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
982         kvm_vcpu_uninit(vcpu);
983         kmem_cache_free(kvm_vcpu_cache, svm);
984 }
985
986 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
987 {
988         struct vcpu_svm *svm = to_svm(vcpu);
989         int i;
990
991         if (unlikely(cpu != vcpu->cpu)) {
992                 svm->asid_generation = 0;
993         }
994
995         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
996                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
997 }
998
999 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1000 {
1001         struct vcpu_svm *svm = to_svm(vcpu);
1002         int i;
1003
1004         ++vcpu->stat.host_state_reload;
1005         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1006                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1007 }
1008
1009 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1010 {
1011         return to_svm(vcpu)->vmcb->save.rflags;
1012 }
1013
1014 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1015 {
1016         to_svm(vcpu)->vmcb->save.rflags = rflags;
1017 }
1018
1019 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1020 {
1021         switch (reg) {
1022         case VCPU_EXREG_PDPTR:
1023                 BUG_ON(!npt_enabled);
1024                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1025                 break;
1026         default:
1027                 BUG();
1028         }
1029 }
1030
1031 static void svm_set_vintr(struct vcpu_svm *svm)
1032 {
1033         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1034 }
1035
1036 static void svm_clear_vintr(struct vcpu_svm *svm)
1037 {
1038         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1039 }
1040
1041 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1042 {
1043         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1044
1045         switch (seg) {
1046         case VCPU_SREG_CS: return &save->cs;
1047         case VCPU_SREG_DS: return &save->ds;
1048         case VCPU_SREG_ES: return &save->es;
1049         case VCPU_SREG_FS: return &save->fs;
1050         case VCPU_SREG_GS: return &save->gs;
1051         case VCPU_SREG_SS: return &save->ss;
1052         case VCPU_SREG_TR: return &save->tr;
1053         case VCPU_SREG_LDTR: return &save->ldtr;
1054         }
1055         BUG();
1056         return NULL;
1057 }
1058
1059 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1060 {
1061         struct vmcb_seg *s = svm_seg(vcpu, seg);
1062
1063         return s->base;
1064 }
1065
1066 static void svm_get_segment(struct kvm_vcpu *vcpu,
1067                             struct kvm_segment *var, int seg)
1068 {
1069         struct vmcb_seg *s = svm_seg(vcpu, seg);
1070
1071         var->base = s->base;
1072         var->limit = s->limit;
1073         var->selector = s->selector;
1074         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1075         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1076         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1077         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1078         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1079         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1080         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1081         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1082
1083         /*
1084          * AMD's VMCB does not have an explicit unusable field, so emulate it
1085          * for cross vendor migration purposes by "not present"
1086          */
1087         var->unusable = !var->present || (var->type == 0);
1088
1089         switch (seg) {
1090         case VCPU_SREG_CS:
1091                 /*
1092                  * SVM always stores 0 for the 'G' bit in the CS selector in
1093                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1094                  * Intel's VMENTRY has a check on the 'G' bit.
1095                  */
1096                 var->g = s->limit > 0xfffff;
1097                 break;
1098         case VCPU_SREG_TR:
1099                 /*
1100                  * Work around a bug where the busy flag in the tr selector
1101                  * isn't exposed
1102                  */
1103                 var->type |= 0x2;
1104                 break;
1105         case VCPU_SREG_DS:
1106         case VCPU_SREG_ES:
1107         case VCPU_SREG_FS:
1108         case VCPU_SREG_GS:
1109                 /*
1110                  * The accessed bit must always be set in the segment
1111                  * descriptor cache, although it can be cleared in the
1112                  * descriptor, the cached bit always remains at 1. Since
1113                  * Intel has a check on this, set it here to support
1114                  * cross-vendor migration.
1115                  */
1116                 if (!var->unusable)
1117                         var->type |= 0x1;
1118                 break;
1119         case VCPU_SREG_SS:
1120                 /*
1121                  * On AMD CPUs sometimes the DB bit in the segment
1122                  * descriptor is left as 1, although the whole segment has
1123                  * been made unusable. Clear it here to pass an Intel VMX
1124                  * entry check when cross vendor migrating.
1125                  */
1126                 if (var->unusable)
1127                         var->db = 0;
1128                 break;
1129         }
1130 }
1131
1132 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1133 {
1134         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1135
1136         return save->cpl;
1137 }
1138
1139 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1140 {
1141         struct vcpu_svm *svm = to_svm(vcpu);
1142
1143         dt->size = svm->vmcb->save.idtr.limit;
1144         dt->address = svm->vmcb->save.idtr.base;
1145 }
1146
1147 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150
1151         svm->vmcb->save.idtr.limit = dt->size;
1152         svm->vmcb->save.idtr.base = dt->address ;
1153 }
1154
1155 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1156 {
1157         struct vcpu_svm *svm = to_svm(vcpu);
1158
1159         dt->size = svm->vmcb->save.gdtr.limit;
1160         dt->address = svm->vmcb->save.gdtr.base;
1161 }
1162
1163 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1164 {
1165         struct vcpu_svm *svm = to_svm(vcpu);
1166
1167         svm->vmcb->save.gdtr.limit = dt->size;
1168         svm->vmcb->save.gdtr.base = dt->address ;
1169 }
1170
1171 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1172 {
1173 }
1174
1175 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1176 {
1177 }
1178
1179 static void update_cr0_intercept(struct vcpu_svm *svm)
1180 {
1181         struct vmcb *vmcb = svm->vmcb;
1182         ulong gcr0 = svm->vcpu.arch.cr0;
1183         u64 *hcr0 = &svm->vmcb->save.cr0;
1184
1185         if (!svm->vcpu.fpu_active)
1186                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1187         else
1188                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1189                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1190
1191
1192         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1193                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1194                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1195                 if (is_nested(svm)) {
1196                         struct vmcb *hsave = svm->nested.hsave;
1197
1198                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1199                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1200                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1201                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1202                 }
1203         } else {
1204                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1205                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1206                 if (is_nested(svm)) {
1207                         struct vmcb *hsave = svm->nested.hsave;
1208
1209                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1210                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1211                 }
1212         }
1213 }
1214
1215 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1216 {
1217         struct vcpu_svm *svm = to_svm(vcpu);
1218
1219         if (is_nested(svm)) {
1220                 /*
1221                  * We are here because we run in nested mode, the host kvm
1222                  * intercepts cr0 writes but the l1 hypervisor does not.
1223                  * But the L1 hypervisor may intercept selective cr0 writes.
1224                  * This needs to be checked here.
1225                  */
1226                 unsigned long old, new;
1227
1228                 /* Remove bits that would trigger a real cr0 write intercept */
1229                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1230                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1231
1232                 if (old == new) {
1233                         /* cr0 write with ts and mp unchanged */
1234                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1235                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1236                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1237                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1238                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1239                                 return;
1240                         }
1241                 }
1242         }
1243
1244 #ifdef CONFIG_X86_64
1245         if (vcpu->arch.efer & EFER_LME) {
1246                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1247                         vcpu->arch.efer |= EFER_LMA;
1248                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1249                 }
1250
1251                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1252                         vcpu->arch.efer &= ~EFER_LMA;
1253                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1254                 }
1255         }
1256 #endif
1257         vcpu->arch.cr0 = cr0;
1258
1259         if (!npt_enabled)
1260                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1261
1262         if (!vcpu->fpu_active)
1263                 cr0 |= X86_CR0_TS;
1264         /*
1265          * re-enable caching here because the QEMU bios
1266          * does not do it - this results in some delay at
1267          * reboot
1268          */
1269         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1270         svm->vmcb->save.cr0 = cr0;
1271         update_cr0_intercept(svm);
1272 }
1273
1274 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1275 {
1276         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1277         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1278
1279         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1280                 force_new_asid(vcpu);
1281
1282         vcpu->arch.cr4 = cr4;
1283         if (!npt_enabled)
1284                 cr4 |= X86_CR4_PAE;
1285         cr4 |= host_cr4_mce;
1286         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1287 }
1288
1289 static void svm_set_segment(struct kvm_vcpu *vcpu,
1290                             struct kvm_segment *var, int seg)
1291 {
1292         struct vcpu_svm *svm = to_svm(vcpu);
1293         struct vmcb_seg *s = svm_seg(vcpu, seg);
1294
1295         s->base = var->base;
1296         s->limit = var->limit;
1297         s->selector = var->selector;
1298         if (var->unusable)
1299                 s->attrib = 0;
1300         else {
1301                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1302                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1303                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1304                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1305                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1306                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1307                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1308                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1309         }
1310         if (seg == VCPU_SREG_CS)
1311                 svm->vmcb->save.cpl
1312                         = (svm->vmcb->save.cs.attrib
1313                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1314
1315 }
1316
1317 static void update_db_intercept(struct kvm_vcpu *vcpu)
1318 {
1319         struct vcpu_svm *svm = to_svm(vcpu);
1320
1321         svm->vmcb->control.intercept_exceptions &=
1322                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1323
1324         if (svm->nmi_singlestep)
1325                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1326
1327         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1328                 if (vcpu->guest_debug &
1329                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1330                         svm->vmcb->control.intercept_exceptions |=
1331                                 1 << DB_VECTOR;
1332                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1333                         svm->vmcb->control.intercept_exceptions |=
1334                                 1 << BP_VECTOR;
1335         } else
1336                 vcpu->guest_debug = 0;
1337 }
1338
1339 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1340 {
1341         struct vcpu_svm *svm = to_svm(vcpu);
1342
1343         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1344                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1345         else
1346                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1347
1348         update_db_intercept(vcpu);
1349 }
1350
1351 static void load_host_msrs(struct kvm_vcpu *vcpu)
1352 {
1353 #ifdef CONFIG_X86_64
1354         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1355 #endif
1356 }
1357
1358 static void save_host_msrs(struct kvm_vcpu *vcpu)
1359 {
1360 #ifdef CONFIG_X86_64
1361         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1362 #endif
1363 }
1364
1365 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1366 {
1367         if (sd->next_asid > sd->max_asid) {
1368                 ++sd->asid_generation;
1369                 sd->next_asid = 1;
1370                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1371         }
1372
1373         svm->asid_generation = sd->asid_generation;
1374         svm->vmcb->control.asid = sd->next_asid++;
1375 }
1376
1377 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1378 {
1379         struct vcpu_svm *svm = to_svm(vcpu);
1380
1381         svm->vmcb->save.dr7 = value;
1382 }
1383
1384 static int pf_interception(struct vcpu_svm *svm)
1385 {
1386         u64 fault_address;
1387         u32 error_code;
1388
1389         fault_address  = svm->vmcb->control.exit_info_2;
1390         error_code = svm->vmcb->control.exit_info_1;
1391
1392         trace_kvm_page_fault(fault_address, error_code);
1393         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1394                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1395         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1396 }
1397
1398 static int db_interception(struct vcpu_svm *svm)
1399 {
1400         struct kvm_run *kvm_run = svm->vcpu.run;
1401
1402         if (!(svm->vcpu.guest_debug &
1403               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1404                 !svm->nmi_singlestep) {
1405                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1406                 return 1;
1407         }
1408
1409         if (svm->nmi_singlestep) {
1410                 svm->nmi_singlestep = false;
1411                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1412                         svm->vmcb->save.rflags &=
1413                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1414                 update_db_intercept(&svm->vcpu);
1415         }
1416
1417         if (svm->vcpu.guest_debug &
1418             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1419                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1420                 kvm_run->debug.arch.pc =
1421                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1422                 kvm_run->debug.arch.exception = DB_VECTOR;
1423                 return 0;
1424         }
1425
1426         return 1;
1427 }
1428
1429 static int bp_interception(struct vcpu_svm *svm)
1430 {
1431         struct kvm_run *kvm_run = svm->vcpu.run;
1432
1433         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1434         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1435         kvm_run->debug.arch.exception = BP_VECTOR;
1436         return 0;
1437 }
1438
1439 static int ud_interception(struct vcpu_svm *svm)
1440 {
1441         int er;
1442
1443         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1444         if (er != EMULATE_DONE)
1445                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1446         return 1;
1447 }
1448
1449 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1450 {
1451         struct vcpu_svm *svm = to_svm(vcpu);
1452         u32 excp;
1453
1454         if (is_nested(svm)) {
1455                 u32 h_excp, n_excp;
1456
1457                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1458                 n_excp  = svm->nested.intercept_exceptions;
1459                 h_excp &= ~(1 << NM_VECTOR);
1460                 excp    = h_excp | n_excp;
1461         } else {
1462                 excp  = svm->vmcb->control.intercept_exceptions;
1463                 excp &= ~(1 << NM_VECTOR);
1464         }
1465
1466         svm->vmcb->control.intercept_exceptions = excp;
1467
1468         svm->vcpu.fpu_active = 1;
1469         update_cr0_intercept(svm);
1470 }
1471
1472 static int nm_interception(struct vcpu_svm *svm)
1473 {
1474         svm_fpu_activate(&svm->vcpu);
1475         return 1;
1476 }
1477
1478 static bool is_erratum_383(void)
1479 {
1480         int err, i;
1481         u64 value;
1482
1483         if (!erratum_383_found)
1484                 return false;
1485
1486         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1487         if (err)
1488                 return false;
1489
1490         /* Bit 62 may or may not be set for this mce */
1491         value &= ~(1ULL << 62);
1492
1493         if (value != 0xb600000000010015ULL)
1494                 return false;
1495
1496         /* Clear MCi_STATUS registers */
1497         for (i = 0; i < 6; ++i)
1498                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1499
1500         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1501         if (!err) {
1502                 u32 low, high;
1503
1504                 value &= ~(1ULL << 2);
1505                 low    = lower_32_bits(value);
1506                 high   = upper_32_bits(value);
1507
1508                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1509         }
1510
1511         /* Flush tlb to evict multi-match entries */
1512         __flush_tlb_all();
1513
1514         return true;
1515 }
1516
1517 static void svm_handle_mce(struct vcpu_svm *svm)
1518 {
1519         if (is_erratum_383()) {
1520                 /*
1521                  * Erratum 383 triggered. Guest state is corrupt so kill the
1522                  * guest.
1523                  */
1524                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1525
1526                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1527
1528                 return;
1529         }
1530
1531         /*
1532          * On an #MC intercept the MCE handler is not called automatically in
1533          * the host. So do it by hand here.
1534          */
1535         asm volatile (
1536                 "int $0x12\n");
1537         /* not sure if we ever come back to this point */
1538
1539         return;
1540 }
1541
1542 static int mc_interception(struct vcpu_svm *svm)
1543 {
1544         return 1;
1545 }
1546
1547 static int shutdown_interception(struct vcpu_svm *svm)
1548 {
1549         struct kvm_run *kvm_run = svm->vcpu.run;
1550
1551         /*
1552          * VMCB is undefined after a SHUTDOWN intercept
1553          * so reinitialize it.
1554          */
1555         clear_page(svm->vmcb);
1556         init_vmcb(svm);
1557
1558         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1559         return 0;
1560 }
1561
1562 static int io_interception(struct vcpu_svm *svm)
1563 {
1564         struct kvm_vcpu *vcpu = &svm->vcpu;
1565         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1566         int size, in, string;
1567         unsigned port;
1568
1569         ++svm->vcpu.stat.io_exits;
1570         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1571         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1572         if (string || in)
1573                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1574
1575         port = io_info >> 16;
1576         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1577         svm->next_rip = svm->vmcb->control.exit_info_2;
1578         skip_emulated_instruction(&svm->vcpu);
1579
1580         return kvm_fast_pio_out(vcpu, size, port);
1581 }
1582
1583 static int nmi_interception(struct vcpu_svm *svm)
1584 {
1585         return 1;
1586 }
1587
1588 static int intr_interception(struct vcpu_svm *svm)
1589 {
1590         ++svm->vcpu.stat.irq_exits;
1591         return 1;
1592 }
1593
1594 static int nop_on_interception(struct vcpu_svm *svm)
1595 {
1596         return 1;
1597 }
1598
1599 static int halt_interception(struct vcpu_svm *svm)
1600 {
1601         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1602         skip_emulated_instruction(&svm->vcpu);
1603         return kvm_emulate_halt(&svm->vcpu);
1604 }
1605
1606 static int vmmcall_interception(struct vcpu_svm *svm)
1607 {
1608         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1609         skip_emulated_instruction(&svm->vcpu);
1610         kvm_emulate_hypercall(&svm->vcpu);
1611         return 1;
1612 }
1613
1614 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1615 {
1616         struct vcpu_svm *svm = to_svm(vcpu);
1617
1618         return svm->nested.nested_cr3;
1619 }
1620
1621 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1622                                    unsigned long root)
1623 {
1624         struct vcpu_svm *svm = to_svm(vcpu);
1625
1626         svm->vmcb->control.nested_cr3 = root;
1627         force_new_asid(vcpu);
1628 }
1629
1630 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
1631 {
1632         struct vcpu_svm *svm = to_svm(vcpu);
1633
1634         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1635         svm->vmcb->control.exit_code_hi = 0;
1636         svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
1637         svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
1638
1639         nested_svm_vmexit(svm);
1640 }
1641
1642 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1643 {
1644         int r;
1645
1646         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1647
1648         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1649         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1650         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1651         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1652         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1653
1654         return r;
1655 }
1656
1657 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1658 {
1659         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1660 }
1661
1662 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1663 {
1664         if (!(svm->vcpu.arch.efer & EFER_SVME)
1665             || !is_paging(&svm->vcpu)) {
1666                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1667                 return 1;
1668         }
1669
1670         if (svm->vmcb->save.cpl) {
1671                 kvm_inject_gp(&svm->vcpu, 0);
1672                 return 1;
1673         }
1674
1675        return 0;
1676 }
1677
1678 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1679                                       bool has_error_code, u32 error_code)
1680 {
1681         int vmexit;
1682
1683         if (!is_nested(svm))
1684                 return 0;
1685
1686         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1687         svm->vmcb->control.exit_code_hi = 0;
1688         svm->vmcb->control.exit_info_1 = error_code;
1689         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1690
1691         vmexit = nested_svm_intercept(svm);
1692         if (vmexit == NESTED_EXIT_DONE)
1693                 svm->nested.exit_required = true;
1694
1695         return vmexit;
1696 }
1697
1698 /* This function returns true if it is save to enable the irq window */
1699 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1700 {
1701         if (!is_nested(svm))
1702                 return true;
1703
1704         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1705                 return true;
1706
1707         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1708                 return false;
1709
1710         /*
1711          * if vmexit was already requested (by intercepted exception
1712          * for instance) do not overwrite it with "external interrupt"
1713          * vmexit.
1714          */
1715         if (svm->nested.exit_required)
1716                 return false;
1717
1718         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1719         svm->vmcb->control.exit_info_1 = 0;
1720         svm->vmcb->control.exit_info_2 = 0;
1721
1722         if (svm->nested.intercept & 1ULL) {
1723                 /*
1724                  * The #vmexit can't be emulated here directly because this
1725                  * code path runs with irqs and preemtion disabled. A
1726                  * #vmexit emulation might sleep. Only signal request for
1727                  * the #vmexit here.
1728                  */
1729                 svm->nested.exit_required = true;
1730                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1731                 return false;
1732         }
1733
1734         return true;
1735 }
1736
1737 /* This function returns true if it is save to enable the nmi window */
1738 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1739 {
1740         if (!is_nested(svm))
1741                 return true;
1742
1743         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1744                 return true;
1745
1746         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1747         svm->nested.exit_required = true;
1748
1749         return false;
1750 }
1751
1752 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1753 {
1754         struct page *page;
1755
1756         might_sleep();
1757
1758         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1759         if (is_error_page(page))
1760                 goto error;
1761
1762         *_page = page;
1763
1764         return kmap(page);
1765
1766 error:
1767         kvm_release_page_clean(page);
1768         kvm_inject_gp(&svm->vcpu, 0);
1769
1770         return NULL;
1771 }
1772
1773 static void nested_svm_unmap(struct page *page)
1774 {
1775         kunmap(page);
1776         kvm_release_page_dirty(page);
1777 }
1778
1779 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1780 {
1781         unsigned port;
1782         u8 val, bit;
1783         u64 gpa;
1784
1785         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1786                 return NESTED_EXIT_HOST;
1787
1788         port = svm->vmcb->control.exit_info_1 >> 16;
1789         gpa  = svm->nested.vmcb_iopm + (port / 8);
1790         bit  = port % 8;
1791         val  = 0;
1792
1793         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1794                 val &= (1 << bit);
1795
1796         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1797 }
1798
1799 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1800 {
1801         u32 offset, msr, value;
1802         int write, mask;
1803
1804         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1805                 return NESTED_EXIT_HOST;
1806
1807         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1808         offset = svm_msrpm_offset(msr);
1809         write  = svm->vmcb->control.exit_info_1 & 1;
1810         mask   = 1 << ((2 * (msr & 0xf)) + write);
1811
1812         if (offset == MSR_INVALID)
1813                 return NESTED_EXIT_DONE;
1814
1815         /* Offset is in 32 bit units but need in 8 bit units */
1816         offset *= 4;
1817
1818         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1819                 return NESTED_EXIT_DONE;
1820
1821         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1822 }
1823
1824 static int nested_svm_exit_special(struct vcpu_svm *svm)
1825 {
1826         u32 exit_code = svm->vmcb->control.exit_code;
1827
1828         switch (exit_code) {
1829         case SVM_EXIT_INTR:
1830         case SVM_EXIT_NMI:
1831         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1832                 return NESTED_EXIT_HOST;
1833         case SVM_EXIT_NPF:
1834                 /* For now we are always handling NPFs when using them */
1835                 if (npt_enabled)
1836                         return NESTED_EXIT_HOST;
1837                 break;
1838         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1839                 /* When we're shadowing, trap PFs */
1840                 if (!npt_enabled)
1841                         return NESTED_EXIT_HOST;
1842                 break;
1843         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1844                 nm_interception(svm);
1845                 break;
1846         default:
1847                 break;
1848         }
1849
1850         return NESTED_EXIT_CONTINUE;
1851 }
1852
1853 /*
1854  * If this function returns true, this #vmexit was already handled
1855  */
1856 static int nested_svm_intercept(struct vcpu_svm *svm)
1857 {
1858         u32 exit_code = svm->vmcb->control.exit_code;
1859         int vmexit = NESTED_EXIT_HOST;
1860
1861         switch (exit_code) {
1862         case SVM_EXIT_MSR:
1863                 vmexit = nested_svm_exit_handled_msr(svm);
1864                 break;
1865         case SVM_EXIT_IOIO:
1866                 vmexit = nested_svm_intercept_ioio(svm);
1867                 break;
1868         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1869                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1870                 if (svm->nested.intercept_cr_read & cr_bits)
1871                         vmexit = NESTED_EXIT_DONE;
1872                 break;
1873         }
1874         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1875                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1876                 if (svm->nested.intercept_cr_write & cr_bits)
1877                         vmexit = NESTED_EXIT_DONE;
1878                 break;
1879         }
1880         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1881                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1882                 if (svm->nested.intercept_dr_read & dr_bits)
1883                         vmexit = NESTED_EXIT_DONE;
1884                 break;
1885         }
1886         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1887                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1888                 if (svm->nested.intercept_dr_write & dr_bits)
1889                         vmexit = NESTED_EXIT_DONE;
1890                 break;
1891         }
1892         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1893                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1894                 if (svm->nested.intercept_exceptions & excp_bits)
1895                         vmexit = NESTED_EXIT_DONE;
1896                 break;
1897         }
1898         case SVM_EXIT_ERR: {
1899                 vmexit = NESTED_EXIT_DONE;
1900                 break;
1901         }
1902         default: {
1903                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1904                 if (svm->nested.intercept & exit_bits)
1905                         vmexit = NESTED_EXIT_DONE;
1906         }
1907         }
1908
1909         return vmexit;
1910 }
1911
1912 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1913 {
1914         int vmexit;
1915
1916         vmexit = nested_svm_intercept(svm);
1917
1918         if (vmexit == NESTED_EXIT_DONE)
1919                 nested_svm_vmexit(svm);
1920
1921         return vmexit;
1922 }
1923
1924 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1925 {
1926         struct vmcb_control_area *dst  = &dst_vmcb->control;
1927         struct vmcb_control_area *from = &from_vmcb->control;
1928
1929         dst->intercept_cr_read    = from->intercept_cr_read;
1930         dst->intercept_cr_write   = from->intercept_cr_write;
1931         dst->intercept_dr_read    = from->intercept_dr_read;
1932         dst->intercept_dr_write   = from->intercept_dr_write;
1933         dst->intercept_exceptions = from->intercept_exceptions;
1934         dst->intercept            = from->intercept;
1935         dst->iopm_base_pa         = from->iopm_base_pa;
1936         dst->msrpm_base_pa        = from->msrpm_base_pa;
1937         dst->tsc_offset           = from->tsc_offset;
1938         dst->asid                 = from->asid;
1939         dst->tlb_ctl              = from->tlb_ctl;
1940         dst->int_ctl              = from->int_ctl;
1941         dst->int_vector           = from->int_vector;
1942         dst->int_state            = from->int_state;
1943         dst->exit_code            = from->exit_code;
1944         dst->exit_code_hi         = from->exit_code_hi;
1945         dst->exit_info_1          = from->exit_info_1;
1946         dst->exit_info_2          = from->exit_info_2;
1947         dst->exit_int_info        = from->exit_int_info;
1948         dst->exit_int_info_err    = from->exit_int_info_err;
1949         dst->nested_ctl           = from->nested_ctl;
1950         dst->event_inj            = from->event_inj;
1951         dst->event_inj_err        = from->event_inj_err;
1952         dst->nested_cr3           = from->nested_cr3;
1953         dst->lbr_ctl              = from->lbr_ctl;
1954 }
1955
1956 static int nested_svm_vmexit(struct vcpu_svm *svm)
1957 {
1958         struct vmcb *nested_vmcb;
1959         struct vmcb *hsave = svm->nested.hsave;
1960         struct vmcb *vmcb = svm->vmcb;
1961         struct page *page;
1962
1963         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1964                                        vmcb->control.exit_info_1,
1965                                        vmcb->control.exit_info_2,
1966                                        vmcb->control.exit_int_info,
1967                                        vmcb->control.exit_int_info_err);
1968
1969         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1970         if (!nested_vmcb)
1971                 return 1;
1972
1973         /* Exit nested SVM mode */
1974         svm->nested.vmcb = 0;
1975
1976         /* Give the current vmcb to the guest */
1977         disable_gif(svm);
1978
1979         nested_vmcb->save.es     = vmcb->save.es;
1980         nested_vmcb->save.cs     = vmcb->save.cs;
1981         nested_vmcb->save.ss     = vmcb->save.ss;
1982         nested_vmcb->save.ds     = vmcb->save.ds;
1983         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1984         nested_vmcb->save.idtr   = vmcb->save.idtr;
1985         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
1986         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1987         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1988         nested_vmcb->save.cr2    = vmcb->save.cr2;
1989         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1990         nested_vmcb->save.rflags = vmcb->save.rflags;
1991         nested_vmcb->save.rip    = vmcb->save.rip;
1992         nested_vmcb->save.rsp    = vmcb->save.rsp;
1993         nested_vmcb->save.rax    = vmcb->save.rax;
1994         nested_vmcb->save.dr7    = vmcb->save.dr7;
1995         nested_vmcb->save.dr6    = vmcb->save.dr6;
1996         nested_vmcb->save.cpl    = vmcb->save.cpl;
1997
1998         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1999         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2000         nested_vmcb->control.int_state         = vmcb->control.int_state;
2001         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2002         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2003         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2004         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2005         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2006         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2007         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2008
2009         /*
2010          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2011          * to make sure that we do not lose injected events. So check event_inj
2012          * here and copy it to exit_int_info if it is valid.
2013          * Exit_int_info and event_inj can't be both valid because the case
2014          * below only happens on a VMRUN instruction intercept which has
2015          * no valid exit_int_info set.
2016          */
2017         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2018                 struct vmcb_control_area *nc = &nested_vmcb->control;
2019
2020                 nc->exit_int_info     = vmcb->control.event_inj;
2021                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2022         }
2023
2024         nested_vmcb->control.tlb_ctl           = 0;
2025         nested_vmcb->control.event_inj         = 0;
2026         nested_vmcb->control.event_inj_err     = 0;
2027
2028         /* We always set V_INTR_MASKING and remember the old value in hflags */
2029         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2030                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2031
2032         /* Restore the original control entries */
2033         copy_vmcb_control_area(vmcb, hsave);
2034
2035         kvm_clear_exception_queue(&svm->vcpu);
2036         kvm_clear_interrupt_queue(&svm->vcpu);
2037
2038         svm->nested.nested_cr3 = 0;
2039
2040         /* Restore selected save entries */
2041         svm->vmcb->save.es = hsave->save.es;
2042         svm->vmcb->save.cs = hsave->save.cs;
2043         svm->vmcb->save.ss = hsave->save.ss;
2044         svm->vmcb->save.ds = hsave->save.ds;
2045         svm->vmcb->save.gdtr = hsave->save.gdtr;
2046         svm->vmcb->save.idtr = hsave->save.idtr;
2047         svm->vmcb->save.rflags = hsave->save.rflags;
2048         svm_set_efer(&svm->vcpu, hsave->save.efer);
2049         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2050         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2051         if (npt_enabled) {
2052                 svm->vmcb->save.cr3 = hsave->save.cr3;
2053                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2054         } else {
2055                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2056         }
2057         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2058         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2059         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2060         svm->vmcb->save.dr7 = 0;
2061         svm->vmcb->save.cpl = 0;
2062         svm->vmcb->control.exit_int_info = 0;
2063
2064         nested_svm_unmap(page);
2065
2066         nested_svm_uninit_mmu_context(&svm->vcpu);
2067         kvm_mmu_reset_context(&svm->vcpu);
2068         kvm_mmu_load(&svm->vcpu);
2069
2070         return 0;
2071 }
2072
2073 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2074 {
2075         /*
2076          * This function merges the msr permission bitmaps of kvm and the
2077          * nested vmcb. It is omptimized in that it only merges the parts where
2078          * the kvm msr permission bitmap may contain zero bits
2079          */
2080         int i;
2081
2082         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2083                 return true;
2084
2085         for (i = 0; i < MSRPM_OFFSETS; i++) {
2086                 u32 value, p;
2087                 u64 offset;
2088
2089                 if (msrpm_offsets[i] == 0xffffffff)
2090                         break;
2091
2092                 p      = msrpm_offsets[i];
2093                 offset = svm->nested.vmcb_msrpm + (p * 4);
2094
2095                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2096                         return false;
2097
2098                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2099         }
2100
2101         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2102
2103         return true;
2104 }
2105
2106 static bool nested_vmcb_checks(struct vmcb *vmcb)
2107 {
2108         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2109                 return false;
2110
2111         if (vmcb->control.asid == 0)
2112                 return false;
2113
2114         if (vmcb->control.nested_ctl && !npt_enabled)
2115                 return false;
2116
2117         return true;
2118 }
2119
2120 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2121 {
2122         struct vmcb *nested_vmcb;
2123         struct vmcb *hsave = svm->nested.hsave;
2124         struct vmcb *vmcb = svm->vmcb;
2125         struct page *page;
2126         u64 vmcb_gpa;
2127
2128         vmcb_gpa = svm->vmcb->save.rax;
2129
2130         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2131         if (!nested_vmcb)
2132                 return false;
2133
2134         if (!nested_vmcb_checks(nested_vmcb)) {
2135                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2136                 nested_vmcb->control.exit_code_hi = 0;
2137                 nested_vmcb->control.exit_info_1  = 0;
2138                 nested_vmcb->control.exit_info_2  = 0;
2139
2140                 nested_svm_unmap(page);
2141
2142                 return false;
2143         }
2144
2145         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2146                                nested_vmcb->save.rip,
2147                                nested_vmcb->control.int_ctl,
2148                                nested_vmcb->control.event_inj,
2149                                nested_vmcb->control.nested_ctl);
2150
2151         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2152                                     nested_vmcb->control.intercept_cr_write,
2153                                     nested_vmcb->control.intercept_exceptions,
2154                                     nested_vmcb->control.intercept);
2155
2156         /* Clear internal status */
2157         kvm_clear_exception_queue(&svm->vcpu);
2158         kvm_clear_interrupt_queue(&svm->vcpu);
2159
2160         /*
2161          * Save the old vmcb, so we don't need to pick what we save, but can
2162          * restore everything when a VMEXIT occurs
2163          */
2164         hsave->save.es     = vmcb->save.es;
2165         hsave->save.cs     = vmcb->save.cs;
2166         hsave->save.ss     = vmcb->save.ss;
2167         hsave->save.ds     = vmcb->save.ds;
2168         hsave->save.gdtr   = vmcb->save.gdtr;
2169         hsave->save.idtr   = vmcb->save.idtr;
2170         hsave->save.efer   = svm->vcpu.arch.efer;
2171         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2172         hsave->save.cr4    = svm->vcpu.arch.cr4;
2173         hsave->save.rflags = vmcb->save.rflags;
2174         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2175         hsave->save.rsp    = vmcb->save.rsp;
2176         hsave->save.rax    = vmcb->save.rax;
2177         if (npt_enabled)
2178                 hsave->save.cr3    = vmcb->save.cr3;
2179         else
2180                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2181
2182         copy_vmcb_control_area(hsave, vmcb);
2183
2184         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2185                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2186         else
2187                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2188
2189         if (nested_vmcb->control.nested_ctl) {
2190                 kvm_mmu_unload(&svm->vcpu);
2191                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2192                 nested_svm_init_mmu_context(&svm->vcpu);
2193         }
2194
2195         /* Load the nested guest state */
2196         svm->vmcb->save.es = nested_vmcb->save.es;
2197         svm->vmcb->save.cs = nested_vmcb->save.cs;
2198         svm->vmcb->save.ss = nested_vmcb->save.ss;
2199         svm->vmcb->save.ds = nested_vmcb->save.ds;
2200         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2201         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2202         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2203         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2204         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2205         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2206         if (npt_enabled) {
2207                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2208                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2209         } else
2210                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2211
2212         /* Guest paging mode is active - reset mmu */
2213         kvm_mmu_reset_context(&svm->vcpu);
2214
2215         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2216         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2217         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2218         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2219
2220         /* In case we don't even reach vcpu_run, the fields are not updated */
2221         svm->vmcb->save.rax = nested_vmcb->save.rax;
2222         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2223         svm->vmcb->save.rip = nested_vmcb->save.rip;
2224         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2225         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2226         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2227
2228         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2229         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2230
2231         /* cache intercepts */
2232         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2233         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2234         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2235         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2236         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2237         svm->nested.intercept            = nested_vmcb->control.intercept;
2238
2239         force_new_asid(&svm->vcpu);
2240         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2241         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2242                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2243         else
2244                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2245
2246         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2247                 /* We only want the cr8 intercept bits of the guest */
2248                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2249                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2250         }
2251
2252         /* We don't want to see VMMCALLs from a nested guest */
2253         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2254
2255         /*
2256          * We don't want a nested guest to be more powerful than the guest, so
2257          * all intercepts are ORed
2258          */
2259         svm->vmcb->control.intercept_cr_read |=
2260                 nested_vmcb->control.intercept_cr_read;
2261         svm->vmcb->control.intercept_cr_write |=
2262                 nested_vmcb->control.intercept_cr_write;
2263         svm->vmcb->control.intercept_dr_read |=
2264                 nested_vmcb->control.intercept_dr_read;
2265         svm->vmcb->control.intercept_dr_write |=
2266                 nested_vmcb->control.intercept_dr_write;
2267         svm->vmcb->control.intercept_exceptions |=
2268                 nested_vmcb->control.intercept_exceptions;
2269
2270         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2271
2272         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2273         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2274         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2275         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2276         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2277         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2278
2279         nested_svm_unmap(page);
2280
2281         /* nested_vmcb is our indicator if nested SVM is activated */
2282         svm->nested.vmcb = vmcb_gpa;
2283
2284         enable_gif(svm);
2285
2286         return true;
2287 }
2288
2289 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2290 {
2291         to_vmcb->save.fs = from_vmcb->save.fs;
2292         to_vmcb->save.gs = from_vmcb->save.gs;
2293         to_vmcb->save.tr = from_vmcb->save.tr;
2294         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2295         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2296         to_vmcb->save.star = from_vmcb->save.star;
2297         to_vmcb->save.lstar = from_vmcb->save.lstar;
2298         to_vmcb->save.cstar = from_vmcb->save.cstar;
2299         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2300         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2301         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2302         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2303 }
2304
2305 static int vmload_interception(struct vcpu_svm *svm)
2306 {
2307         struct vmcb *nested_vmcb;
2308         struct page *page;
2309
2310         if (nested_svm_check_permissions(svm))
2311                 return 1;
2312
2313         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2314         skip_emulated_instruction(&svm->vcpu);
2315
2316         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2317         if (!nested_vmcb)
2318                 return 1;
2319
2320         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2321         nested_svm_unmap(page);
2322
2323         return 1;
2324 }
2325
2326 static int vmsave_interception(struct vcpu_svm *svm)
2327 {
2328         struct vmcb *nested_vmcb;
2329         struct page *page;
2330
2331         if (nested_svm_check_permissions(svm))
2332                 return 1;
2333
2334         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2335         skip_emulated_instruction(&svm->vcpu);
2336
2337         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2338         if (!nested_vmcb)
2339                 return 1;
2340
2341         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2342         nested_svm_unmap(page);
2343
2344         return 1;
2345 }
2346
2347 static int vmrun_interception(struct vcpu_svm *svm)
2348 {
2349         if (nested_svm_check_permissions(svm))
2350                 return 1;
2351
2352         /* Save rip after vmrun instruction */
2353         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2354
2355         if (!nested_svm_vmrun(svm))
2356                 return 1;
2357
2358         if (!nested_svm_vmrun_msrpm(svm))
2359                 goto failed;
2360
2361         return 1;
2362
2363 failed:
2364
2365         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2366         svm->vmcb->control.exit_code_hi = 0;
2367         svm->vmcb->control.exit_info_1  = 0;
2368         svm->vmcb->control.exit_info_2  = 0;
2369
2370         nested_svm_vmexit(svm);
2371
2372         return 1;
2373 }
2374
2375 static int stgi_interception(struct vcpu_svm *svm)
2376 {
2377         if (nested_svm_check_permissions(svm))
2378                 return 1;
2379
2380         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2381         skip_emulated_instruction(&svm->vcpu);
2382         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2383
2384         enable_gif(svm);
2385
2386         return 1;
2387 }
2388
2389 static int clgi_interception(struct vcpu_svm *svm)
2390 {
2391         if (nested_svm_check_permissions(svm))
2392                 return 1;
2393
2394         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2395         skip_emulated_instruction(&svm->vcpu);
2396
2397         disable_gif(svm);
2398
2399         /* After a CLGI no interrupts should come */
2400         svm_clear_vintr(svm);
2401         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2402
2403         return 1;
2404 }
2405
2406 static int invlpga_interception(struct vcpu_svm *svm)
2407 {
2408         struct kvm_vcpu *vcpu = &svm->vcpu;
2409
2410         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2411                           vcpu->arch.regs[VCPU_REGS_RAX]);
2412
2413         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2414         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2415
2416         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2417         skip_emulated_instruction(&svm->vcpu);
2418         return 1;
2419 }
2420
2421 static int skinit_interception(struct vcpu_svm *svm)
2422 {
2423         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2424
2425         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2426         return 1;
2427 }
2428
2429 static int invalid_op_interception(struct vcpu_svm *svm)
2430 {
2431         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2432         return 1;
2433 }
2434
2435 static int task_switch_interception(struct vcpu_svm *svm)
2436 {
2437         u16 tss_selector;
2438         int reason;
2439         int int_type = svm->vmcb->control.exit_int_info &
2440                 SVM_EXITINTINFO_TYPE_MASK;
2441         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2442         uint32_t type =
2443                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2444         uint32_t idt_v =
2445                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2446         bool has_error_code = false;
2447         u32 error_code = 0;
2448
2449         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2450
2451         if (svm->vmcb->control.exit_info_2 &
2452             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2453                 reason = TASK_SWITCH_IRET;
2454         else if (svm->vmcb->control.exit_info_2 &
2455                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2456                 reason = TASK_SWITCH_JMP;
2457         else if (idt_v)
2458                 reason = TASK_SWITCH_GATE;
2459         else
2460                 reason = TASK_SWITCH_CALL;
2461
2462         if (reason == TASK_SWITCH_GATE) {
2463                 switch (type) {
2464                 case SVM_EXITINTINFO_TYPE_NMI:
2465                         svm->vcpu.arch.nmi_injected = false;
2466                         break;
2467                 case SVM_EXITINTINFO_TYPE_EXEPT:
2468                         if (svm->vmcb->control.exit_info_2 &
2469                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2470                                 has_error_code = true;
2471                                 error_code =
2472                                         (u32)svm->vmcb->control.exit_info_2;
2473                         }
2474                         kvm_clear_exception_queue(&svm->vcpu);
2475                         break;
2476                 case SVM_EXITINTINFO_TYPE_INTR:
2477                         kvm_clear_interrupt_queue(&svm->vcpu);
2478                         break;
2479                 default:
2480                         break;
2481                 }
2482         }
2483
2484         if (reason != TASK_SWITCH_GATE ||
2485             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2486             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2487              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2488                 skip_emulated_instruction(&svm->vcpu);
2489
2490         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2491                                 has_error_code, error_code) == EMULATE_FAIL) {
2492                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2493                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2494                 svm->vcpu.run->internal.ndata = 0;
2495                 return 0;
2496         }
2497         return 1;
2498 }
2499
2500 static int cpuid_interception(struct vcpu_svm *svm)
2501 {
2502         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2503         kvm_emulate_cpuid(&svm->vcpu);
2504         return 1;
2505 }
2506
2507 static int iret_interception(struct vcpu_svm *svm)
2508 {
2509         ++svm->vcpu.stat.nmi_window_exits;
2510         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2511         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2512         return 1;
2513 }
2514
2515 static int invlpg_interception(struct vcpu_svm *svm)
2516 {
2517         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2518 }
2519
2520 static int emulate_on_interception(struct vcpu_svm *svm)
2521 {
2522         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2523 }
2524
2525 static int cr0_write_interception(struct vcpu_svm *svm)
2526 {
2527         struct kvm_vcpu *vcpu = &svm->vcpu;
2528         int r;
2529
2530         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2531
2532         if (svm->nested.vmexit_rip) {
2533                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2534                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2535                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2536                 svm->nested.vmexit_rip = 0;
2537         }
2538
2539         return r == EMULATE_DONE;
2540 }
2541
2542 static int cr8_write_interception(struct vcpu_svm *svm)
2543 {
2544         struct kvm_run *kvm_run = svm->vcpu.run;
2545
2546         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2547         /* instruction emulation calls kvm_set_cr8() */
2548         emulate_instruction(&svm->vcpu, 0, 0, 0);
2549         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2550                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2551                 return 1;
2552         }
2553         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2554                 return 1;
2555         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2556         return 0;
2557 }
2558
2559 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2560 {
2561         struct vcpu_svm *svm = to_svm(vcpu);
2562
2563         switch (ecx) {
2564         case MSR_IA32_TSC: {
2565                 u64 tsc_offset;
2566
2567                 if (is_nested(svm))
2568                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2569                 else
2570                         tsc_offset = svm->vmcb->control.tsc_offset;
2571
2572                 *data = tsc_offset + native_read_tsc();
2573                 break;
2574         }
2575         case MSR_STAR:
2576                 *data = svm->vmcb->save.star;
2577                 break;
2578 #ifdef CONFIG_X86_64
2579         case MSR_LSTAR:
2580                 *data = svm->vmcb->save.lstar;
2581                 break;
2582         case MSR_CSTAR:
2583                 *data = svm->vmcb->save.cstar;
2584                 break;
2585         case MSR_KERNEL_GS_BASE:
2586                 *data = svm->vmcb->save.kernel_gs_base;
2587                 break;
2588         case MSR_SYSCALL_MASK:
2589                 *data = svm->vmcb->save.sfmask;
2590                 break;
2591 #endif
2592         case MSR_IA32_SYSENTER_CS:
2593                 *data = svm->vmcb->save.sysenter_cs;
2594                 break;
2595         case MSR_IA32_SYSENTER_EIP:
2596                 *data = svm->sysenter_eip;
2597                 break;
2598         case MSR_IA32_SYSENTER_ESP:
2599                 *data = svm->sysenter_esp;
2600                 break;
2601         /*
2602          * Nobody will change the following 5 values in the VMCB so we can
2603          * safely return them on rdmsr. They will always be 0 until LBRV is
2604          * implemented.
2605          */
2606         case MSR_IA32_DEBUGCTLMSR:
2607                 *data = svm->vmcb->save.dbgctl;
2608                 break;
2609         case MSR_IA32_LASTBRANCHFROMIP:
2610                 *data = svm->vmcb->save.br_from;
2611                 break;
2612         case MSR_IA32_LASTBRANCHTOIP:
2613                 *data = svm->vmcb->save.br_to;
2614                 break;
2615         case MSR_IA32_LASTINTFROMIP:
2616                 *data = svm->vmcb->save.last_excp_from;
2617                 break;
2618         case MSR_IA32_LASTINTTOIP:
2619                 *data = svm->vmcb->save.last_excp_to;
2620                 break;
2621         case MSR_VM_HSAVE_PA:
2622                 *data = svm->nested.hsave_msr;
2623                 break;
2624         case MSR_VM_CR:
2625                 *data = svm->nested.vm_cr_msr;
2626                 break;
2627         case MSR_IA32_UCODE_REV:
2628                 *data = 0x01000065;
2629                 break;
2630         default:
2631                 return kvm_get_msr_common(vcpu, ecx, data);
2632         }
2633         return 0;
2634 }
2635
2636 static int rdmsr_interception(struct vcpu_svm *svm)
2637 {
2638         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2639         u64 data;
2640
2641         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2642                 trace_kvm_msr_read_ex(ecx);
2643                 kvm_inject_gp(&svm->vcpu, 0);
2644         } else {
2645                 trace_kvm_msr_read(ecx, data);
2646
2647                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2648                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2649                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2650                 skip_emulated_instruction(&svm->vcpu);
2651         }
2652         return 1;
2653 }
2654
2655 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2656 {
2657         struct vcpu_svm *svm = to_svm(vcpu);
2658         int svm_dis, chg_mask;
2659
2660         if (data & ~SVM_VM_CR_VALID_MASK)
2661                 return 1;
2662
2663         chg_mask = SVM_VM_CR_VALID_MASK;
2664
2665         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2666                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2667
2668         svm->nested.vm_cr_msr &= ~chg_mask;
2669         svm->nested.vm_cr_msr |= (data & chg_mask);
2670
2671         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2672
2673         /* check for svm_disable while efer.svme is set */
2674         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2675                 return 1;
2676
2677         return 0;
2678 }
2679
2680 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2681 {
2682         struct vcpu_svm *svm = to_svm(vcpu);
2683
2684         switch (ecx) {
2685         case MSR_IA32_TSC:
2686                 kvm_write_tsc(vcpu, data);
2687                 break;
2688         case MSR_STAR:
2689                 svm->vmcb->save.star = data;
2690                 break;
2691 #ifdef CONFIG_X86_64
2692         case MSR_LSTAR:
2693                 svm->vmcb->save.lstar = data;
2694                 break;
2695         case MSR_CSTAR:
2696                 svm->vmcb->save.cstar = data;
2697                 break;
2698         case MSR_KERNEL_GS_BASE:
2699                 svm->vmcb->save.kernel_gs_base = data;
2700                 break;
2701         case MSR_SYSCALL_MASK:
2702                 svm->vmcb->save.sfmask = data;
2703                 break;
2704 #endif
2705         case MSR_IA32_SYSENTER_CS:
2706                 svm->vmcb->save.sysenter_cs = data;
2707                 break;
2708         case MSR_IA32_SYSENTER_EIP:
2709                 svm->sysenter_eip = data;
2710                 svm->vmcb->save.sysenter_eip = data;
2711                 break;
2712         case MSR_IA32_SYSENTER_ESP:
2713                 svm->sysenter_esp = data;
2714                 svm->vmcb->save.sysenter_esp = data;
2715                 break;
2716         case MSR_IA32_DEBUGCTLMSR:
2717                 if (!svm_has(SVM_FEATURE_LBRV)) {
2718                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2719                                         __func__, data);
2720                         break;
2721                 }
2722                 if (data & DEBUGCTL_RESERVED_BITS)
2723                         return 1;
2724
2725                 svm->vmcb->save.dbgctl = data;
2726                 if (data & (1ULL<<0))
2727                         svm_enable_lbrv(svm);
2728                 else
2729                         svm_disable_lbrv(svm);
2730                 break;
2731         case MSR_VM_HSAVE_PA:
2732                 svm->nested.hsave_msr = data;
2733                 break;
2734         case MSR_VM_CR:
2735                 return svm_set_vm_cr(vcpu, data);
2736         case MSR_VM_IGNNE:
2737                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2738                 break;
2739         default:
2740                 return kvm_set_msr_common(vcpu, ecx, data);
2741         }
2742         return 0;
2743 }
2744
2745 static int wrmsr_interception(struct vcpu_svm *svm)
2746 {
2747         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2748         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2749                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2750
2751
2752         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2753         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2754                 trace_kvm_msr_write_ex(ecx, data);
2755                 kvm_inject_gp(&svm->vcpu, 0);
2756         } else {
2757                 trace_kvm_msr_write(ecx, data);
2758                 skip_emulated_instruction(&svm->vcpu);
2759         }
2760         return 1;
2761 }
2762
2763 static int msr_interception(struct vcpu_svm *svm)
2764 {
2765         if (svm->vmcb->control.exit_info_1)
2766                 return wrmsr_interception(svm);
2767         else
2768                 return rdmsr_interception(svm);
2769 }
2770
2771 static int interrupt_window_interception(struct vcpu_svm *svm)
2772 {
2773         struct kvm_run *kvm_run = svm->vcpu.run;
2774
2775         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2776         svm_clear_vintr(svm);
2777         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2778         /*
2779          * If the user space waits to inject interrupts, exit as soon as
2780          * possible
2781          */
2782         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2783             kvm_run->request_interrupt_window &&
2784             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2785                 ++svm->vcpu.stat.irq_window_exits;
2786                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2787                 return 0;
2788         }
2789
2790         return 1;
2791 }
2792
2793 static int pause_interception(struct vcpu_svm *svm)
2794 {
2795         kvm_vcpu_on_spin(&(svm->vcpu));
2796         return 1;
2797 }
2798
2799 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2800         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2801         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2802         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2803         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2804         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2805         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2806         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2807         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2808         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2809         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2810         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2811         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2812         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2813         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2814         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2815         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2816         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2817         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2818         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2819         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2820         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2821         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2822         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2823         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2824         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2825         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2826         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2827         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2828         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2829         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2830         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2831         [SVM_EXIT_INTR]                         = intr_interception,
2832         [SVM_EXIT_NMI]                          = nmi_interception,
2833         [SVM_EXIT_SMI]                          = nop_on_interception,
2834         [SVM_EXIT_INIT]                         = nop_on_interception,
2835         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2836         [SVM_EXIT_CPUID]                        = cpuid_interception,
2837         [SVM_EXIT_IRET]                         = iret_interception,
2838         [SVM_EXIT_INVD]                         = emulate_on_interception,
2839         [SVM_EXIT_PAUSE]                        = pause_interception,
2840         [SVM_EXIT_HLT]                          = halt_interception,
2841         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2842         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2843         [SVM_EXIT_IOIO]                         = io_interception,
2844         [SVM_EXIT_MSR]                          = msr_interception,
2845         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2846         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2847         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2848         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2849         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2850         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2851         [SVM_EXIT_STGI]                         = stgi_interception,
2852         [SVM_EXIT_CLGI]                         = clgi_interception,
2853         [SVM_EXIT_SKINIT]                       = skinit_interception,
2854         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2855         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2856         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2857         [SVM_EXIT_NPF]                          = pf_interception,
2858 };
2859
2860 void dump_vmcb(struct kvm_vcpu *vcpu)
2861 {
2862         struct vcpu_svm *svm = to_svm(vcpu);
2863         struct vmcb_control_area *control = &svm->vmcb->control;
2864         struct vmcb_save_area *save = &svm->vmcb->save;
2865
2866         pr_err("VMCB Control Area:\n");
2867         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2868         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2869         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2870         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2871         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2872         pr_err("intercepts:         %016llx\n", control->intercept);
2873         pr_err("pause filter count: %d\n", control->pause_filter_count);
2874         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2875         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2876         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2877         pr_err("asid:               %d\n", control->asid);
2878         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2879         pr_err("int_ctl:            %08x\n", control->int_ctl);
2880         pr_err("int_vector:         %08x\n", control->int_vector);
2881         pr_err("int_state:          %08x\n", control->int_state);
2882         pr_err("exit_code:          %08x\n", control->exit_code);
2883         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2884         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2885         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2886         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2887         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2888         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2889         pr_err("event_inj:          %08x\n", control->event_inj);
2890         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2891         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2892         pr_err("next_rip:           %016llx\n", control->next_rip);
2893         pr_err("VMCB State Save Area:\n");
2894         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2895                 save->es.selector, save->es.attrib,
2896                 save->es.limit, save->es.base);
2897         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2898                 save->cs.selector, save->cs.attrib,
2899                 save->cs.limit, save->cs.base);
2900         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2901                 save->ss.selector, save->ss.attrib,
2902                 save->ss.limit, save->ss.base);
2903         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2904                 save->ds.selector, save->ds.attrib,
2905                 save->ds.limit, save->ds.base);
2906         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2907                 save->fs.selector, save->fs.attrib,
2908                 save->fs.limit, save->fs.base);
2909         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2910                 save->gs.selector, save->gs.attrib,
2911                 save->gs.limit, save->gs.base);
2912         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2913                 save->gdtr.selector, save->gdtr.attrib,
2914                 save->gdtr.limit, save->gdtr.base);
2915         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2916                 save->ldtr.selector, save->ldtr.attrib,
2917                 save->ldtr.limit, save->ldtr.base);
2918         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2919                 save->idtr.selector, save->idtr.attrib,
2920                 save->idtr.limit, save->idtr.base);
2921         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2922                 save->tr.selector, save->tr.attrib,
2923                 save->tr.limit, save->tr.base);
2924         pr_err("cpl:            %d                efer:         %016llx\n",
2925                 save->cpl, save->efer);
2926         pr_err("cr0:            %016llx cr2:          %016llx\n",
2927                 save->cr0, save->cr2);
2928         pr_err("cr3:            %016llx cr4:          %016llx\n",
2929                 save->cr3, save->cr4);
2930         pr_err("dr6:            %016llx dr7:          %016llx\n",
2931                 save->dr6, save->dr7);
2932         pr_err("rip:            %016llx rflags:       %016llx\n",
2933                 save->rip, save->rflags);
2934         pr_err("rsp:            %016llx rax:          %016llx\n",
2935                 save->rsp, save->rax);
2936         pr_err("star:           %016llx lstar:        %016llx\n",
2937                 save->star, save->lstar);
2938         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2939                 save->cstar, save->sfmask);
2940         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2941                 save->kernel_gs_base, save->sysenter_cs);
2942         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2943                 save->sysenter_esp, save->sysenter_eip);
2944         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2945                 save->g_pat, save->dbgctl);
2946         pr_err("br_from:        %016llx br_to:        %016llx\n",
2947                 save->br_from, save->br_to);
2948         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2949                 save->last_excp_from, save->last_excp_to);
2950
2951 }
2952
2953 static int handle_exit(struct kvm_vcpu *vcpu)
2954 {
2955         struct vcpu_svm *svm = to_svm(vcpu);
2956         struct kvm_run *kvm_run = vcpu->run;
2957         u32 exit_code = svm->vmcb->control.exit_code;
2958
2959         trace_kvm_exit(exit_code, vcpu);
2960
2961         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2962                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2963         if (npt_enabled)
2964                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2965
2966         if (unlikely(svm->nested.exit_required)) {
2967                 nested_svm_vmexit(svm);
2968                 svm->nested.exit_required = false;
2969
2970                 return 1;
2971         }
2972
2973         if (is_nested(svm)) {
2974                 int vmexit;
2975
2976                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2977                                         svm->vmcb->control.exit_info_1,
2978                                         svm->vmcb->control.exit_info_2,
2979                                         svm->vmcb->control.exit_int_info,
2980                                         svm->vmcb->control.exit_int_info_err);
2981
2982                 vmexit = nested_svm_exit_special(svm);
2983
2984                 if (vmexit == NESTED_EXIT_CONTINUE)
2985                         vmexit = nested_svm_exit_handled(svm);
2986
2987                 if (vmexit == NESTED_EXIT_DONE)
2988                         return 1;
2989         }
2990
2991         svm_complete_interrupts(svm);
2992
2993         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2994                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2995                 kvm_run->fail_entry.hardware_entry_failure_reason
2996                         = svm->vmcb->control.exit_code;
2997                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
2998                 dump_vmcb(vcpu);
2999                 return 0;
3000         }
3001
3002         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3003             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3004             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3005             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3006                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3007                        "exit_code 0x%x\n",
3008                        __func__, svm->vmcb->control.exit_int_info,
3009                        exit_code);
3010
3011         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3012             || !svm_exit_handlers[exit_code]) {
3013                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3014                 kvm_run->hw.hardware_exit_reason = exit_code;
3015                 return 0;
3016         }
3017
3018         return svm_exit_handlers[exit_code](svm);
3019 }
3020
3021 static void reload_tss(struct kvm_vcpu *vcpu)
3022 {
3023         int cpu = raw_smp_processor_id();
3024
3025         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3026         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3027         load_TR_desc();
3028 }
3029
3030 static void pre_svm_run(struct vcpu_svm *svm)
3031 {
3032         int cpu = raw_smp_processor_id();
3033
3034         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3035
3036         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3037         /* FIXME: handle wraparound of asid_generation */
3038         if (svm->asid_generation != sd->asid_generation)
3039                 new_asid(svm, sd);
3040 }
3041
3042 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3043 {
3044         struct vcpu_svm *svm = to_svm(vcpu);
3045
3046         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3047         vcpu->arch.hflags |= HF_NMI_MASK;
3048         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3049         ++vcpu->stat.nmi_injections;
3050 }
3051
3052 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3053 {
3054         struct vmcb_control_area *control;
3055
3056         control = &svm->vmcb->control;
3057         control->int_vector = irq;
3058         control->int_ctl &= ~V_INTR_PRIO_MASK;
3059         control->int_ctl |= V_IRQ_MASK |
3060                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3061 }
3062
3063 static void svm_set_irq(struct kvm_vcpu *vcpu)
3064 {
3065         struct vcpu_svm *svm = to_svm(vcpu);
3066
3067         BUG_ON(!(gif_set(svm)));
3068
3069         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3070         ++vcpu->stat.irq_injections;
3071
3072         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3073                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3074 }
3075
3076 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3077 {
3078         struct vcpu_svm *svm = to_svm(vcpu);
3079
3080         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3081                 return;
3082
3083         if (irr == -1)
3084                 return;
3085
3086         if (tpr >= irr)
3087                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3088 }
3089
3090 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3091 {
3092         struct vcpu_svm *svm = to_svm(vcpu);
3093         struct vmcb *vmcb = svm->vmcb;
3094         int ret;
3095         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3096               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3097         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3098
3099         return ret;
3100 }
3101
3102 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3103 {
3104         struct vcpu_svm *svm = to_svm(vcpu);
3105
3106         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3107 }
3108
3109 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3110 {
3111         struct vcpu_svm *svm = to_svm(vcpu);
3112
3113         if (masked) {
3114                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3115                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3116         } else {
3117                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3118                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3119         }
3120 }
3121
3122 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3123 {
3124         struct vcpu_svm *svm = to_svm(vcpu);
3125         struct vmcb *vmcb = svm->vmcb;
3126         int ret;
3127
3128         if (!gif_set(svm) ||
3129              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3130                 return 0;
3131
3132         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3133
3134         if (is_nested(svm))
3135                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3136
3137         return ret;
3138 }
3139
3140 static void enable_irq_window(struct kvm_vcpu *vcpu)
3141 {
3142         struct vcpu_svm *svm = to_svm(vcpu);
3143
3144         /*
3145          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3146          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3147          * get that intercept, this function will be called again though and
3148          * we'll get the vintr intercept.
3149          */
3150         if (gif_set(svm) && nested_svm_intr(svm)) {
3151                 svm_set_vintr(svm);
3152                 svm_inject_irq(svm, 0x0);
3153         }
3154 }
3155
3156 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3157 {
3158         struct vcpu_svm *svm = to_svm(vcpu);
3159
3160         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3161             == HF_NMI_MASK)
3162                 return; /* IRET will cause a vm exit */
3163
3164         /*
3165          * Something prevents NMI from been injected. Single step over possible
3166          * problem (IRET or exception injection or interrupt shadow)
3167          */
3168         svm->nmi_singlestep = true;
3169         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3170         update_db_intercept(vcpu);
3171 }
3172
3173 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3174 {
3175         return 0;
3176 }
3177
3178 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3179 {
3180         force_new_asid(vcpu);
3181 }
3182
3183 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3184 {
3185 }
3186
3187 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3188 {
3189         struct vcpu_svm *svm = to_svm(vcpu);
3190
3191         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3192                 return;
3193
3194         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3195                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3196                 kvm_set_cr8(vcpu, cr8);
3197         }
3198 }
3199
3200 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3201 {
3202         struct vcpu_svm *svm = to_svm(vcpu);
3203         u64 cr8;
3204
3205         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3206                 return;
3207
3208         cr8 = kvm_get_cr8(vcpu);
3209         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3210         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3211 }
3212
3213 static void svm_complete_interrupts(struct vcpu_svm *svm)
3214 {
3215         u8 vector;
3216         int type;
3217         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3218         unsigned int3_injected = svm->int3_injected;
3219
3220         svm->int3_injected = 0;
3221
3222         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3223                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3224                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3225         }
3226
3227         svm->vcpu.arch.nmi_injected = false;
3228         kvm_clear_exception_queue(&svm->vcpu);
3229         kvm_clear_interrupt_queue(&svm->vcpu);
3230
3231         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3232                 return;
3233
3234         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3235
3236         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3237         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3238
3239         switch (type) {
3240         case SVM_EXITINTINFO_TYPE_NMI:
3241                 svm->vcpu.arch.nmi_injected = true;
3242                 break;
3243         case SVM_EXITINTINFO_TYPE_EXEPT:
3244                 /*
3245                  * In case of software exceptions, do not reinject the vector,
3246                  * but re-execute the instruction instead. Rewind RIP first
3247                  * if we emulated INT3 before.
3248                  */
3249                 if (kvm_exception_is_soft(vector)) {
3250                         if (vector == BP_VECTOR && int3_injected &&
3251                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3252                                 kvm_rip_write(&svm->vcpu,
3253                                               kvm_rip_read(&svm->vcpu) -
3254                                               int3_injected);
3255                         break;
3256                 }
3257                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3258                         u32 err = svm->vmcb->control.exit_int_info_err;
3259                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3260
3261                 } else
3262                         kvm_requeue_exception(&svm->vcpu, vector);
3263                 break;
3264         case SVM_EXITINTINFO_TYPE_INTR:
3265                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3266                 break;
3267         default:
3268                 break;
3269         }
3270 }
3271
3272 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3273 {
3274         struct vcpu_svm *svm = to_svm(vcpu);
3275         struct vmcb_control_area *control = &svm->vmcb->control;
3276
3277         control->exit_int_info = control->event_inj;
3278         control->exit_int_info_err = control->event_inj_err;
3279         control->event_inj = 0;
3280         svm_complete_interrupts(svm);
3281 }
3282
3283 #ifdef CONFIG_X86_64
3284 #define R "r"
3285 #else
3286 #define R "e"
3287 #endif
3288
3289 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3290 {
3291         struct vcpu_svm *svm = to_svm(vcpu);
3292         u16 fs_selector;
3293         u16 gs_selector;
3294         u16 ldt_selector;
3295
3296         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3297         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3298         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3299
3300         /*
3301          * A vmexit emulation is required before the vcpu can be executed
3302          * again.
3303          */
3304         if (unlikely(svm->nested.exit_required))
3305                 return;
3306
3307         pre_svm_run(svm);
3308
3309         sync_lapic_to_cr8(vcpu);
3310
3311         save_host_msrs(vcpu);
3312         savesegment(fs, fs_selector);
3313         savesegment(gs, gs_selector);
3314         ldt_selector = kvm_read_ldt();
3315         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3316
3317         clgi();
3318
3319         local_irq_enable();
3320
3321         asm volatile (
3322                 "push %%"R"bp; \n\t"
3323                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3324                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3325                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3326                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3327                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3328                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3329 #ifdef CONFIG_X86_64
3330                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3331                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3332                 "mov %c[r10](%[svm]), %%r10 \n\t"
3333                 "mov %c[r11](%[svm]), %%r11 \n\t"
3334                 "mov %c[r12](%[svm]), %%r12 \n\t"
3335                 "mov %c[r13](%[svm]), %%r13 \n\t"
3336                 "mov %c[r14](%[svm]), %%r14 \n\t"
3337                 "mov %c[r15](%[svm]), %%r15 \n\t"
3338 #endif
3339
3340                 /* Enter guest mode */
3341                 "push %%"R"ax \n\t"
3342                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3343                 __ex(SVM_VMLOAD) "\n\t"
3344                 __ex(SVM_VMRUN) "\n\t"
3345                 __ex(SVM_VMSAVE) "\n\t"
3346                 "pop %%"R"ax \n\t"
3347
3348                 /* Save guest registers, load host registers */
3349                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3350                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3351                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3352                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3353                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3354                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3355 #ifdef CONFIG_X86_64
3356                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3357                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3358                 "mov %%r10, %c[r10](%[svm]) \n\t"
3359                 "mov %%r11, %c[r11](%[svm]) \n\t"
3360                 "mov %%r12, %c[r12](%[svm]) \n\t"
3361                 "mov %%r13, %c[r13](%[svm]) \n\t"
3362                 "mov %%r14, %c[r14](%[svm]) \n\t"
3363                 "mov %%r15, %c[r15](%[svm]) \n\t"
3364 #endif
3365                 "pop %%"R"bp"
3366                 :
3367                 : [svm]"a"(svm),
3368                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3369                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3370                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3371                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3372                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3373                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3374                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3375 #ifdef CONFIG_X86_64
3376                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3377                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3378                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3379                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3380                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3381                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3382                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3383                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3384 #endif
3385                 : "cc", "memory"
3386                 , R"bx", R"cx", R"dx", R"si", R"di"
3387 #ifdef CONFIG_X86_64
3388                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3389 #endif
3390                 );
3391
3392         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3393         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3394         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3395         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3396
3397         load_host_msrs(vcpu);
3398         loadsegment(fs, fs_selector);
3399 #ifdef CONFIG_X86_64
3400         load_gs_index(gs_selector);
3401         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3402 #else
3403         loadsegment(gs, gs_selector);
3404 #endif
3405         kvm_load_ldt(ldt_selector);
3406
3407         reload_tss(vcpu);
3408
3409         local_irq_disable();
3410
3411         stgi();
3412
3413         sync_cr8_to_lapic(vcpu);
3414
3415         svm->next_rip = 0;
3416
3417         if (npt_enabled) {
3418                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3419                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3420         }
3421
3422         /*
3423          * We need to handle MC intercepts here before the vcpu has a chance to
3424          * change the physical cpu
3425          */
3426         if (unlikely(svm->vmcb->control.exit_code ==
3427                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3428                 svm_handle_mce(svm);
3429 }
3430
3431 #undef R
3432
3433 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3434 {
3435         struct vcpu_svm *svm = to_svm(vcpu);
3436
3437         svm->vmcb->save.cr3 = root;
3438         force_new_asid(vcpu);
3439 }
3440
3441 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3442 {
3443         struct vcpu_svm *svm = to_svm(vcpu);
3444
3445         svm->vmcb->control.nested_cr3 = root;
3446
3447         /* Also sync guest cr3 here in case we live migrate */
3448         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3449
3450         force_new_asid(vcpu);
3451 }
3452
3453 static int is_disabled(void)
3454 {
3455         u64 vm_cr;
3456
3457         rdmsrl(MSR_VM_CR, vm_cr);
3458         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3459                 return 1;
3460
3461         return 0;
3462 }
3463
3464 static void
3465 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3466 {
3467         /*
3468          * Patch in the VMMCALL instruction:
3469          */
3470         hypercall[0] = 0x0f;
3471         hypercall[1] = 0x01;
3472         hypercall[2] = 0xd9;
3473 }
3474
3475 static void svm_check_processor_compat(void *rtn)
3476 {
3477         *(int *)rtn = 0;
3478 }
3479
3480 static bool svm_cpu_has_accelerated_tpr(void)
3481 {
3482         return false;
3483 }
3484
3485 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3486 {
3487         return 0;
3488 }
3489
3490 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3491 {
3492 }
3493
3494 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3495 {
3496         switch (func) {
3497         case 0x80000001:
3498                 if (nested)
3499                         entry->ecx |= (1 << 2); /* Set SVM bit */
3500                 break;
3501         case 0x8000000A:
3502                 entry->eax = 1; /* SVM revision 1 */
3503                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3504                                    ASID emulation to nested SVM */
3505                 entry->ecx = 0; /* Reserved */
3506                 entry->edx = 0; /* Per default do not support any
3507                                    additional features */
3508
3509                 /* Support next_rip if host supports it */
3510                 if (svm_has(SVM_FEATURE_NRIP))
3511                         entry->edx |= SVM_FEATURE_NRIP;
3512
3513                 /* Support NPT for the guest if enabled */
3514                 if (npt_enabled)
3515                         entry->edx |= SVM_FEATURE_NPT;
3516
3517                 break;
3518         }
3519 }
3520
3521 static const struct trace_print_flags svm_exit_reasons_str[] = {
3522         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3523         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3524         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3525         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3526         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3527         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3528         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3529         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3530         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3531         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3532         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3533         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3534         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3535         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3536         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3537         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3538         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3539         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3540         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3541         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3542         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3543         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3544         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3545         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3546         { SVM_EXIT_INTR,                        "interrupt" },
3547         { SVM_EXIT_NMI,                         "nmi" },
3548         { SVM_EXIT_SMI,                         "smi" },
3549         { SVM_EXIT_INIT,                        "init" },
3550         { SVM_EXIT_VINTR,                       "vintr" },
3551         { SVM_EXIT_CPUID,                       "cpuid" },
3552         { SVM_EXIT_INVD,                        "invd" },
3553         { SVM_EXIT_HLT,                         "hlt" },
3554         { SVM_EXIT_INVLPG,                      "invlpg" },
3555         { SVM_EXIT_INVLPGA,                     "invlpga" },
3556         { SVM_EXIT_IOIO,                        "io" },
3557         { SVM_EXIT_MSR,                         "msr" },
3558         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3559         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3560         { SVM_EXIT_VMRUN,                       "vmrun" },
3561         { SVM_EXIT_VMMCALL,                     "hypercall" },
3562         { SVM_EXIT_VMLOAD,                      "vmload" },
3563         { SVM_EXIT_VMSAVE,                      "vmsave" },
3564         { SVM_EXIT_STGI,                        "stgi" },
3565         { SVM_EXIT_CLGI,                        "clgi" },
3566         { SVM_EXIT_SKINIT,                      "skinit" },
3567         { SVM_EXIT_WBINVD,                      "wbinvd" },
3568         { SVM_EXIT_MONITOR,                     "monitor" },
3569         { SVM_EXIT_MWAIT,                       "mwait" },
3570         { SVM_EXIT_NPF,                         "npf" },
3571         { -1, NULL }
3572 };
3573
3574 static int svm_get_lpage_level(void)
3575 {
3576         return PT_PDPE_LEVEL;
3577 }
3578
3579 static bool svm_rdtscp_supported(void)
3580 {
3581         return false;
3582 }
3583
3584 static bool svm_has_wbinvd_exit(void)
3585 {
3586         return true;
3587 }
3588
3589 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3590 {
3591         struct vcpu_svm *svm = to_svm(vcpu);
3592
3593         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3594         if (is_nested(svm))
3595                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3596         update_cr0_intercept(svm);
3597 }
3598
3599 static struct kvm_x86_ops svm_x86_ops = {
3600         .cpu_has_kvm_support = has_svm,
3601         .disabled_by_bios = is_disabled,
3602         .hardware_setup = svm_hardware_setup,
3603         .hardware_unsetup = svm_hardware_unsetup,
3604         .check_processor_compatibility = svm_check_processor_compat,
3605         .hardware_enable = svm_hardware_enable,
3606         .hardware_disable = svm_hardware_disable,
3607         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3608
3609         .vcpu_create = svm_create_vcpu,
3610         .vcpu_free = svm_free_vcpu,
3611         .vcpu_reset = svm_vcpu_reset,
3612
3613         .prepare_guest_switch = svm_prepare_guest_switch,
3614         .vcpu_load = svm_vcpu_load,
3615         .vcpu_put = svm_vcpu_put,
3616
3617         .set_guest_debug = svm_guest_debug,
3618         .get_msr = svm_get_msr,
3619         .set_msr = svm_set_msr,
3620         .get_segment_base = svm_get_segment_base,
3621         .get_segment = svm_get_segment,
3622         .set_segment = svm_set_segment,
3623         .get_cpl = svm_get_cpl,
3624         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3625         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3626         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3627         .set_cr0 = svm_set_cr0,
3628         .set_cr3 = svm_set_cr3,
3629         .set_cr4 = svm_set_cr4,
3630         .set_efer = svm_set_efer,
3631         .get_idt = svm_get_idt,
3632         .set_idt = svm_set_idt,
3633         .get_gdt = svm_get_gdt,
3634         .set_gdt = svm_set_gdt,
3635         .set_dr7 = svm_set_dr7,
3636         .cache_reg = svm_cache_reg,
3637         .get_rflags = svm_get_rflags,
3638         .set_rflags = svm_set_rflags,
3639         .fpu_activate = svm_fpu_activate,
3640         .fpu_deactivate = svm_fpu_deactivate,
3641
3642         .tlb_flush = svm_flush_tlb,
3643
3644         .run = svm_vcpu_run,
3645         .handle_exit = handle_exit,
3646         .skip_emulated_instruction = skip_emulated_instruction,
3647         .set_interrupt_shadow = svm_set_interrupt_shadow,
3648         .get_interrupt_shadow = svm_get_interrupt_shadow,
3649         .patch_hypercall = svm_patch_hypercall,
3650         .set_irq = svm_set_irq,
3651         .set_nmi = svm_inject_nmi,
3652         .queue_exception = svm_queue_exception,
3653         .cancel_injection = svm_cancel_injection,
3654         .interrupt_allowed = svm_interrupt_allowed,
3655         .nmi_allowed = svm_nmi_allowed,
3656         .get_nmi_mask = svm_get_nmi_mask,
3657         .set_nmi_mask = svm_set_nmi_mask,
3658         .enable_nmi_window = enable_nmi_window,
3659         .enable_irq_window = enable_irq_window,
3660         .update_cr8_intercept = update_cr8_intercept,
3661
3662         .set_tss_addr = svm_set_tss_addr,
3663         .get_tdp_level = get_npt_level,
3664         .get_mt_mask = svm_get_mt_mask,
3665
3666         .exit_reasons_str = svm_exit_reasons_str,
3667         .get_lpage_level = svm_get_lpage_level,
3668
3669         .cpuid_update = svm_cpuid_update,
3670
3671         .rdtscp_supported = svm_rdtscp_supported,
3672
3673         .set_supported_cpuid = svm_set_supported_cpuid,
3674
3675         .has_wbinvd_exit = svm_has_wbinvd_exit,
3676
3677         .write_tsc_offset = svm_write_tsc_offset,
3678         .adjust_tsc_offset = svm_adjust_tsc_offset,
3679
3680         .set_tdp_cr3 = set_tdp_cr3,
3681 };
3682
3683 static int __init svm_init(void)
3684 {
3685         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3686                         __alignof__(struct vcpu_svm), THIS_MODULE);
3687 }
3688
3689 static void __exit svm_exit(void)
3690 {
3691         kvm_exit();
3692 }
3693
3694 module_init(svm_init)
3695 module_exit(svm_exit)