Merge branch 'fix/hda' into for-linus
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
51
52 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
53 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
54 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
55
56 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
57
58 static const u32 host_save_user_msrs[] = {
59 #ifdef CONFIG_X86_64
60         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
61         MSR_FS_BASE,
62 #endif
63         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
64 };
65
66 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
67
68 struct kvm_vcpu;
69
70 struct nested_state {
71         struct vmcb *hsave;
72         u64 hsave_msr;
73         u64 vmcb;
74
75         /* These are the merged vectors */
76         u32 *msrpm;
77
78         /* gpa pointers to the real vectors */
79         u64 vmcb_msrpm;
80
81         /* A VMEXIT is required but not yet emulated */
82         bool exit_required;
83
84         /* cache for intercepts of the guest */
85         u16 intercept_cr_read;
86         u16 intercept_cr_write;
87         u16 intercept_dr_read;
88         u16 intercept_dr_write;
89         u32 intercept_exceptions;
90         u64 intercept;
91
92 };
93
94 struct vcpu_svm {
95         struct kvm_vcpu vcpu;
96         struct vmcb *vmcb;
97         unsigned long vmcb_pa;
98         struct svm_cpu_data *svm_data;
99         uint64_t asid_generation;
100         uint64_t sysenter_esp;
101         uint64_t sysenter_eip;
102
103         u64 next_rip;
104
105         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
106         u64 host_gs_base;
107
108         u32 *msrpm;
109
110         struct nested_state nested;
111
112         bool nmi_singlestep;
113 };
114
115 /* enable NPT for AMD64 and X86 with PAE */
116 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
117 static bool npt_enabled = true;
118 #else
119 static bool npt_enabled = false;
120 #endif
121 static int npt = 1;
122
123 module_param(npt, int, S_IRUGO);
124
125 static int nested = 1;
126 module_param(nested, int, S_IRUGO);
127
128 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
129 static void svm_complete_interrupts(struct vcpu_svm *svm);
130
131 static int nested_svm_exit_handled(struct vcpu_svm *svm);
132 static int nested_svm_vmexit(struct vcpu_svm *svm);
133 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
134                                       bool has_error_code, u32 error_code);
135
136 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
137 {
138         return container_of(vcpu, struct vcpu_svm, vcpu);
139 }
140
141 static inline bool is_nested(struct vcpu_svm *svm)
142 {
143         return svm->nested.vmcb;
144 }
145
146 static inline void enable_gif(struct vcpu_svm *svm)
147 {
148         svm->vcpu.arch.hflags |= HF_GIF_MASK;
149 }
150
151 static inline void disable_gif(struct vcpu_svm *svm)
152 {
153         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
154 }
155
156 static inline bool gif_set(struct vcpu_svm *svm)
157 {
158         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
159 }
160
161 static unsigned long iopm_base;
162
163 struct kvm_ldttss_desc {
164         u16 limit0;
165         u16 base0;
166         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
167         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
168         u32 base3;
169         u32 zero1;
170 } __attribute__((packed));
171
172 struct svm_cpu_data {
173         int cpu;
174
175         u64 asid_generation;
176         u32 max_asid;
177         u32 next_asid;
178         struct kvm_ldttss_desc *tss_desc;
179
180         struct page *save_area;
181 };
182
183 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
184 static uint32_t svm_features;
185
186 struct svm_init_data {
187         int cpu;
188         int r;
189 };
190
191 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
192
193 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
194 #define MSRS_RANGE_SIZE 2048
195 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
196
197 #define MAX_INST_SIZE 15
198
199 static inline u32 svm_has(u32 feat)
200 {
201         return svm_features & feat;
202 }
203
204 static inline void clgi(void)
205 {
206         asm volatile (__ex(SVM_CLGI));
207 }
208
209 static inline void stgi(void)
210 {
211         asm volatile (__ex(SVM_STGI));
212 }
213
214 static inline void invlpga(unsigned long addr, u32 asid)
215 {
216         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
217 }
218
219 static inline void force_new_asid(struct kvm_vcpu *vcpu)
220 {
221         to_svm(vcpu)->asid_generation--;
222 }
223
224 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
225 {
226         force_new_asid(vcpu);
227 }
228
229 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
230 {
231         if (!npt_enabled && !(efer & EFER_LMA))
232                 efer &= ~EFER_LME;
233
234         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
235         vcpu->arch.efer = efer;
236 }
237
238 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
239                                 bool has_error_code, u32 error_code)
240 {
241         struct vcpu_svm *svm = to_svm(vcpu);
242
243         /* If we are within a nested VM we'd better #VMEXIT and let the
244            guest handle the exception */
245         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
246                 return;
247
248         svm->vmcb->control.event_inj = nr
249                 | SVM_EVTINJ_VALID
250                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
251                 | SVM_EVTINJ_TYPE_EXEPT;
252         svm->vmcb->control.event_inj_err = error_code;
253 }
254
255 static int is_external_interrupt(u32 info)
256 {
257         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
258         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
259 }
260
261 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
262 {
263         struct vcpu_svm *svm = to_svm(vcpu);
264         u32 ret = 0;
265
266         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
267                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
268         return ret & mask;
269 }
270
271 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
272 {
273         struct vcpu_svm *svm = to_svm(vcpu);
274
275         if (mask == 0)
276                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
277         else
278                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
279
280 }
281
282 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
283 {
284         struct vcpu_svm *svm = to_svm(vcpu);
285
286         if (!svm->next_rip) {
287                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
288                                 EMULATE_DONE)
289                         printk(KERN_DEBUG "%s: NOP\n", __func__);
290                 return;
291         }
292         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
293                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
294                        __func__, kvm_rip_read(vcpu), svm->next_rip);
295
296         kvm_rip_write(vcpu, svm->next_rip);
297         svm_set_interrupt_shadow(vcpu, 0);
298 }
299
300 static int has_svm(void)
301 {
302         const char *msg;
303
304         if (!cpu_has_svm(&msg)) {
305                 printk(KERN_INFO "has_svm: %s\n", msg);
306                 return 0;
307         }
308
309         return 1;
310 }
311
312 static void svm_hardware_disable(void *garbage)
313 {
314         cpu_svm_disable();
315 }
316
317 static int svm_hardware_enable(void *garbage)
318 {
319
320         struct svm_cpu_data *sd;
321         uint64_t efer;
322         struct descriptor_table gdt_descr;
323         struct desc_struct *gdt;
324         int me = raw_smp_processor_id();
325
326         rdmsrl(MSR_EFER, efer);
327         if (efer & EFER_SVME)
328                 return -EBUSY;
329
330         if (!has_svm()) {
331                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
332                        me);
333                 return -EINVAL;
334         }
335         sd = per_cpu(svm_data, me);
336
337         if (!sd) {
338                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
339                        me);
340                 return -EINVAL;
341         }
342
343         sd->asid_generation = 1;
344         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
345         sd->next_asid = sd->max_asid + 1;
346
347         kvm_get_gdt(&gdt_descr);
348         gdt = (struct desc_struct *)gdt_descr.base;
349         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
350
351         wrmsrl(MSR_EFER, efer | EFER_SVME);
352
353         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
354
355         return 0;
356 }
357
358 static void svm_cpu_uninit(int cpu)
359 {
360         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
361
362         if (!sd)
363                 return;
364
365         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
366         __free_page(sd->save_area);
367         kfree(sd);
368 }
369
370 static int svm_cpu_init(int cpu)
371 {
372         struct svm_cpu_data *sd;
373         int r;
374
375         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
376         if (!sd)
377                 return -ENOMEM;
378         sd->cpu = cpu;
379         sd->save_area = alloc_page(GFP_KERNEL);
380         r = -ENOMEM;
381         if (!sd->save_area)
382                 goto err_1;
383
384         per_cpu(svm_data, cpu) = sd;
385
386         return 0;
387
388 err_1:
389         kfree(sd);
390         return r;
391
392 }
393
394 static void set_msr_interception(u32 *msrpm, unsigned msr,
395                                  int read, int write)
396 {
397         int i;
398
399         for (i = 0; i < NUM_MSR_MAPS; i++) {
400                 if (msr >= msrpm_ranges[i] &&
401                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
402                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
403                                           msrpm_ranges[i]) * 2;
404
405                         u32 *base = msrpm + (msr_offset / 32);
406                         u32 msr_shift = msr_offset % 32;
407                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
408                         *base = (*base & ~(0x3 << msr_shift)) |
409                                 (mask << msr_shift);
410                         return;
411                 }
412         }
413         BUG();
414 }
415
416 static void svm_vcpu_init_msrpm(u32 *msrpm)
417 {
418         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
419
420 #ifdef CONFIG_X86_64
421         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
422         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
423         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
424         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
425         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
426         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
427 #endif
428         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
429         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
430 }
431
432 static void svm_enable_lbrv(struct vcpu_svm *svm)
433 {
434         u32 *msrpm = svm->msrpm;
435
436         svm->vmcb->control.lbr_ctl = 1;
437         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
438         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
439         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
440         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
441 }
442
443 static void svm_disable_lbrv(struct vcpu_svm *svm)
444 {
445         u32 *msrpm = svm->msrpm;
446
447         svm->vmcb->control.lbr_ctl = 0;
448         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
449         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
450         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
451         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
452 }
453
454 static __init int svm_hardware_setup(void)
455 {
456         int cpu;
457         struct page *iopm_pages;
458         void *iopm_va;
459         int r;
460
461         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
462
463         if (!iopm_pages)
464                 return -ENOMEM;
465
466         iopm_va = page_address(iopm_pages);
467         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
468         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
469
470         if (boot_cpu_has(X86_FEATURE_NX))
471                 kvm_enable_efer_bits(EFER_NX);
472
473         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
474                 kvm_enable_efer_bits(EFER_FFXSR);
475
476         if (nested) {
477                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
478                 kvm_enable_efer_bits(EFER_SVME);
479         }
480
481         for_each_possible_cpu(cpu) {
482                 r = svm_cpu_init(cpu);
483                 if (r)
484                         goto err;
485         }
486
487         svm_features = cpuid_edx(SVM_CPUID_FUNC);
488
489         if (!svm_has(SVM_FEATURE_NPT))
490                 npt_enabled = false;
491
492         if (npt_enabled && !npt) {
493                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
494                 npt_enabled = false;
495         }
496
497         if (npt_enabled) {
498                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
499                 kvm_enable_tdp();
500         } else
501                 kvm_disable_tdp();
502
503         return 0;
504
505 err:
506         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
507         iopm_base = 0;
508         return r;
509 }
510
511 static __exit void svm_hardware_unsetup(void)
512 {
513         int cpu;
514
515         for_each_possible_cpu(cpu)
516                 svm_cpu_uninit(cpu);
517
518         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
519         iopm_base = 0;
520 }
521
522 static void init_seg(struct vmcb_seg *seg)
523 {
524         seg->selector = 0;
525         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
526                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
527         seg->limit = 0xffff;
528         seg->base = 0;
529 }
530
531 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
532 {
533         seg->selector = 0;
534         seg->attrib = SVM_SELECTOR_P_MASK | type;
535         seg->limit = 0xffff;
536         seg->base = 0;
537 }
538
539 static void init_vmcb(struct vcpu_svm *svm)
540 {
541         struct vmcb_control_area *control = &svm->vmcb->control;
542         struct vmcb_save_area *save = &svm->vmcb->save;
543
544         svm->vcpu.fpu_active = 1;
545
546         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
547                                         INTERCEPT_CR3_MASK |
548                                         INTERCEPT_CR4_MASK;
549
550         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
551                                         INTERCEPT_CR3_MASK |
552                                         INTERCEPT_CR4_MASK |
553                                         INTERCEPT_CR8_MASK;
554
555         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
556                                         INTERCEPT_DR1_MASK |
557                                         INTERCEPT_DR2_MASK |
558                                         INTERCEPT_DR3_MASK |
559                                         INTERCEPT_DR4_MASK |
560                                         INTERCEPT_DR5_MASK |
561                                         INTERCEPT_DR6_MASK |
562                                         INTERCEPT_DR7_MASK;
563
564         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
565                                         INTERCEPT_DR1_MASK |
566                                         INTERCEPT_DR2_MASK |
567                                         INTERCEPT_DR3_MASK |
568                                         INTERCEPT_DR4_MASK |
569                                         INTERCEPT_DR5_MASK |
570                                         INTERCEPT_DR6_MASK |
571                                         INTERCEPT_DR7_MASK;
572
573         control->intercept_exceptions = (1 << PF_VECTOR) |
574                                         (1 << UD_VECTOR) |
575                                         (1 << MC_VECTOR);
576
577
578         control->intercept =    (1ULL << INTERCEPT_INTR) |
579                                 (1ULL << INTERCEPT_NMI) |
580                                 (1ULL << INTERCEPT_SMI) |
581                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
582                                 (1ULL << INTERCEPT_CPUID) |
583                                 (1ULL << INTERCEPT_INVD) |
584                                 (1ULL << INTERCEPT_HLT) |
585                                 (1ULL << INTERCEPT_INVLPG) |
586                                 (1ULL << INTERCEPT_INVLPGA) |
587                                 (1ULL << INTERCEPT_IOIO_PROT) |
588                                 (1ULL << INTERCEPT_MSR_PROT) |
589                                 (1ULL << INTERCEPT_TASK_SWITCH) |
590                                 (1ULL << INTERCEPT_SHUTDOWN) |
591                                 (1ULL << INTERCEPT_VMRUN) |
592                                 (1ULL << INTERCEPT_VMMCALL) |
593                                 (1ULL << INTERCEPT_VMLOAD) |
594                                 (1ULL << INTERCEPT_VMSAVE) |
595                                 (1ULL << INTERCEPT_STGI) |
596                                 (1ULL << INTERCEPT_CLGI) |
597                                 (1ULL << INTERCEPT_SKINIT) |
598                                 (1ULL << INTERCEPT_WBINVD) |
599                                 (1ULL << INTERCEPT_MONITOR) |
600                                 (1ULL << INTERCEPT_MWAIT);
601
602         control->iopm_base_pa = iopm_base;
603         control->msrpm_base_pa = __pa(svm->msrpm);
604         control->tsc_offset = 0;
605         control->int_ctl = V_INTR_MASKING_MASK;
606
607         init_seg(&save->es);
608         init_seg(&save->ss);
609         init_seg(&save->ds);
610         init_seg(&save->fs);
611         init_seg(&save->gs);
612
613         save->cs.selector = 0xf000;
614         /* Executable/Readable Code Segment */
615         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
616                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
617         save->cs.limit = 0xffff;
618         /*
619          * cs.base should really be 0xffff0000, but vmx can't handle that, so
620          * be consistent with it.
621          *
622          * Replace when we have real mode working for vmx.
623          */
624         save->cs.base = 0xf0000;
625
626         save->gdtr.limit = 0xffff;
627         save->idtr.limit = 0xffff;
628
629         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
630         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
631
632         save->efer = EFER_SVME;
633         save->dr6 = 0xffff0ff0;
634         save->dr7 = 0x400;
635         save->rflags = 2;
636         save->rip = 0x0000fff0;
637         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
638
639         /* This is the guest-visible cr0 value.
640          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
641          */
642         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
643         kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
644
645         save->cr4 = X86_CR4_PAE;
646         /* rdx = ?? */
647
648         if (npt_enabled) {
649                 /* Setup VMCB for Nested Paging */
650                 control->nested_ctl = 1;
651                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
652                                         (1ULL << INTERCEPT_INVLPG));
653                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
654                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
655                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
656                 save->g_pat = 0x0007040600070406ULL;
657                 save->cr3 = 0;
658                 save->cr4 = 0;
659         }
660         force_new_asid(&svm->vcpu);
661
662         svm->nested.vmcb = 0;
663         svm->vcpu.arch.hflags = 0;
664
665         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
666                 control->pause_filter_count = 3000;
667                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
668         }
669
670         enable_gif(svm);
671 }
672
673 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
674 {
675         struct vcpu_svm *svm = to_svm(vcpu);
676
677         init_vmcb(svm);
678
679         if (!kvm_vcpu_is_bsp(vcpu)) {
680                 kvm_rip_write(vcpu, 0);
681                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
682                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
683         }
684         vcpu->arch.regs_avail = ~0;
685         vcpu->arch.regs_dirty = ~0;
686
687         return 0;
688 }
689
690 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
691 {
692         struct vcpu_svm *svm;
693         struct page *page;
694         struct page *msrpm_pages;
695         struct page *hsave_page;
696         struct page *nested_msrpm_pages;
697         int err;
698
699         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
700         if (!svm) {
701                 err = -ENOMEM;
702                 goto out;
703         }
704
705         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
706         if (err)
707                 goto free_svm;
708
709         page = alloc_page(GFP_KERNEL);
710         if (!page) {
711                 err = -ENOMEM;
712                 goto uninit;
713         }
714
715         err = -ENOMEM;
716         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
717         if (!msrpm_pages)
718                 goto uninit;
719
720         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
721         if (!nested_msrpm_pages)
722                 goto uninit;
723
724         svm->msrpm = page_address(msrpm_pages);
725         svm_vcpu_init_msrpm(svm->msrpm);
726
727         hsave_page = alloc_page(GFP_KERNEL);
728         if (!hsave_page)
729                 goto uninit;
730         svm->nested.hsave = page_address(hsave_page);
731
732         svm->nested.msrpm = page_address(nested_msrpm_pages);
733
734         svm->vmcb = page_address(page);
735         clear_page(svm->vmcb);
736         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
737         svm->asid_generation = 0;
738         init_vmcb(svm);
739
740         fx_init(&svm->vcpu);
741         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
742         if (kvm_vcpu_is_bsp(&svm->vcpu))
743                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
744
745         return &svm->vcpu;
746
747 uninit:
748         kvm_vcpu_uninit(&svm->vcpu);
749 free_svm:
750         kmem_cache_free(kvm_vcpu_cache, svm);
751 out:
752         return ERR_PTR(err);
753 }
754
755 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
756 {
757         struct vcpu_svm *svm = to_svm(vcpu);
758
759         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
760         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
761         __free_page(virt_to_page(svm->nested.hsave));
762         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
763         kvm_vcpu_uninit(vcpu);
764         kmem_cache_free(kvm_vcpu_cache, svm);
765 }
766
767 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
768 {
769         struct vcpu_svm *svm = to_svm(vcpu);
770         int i;
771
772         if (unlikely(cpu != vcpu->cpu)) {
773                 u64 delta;
774
775                 if (check_tsc_unstable()) {
776                         /*
777                          * Make sure that the guest sees a monotonically
778                          * increasing TSC.
779                          */
780                         delta = vcpu->arch.host_tsc - native_read_tsc();
781                         svm->vmcb->control.tsc_offset += delta;
782                         if (is_nested(svm))
783                                 svm->nested.hsave->control.tsc_offset += delta;
784                 }
785                 vcpu->cpu = cpu;
786                 kvm_migrate_timers(vcpu);
787                 svm->asid_generation = 0;
788         }
789
790         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
791                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
792 }
793
794 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
795 {
796         struct vcpu_svm *svm = to_svm(vcpu);
797         int i;
798
799         ++vcpu->stat.host_state_reload;
800         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
801                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
802
803         vcpu->arch.host_tsc = native_read_tsc();
804 }
805
806 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
807 {
808         return to_svm(vcpu)->vmcb->save.rflags;
809 }
810
811 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
812 {
813         to_svm(vcpu)->vmcb->save.rflags = rflags;
814 }
815
816 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
817 {
818         switch (reg) {
819         case VCPU_EXREG_PDPTR:
820                 BUG_ON(!npt_enabled);
821                 load_pdptrs(vcpu, vcpu->arch.cr3);
822                 break;
823         default:
824                 BUG();
825         }
826 }
827
828 static void svm_set_vintr(struct vcpu_svm *svm)
829 {
830         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
831 }
832
833 static void svm_clear_vintr(struct vcpu_svm *svm)
834 {
835         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
836 }
837
838 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
839 {
840         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
841
842         switch (seg) {
843         case VCPU_SREG_CS: return &save->cs;
844         case VCPU_SREG_DS: return &save->ds;
845         case VCPU_SREG_ES: return &save->es;
846         case VCPU_SREG_FS: return &save->fs;
847         case VCPU_SREG_GS: return &save->gs;
848         case VCPU_SREG_SS: return &save->ss;
849         case VCPU_SREG_TR: return &save->tr;
850         case VCPU_SREG_LDTR: return &save->ldtr;
851         }
852         BUG();
853         return NULL;
854 }
855
856 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
857 {
858         struct vmcb_seg *s = svm_seg(vcpu, seg);
859
860         return s->base;
861 }
862
863 static void svm_get_segment(struct kvm_vcpu *vcpu,
864                             struct kvm_segment *var, int seg)
865 {
866         struct vmcb_seg *s = svm_seg(vcpu, seg);
867
868         var->base = s->base;
869         var->limit = s->limit;
870         var->selector = s->selector;
871         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
872         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
873         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
874         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
875         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
876         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
877         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
878         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
879
880         /* AMD's VMCB does not have an explicit unusable field, so emulate it
881          * for cross vendor migration purposes by "not present"
882          */
883         var->unusable = !var->present || (var->type == 0);
884
885         switch (seg) {
886         case VCPU_SREG_CS:
887                 /*
888                  * SVM always stores 0 for the 'G' bit in the CS selector in
889                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
890                  * Intel's VMENTRY has a check on the 'G' bit.
891                  */
892                 var->g = s->limit > 0xfffff;
893                 break;
894         case VCPU_SREG_TR:
895                 /*
896                  * Work around a bug where the busy flag in the tr selector
897                  * isn't exposed
898                  */
899                 var->type |= 0x2;
900                 break;
901         case VCPU_SREG_DS:
902         case VCPU_SREG_ES:
903         case VCPU_SREG_FS:
904         case VCPU_SREG_GS:
905                 /*
906                  * The accessed bit must always be set in the segment
907                  * descriptor cache, although it can be cleared in the
908                  * descriptor, the cached bit always remains at 1. Since
909                  * Intel has a check on this, set it here to support
910                  * cross-vendor migration.
911                  */
912                 if (!var->unusable)
913                         var->type |= 0x1;
914                 break;
915         case VCPU_SREG_SS:
916                 /* On AMD CPUs sometimes the DB bit in the segment
917                  * descriptor is left as 1, although the whole segment has
918                  * been made unusable. Clear it here to pass an Intel VMX
919                  * entry check when cross vendor migrating.
920                  */
921                 if (var->unusable)
922                         var->db = 0;
923                 break;
924         }
925 }
926
927 static int svm_get_cpl(struct kvm_vcpu *vcpu)
928 {
929         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
930
931         return save->cpl;
932 }
933
934 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
935 {
936         struct vcpu_svm *svm = to_svm(vcpu);
937
938         dt->limit = svm->vmcb->save.idtr.limit;
939         dt->base = svm->vmcb->save.idtr.base;
940 }
941
942 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
943 {
944         struct vcpu_svm *svm = to_svm(vcpu);
945
946         svm->vmcb->save.idtr.limit = dt->limit;
947         svm->vmcb->save.idtr.base = dt->base ;
948 }
949
950 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
951 {
952         struct vcpu_svm *svm = to_svm(vcpu);
953
954         dt->limit = svm->vmcb->save.gdtr.limit;
955         dt->base = svm->vmcb->save.gdtr.base;
956 }
957
958 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
959 {
960         struct vcpu_svm *svm = to_svm(vcpu);
961
962         svm->vmcb->save.gdtr.limit = dt->limit;
963         svm->vmcb->save.gdtr.base = dt->base ;
964 }
965
966 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
967 {
968 }
969
970 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
971 {
972 }
973
974 static void update_cr0_intercept(struct vcpu_svm *svm)
975 {
976         ulong gcr0 = svm->vcpu.arch.cr0;
977         u64 *hcr0 = &svm->vmcb->save.cr0;
978
979         if (!svm->vcpu.fpu_active)
980                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
981         else
982                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
983                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
984
985
986         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
987                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
988                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
989         } else {
990                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
991                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
992         }
993 }
994
995 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
996 {
997         struct vcpu_svm *svm = to_svm(vcpu);
998
999 #ifdef CONFIG_X86_64
1000         if (vcpu->arch.efer & EFER_LME) {
1001                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1002                         vcpu->arch.efer |= EFER_LMA;
1003                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1004                 }
1005
1006                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1007                         vcpu->arch.efer &= ~EFER_LMA;
1008                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1009                 }
1010         }
1011 #endif
1012         vcpu->arch.cr0 = cr0;
1013
1014         if (!npt_enabled)
1015                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1016
1017         if (!vcpu->fpu_active)
1018                 cr0 |= X86_CR0_TS;
1019         /*
1020          * re-enable caching here because the QEMU bios
1021          * does not do it - this results in some delay at
1022          * reboot
1023          */
1024         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1025         svm->vmcb->save.cr0 = cr0;
1026         update_cr0_intercept(svm);
1027 }
1028
1029 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1030 {
1031         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1032         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1033
1034         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1035                 force_new_asid(vcpu);
1036
1037         vcpu->arch.cr4 = cr4;
1038         if (!npt_enabled)
1039                 cr4 |= X86_CR4_PAE;
1040         cr4 |= host_cr4_mce;
1041         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1042 }
1043
1044 static void svm_set_segment(struct kvm_vcpu *vcpu,
1045                             struct kvm_segment *var, int seg)
1046 {
1047         struct vcpu_svm *svm = to_svm(vcpu);
1048         struct vmcb_seg *s = svm_seg(vcpu, seg);
1049
1050         s->base = var->base;
1051         s->limit = var->limit;
1052         s->selector = var->selector;
1053         if (var->unusable)
1054                 s->attrib = 0;
1055         else {
1056                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1057                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1058                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1059                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1060                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1061                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1062                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1063                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1064         }
1065         if (seg == VCPU_SREG_CS)
1066                 svm->vmcb->save.cpl
1067                         = (svm->vmcb->save.cs.attrib
1068                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1069
1070 }
1071
1072 static void update_db_intercept(struct kvm_vcpu *vcpu)
1073 {
1074         struct vcpu_svm *svm = to_svm(vcpu);
1075
1076         svm->vmcb->control.intercept_exceptions &=
1077                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1078
1079         if (svm->nmi_singlestep)
1080                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1081
1082         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1083                 if (vcpu->guest_debug &
1084                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1085                         svm->vmcb->control.intercept_exceptions |=
1086                                 1 << DB_VECTOR;
1087                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1088                         svm->vmcb->control.intercept_exceptions |=
1089                                 1 << BP_VECTOR;
1090         } else
1091                 vcpu->guest_debug = 0;
1092 }
1093
1094 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1095 {
1096         struct vcpu_svm *svm = to_svm(vcpu);
1097
1098         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1099                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1100         else
1101                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1102
1103         update_db_intercept(vcpu);
1104 }
1105
1106 static void load_host_msrs(struct kvm_vcpu *vcpu)
1107 {
1108 #ifdef CONFIG_X86_64
1109         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1110 #endif
1111 }
1112
1113 static void save_host_msrs(struct kvm_vcpu *vcpu)
1114 {
1115 #ifdef CONFIG_X86_64
1116         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1117 #endif
1118 }
1119
1120 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1121 {
1122         if (sd->next_asid > sd->max_asid) {
1123                 ++sd->asid_generation;
1124                 sd->next_asid = 1;
1125                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1126         }
1127
1128         svm->asid_generation = sd->asid_generation;
1129         svm->vmcb->control.asid = sd->next_asid++;
1130 }
1131
1132 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1133 {
1134         struct vcpu_svm *svm = to_svm(vcpu);
1135
1136         switch (dr) {
1137         case 0 ... 3:
1138                 *dest = vcpu->arch.db[dr];
1139                 break;
1140         case 4:
1141                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1142                         return EMULATE_FAIL; /* will re-inject UD */
1143                 /* fall through */
1144         case 6:
1145                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1146                         *dest = vcpu->arch.dr6;
1147                 else
1148                         *dest = svm->vmcb->save.dr6;
1149                 break;
1150         case 5:
1151                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1152                         return EMULATE_FAIL; /* will re-inject UD */
1153                 /* fall through */
1154         case 7:
1155                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1156                         *dest = vcpu->arch.dr7;
1157                 else
1158                         *dest = svm->vmcb->save.dr7;
1159                 break;
1160         }
1161
1162         return EMULATE_DONE;
1163 }
1164
1165 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1166 {
1167         struct vcpu_svm *svm = to_svm(vcpu);
1168
1169         switch (dr) {
1170         case 0 ... 3:
1171                 vcpu->arch.db[dr] = value;
1172                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1173                         vcpu->arch.eff_db[dr] = value;
1174                 break;
1175         case 4:
1176                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1177                         return EMULATE_FAIL; /* will re-inject UD */
1178                 /* fall through */
1179         case 6:
1180                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1181                 break;
1182         case 5:
1183                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1184                         return EMULATE_FAIL; /* will re-inject UD */
1185                 /* fall through */
1186         case 7:
1187                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1188                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1189                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1190                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1191                 }
1192                 break;
1193         }
1194
1195         return EMULATE_DONE;
1196 }
1197
1198 static int pf_interception(struct vcpu_svm *svm)
1199 {
1200         u64 fault_address;
1201         u32 error_code;
1202
1203         fault_address  = svm->vmcb->control.exit_info_2;
1204         error_code = svm->vmcb->control.exit_info_1;
1205
1206         trace_kvm_page_fault(fault_address, error_code);
1207         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1208                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1209         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1210 }
1211
1212 static int db_interception(struct vcpu_svm *svm)
1213 {
1214         struct kvm_run *kvm_run = svm->vcpu.run;
1215
1216         if (!(svm->vcpu.guest_debug &
1217               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1218                 !svm->nmi_singlestep) {
1219                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1220                 return 1;
1221         }
1222
1223         if (svm->nmi_singlestep) {
1224                 svm->nmi_singlestep = false;
1225                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1226                         svm->vmcb->save.rflags &=
1227                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1228                 update_db_intercept(&svm->vcpu);
1229         }
1230
1231         if (svm->vcpu.guest_debug &
1232             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1233                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1234                 kvm_run->debug.arch.pc =
1235                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1236                 kvm_run->debug.arch.exception = DB_VECTOR;
1237                 return 0;
1238         }
1239
1240         return 1;
1241 }
1242
1243 static int bp_interception(struct vcpu_svm *svm)
1244 {
1245         struct kvm_run *kvm_run = svm->vcpu.run;
1246
1247         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1248         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1249         kvm_run->debug.arch.exception = BP_VECTOR;
1250         return 0;
1251 }
1252
1253 static int ud_interception(struct vcpu_svm *svm)
1254 {
1255         int er;
1256
1257         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1258         if (er != EMULATE_DONE)
1259                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1260         return 1;
1261 }
1262
1263 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1264 {
1265         struct vcpu_svm *svm = to_svm(vcpu);
1266         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1267         svm->vcpu.fpu_active = 1;
1268         update_cr0_intercept(svm);
1269 }
1270
1271 static int nm_interception(struct vcpu_svm *svm)
1272 {
1273         svm_fpu_activate(&svm->vcpu);
1274         return 1;
1275 }
1276
1277 static int mc_interception(struct vcpu_svm *svm)
1278 {
1279         /*
1280          * On an #MC intercept the MCE handler is not called automatically in
1281          * the host. So do it by hand here.
1282          */
1283         asm volatile (
1284                 "int $0x12\n");
1285         /* not sure if we ever come back to this point */
1286
1287         return 1;
1288 }
1289
1290 static int shutdown_interception(struct vcpu_svm *svm)
1291 {
1292         struct kvm_run *kvm_run = svm->vcpu.run;
1293
1294         /*
1295          * VMCB is undefined after a SHUTDOWN intercept
1296          * so reinitialize it.
1297          */
1298         clear_page(svm->vmcb);
1299         init_vmcb(svm);
1300
1301         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1302         return 0;
1303 }
1304
1305 static int io_interception(struct vcpu_svm *svm)
1306 {
1307         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1308         int size, in, string;
1309         unsigned port;
1310
1311         ++svm->vcpu.stat.io_exits;
1312
1313         svm->next_rip = svm->vmcb->control.exit_info_2;
1314
1315         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1316
1317         if (string) {
1318                 if (emulate_instruction(&svm->vcpu,
1319                                         0, 0, 0) == EMULATE_DO_MMIO)
1320                         return 0;
1321                 return 1;
1322         }
1323
1324         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1325         port = io_info >> 16;
1326         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1327
1328         skip_emulated_instruction(&svm->vcpu);
1329         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1330 }
1331
1332 static int nmi_interception(struct vcpu_svm *svm)
1333 {
1334         return 1;
1335 }
1336
1337 static int intr_interception(struct vcpu_svm *svm)
1338 {
1339         ++svm->vcpu.stat.irq_exits;
1340         return 1;
1341 }
1342
1343 static int nop_on_interception(struct vcpu_svm *svm)
1344 {
1345         return 1;
1346 }
1347
1348 static int halt_interception(struct vcpu_svm *svm)
1349 {
1350         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1351         skip_emulated_instruction(&svm->vcpu);
1352         return kvm_emulate_halt(&svm->vcpu);
1353 }
1354
1355 static int vmmcall_interception(struct vcpu_svm *svm)
1356 {
1357         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1358         skip_emulated_instruction(&svm->vcpu);
1359         kvm_emulate_hypercall(&svm->vcpu);
1360         return 1;
1361 }
1362
1363 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1364 {
1365         if (!(svm->vcpu.arch.efer & EFER_SVME)
1366             || !is_paging(&svm->vcpu)) {
1367                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1368                 return 1;
1369         }
1370
1371         if (svm->vmcb->save.cpl) {
1372                 kvm_inject_gp(&svm->vcpu, 0);
1373                 return 1;
1374         }
1375
1376        return 0;
1377 }
1378
1379 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1380                                       bool has_error_code, u32 error_code)
1381 {
1382         if (!is_nested(svm))
1383                 return 0;
1384
1385         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1386         svm->vmcb->control.exit_code_hi = 0;
1387         svm->vmcb->control.exit_info_1 = error_code;
1388         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1389
1390         return nested_svm_exit_handled(svm);
1391 }
1392
1393 static inline int nested_svm_intr(struct vcpu_svm *svm)
1394 {
1395         if (!is_nested(svm))
1396                 return 0;
1397
1398         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1399                 return 0;
1400
1401         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1402                 return 0;
1403
1404         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1405
1406         if (svm->nested.intercept & 1ULL) {
1407                 /*
1408                  * The #vmexit can't be emulated here directly because this
1409                  * code path runs with irqs and preemtion disabled. A
1410                  * #vmexit emulation might sleep. Only signal request for
1411                  * the #vmexit here.
1412                  */
1413                 svm->nested.exit_required = true;
1414                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1415                 return 1;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1422 {
1423         struct page *page;
1424
1425         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1426         if (is_error_page(page))
1427                 goto error;
1428
1429         return kmap_atomic(page, idx);
1430
1431 error:
1432         kvm_release_page_clean(page);
1433         kvm_inject_gp(&svm->vcpu, 0);
1434
1435         return NULL;
1436 }
1437
1438 static void nested_svm_unmap(void *addr, enum km_type idx)
1439 {
1440         struct page *page;
1441
1442         if (!addr)
1443                 return;
1444
1445         page = kmap_atomic_to_page(addr);
1446
1447         kunmap_atomic(addr, idx);
1448         kvm_release_page_dirty(page);
1449 }
1450
1451 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1452 {
1453         u32 param = svm->vmcb->control.exit_info_1 & 1;
1454         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1455         bool ret = false;
1456         u32 t0, t1;
1457         u8 *msrpm;
1458
1459         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1460                 return false;
1461
1462         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1463
1464         if (!msrpm)
1465                 goto out;
1466
1467         switch (msr) {
1468         case 0 ... 0x1fff:
1469                 t0 = (msr * 2) % 8;
1470                 t1 = msr / 8;
1471                 break;
1472         case 0xc0000000 ... 0xc0001fff:
1473                 t0 = (8192 + msr - 0xc0000000) * 2;
1474                 t1 = (t0 / 8);
1475                 t0 %= 8;
1476                 break;
1477         case 0xc0010000 ... 0xc0011fff:
1478                 t0 = (16384 + msr - 0xc0010000) * 2;
1479                 t1 = (t0 / 8);
1480                 t0 %= 8;
1481                 break;
1482         default:
1483                 ret = true;
1484                 goto out;
1485         }
1486
1487         ret = msrpm[t1] & ((1 << param) << t0);
1488
1489 out:
1490         nested_svm_unmap(msrpm, KM_USER0);
1491
1492         return ret;
1493 }
1494
1495 static int nested_svm_exit_special(struct vcpu_svm *svm)
1496 {
1497         u32 exit_code = svm->vmcb->control.exit_code;
1498
1499         switch (exit_code) {
1500         case SVM_EXIT_INTR:
1501         case SVM_EXIT_NMI:
1502                 return NESTED_EXIT_HOST;
1503                 /* For now we are always handling NPFs when using them */
1504         case SVM_EXIT_NPF:
1505                 if (npt_enabled)
1506                         return NESTED_EXIT_HOST;
1507                 break;
1508         /* When we're shadowing, trap PFs */
1509         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1510                 if (!npt_enabled)
1511                         return NESTED_EXIT_HOST;
1512                 break;
1513         default:
1514                 break;
1515         }
1516
1517         return NESTED_EXIT_CONTINUE;
1518 }
1519
1520 /*
1521  * If this function returns true, this #vmexit was already handled
1522  */
1523 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1524 {
1525         u32 exit_code = svm->vmcb->control.exit_code;
1526         int vmexit = NESTED_EXIT_HOST;
1527
1528         switch (exit_code) {
1529         case SVM_EXIT_MSR:
1530                 vmexit = nested_svm_exit_handled_msr(svm);
1531                 break;
1532         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1533                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1534                 if (svm->nested.intercept_cr_read & cr_bits)
1535                         vmexit = NESTED_EXIT_DONE;
1536                 break;
1537         }
1538         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1539                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1540                 if (svm->nested.intercept_cr_write & cr_bits)
1541                         vmexit = NESTED_EXIT_DONE;
1542                 break;
1543         }
1544         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1545                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1546                 if (svm->nested.intercept_dr_read & dr_bits)
1547                         vmexit = NESTED_EXIT_DONE;
1548                 break;
1549         }
1550         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1551                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1552                 if (svm->nested.intercept_dr_write & dr_bits)
1553                         vmexit = NESTED_EXIT_DONE;
1554                 break;
1555         }
1556         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1557                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1558                 if (svm->nested.intercept_exceptions & excp_bits)
1559                         vmexit = NESTED_EXIT_DONE;
1560                 break;
1561         }
1562         default: {
1563                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1564                 if (svm->nested.intercept & exit_bits)
1565                         vmexit = NESTED_EXIT_DONE;
1566         }
1567         }
1568
1569         if (vmexit == NESTED_EXIT_DONE) {
1570                 nested_svm_vmexit(svm);
1571         }
1572
1573         return vmexit;
1574 }
1575
1576 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1577 {
1578         struct vmcb_control_area *dst  = &dst_vmcb->control;
1579         struct vmcb_control_area *from = &from_vmcb->control;
1580
1581         dst->intercept_cr_read    = from->intercept_cr_read;
1582         dst->intercept_cr_write   = from->intercept_cr_write;
1583         dst->intercept_dr_read    = from->intercept_dr_read;
1584         dst->intercept_dr_write   = from->intercept_dr_write;
1585         dst->intercept_exceptions = from->intercept_exceptions;
1586         dst->intercept            = from->intercept;
1587         dst->iopm_base_pa         = from->iopm_base_pa;
1588         dst->msrpm_base_pa        = from->msrpm_base_pa;
1589         dst->tsc_offset           = from->tsc_offset;
1590         dst->asid                 = from->asid;
1591         dst->tlb_ctl              = from->tlb_ctl;
1592         dst->int_ctl              = from->int_ctl;
1593         dst->int_vector           = from->int_vector;
1594         dst->int_state            = from->int_state;
1595         dst->exit_code            = from->exit_code;
1596         dst->exit_code_hi         = from->exit_code_hi;
1597         dst->exit_info_1          = from->exit_info_1;
1598         dst->exit_info_2          = from->exit_info_2;
1599         dst->exit_int_info        = from->exit_int_info;
1600         dst->exit_int_info_err    = from->exit_int_info_err;
1601         dst->nested_ctl           = from->nested_ctl;
1602         dst->event_inj            = from->event_inj;
1603         dst->event_inj_err        = from->event_inj_err;
1604         dst->nested_cr3           = from->nested_cr3;
1605         dst->lbr_ctl              = from->lbr_ctl;
1606 }
1607
1608 static int nested_svm_vmexit(struct vcpu_svm *svm)
1609 {
1610         struct vmcb *nested_vmcb;
1611         struct vmcb *hsave = svm->nested.hsave;
1612         struct vmcb *vmcb = svm->vmcb;
1613
1614         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1615                                        vmcb->control.exit_info_1,
1616                                        vmcb->control.exit_info_2,
1617                                        vmcb->control.exit_int_info,
1618                                        vmcb->control.exit_int_info_err);
1619
1620         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1621         if (!nested_vmcb)
1622                 return 1;
1623
1624         /* Give the current vmcb to the guest */
1625         disable_gif(svm);
1626
1627         nested_vmcb->save.es     = vmcb->save.es;
1628         nested_vmcb->save.cs     = vmcb->save.cs;
1629         nested_vmcb->save.ss     = vmcb->save.ss;
1630         nested_vmcb->save.ds     = vmcb->save.ds;
1631         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1632         nested_vmcb->save.idtr   = vmcb->save.idtr;
1633         if (npt_enabled)
1634                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1635         nested_vmcb->save.cr2    = vmcb->save.cr2;
1636         nested_vmcb->save.rflags = vmcb->save.rflags;
1637         nested_vmcb->save.rip    = vmcb->save.rip;
1638         nested_vmcb->save.rsp    = vmcb->save.rsp;
1639         nested_vmcb->save.rax    = vmcb->save.rax;
1640         nested_vmcb->save.dr7    = vmcb->save.dr7;
1641         nested_vmcb->save.dr6    = vmcb->save.dr6;
1642         nested_vmcb->save.cpl    = vmcb->save.cpl;
1643
1644         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1645         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1646         nested_vmcb->control.int_state         = vmcb->control.int_state;
1647         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1648         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1649         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1650         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1651         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1652         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1653
1654         /*
1655          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1656          * to make sure that we do not lose injected events. So check event_inj
1657          * here and copy it to exit_int_info if it is valid.
1658          * Exit_int_info and event_inj can't be both valid because the case
1659          * below only happens on a VMRUN instruction intercept which has
1660          * no valid exit_int_info set.
1661          */
1662         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1663                 struct vmcb_control_area *nc = &nested_vmcb->control;
1664
1665                 nc->exit_int_info     = vmcb->control.event_inj;
1666                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1667         }
1668
1669         nested_vmcb->control.tlb_ctl           = 0;
1670         nested_vmcb->control.event_inj         = 0;
1671         nested_vmcb->control.event_inj_err     = 0;
1672
1673         /* We always set V_INTR_MASKING and remember the old value in hflags */
1674         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1675                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1676
1677         /* Restore the original control entries */
1678         copy_vmcb_control_area(vmcb, hsave);
1679
1680         kvm_clear_exception_queue(&svm->vcpu);
1681         kvm_clear_interrupt_queue(&svm->vcpu);
1682
1683         /* Restore selected save entries */
1684         svm->vmcb->save.es = hsave->save.es;
1685         svm->vmcb->save.cs = hsave->save.cs;
1686         svm->vmcb->save.ss = hsave->save.ss;
1687         svm->vmcb->save.ds = hsave->save.ds;
1688         svm->vmcb->save.gdtr = hsave->save.gdtr;
1689         svm->vmcb->save.idtr = hsave->save.idtr;
1690         svm->vmcb->save.rflags = hsave->save.rflags;
1691         svm_set_efer(&svm->vcpu, hsave->save.efer);
1692         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1693         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1694         if (npt_enabled) {
1695                 svm->vmcb->save.cr3 = hsave->save.cr3;
1696                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1697         } else {
1698                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1699         }
1700         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1701         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1702         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1703         svm->vmcb->save.dr7 = 0;
1704         svm->vmcb->save.cpl = 0;
1705         svm->vmcb->control.exit_int_info = 0;
1706
1707         /* Exit nested SVM mode */
1708         svm->nested.vmcb = 0;
1709
1710         nested_svm_unmap(nested_vmcb, KM_USER0);
1711
1712         kvm_mmu_reset_context(&svm->vcpu);
1713         kvm_mmu_load(&svm->vcpu);
1714
1715         return 0;
1716 }
1717
1718 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1719 {
1720         u32 *nested_msrpm;
1721         int i;
1722
1723         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1724         if (!nested_msrpm)
1725                 return false;
1726
1727         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1728                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1729
1730         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1731
1732         nested_svm_unmap(nested_msrpm, KM_USER0);
1733
1734         return true;
1735 }
1736
1737 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1738 {
1739         struct vmcb *nested_vmcb;
1740         struct vmcb *hsave = svm->nested.hsave;
1741         struct vmcb *vmcb = svm->vmcb;
1742
1743         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1744         if (!nested_vmcb)
1745                 return false;
1746
1747         /* nested_vmcb is our indicator if nested SVM is activated */
1748         svm->nested.vmcb = svm->vmcb->save.rax;
1749
1750         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1751                                nested_vmcb->save.rip,
1752                                nested_vmcb->control.int_ctl,
1753                                nested_vmcb->control.event_inj,
1754                                nested_vmcb->control.nested_ctl);
1755
1756         /* Clear internal status */
1757         kvm_clear_exception_queue(&svm->vcpu);
1758         kvm_clear_interrupt_queue(&svm->vcpu);
1759
1760         /* Save the old vmcb, so we don't need to pick what we save, but
1761            can restore everything when a VMEXIT occurs */
1762         hsave->save.es     = vmcb->save.es;
1763         hsave->save.cs     = vmcb->save.cs;
1764         hsave->save.ss     = vmcb->save.ss;
1765         hsave->save.ds     = vmcb->save.ds;
1766         hsave->save.gdtr   = vmcb->save.gdtr;
1767         hsave->save.idtr   = vmcb->save.idtr;
1768         hsave->save.efer   = svm->vcpu.arch.efer;
1769         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
1770         hsave->save.cr4    = svm->vcpu.arch.cr4;
1771         hsave->save.rflags = vmcb->save.rflags;
1772         hsave->save.rip    = svm->next_rip;
1773         hsave->save.rsp    = vmcb->save.rsp;
1774         hsave->save.rax    = vmcb->save.rax;
1775         if (npt_enabled)
1776                 hsave->save.cr3    = vmcb->save.cr3;
1777         else
1778                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1779
1780         copy_vmcb_control_area(hsave, vmcb);
1781
1782         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1783                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1784         else
1785                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1786
1787         /* Load the nested guest state */
1788         svm->vmcb->save.es = nested_vmcb->save.es;
1789         svm->vmcb->save.cs = nested_vmcb->save.cs;
1790         svm->vmcb->save.ss = nested_vmcb->save.ss;
1791         svm->vmcb->save.ds = nested_vmcb->save.ds;
1792         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1793         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1794         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1795         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1796         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1797         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1798         if (npt_enabled) {
1799                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1800                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1801         } else {
1802                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1803                 kvm_mmu_reset_context(&svm->vcpu);
1804         }
1805         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1806         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1807         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1808         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1809         /* In case we don't even reach vcpu_run, the fields are not updated */
1810         svm->vmcb->save.rax = nested_vmcb->save.rax;
1811         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1812         svm->vmcb->save.rip = nested_vmcb->save.rip;
1813         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1814         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1815         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1816
1817         /* We don't want a nested guest to be more powerful than the guest,
1818            so all intercepts are ORed */
1819         svm->vmcb->control.intercept_cr_read |=
1820                 nested_vmcb->control.intercept_cr_read;
1821         svm->vmcb->control.intercept_cr_write |=
1822                 nested_vmcb->control.intercept_cr_write;
1823         svm->vmcb->control.intercept_dr_read |=
1824                 nested_vmcb->control.intercept_dr_read;
1825         svm->vmcb->control.intercept_dr_write |=
1826                 nested_vmcb->control.intercept_dr_write;
1827         svm->vmcb->control.intercept_exceptions |=
1828                 nested_vmcb->control.intercept_exceptions;
1829
1830         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1831
1832         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1833
1834         /* cache intercepts */
1835         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1836         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1837         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1838         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1839         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1840         svm->nested.intercept            = nested_vmcb->control.intercept;
1841
1842         force_new_asid(&svm->vcpu);
1843         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1844         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1845                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1846         else
1847                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1848
1849         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1850         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1851         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1852         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1853         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1854
1855         nested_svm_unmap(nested_vmcb, KM_USER0);
1856
1857         enable_gif(svm);
1858
1859         return true;
1860 }
1861
1862 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1863 {
1864         to_vmcb->save.fs = from_vmcb->save.fs;
1865         to_vmcb->save.gs = from_vmcb->save.gs;
1866         to_vmcb->save.tr = from_vmcb->save.tr;
1867         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1868         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1869         to_vmcb->save.star = from_vmcb->save.star;
1870         to_vmcb->save.lstar = from_vmcb->save.lstar;
1871         to_vmcb->save.cstar = from_vmcb->save.cstar;
1872         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1873         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1874         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1875         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1876 }
1877
1878 static int vmload_interception(struct vcpu_svm *svm)
1879 {
1880         struct vmcb *nested_vmcb;
1881
1882         if (nested_svm_check_permissions(svm))
1883                 return 1;
1884
1885         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1886         skip_emulated_instruction(&svm->vcpu);
1887
1888         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1889         if (!nested_vmcb)
1890                 return 1;
1891
1892         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1893         nested_svm_unmap(nested_vmcb, KM_USER0);
1894
1895         return 1;
1896 }
1897
1898 static int vmsave_interception(struct vcpu_svm *svm)
1899 {
1900         struct vmcb *nested_vmcb;
1901
1902         if (nested_svm_check_permissions(svm))
1903                 return 1;
1904
1905         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1906         skip_emulated_instruction(&svm->vcpu);
1907
1908         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1909         if (!nested_vmcb)
1910                 return 1;
1911
1912         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1913         nested_svm_unmap(nested_vmcb, KM_USER0);
1914
1915         return 1;
1916 }
1917
1918 static int vmrun_interception(struct vcpu_svm *svm)
1919 {
1920         if (nested_svm_check_permissions(svm))
1921                 return 1;
1922
1923         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1924         skip_emulated_instruction(&svm->vcpu);
1925
1926         if (!nested_svm_vmrun(svm))
1927                 return 1;
1928
1929         if (!nested_svm_vmrun_msrpm(svm))
1930                 goto failed;
1931
1932         return 1;
1933
1934 failed:
1935
1936         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1937         svm->vmcb->control.exit_code_hi = 0;
1938         svm->vmcb->control.exit_info_1  = 0;
1939         svm->vmcb->control.exit_info_2  = 0;
1940
1941         nested_svm_vmexit(svm);
1942
1943         return 1;
1944 }
1945
1946 static int stgi_interception(struct vcpu_svm *svm)
1947 {
1948         if (nested_svm_check_permissions(svm))
1949                 return 1;
1950
1951         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1952         skip_emulated_instruction(&svm->vcpu);
1953
1954         enable_gif(svm);
1955
1956         return 1;
1957 }
1958
1959 static int clgi_interception(struct vcpu_svm *svm)
1960 {
1961         if (nested_svm_check_permissions(svm))
1962                 return 1;
1963
1964         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1965         skip_emulated_instruction(&svm->vcpu);
1966
1967         disable_gif(svm);
1968
1969         /* After a CLGI no interrupts should come */
1970         svm_clear_vintr(svm);
1971         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1972
1973         return 1;
1974 }
1975
1976 static int invlpga_interception(struct vcpu_svm *svm)
1977 {
1978         struct kvm_vcpu *vcpu = &svm->vcpu;
1979
1980         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
1981                           vcpu->arch.regs[VCPU_REGS_RAX]);
1982
1983         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1984         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1985
1986         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1987         skip_emulated_instruction(&svm->vcpu);
1988         return 1;
1989 }
1990
1991 static int skinit_interception(struct vcpu_svm *svm)
1992 {
1993         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
1994
1995         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1996         return 1;
1997 }
1998
1999 static int invalid_op_interception(struct vcpu_svm *svm)
2000 {
2001         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2002         return 1;
2003 }
2004
2005 static int task_switch_interception(struct vcpu_svm *svm)
2006 {
2007         u16 tss_selector;
2008         int reason;
2009         int int_type = svm->vmcb->control.exit_int_info &
2010                 SVM_EXITINTINFO_TYPE_MASK;
2011         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2012         uint32_t type =
2013                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2014         uint32_t idt_v =
2015                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2016
2017         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2018
2019         if (svm->vmcb->control.exit_info_2 &
2020             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2021                 reason = TASK_SWITCH_IRET;
2022         else if (svm->vmcb->control.exit_info_2 &
2023                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2024                 reason = TASK_SWITCH_JMP;
2025         else if (idt_v)
2026                 reason = TASK_SWITCH_GATE;
2027         else
2028                 reason = TASK_SWITCH_CALL;
2029
2030         if (reason == TASK_SWITCH_GATE) {
2031                 switch (type) {
2032                 case SVM_EXITINTINFO_TYPE_NMI:
2033                         svm->vcpu.arch.nmi_injected = false;
2034                         break;
2035                 case SVM_EXITINTINFO_TYPE_EXEPT:
2036                         kvm_clear_exception_queue(&svm->vcpu);
2037                         break;
2038                 case SVM_EXITINTINFO_TYPE_INTR:
2039                         kvm_clear_interrupt_queue(&svm->vcpu);
2040                         break;
2041                 default:
2042                         break;
2043                 }
2044         }
2045
2046         if (reason != TASK_SWITCH_GATE ||
2047             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2048             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2049              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2050                 skip_emulated_instruction(&svm->vcpu);
2051
2052         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2053 }
2054
2055 static int cpuid_interception(struct vcpu_svm *svm)
2056 {
2057         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2058         kvm_emulate_cpuid(&svm->vcpu);
2059         return 1;
2060 }
2061
2062 static int iret_interception(struct vcpu_svm *svm)
2063 {
2064         ++svm->vcpu.stat.nmi_window_exits;
2065         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2066         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2067         return 1;
2068 }
2069
2070 static int invlpg_interception(struct vcpu_svm *svm)
2071 {
2072         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2073                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2074         return 1;
2075 }
2076
2077 static int emulate_on_interception(struct vcpu_svm *svm)
2078 {
2079         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2080                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2081         return 1;
2082 }
2083
2084 static int cr8_write_interception(struct vcpu_svm *svm)
2085 {
2086         struct kvm_run *kvm_run = svm->vcpu.run;
2087
2088         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2089         /* instruction emulation calls kvm_set_cr8() */
2090         emulate_instruction(&svm->vcpu, 0, 0, 0);
2091         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2092                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2093                 return 1;
2094         }
2095         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2096                 return 1;
2097         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2098         return 0;
2099 }
2100
2101 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2102 {
2103         struct vcpu_svm *svm = to_svm(vcpu);
2104
2105         switch (ecx) {
2106         case MSR_IA32_TSC: {
2107                 u64 tsc_offset;
2108
2109                 if (is_nested(svm))
2110                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2111                 else
2112                         tsc_offset = svm->vmcb->control.tsc_offset;
2113
2114                 *data = tsc_offset + native_read_tsc();
2115                 break;
2116         }
2117         case MSR_K6_STAR:
2118                 *data = svm->vmcb->save.star;
2119                 break;
2120 #ifdef CONFIG_X86_64
2121         case MSR_LSTAR:
2122                 *data = svm->vmcb->save.lstar;
2123                 break;
2124         case MSR_CSTAR:
2125                 *data = svm->vmcb->save.cstar;
2126                 break;
2127         case MSR_KERNEL_GS_BASE:
2128                 *data = svm->vmcb->save.kernel_gs_base;
2129                 break;
2130         case MSR_SYSCALL_MASK:
2131                 *data = svm->vmcb->save.sfmask;
2132                 break;
2133 #endif
2134         case MSR_IA32_SYSENTER_CS:
2135                 *data = svm->vmcb->save.sysenter_cs;
2136                 break;
2137         case MSR_IA32_SYSENTER_EIP:
2138                 *data = svm->sysenter_eip;
2139                 break;
2140         case MSR_IA32_SYSENTER_ESP:
2141                 *data = svm->sysenter_esp;
2142                 break;
2143         /* Nobody will change the following 5 values in the VMCB so
2144            we can safely return them on rdmsr. They will always be 0
2145            until LBRV is implemented. */
2146         case MSR_IA32_DEBUGCTLMSR:
2147                 *data = svm->vmcb->save.dbgctl;
2148                 break;
2149         case MSR_IA32_LASTBRANCHFROMIP:
2150                 *data = svm->vmcb->save.br_from;
2151                 break;
2152         case MSR_IA32_LASTBRANCHTOIP:
2153                 *data = svm->vmcb->save.br_to;
2154                 break;
2155         case MSR_IA32_LASTINTFROMIP:
2156                 *data = svm->vmcb->save.last_excp_from;
2157                 break;
2158         case MSR_IA32_LASTINTTOIP:
2159                 *data = svm->vmcb->save.last_excp_to;
2160                 break;
2161         case MSR_VM_HSAVE_PA:
2162                 *data = svm->nested.hsave_msr;
2163                 break;
2164         case MSR_VM_CR:
2165                 *data = 0;
2166                 break;
2167         case MSR_IA32_UCODE_REV:
2168                 *data = 0x01000065;
2169                 break;
2170         default:
2171                 return kvm_get_msr_common(vcpu, ecx, data);
2172         }
2173         return 0;
2174 }
2175
2176 static int rdmsr_interception(struct vcpu_svm *svm)
2177 {
2178         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2179         u64 data;
2180
2181         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2182                 trace_kvm_msr_read_ex(ecx);
2183                 kvm_inject_gp(&svm->vcpu, 0);
2184         } else {
2185                 trace_kvm_msr_read(ecx, data);
2186
2187                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2188                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2189                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2190                 skip_emulated_instruction(&svm->vcpu);
2191         }
2192         return 1;
2193 }
2194
2195 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2196 {
2197         struct vcpu_svm *svm = to_svm(vcpu);
2198
2199         switch (ecx) {
2200         case MSR_IA32_TSC: {
2201                 u64 tsc_offset = data - native_read_tsc();
2202                 u64 g_tsc_offset = 0;
2203
2204                 if (is_nested(svm)) {
2205                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2206                                        svm->nested.hsave->control.tsc_offset;
2207                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2208                 }
2209
2210                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2211
2212                 break;
2213         }
2214         case MSR_K6_STAR:
2215                 svm->vmcb->save.star = data;
2216                 break;
2217 #ifdef CONFIG_X86_64
2218         case MSR_LSTAR:
2219                 svm->vmcb->save.lstar = data;
2220                 break;
2221         case MSR_CSTAR:
2222                 svm->vmcb->save.cstar = data;
2223                 break;
2224         case MSR_KERNEL_GS_BASE:
2225                 svm->vmcb->save.kernel_gs_base = data;
2226                 break;
2227         case MSR_SYSCALL_MASK:
2228                 svm->vmcb->save.sfmask = data;
2229                 break;
2230 #endif
2231         case MSR_IA32_SYSENTER_CS:
2232                 svm->vmcb->save.sysenter_cs = data;
2233                 break;
2234         case MSR_IA32_SYSENTER_EIP:
2235                 svm->sysenter_eip = data;
2236                 svm->vmcb->save.sysenter_eip = data;
2237                 break;
2238         case MSR_IA32_SYSENTER_ESP:
2239                 svm->sysenter_esp = data;
2240                 svm->vmcb->save.sysenter_esp = data;
2241                 break;
2242         case MSR_IA32_DEBUGCTLMSR:
2243                 if (!svm_has(SVM_FEATURE_LBRV)) {
2244                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2245                                         __func__, data);
2246                         break;
2247                 }
2248                 if (data & DEBUGCTL_RESERVED_BITS)
2249                         return 1;
2250
2251                 svm->vmcb->save.dbgctl = data;
2252                 if (data & (1ULL<<0))
2253                         svm_enable_lbrv(svm);
2254                 else
2255                         svm_disable_lbrv(svm);
2256                 break;
2257         case MSR_VM_HSAVE_PA:
2258                 svm->nested.hsave_msr = data;
2259                 break;
2260         case MSR_VM_CR:
2261         case MSR_VM_IGNNE:
2262                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2263                 break;
2264         default:
2265                 return kvm_set_msr_common(vcpu, ecx, data);
2266         }
2267         return 0;
2268 }
2269
2270 static int wrmsr_interception(struct vcpu_svm *svm)
2271 {
2272         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2273         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2274                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2275
2276
2277         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2278         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2279                 trace_kvm_msr_write_ex(ecx, data);
2280                 kvm_inject_gp(&svm->vcpu, 0);
2281         } else {
2282                 trace_kvm_msr_write(ecx, data);
2283                 skip_emulated_instruction(&svm->vcpu);
2284         }
2285         return 1;
2286 }
2287
2288 static int msr_interception(struct vcpu_svm *svm)
2289 {
2290         if (svm->vmcb->control.exit_info_1)
2291                 return wrmsr_interception(svm);
2292         else
2293                 return rdmsr_interception(svm);
2294 }
2295
2296 static int interrupt_window_interception(struct vcpu_svm *svm)
2297 {
2298         struct kvm_run *kvm_run = svm->vcpu.run;
2299
2300         svm_clear_vintr(svm);
2301         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2302         /*
2303          * If the user space waits to inject interrupts, exit as soon as
2304          * possible
2305          */
2306         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2307             kvm_run->request_interrupt_window &&
2308             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2309                 ++svm->vcpu.stat.irq_window_exits;
2310                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2311                 return 0;
2312         }
2313
2314         return 1;
2315 }
2316
2317 static int pause_interception(struct vcpu_svm *svm)
2318 {
2319         kvm_vcpu_on_spin(&(svm->vcpu));
2320         return 1;
2321 }
2322
2323 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2324         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2325         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2326         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2327         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2328         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2329         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2330         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2331         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2332         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2333         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2334         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2335         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2336         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2337         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2338         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2339         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2340         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2341         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2342         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2343         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2344         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2345         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2346         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2347         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2348         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2349         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2350         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2351         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2352         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2353         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2354         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2355         [SVM_EXIT_INTR]                         = intr_interception,
2356         [SVM_EXIT_NMI]                          = nmi_interception,
2357         [SVM_EXIT_SMI]                          = nop_on_interception,
2358         [SVM_EXIT_INIT]                         = nop_on_interception,
2359         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2360         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2361         [SVM_EXIT_CPUID]                        = cpuid_interception,
2362         [SVM_EXIT_IRET]                         = iret_interception,
2363         [SVM_EXIT_INVD]                         = emulate_on_interception,
2364         [SVM_EXIT_PAUSE]                        = pause_interception,
2365         [SVM_EXIT_HLT]                          = halt_interception,
2366         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2367         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2368         [SVM_EXIT_IOIO]                         = io_interception,
2369         [SVM_EXIT_MSR]                          = msr_interception,
2370         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2371         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2372         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2373         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2374         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2375         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2376         [SVM_EXIT_STGI]                         = stgi_interception,
2377         [SVM_EXIT_CLGI]                         = clgi_interception,
2378         [SVM_EXIT_SKINIT]                       = skinit_interception,
2379         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2380         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2381         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2382         [SVM_EXIT_NPF]                          = pf_interception,
2383 };
2384
2385 static int handle_exit(struct kvm_vcpu *vcpu)
2386 {
2387         struct vcpu_svm *svm = to_svm(vcpu);
2388         struct kvm_run *kvm_run = vcpu->run;
2389         u32 exit_code = svm->vmcb->control.exit_code;
2390
2391         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2392
2393         if (unlikely(svm->nested.exit_required)) {
2394                 nested_svm_vmexit(svm);
2395                 svm->nested.exit_required = false;
2396
2397                 return 1;
2398         }
2399
2400         if (is_nested(svm)) {
2401                 int vmexit;
2402
2403                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2404                                         svm->vmcb->control.exit_info_1,
2405                                         svm->vmcb->control.exit_info_2,
2406                                         svm->vmcb->control.exit_int_info,
2407                                         svm->vmcb->control.exit_int_info_err);
2408
2409                 vmexit = nested_svm_exit_special(svm);
2410
2411                 if (vmexit == NESTED_EXIT_CONTINUE)
2412                         vmexit = nested_svm_exit_handled(svm);
2413
2414                 if (vmexit == NESTED_EXIT_DONE)
2415                         return 1;
2416         }
2417
2418         svm_complete_interrupts(svm);
2419
2420         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2421                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2422         if (npt_enabled)
2423                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2424
2425         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2426                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2427                 kvm_run->fail_entry.hardware_entry_failure_reason
2428                         = svm->vmcb->control.exit_code;
2429                 return 0;
2430         }
2431
2432         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2433             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2434             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2435                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2436                        "exit_code 0x%x\n",
2437                        __func__, svm->vmcb->control.exit_int_info,
2438                        exit_code);
2439
2440         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2441             || !svm_exit_handlers[exit_code]) {
2442                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2443                 kvm_run->hw.hardware_exit_reason = exit_code;
2444                 return 0;
2445         }
2446
2447         return svm_exit_handlers[exit_code](svm);
2448 }
2449
2450 static void reload_tss(struct kvm_vcpu *vcpu)
2451 {
2452         int cpu = raw_smp_processor_id();
2453
2454         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2455         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2456         load_TR_desc();
2457 }
2458
2459 static void pre_svm_run(struct vcpu_svm *svm)
2460 {
2461         int cpu = raw_smp_processor_id();
2462
2463         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2464
2465         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2466         /* FIXME: handle wraparound of asid_generation */
2467         if (svm->asid_generation != sd->asid_generation)
2468                 new_asid(svm, sd);
2469 }
2470
2471 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2472 {
2473         struct vcpu_svm *svm = to_svm(vcpu);
2474
2475         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2476         vcpu->arch.hflags |= HF_NMI_MASK;
2477         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2478         ++vcpu->stat.nmi_injections;
2479 }
2480
2481 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2482 {
2483         struct vmcb_control_area *control;
2484
2485         trace_kvm_inj_virq(irq);
2486
2487         ++svm->vcpu.stat.irq_injections;
2488         control = &svm->vmcb->control;
2489         control->int_vector = irq;
2490         control->int_ctl &= ~V_INTR_PRIO_MASK;
2491         control->int_ctl |= V_IRQ_MASK |
2492                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2493 }
2494
2495 static void svm_set_irq(struct kvm_vcpu *vcpu)
2496 {
2497         struct vcpu_svm *svm = to_svm(vcpu);
2498
2499         BUG_ON(!(gif_set(svm)));
2500
2501         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2502                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2503 }
2504
2505 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2506 {
2507         struct vcpu_svm *svm = to_svm(vcpu);
2508
2509         if (irr == -1)
2510                 return;
2511
2512         if (tpr >= irr)
2513                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2514 }
2515
2516 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2517 {
2518         struct vcpu_svm *svm = to_svm(vcpu);
2519         struct vmcb *vmcb = svm->vmcb;
2520         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2521                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2522 }
2523
2524 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2525 {
2526         struct vcpu_svm *svm = to_svm(vcpu);
2527
2528         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2529 }
2530
2531 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2532 {
2533         struct vcpu_svm *svm = to_svm(vcpu);
2534
2535         if (masked) {
2536                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2537                 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2538         } else {
2539                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2540                 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2541         }
2542 }
2543
2544 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2545 {
2546         struct vcpu_svm *svm = to_svm(vcpu);
2547         struct vmcb *vmcb = svm->vmcb;
2548         int ret;
2549
2550         if (!gif_set(svm) ||
2551              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2552                 return 0;
2553
2554         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2555
2556         if (is_nested(svm))
2557                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2558
2559         return ret;
2560 }
2561
2562 static void enable_irq_window(struct kvm_vcpu *vcpu)
2563 {
2564         struct vcpu_svm *svm = to_svm(vcpu);
2565
2566         nested_svm_intr(svm);
2567
2568         /* In case GIF=0 we can't rely on the CPU to tell us when
2569          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2570          * The next time we get that intercept, this function will be
2571          * called again though and we'll get the vintr intercept. */
2572         if (gif_set(svm)) {
2573                 svm_set_vintr(svm);
2574                 svm_inject_irq(svm, 0x0);
2575         }
2576 }
2577
2578 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2579 {
2580         struct vcpu_svm *svm = to_svm(vcpu);
2581
2582         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2583             == HF_NMI_MASK)
2584                 return; /* IRET will cause a vm exit */
2585
2586         /* Something prevents NMI from been injected. Single step over
2587            possible problem (IRET or exception injection or interrupt
2588            shadow) */
2589         svm->nmi_singlestep = true;
2590         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2591         update_db_intercept(vcpu);
2592 }
2593
2594 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2595 {
2596         return 0;
2597 }
2598
2599 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2600 {
2601         force_new_asid(vcpu);
2602 }
2603
2604 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2605 {
2606 }
2607
2608 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2609 {
2610         struct vcpu_svm *svm = to_svm(vcpu);
2611
2612         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2613                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2614                 kvm_set_cr8(vcpu, cr8);
2615         }
2616 }
2617
2618 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2619 {
2620         struct vcpu_svm *svm = to_svm(vcpu);
2621         u64 cr8;
2622
2623         cr8 = kvm_get_cr8(vcpu);
2624         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2625         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2626 }
2627
2628 static void svm_complete_interrupts(struct vcpu_svm *svm)
2629 {
2630         u8 vector;
2631         int type;
2632         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2633
2634         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2635                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2636
2637         svm->vcpu.arch.nmi_injected = false;
2638         kvm_clear_exception_queue(&svm->vcpu);
2639         kvm_clear_interrupt_queue(&svm->vcpu);
2640
2641         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2642                 return;
2643
2644         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2645         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2646
2647         switch (type) {
2648         case SVM_EXITINTINFO_TYPE_NMI:
2649                 svm->vcpu.arch.nmi_injected = true;
2650                 break;
2651         case SVM_EXITINTINFO_TYPE_EXEPT:
2652                 /* In case of software exception do not reinject an exception
2653                    vector, but re-execute and instruction instead */
2654                 if (is_nested(svm))
2655                         break;
2656                 if (kvm_exception_is_soft(vector))
2657                         break;
2658                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2659                         u32 err = svm->vmcb->control.exit_int_info_err;
2660                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2661
2662                 } else
2663                         kvm_queue_exception(&svm->vcpu, vector);
2664                 break;
2665         case SVM_EXITINTINFO_TYPE_INTR:
2666                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2667                 break;
2668         default:
2669                 break;
2670         }
2671 }
2672
2673 #ifdef CONFIG_X86_64
2674 #define R "r"
2675 #else
2676 #define R "e"
2677 #endif
2678
2679 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2680 {
2681         struct vcpu_svm *svm = to_svm(vcpu);
2682         u16 fs_selector;
2683         u16 gs_selector;
2684         u16 ldt_selector;
2685
2686         /*
2687          * A vmexit emulation is required before the vcpu can be executed
2688          * again.
2689          */
2690         if (unlikely(svm->nested.exit_required))
2691                 return;
2692
2693         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2694         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2695         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2696
2697         pre_svm_run(svm);
2698
2699         sync_lapic_to_cr8(vcpu);
2700
2701         save_host_msrs(vcpu);
2702         fs_selector = kvm_read_fs();
2703         gs_selector = kvm_read_gs();
2704         ldt_selector = kvm_read_ldt();
2705         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2706         /* required for live migration with NPT */
2707         if (npt_enabled)
2708                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2709
2710         clgi();
2711
2712         local_irq_enable();
2713
2714         asm volatile (
2715                 "push %%"R"bp; \n\t"
2716                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2717                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2718                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2719                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2720                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2721                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2722 #ifdef CONFIG_X86_64
2723                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2724                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2725                 "mov %c[r10](%[svm]), %%r10 \n\t"
2726                 "mov %c[r11](%[svm]), %%r11 \n\t"
2727                 "mov %c[r12](%[svm]), %%r12 \n\t"
2728                 "mov %c[r13](%[svm]), %%r13 \n\t"
2729                 "mov %c[r14](%[svm]), %%r14 \n\t"
2730                 "mov %c[r15](%[svm]), %%r15 \n\t"
2731 #endif
2732
2733                 /* Enter guest mode */
2734                 "push %%"R"ax \n\t"
2735                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2736                 __ex(SVM_VMLOAD) "\n\t"
2737                 __ex(SVM_VMRUN) "\n\t"
2738                 __ex(SVM_VMSAVE) "\n\t"
2739                 "pop %%"R"ax \n\t"
2740
2741                 /* Save guest registers, load host registers */
2742                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2743                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2744                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2745                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2746                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2747                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2748 #ifdef CONFIG_X86_64
2749                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2750                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2751                 "mov %%r10, %c[r10](%[svm]) \n\t"
2752                 "mov %%r11, %c[r11](%[svm]) \n\t"
2753                 "mov %%r12, %c[r12](%[svm]) \n\t"
2754                 "mov %%r13, %c[r13](%[svm]) \n\t"
2755                 "mov %%r14, %c[r14](%[svm]) \n\t"
2756                 "mov %%r15, %c[r15](%[svm]) \n\t"
2757 #endif
2758                 "pop %%"R"bp"
2759                 :
2760                 : [svm]"a"(svm),
2761                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2762                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2763                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2764                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2765                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2766                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2767                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2768 #ifdef CONFIG_X86_64
2769                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2770                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2771                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2772                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2773                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2774                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2775                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2776                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2777 #endif
2778                 : "cc", "memory"
2779                 , R"bx", R"cx", R"dx", R"si", R"di"
2780 #ifdef CONFIG_X86_64
2781                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2782 #endif
2783                 );
2784
2785         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2786         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2787         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2788         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2789
2790         kvm_load_fs(fs_selector);
2791         kvm_load_gs(gs_selector);
2792         kvm_load_ldt(ldt_selector);
2793         load_host_msrs(vcpu);
2794
2795         reload_tss(vcpu);
2796
2797         local_irq_disable();
2798
2799         stgi();
2800
2801         sync_cr8_to_lapic(vcpu);
2802
2803         svm->next_rip = 0;
2804
2805         if (npt_enabled) {
2806                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2807                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2808         }
2809 }
2810
2811 #undef R
2812
2813 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2814 {
2815         struct vcpu_svm *svm = to_svm(vcpu);
2816
2817         if (npt_enabled) {
2818                 svm->vmcb->control.nested_cr3 = root;
2819                 force_new_asid(vcpu);
2820                 return;
2821         }
2822
2823         svm->vmcb->save.cr3 = root;
2824         force_new_asid(vcpu);
2825 }
2826
2827 static int is_disabled(void)
2828 {
2829         u64 vm_cr;
2830
2831         rdmsrl(MSR_VM_CR, vm_cr);
2832         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2833                 return 1;
2834
2835         return 0;
2836 }
2837
2838 static void
2839 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2840 {
2841         /*
2842          * Patch in the VMMCALL instruction:
2843          */
2844         hypercall[0] = 0x0f;
2845         hypercall[1] = 0x01;
2846         hypercall[2] = 0xd9;
2847 }
2848
2849 static void svm_check_processor_compat(void *rtn)
2850 {
2851         *(int *)rtn = 0;
2852 }
2853
2854 static bool svm_cpu_has_accelerated_tpr(void)
2855 {
2856         return false;
2857 }
2858
2859 static int get_npt_level(void)
2860 {
2861 #ifdef CONFIG_X86_64
2862         return PT64_ROOT_LEVEL;
2863 #else
2864         return PT32E_ROOT_LEVEL;
2865 #endif
2866 }
2867
2868 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2869 {
2870         return 0;
2871 }
2872
2873 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2874 {
2875 }
2876
2877 static const struct trace_print_flags svm_exit_reasons_str[] = {
2878         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2879         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2880         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2881         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2882         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2883         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2884         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2885         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2886         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2887         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2888         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2889         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2890         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2891         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2892         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2893         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2894         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2895         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2896         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2897         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2898         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2899         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2900         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2901         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2902         { SVM_EXIT_INTR,                        "interrupt" },
2903         { SVM_EXIT_NMI,                         "nmi" },
2904         { SVM_EXIT_SMI,                         "smi" },
2905         { SVM_EXIT_INIT,                        "init" },
2906         { SVM_EXIT_VINTR,                       "vintr" },
2907         { SVM_EXIT_CPUID,                       "cpuid" },
2908         { SVM_EXIT_INVD,                        "invd" },
2909         { SVM_EXIT_HLT,                         "hlt" },
2910         { SVM_EXIT_INVLPG,                      "invlpg" },
2911         { SVM_EXIT_INVLPGA,                     "invlpga" },
2912         { SVM_EXIT_IOIO,                        "io" },
2913         { SVM_EXIT_MSR,                         "msr" },
2914         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2915         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2916         { SVM_EXIT_VMRUN,                       "vmrun" },
2917         { SVM_EXIT_VMMCALL,                     "hypercall" },
2918         { SVM_EXIT_VMLOAD,                      "vmload" },
2919         { SVM_EXIT_VMSAVE,                      "vmsave" },
2920         { SVM_EXIT_STGI,                        "stgi" },
2921         { SVM_EXIT_CLGI,                        "clgi" },
2922         { SVM_EXIT_SKINIT,                      "skinit" },
2923         { SVM_EXIT_WBINVD,                      "wbinvd" },
2924         { SVM_EXIT_MONITOR,                     "monitor" },
2925         { SVM_EXIT_MWAIT,                       "mwait" },
2926         { SVM_EXIT_NPF,                         "npf" },
2927         { -1, NULL }
2928 };
2929
2930 static int svm_get_lpage_level(void)
2931 {
2932         return PT_PDPE_LEVEL;
2933 }
2934
2935 static bool svm_rdtscp_supported(void)
2936 {
2937         return false;
2938 }
2939
2940 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
2941 {
2942         struct vcpu_svm *svm = to_svm(vcpu);
2943
2944         update_cr0_intercept(svm);
2945         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
2946 }
2947
2948 static struct kvm_x86_ops svm_x86_ops = {
2949         .cpu_has_kvm_support = has_svm,
2950         .disabled_by_bios = is_disabled,
2951         .hardware_setup = svm_hardware_setup,
2952         .hardware_unsetup = svm_hardware_unsetup,
2953         .check_processor_compatibility = svm_check_processor_compat,
2954         .hardware_enable = svm_hardware_enable,
2955         .hardware_disable = svm_hardware_disable,
2956         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2957
2958         .vcpu_create = svm_create_vcpu,
2959         .vcpu_free = svm_free_vcpu,
2960         .vcpu_reset = svm_vcpu_reset,
2961
2962         .prepare_guest_switch = svm_prepare_guest_switch,
2963         .vcpu_load = svm_vcpu_load,
2964         .vcpu_put = svm_vcpu_put,
2965
2966         .set_guest_debug = svm_guest_debug,
2967         .get_msr = svm_get_msr,
2968         .set_msr = svm_set_msr,
2969         .get_segment_base = svm_get_segment_base,
2970         .get_segment = svm_get_segment,
2971         .set_segment = svm_set_segment,
2972         .get_cpl = svm_get_cpl,
2973         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2974         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
2975         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2976         .set_cr0 = svm_set_cr0,
2977         .set_cr3 = svm_set_cr3,
2978         .set_cr4 = svm_set_cr4,
2979         .set_efer = svm_set_efer,
2980         .get_idt = svm_get_idt,
2981         .set_idt = svm_set_idt,
2982         .get_gdt = svm_get_gdt,
2983         .set_gdt = svm_set_gdt,
2984         .get_dr = svm_get_dr,
2985         .set_dr = svm_set_dr,
2986         .cache_reg = svm_cache_reg,
2987         .get_rflags = svm_get_rflags,
2988         .set_rflags = svm_set_rflags,
2989         .fpu_activate = svm_fpu_activate,
2990         .fpu_deactivate = svm_fpu_deactivate,
2991
2992         .tlb_flush = svm_flush_tlb,
2993
2994         .run = svm_vcpu_run,
2995         .handle_exit = handle_exit,
2996         .skip_emulated_instruction = skip_emulated_instruction,
2997         .set_interrupt_shadow = svm_set_interrupt_shadow,
2998         .get_interrupt_shadow = svm_get_interrupt_shadow,
2999         .patch_hypercall = svm_patch_hypercall,
3000         .set_irq = svm_set_irq,
3001         .set_nmi = svm_inject_nmi,
3002         .queue_exception = svm_queue_exception,
3003         .interrupt_allowed = svm_interrupt_allowed,
3004         .nmi_allowed = svm_nmi_allowed,
3005         .get_nmi_mask = svm_get_nmi_mask,
3006         .set_nmi_mask = svm_set_nmi_mask,
3007         .enable_nmi_window = enable_nmi_window,
3008         .enable_irq_window = enable_irq_window,
3009         .update_cr8_intercept = update_cr8_intercept,
3010
3011         .set_tss_addr = svm_set_tss_addr,
3012         .get_tdp_level = get_npt_level,
3013         .get_mt_mask = svm_get_mt_mask,
3014
3015         .exit_reasons_str = svm_exit_reasons_str,
3016         .get_lpage_level = svm_get_lpage_level,
3017
3018         .cpuid_update = svm_cpuid_update,
3019
3020         .rdtscp_supported = svm_rdtscp_supported,
3021 };
3022
3023 static int __init svm_init(void)
3024 {
3025         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3026                               THIS_MODULE);
3027 }
3028
3029 static void __exit svm_exit(void)
3030 {
3031         kvm_exit();
3032 }
3033
3034 module_init(svm_init)
3035 module_exit(svm_exit)