Merge branch 'core-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51         union {
52                 u64 ll;
53                 struct {
54                         u32 low, high;
55                 } l;
56         } u, res;
57         u64 rl, rh;
58
59         u.ll = a;
60         rl = (u64)u.l.low * (u64)b;
61         rh = (u64)u.l.high * (u64)b;
62         rh += (rl >> 32);
63         res.l.high = div64_u64(rh, c);
64         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65         return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70         struct kvm_kpit_channel_state *c =
71                 &kvm->arch.vpit->pit_state.channels[channel];
72
73         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75         switch (c->mode) {
76         default:
77         case 0:
78         case 4:
79                 /* XXX: just disable/enable counting */
80                 break;
81         case 1:
82         case 2:
83         case 3:
84         case 5:
85                 /* Restart counting on rising edge. */
86                 if (c->gate < val)
87                         c->count_load_time = ktime_get();
88                 break;
89         }
90
91         c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98         return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static s64 __kpit_elapsed(struct kvm *kvm)
102 {
103         s64 elapsed;
104         ktime_t remaining;
105         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
106
107         if (!ps->pit_timer.period)
108                 return 0;
109
110         /*
111          * The Counter does not stop when it reaches zero. In
112          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113          * the highest count, either FFFF hex for binary counting
114          * or 9999 for BCD counting, and continues counting.
115          * Modes 2 and 3 are periodic; the Counter reloads
116          * itself with the initial count and continues counting
117          * from there.
118          */
119         remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
120         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
121         elapsed = mod_64(elapsed, ps->pit_timer.period);
122
123         return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
127                         int channel)
128 {
129         if (channel == 0)
130                 return __kpit_elapsed(kvm);
131
132         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm *kvm, int channel)
136 {
137         struct kvm_kpit_channel_state *c =
138                 &kvm->arch.vpit->pit_state.channels[channel];
139         s64 d, t;
140         int counter;
141
142         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
143
144         t = kpit_elapsed(kvm, c, channel);
145         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
146
147         switch (c->mode) {
148         case 0:
149         case 1:
150         case 4:
151         case 5:
152                 counter = (c->count - d) & 0xffff;
153                 break;
154         case 3:
155                 /* XXX: may be incorrect for odd counts */
156                 counter = c->count - (mod_64((2 * d), c->count));
157                 break;
158         default:
159                 counter = c->count - mod_64(d, c->count);
160                 break;
161         }
162         return counter;
163 }
164
165 static int pit_get_out(struct kvm *kvm, int channel)
166 {
167         struct kvm_kpit_channel_state *c =
168                 &kvm->arch.vpit->pit_state.channels[channel];
169         s64 d, t;
170         int out;
171
172         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
173
174         t = kpit_elapsed(kvm, c, channel);
175         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
176
177         switch (c->mode) {
178         default:
179         case 0:
180                 out = (d >= c->count);
181                 break;
182         case 1:
183                 out = (d < c->count);
184                 break;
185         case 2:
186                 out = ((mod_64(d, c->count) == 0) && (d != 0));
187                 break;
188         case 3:
189                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
190                 break;
191         case 4:
192         case 5:
193                 out = (d == c->count);
194                 break;
195         }
196
197         return out;
198 }
199
200 static void pit_latch_count(struct kvm *kvm, int channel)
201 {
202         struct kvm_kpit_channel_state *c =
203                 &kvm->arch.vpit->pit_state.channels[channel];
204
205         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
206
207         if (!c->count_latched) {
208                 c->latched_count = pit_get_count(kvm, channel);
209                 c->count_latched = c->rw_mode;
210         }
211 }
212
213 static void pit_latch_status(struct kvm *kvm, int channel)
214 {
215         struct kvm_kpit_channel_state *c =
216                 &kvm->arch.vpit->pit_state.channels[channel];
217
218         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
219
220         if (!c->status_latched) {
221                 /* TODO: Return NULL COUNT (bit 6). */
222                 c->status = ((pit_get_out(kvm, channel) << 7) |
223                                 (c->rw_mode << 4) |
224                                 (c->mode << 1) |
225                                 c->bcd);
226                 c->status_latched = 1;
227         }
228 }
229
230 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
231 {
232         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
233
234         if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
235                 return atomic_read(&pit->pit_state.pit_timer.pending);
236         return 0;
237 }
238
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
240 {
241         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
242                                                  irq_ack_notifier);
243         spin_lock(&ps->inject_lock);
244         if (atomic_dec_return(&ps->pit_timer.pending) < 0)
245                 atomic_inc(&ps->pit_timer.pending);
246         ps->irq_ack = 1;
247         spin_unlock(&ps->inject_lock);
248 }
249
250 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
251 {
252         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
253         struct hrtimer *timer;
254
255         if (vcpu->vcpu_id != 0 || !pit)
256                 return;
257
258         timer = &pit->pit_state.pit_timer.timer;
259         if (hrtimer_cancel(timer))
260                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
261 }
262
263 static void destroy_pit_timer(struct kvm_timer *pt)
264 {
265         pr_debug("pit: execute del timer!\n");
266         hrtimer_cancel(&pt->timer);
267 }
268
269 static bool kpit_is_periodic(struct kvm_timer *ktimer)
270 {
271         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
272                                                  pit_timer);
273         return ps->is_periodic;
274 }
275
276 static struct kvm_timer_ops kpit_ops = {
277         .is_periodic = kpit_is_periodic,
278 };
279
280 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
281 {
282         struct kvm_timer *pt = &ps->pit_timer;
283         s64 interval;
284
285         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
286
287         pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
288
289         /* TODO The new value only affected after the retriggered */
290         hrtimer_cancel(&pt->timer);
291         pt->period = interval;
292         ps->is_periodic = is_period;
293
294         pt->timer.function = kvm_timer_fn;
295         pt->t_ops = &kpit_ops;
296         pt->kvm = ps->pit->kvm;
297         pt->vcpu_id = 0;
298
299         atomic_set(&pt->pending, 0);
300         ps->irq_ack = 1;
301
302         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
303                       HRTIMER_MODE_ABS);
304 }
305
306 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
307 {
308         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
309
310         WARN_ON(!mutex_is_locked(&ps->lock));
311
312         pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
313
314         /*
315          * The largest possible initial count is 0; this is equivalent
316          * to 216 for binary counting and 104 for BCD counting.
317          */
318         if (val == 0)
319                 val = 0x10000;
320
321         ps->channels[channel].count = val;
322
323         if (channel != 0) {
324                 ps->channels[channel].count_load_time = ktime_get();
325                 return;
326         }
327
328         /* Two types of timer
329          * mode 1 is one shot, mode 2 is period, otherwise del timer */
330         switch (ps->channels[0].mode) {
331         case 0:
332         case 1:
333         /* FIXME: enhance mode 4 precision */
334         case 4:
335                 create_pit_timer(ps, val, 0);
336                 break;
337         case 2:
338         case 3:
339                 create_pit_timer(ps, val, 1);
340                 break;
341         default:
342                 destroy_pit_timer(&ps->pit_timer);
343         }
344 }
345
346 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
347 {
348         mutex_lock(&kvm->arch.vpit->pit_state.lock);
349         pit_load_count(kvm, channel, val);
350         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
351 }
352
353 static void pit_ioport_write(struct kvm_io_device *this,
354                              gpa_t addr, int len, const void *data)
355 {
356         struct kvm_pit *pit = (struct kvm_pit *)this->private;
357         struct kvm_kpit_state *pit_state = &pit->pit_state;
358         struct kvm *kvm = pit->kvm;
359         int channel, access;
360         struct kvm_kpit_channel_state *s;
361         u32 val = *(u32 *) data;
362
363         val  &= 0xff;
364         addr &= KVM_PIT_CHANNEL_MASK;
365
366         mutex_lock(&pit_state->lock);
367
368         if (val != 0)
369                 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
370                           (unsigned int)addr, len, val);
371
372         if (addr == 3) {
373                 channel = val >> 6;
374                 if (channel == 3) {
375                         /* Read-Back Command. */
376                         for (channel = 0; channel < 3; channel++) {
377                                 s = &pit_state->channels[channel];
378                                 if (val & (2 << channel)) {
379                                         if (!(val & 0x20))
380                                                 pit_latch_count(kvm, channel);
381                                         if (!(val & 0x10))
382                                                 pit_latch_status(kvm, channel);
383                                 }
384                         }
385                 } else {
386                         /* Select Counter <channel>. */
387                         s = &pit_state->channels[channel];
388                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
389                         if (access == 0) {
390                                 pit_latch_count(kvm, channel);
391                         } else {
392                                 s->rw_mode = access;
393                                 s->read_state = access;
394                                 s->write_state = access;
395                                 s->mode = (val >> 1) & 7;
396                                 if (s->mode > 5)
397                                         s->mode -= 4;
398                                 s->bcd = val & 1;
399                         }
400                 }
401         } else {
402                 /* Write Count. */
403                 s = &pit_state->channels[addr];
404                 switch (s->write_state) {
405                 default:
406                 case RW_STATE_LSB:
407                         pit_load_count(kvm, addr, val);
408                         break;
409                 case RW_STATE_MSB:
410                         pit_load_count(kvm, addr, val << 8);
411                         break;
412                 case RW_STATE_WORD0:
413                         s->write_latch = val;
414                         s->write_state = RW_STATE_WORD1;
415                         break;
416                 case RW_STATE_WORD1:
417                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
418                         s->write_state = RW_STATE_WORD0;
419                         break;
420                 }
421         }
422
423         mutex_unlock(&pit_state->lock);
424 }
425
426 static void pit_ioport_read(struct kvm_io_device *this,
427                             gpa_t addr, int len, void *data)
428 {
429         struct kvm_pit *pit = (struct kvm_pit *)this->private;
430         struct kvm_kpit_state *pit_state = &pit->pit_state;
431         struct kvm *kvm = pit->kvm;
432         int ret, count;
433         struct kvm_kpit_channel_state *s;
434
435         addr &= KVM_PIT_CHANNEL_MASK;
436         s = &pit_state->channels[addr];
437
438         mutex_lock(&pit_state->lock);
439
440         if (s->status_latched) {
441                 s->status_latched = 0;
442                 ret = s->status;
443         } else if (s->count_latched) {
444                 switch (s->count_latched) {
445                 default:
446                 case RW_STATE_LSB:
447                         ret = s->latched_count & 0xff;
448                         s->count_latched = 0;
449                         break;
450                 case RW_STATE_MSB:
451                         ret = s->latched_count >> 8;
452                         s->count_latched = 0;
453                         break;
454                 case RW_STATE_WORD0:
455                         ret = s->latched_count & 0xff;
456                         s->count_latched = RW_STATE_MSB;
457                         break;
458                 }
459         } else {
460                 switch (s->read_state) {
461                 default:
462                 case RW_STATE_LSB:
463                         count = pit_get_count(kvm, addr);
464                         ret = count & 0xff;
465                         break;
466                 case RW_STATE_MSB:
467                         count = pit_get_count(kvm, addr);
468                         ret = (count >> 8) & 0xff;
469                         break;
470                 case RW_STATE_WORD0:
471                         count = pit_get_count(kvm, addr);
472                         ret = count & 0xff;
473                         s->read_state = RW_STATE_WORD1;
474                         break;
475                 case RW_STATE_WORD1:
476                         count = pit_get_count(kvm, addr);
477                         ret = (count >> 8) & 0xff;
478                         s->read_state = RW_STATE_WORD0;
479                         break;
480                 }
481         }
482
483         if (len > sizeof(ret))
484                 len = sizeof(ret);
485         memcpy(data, (char *)&ret, len);
486
487         mutex_unlock(&pit_state->lock);
488 }
489
490 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
491                         int len, int is_write)
492 {
493         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
494                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
495 }
496
497 static void speaker_ioport_write(struct kvm_io_device *this,
498                                  gpa_t addr, int len, const void *data)
499 {
500         struct kvm_pit *pit = (struct kvm_pit *)this->private;
501         struct kvm_kpit_state *pit_state = &pit->pit_state;
502         struct kvm *kvm = pit->kvm;
503         u32 val = *(u32 *) data;
504
505         mutex_lock(&pit_state->lock);
506         pit_state->speaker_data_on = (val >> 1) & 1;
507         pit_set_gate(kvm, 2, val & 1);
508         mutex_unlock(&pit_state->lock);
509 }
510
511 static void speaker_ioport_read(struct kvm_io_device *this,
512                                 gpa_t addr, int len, void *data)
513 {
514         struct kvm_pit *pit = (struct kvm_pit *)this->private;
515         struct kvm_kpit_state *pit_state = &pit->pit_state;
516         struct kvm *kvm = pit->kvm;
517         unsigned int refresh_clock;
518         int ret;
519
520         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
521         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
522
523         mutex_lock(&pit_state->lock);
524         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
525                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
526         if (len > sizeof(ret))
527                 len = sizeof(ret);
528         memcpy(data, (char *)&ret, len);
529         mutex_unlock(&pit_state->lock);
530 }
531
532 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
533                             int len, int is_write)
534 {
535         return (addr == KVM_SPEAKER_BASE_ADDRESS);
536 }
537
538 void kvm_pit_reset(struct kvm_pit *pit)
539 {
540         int i;
541         struct kvm_kpit_channel_state *c;
542
543         mutex_lock(&pit->pit_state.lock);
544         for (i = 0; i < 3; i++) {
545                 c = &pit->pit_state.channels[i];
546                 c->mode = 0xff;
547                 c->gate = (i != 2);
548                 pit_load_count(pit->kvm, i, 0);
549         }
550         mutex_unlock(&pit->pit_state.lock);
551
552         atomic_set(&pit->pit_state.pit_timer.pending, 0);
553         pit->pit_state.irq_ack = 1;
554 }
555
556 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
557 {
558         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
559
560         if (!mask) {
561                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
562                 pit->pit_state.irq_ack = 1;
563         }
564 }
565
566 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
567 {
568         struct kvm_pit *pit;
569         struct kvm_kpit_state *pit_state;
570
571         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
572         if (!pit)
573                 return NULL;
574
575         pit->irq_source_id = kvm_request_irq_source_id(kvm);
576         if (pit->irq_source_id < 0) {
577                 kfree(pit);
578                 return NULL;
579         }
580
581         mutex_init(&pit->pit_state.lock);
582         mutex_lock(&pit->pit_state.lock);
583         spin_lock_init(&pit->pit_state.inject_lock);
584
585         /* Initialize PIO device */
586         pit->dev.read = pit_ioport_read;
587         pit->dev.write = pit_ioport_write;
588         pit->dev.in_range = pit_in_range;
589         pit->dev.private = pit;
590         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
591
592         pit->speaker_dev.read = speaker_ioport_read;
593         pit->speaker_dev.write = speaker_ioport_write;
594         pit->speaker_dev.in_range = speaker_in_range;
595         pit->speaker_dev.private = pit;
596         kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
597
598         kvm->arch.vpit = pit;
599         pit->kvm = kvm;
600
601         pit_state = &pit->pit_state;
602         pit_state->pit = pit;
603         hrtimer_init(&pit_state->pit_timer.timer,
604                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
605         pit_state->irq_ack_notifier.gsi = 0;
606         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
607         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
608         pit_state->pit_timer.reinject = true;
609         mutex_unlock(&pit->pit_state.lock);
610
611         kvm_pit_reset(pit);
612
613         pit->mask_notifier.func = pit_mask_notifer;
614         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
615
616         return pit;
617 }
618
619 void kvm_free_pit(struct kvm *kvm)
620 {
621         struct hrtimer *timer;
622
623         if (kvm->arch.vpit) {
624                 kvm_unregister_irq_mask_notifier(kvm, 0,
625                                                &kvm->arch.vpit->mask_notifier);
626                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
627                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
628                 hrtimer_cancel(timer);
629                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
630                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
631                 kfree(kvm->arch.vpit);
632         }
633 }
634
635 static void __inject_pit_timer_intr(struct kvm *kvm)
636 {
637         struct kvm_vcpu *vcpu;
638         int i;
639
640         mutex_lock(&kvm->lock);
641         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
642         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
643         mutex_unlock(&kvm->lock);
644
645         /*
646          * Provides NMI watchdog support via Virtual Wire mode.
647          * The route is: PIT -> PIC -> LVT0 in NMI mode.
648          *
649          * Note: Our Virtual Wire implementation is simplified, only
650          * propagating PIT interrupts to all VCPUs when they have set
651          * LVT0 to NMI delivery. Other PIC interrupts are just sent to
652          * VCPU0, and only if its LVT0 is in EXTINT mode.
653          */
654         if (kvm->arch.vapics_in_nmi_mode > 0)
655                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
656                         vcpu = kvm->vcpus[i];
657                         if (vcpu)
658                                 kvm_apic_nmi_wd_deliver(vcpu);
659                 }
660 }
661
662 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
663 {
664         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
665         struct kvm *kvm = vcpu->kvm;
666         struct kvm_kpit_state *ps;
667
668         if (vcpu && pit) {
669                 int inject = 0;
670                 ps = &pit->pit_state;
671
672                 /* Try to inject pending interrupts when
673                  * last one has been acked.
674                  */
675                 spin_lock(&ps->inject_lock);
676                 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
677                         ps->irq_ack = 0;
678                         inject = 1;
679                 }
680                 spin_unlock(&ps->inject_lock);
681                 if (inject)
682                         __inject_pit_timer_intr(kvm);
683         }
684 }