Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[pandora-kernel.git] / arch / x86 / kernel / kvm.c
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41
42 #define MMU_QUEUE_SIZE 1024
43
44 static int kvmapf = 1;
45
46 static int parse_no_kvmapf(char *arg)
47 {
48         kvmapf = 0;
49         return 0;
50 }
51
52 early_param("no-kvmapf", parse_no_kvmapf);
53
54 static int steal_acc = 1;
55 static int parse_no_stealacc(char *arg)
56 {
57         steal_acc = 0;
58         return 0;
59 }
60
61 early_param("no-steal-acc", parse_no_stealacc);
62
63 struct kvm_para_state {
64         u8 mmu_queue[MMU_QUEUE_SIZE];
65         int mmu_queue_len;
66 };
67
68 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
69 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
70 static DEFINE_PER_CPU(struct kvm_steal_time, steal_time) __aligned(64);
71 static int has_steal_clock = 0;
72
73 static struct kvm_para_state *kvm_para_state(void)
74 {
75         return &per_cpu(para_state, raw_smp_processor_id());
76 }
77
78 /*
79  * No need for any "IO delay" on KVM
80  */
81 static void kvm_io_delay(void)
82 {
83 }
84
85 #define KVM_TASK_SLEEP_HASHBITS 8
86 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
87
88 struct kvm_task_sleep_node {
89         struct hlist_node link;
90         wait_queue_head_t wq;
91         u32 token;
92         int cpu;
93         bool halted;
94         struct mm_struct *mm;
95 };
96
97 static struct kvm_task_sleep_head {
98         spinlock_t lock;
99         struct hlist_head list;
100 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
101
102 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
103                                                   u32 token)
104 {
105         struct hlist_node *p;
106
107         hlist_for_each(p, &b->list) {
108                 struct kvm_task_sleep_node *n =
109                         hlist_entry(p, typeof(*n), link);
110                 if (n->token == token)
111                         return n;
112         }
113
114         return NULL;
115 }
116
117 void kvm_async_pf_task_wait(u32 token)
118 {
119         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
120         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
121         struct kvm_task_sleep_node n, *e;
122         DEFINE_WAIT(wait);
123         int cpu, idle;
124
125         cpu = get_cpu();
126         idle = idle_cpu(cpu);
127         put_cpu();
128
129         spin_lock(&b->lock);
130         e = _find_apf_task(b, token);
131         if (e) {
132                 /* dummy entry exist -> wake up was delivered ahead of PF */
133                 hlist_del(&e->link);
134                 kfree(e);
135                 spin_unlock(&b->lock);
136                 return;
137         }
138
139         n.token = token;
140         n.cpu = smp_processor_id();
141         n.mm = current->active_mm;
142         n.halted = idle || preempt_count() > 1;
143         atomic_inc(&n.mm->mm_count);
144         init_waitqueue_head(&n.wq);
145         hlist_add_head(&n.link, &b->list);
146         spin_unlock(&b->lock);
147
148         for (;;) {
149                 if (!n.halted)
150                         prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
151                 if (hlist_unhashed(&n.link))
152                         break;
153
154                 if (!n.halted) {
155                         local_irq_enable();
156                         schedule();
157                         local_irq_disable();
158                 } else {
159                         /*
160                          * We cannot reschedule. So halt.
161                          */
162                         native_safe_halt();
163                         local_irq_disable();
164                 }
165         }
166         if (!n.halted)
167                 finish_wait(&n.wq, &wait);
168
169         return;
170 }
171 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
172
173 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
174 {
175         hlist_del_init(&n->link);
176         if (!n->mm)
177                 return;
178         mmdrop(n->mm);
179         if (n->halted)
180                 smp_send_reschedule(n->cpu);
181         else if (waitqueue_active(&n->wq))
182                 wake_up(&n->wq);
183 }
184
185 static void apf_task_wake_all(void)
186 {
187         int i;
188
189         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
190                 struct hlist_node *p, *next;
191                 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
192                 spin_lock(&b->lock);
193                 hlist_for_each_safe(p, next, &b->list) {
194                         struct kvm_task_sleep_node *n =
195                                 hlist_entry(p, typeof(*n), link);
196                         if (n->cpu == smp_processor_id())
197                                 apf_task_wake_one(n);
198                 }
199                 spin_unlock(&b->lock);
200         }
201 }
202
203 void kvm_async_pf_task_wake(u32 token)
204 {
205         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
206         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
207         struct kvm_task_sleep_node *n;
208
209         if (token == ~0) {
210                 apf_task_wake_all();
211                 return;
212         }
213
214 again:
215         spin_lock(&b->lock);
216         n = _find_apf_task(b, token);
217         if (!n) {
218                 /*
219                  * async PF was not yet handled.
220                  * Add dummy entry for the token.
221                  */
222                 n = kmalloc(sizeof(*n), GFP_ATOMIC);
223                 if (!n) {
224                         /*
225                          * Allocation failed! Busy wait while other cpu
226                          * handles async PF.
227                          */
228                         spin_unlock(&b->lock);
229                         cpu_relax();
230                         goto again;
231                 }
232                 n->token = token;
233                 n->cpu = smp_processor_id();
234                 n->mm = NULL;
235                 init_waitqueue_head(&n->wq);
236                 hlist_add_head(&n->link, &b->list);
237         } else
238                 apf_task_wake_one(n);
239         spin_unlock(&b->lock);
240         return;
241 }
242 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
243
244 u32 kvm_read_and_reset_pf_reason(void)
245 {
246         u32 reason = 0;
247
248         if (__get_cpu_var(apf_reason).enabled) {
249                 reason = __get_cpu_var(apf_reason).reason;
250                 __get_cpu_var(apf_reason).reason = 0;
251         }
252
253         return reason;
254 }
255 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
256
257 dotraplinkage void __kprobes
258 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
259 {
260         switch (kvm_read_and_reset_pf_reason()) {
261         default:
262                 do_page_fault(regs, error_code);
263                 break;
264         case KVM_PV_REASON_PAGE_NOT_PRESENT:
265                 /* page is swapped out by the host. */
266                 kvm_async_pf_task_wait((u32)read_cr2());
267                 break;
268         case KVM_PV_REASON_PAGE_READY:
269                 kvm_async_pf_task_wake((u32)read_cr2());
270                 break;
271         }
272 }
273
274 static void kvm_mmu_op(void *buffer, unsigned len)
275 {
276         int r;
277         unsigned long a1, a2;
278
279         do {
280                 a1 = __pa(buffer);
281                 a2 = 0;   /* on i386 __pa() always returns <4G */
282                 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
283                 buffer += r;
284                 len -= r;
285         } while (len);
286 }
287
288 static void mmu_queue_flush(struct kvm_para_state *state)
289 {
290         if (state->mmu_queue_len) {
291                 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
292                 state->mmu_queue_len = 0;
293         }
294 }
295
296 static void kvm_deferred_mmu_op(void *buffer, int len)
297 {
298         struct kvm_para_state *state = kvm_para_state();
299
300         if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
301                 kvm_mmu_op(buffer, len);
302                 return;
303         }
304         if (state->mmu_queue_len + len > sizeof state->mmu_queue)
305                 mmu_queue_flush(state);
306         memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
307         state->mmu_queue_len += len;
308 }
309
310 static void kvm_mmu_write(void *dest, u64 val)
311 {
312         __u64 pte_phys;
313         struct kvm_mmu_op_write_pte wpte;
314
315 #ifdef CONFIG_HIGHPTE
316         struct page *page;
317         unsigned long dst = (unsigned long) dest;
318
319         page = kmap_atomic_to_page(dest);
320         pte_phys = page_to_pfn(page);
321         pte_phys <<= PAGE_SHIFT;
322         pte_phys += (dst & ~(PAGE_MASK));
323 #else
324         pte_phys = (unsigned long)__pa(dest);
325 #endif
326         wpte.header.op = KVM_MMU_OP_WRITE_PTE;
327         wpte.pte_val = val;
328         wpte.pte_phys = pte_phys;
329
330         kvm_deferred_mmu_op(&wpte, sizeof wpte);
331 }
332
333 /*
334  * We only need to hook operations that are MMU writes.  We hook these so that
335  * we can use lazy MMU mode to batch these operations.  We could probably
336  * improve the performance of the host code if we used some of the information
337  * here to simplify processing of batched writes.
338  */
339 static void kvm_set_pte(pte_t *ptep, pte_t pte)
340 {
341         kvm_mmu_write(ptep, pte_val(pte));
342 }
343
344 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
345                            pte_t *ptep, pte_t pte)
346 {
347         kvm_mmu_write(ptep, pte_val(pte));
348 }
349
350 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
351 {
352         kvm_mmu_write(pmdp, pmd_val(pmd));
353 }
354
355 #if PAGETABLE_LEVELS >= 3
356 #ifdef CONFIG_X86_PAE
357 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
358 {
359         kvm_mmu_write(ptep, pte_val(pte));
360 }
361
362 static void kvm_pte_clear(struct mm_struct *mm,
363                           unsigned long addr, pte_t *ptep)
364 {
365         kvm_mmu_write(ptep, 0);
366 }
367
368 static void kvm_pmd_clear(pmd_t *pmdp)
369 {
370         kvm_mmu_write(pmdp, 0);
371 }
372 #endif
373
374 static void kvm_set_pud(pud_t *pudp, pud_t pud)
375 {
376         kvm_mmu_write(pudp, pud_val(pud));
377 }
378
379 #if PAGETABLE_LEVELS == 4
380 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
381 {
382         kvm_mmu_write(pgdp, pgd_val(pgd));
383 }
384 #endif
385 #endif /* PAGETABLE_LEVELS >= 3 */
386
387 static void kvm_flush_tlb(void)
388 {
389         struct kvm_mmu_op_flush_tlb ftlb = {
390                 .header.op = KVM_MMU_OP_FLUSH_TLB,
391         };
392
393         kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
394 }
395
396 static void kvm_release_pt(unsigned long pfn)
397 {
398         struct kvm_mmu_op_release_pt rpt = {
399                 .header.op = KVM_MMU_OP_RELEASE_PT,
400                 .pt_phys = (u64)pfn << PAGE_SHIFT,
401         };
402
403         kvm_mmu_op(&rpt, sizeof rpt);
404 }
405
406 static void kvm_enter_lazy_mmu(void)
407 {
408         paravirt_enter_lazy_mmu();
409 }
410
411 static void kvm_leave_lazy_mmu(void)
412 {
413         struct kvm_para_state *state = kvm_para_state();
414
415         mmu_queue_flush(state);
416         paravirt_leave_lazy_mmu();
417 }
418
419 static void __init paravirt_ops_setup(void)
420 {
421         pv_info.name = "KVM";
422         pv_info.paravirt_enabled = 1;
423
424         if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
425                 pv_cpu_ops.io_delay = kvm_io_delay;
426
427         if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
428                 pv_mmu_ops.set_pte = kvm_set_pte;
429                 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
430                 pv_mmu_ops.set_pmd = kvm_set_pmd;
431 #if PAGETABLE_LEVELS >= 3
432 #ifdef CONFIG_X86_PAE
433                 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
434                 pv_mmu_ops.pte_clear = kvm_pte_clear;
435                 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
436 #endif
437                 pv_mmu_ops.set_pud = kvm_set_pud;
438 #if PAGETABLE_LEVELS == 4
439                 pv_mmu_ops.set_pgd = kvm_set_pgd;
440 #endif
441 #endif
442                 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
443                 pv_mmu_ops.release_pte = kvm_release_pt;
444                 pv_mmu_ops.release_pmd = kvm_release_pt;
445                 pv_mmu_ops.release_pud = kvm_release_pt;
446
447                 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
448                 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
449         }
450 #ifdef CONFIG_X86_IO_APIC
451         no_timer_check = 1;
452 #endif
453 }
454
455 static void kvm_register_steal_time(void)
456 {
457         int cpu = smp_processor_id();
458         struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
459
460         if (!has_steal_clock)
461                 return;
462
463         memset(st, 0, sizeof(*st));
464
465         wrmsrl(MSR_KVM_STEAL_TIME, (__pa(st) | KVM_MSR_ENABLED));
466         printk(KERN_INFO "kvm-stealtime: cpu %d, msr %lx\n",
467                 cpu, __pa(st));
468 }
469
470 void __cpuinit kvm_guest_cpu_init(void)
471 {
472         if (!kvm_para_available())
473                 return;
474
475         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
476                 u64 pa = __pa(&__get_cpu_var(apf_reason));
477
478 #ifdef CONFIG_PREEMPT
479                 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
480 #endif
481                 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
482                 __get_cpu_var(apf_reason).enabled = 1;
483                 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
484                        smp_processor_id());
485         }
486
487         if (has_steal_clock)
488                 kvm_register_steal_time();
489 }
490
491 static void kvm_pv_disable_apf(void *unused)
492 {
493         if (!__get_cpu_var(apf_reason).enabled)
494                 return;
495
496         wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
497         __get_cpu_var(apf_reason).enabled = 0;
498
499         printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
500                smp_processor_id());
501 }
502
503 static int kvm_pv_reboot_notify(struct notifier_block *nb,
504                                 unsigned long code, void *unused)
505 {
506         if (code == SYS_RESTART)
507                 on_each_cpu(kvm_pv_disable_apf, NULL, 1);
508         return NOTIFY_DONE;
509 }
510
511 static struct notifier_block kvm_pv_reboot_nb = {
512         .notifier_call = kvm_pv_reboot_notify,
513 };
514
515 static u64 kvm_steal_clock(int cpu)
516 {
517         u64 steal;
518         struct kvm_steal_time *src;
519         int version;
520
521         src = &per_cpu(steal_time, cpu);
522         do {
523                 version = src->version;
524                 rmb();
525                 steal = src->steal;
526                 rmb();
527         } while ((version & 1) || (version != src->version));
528
529         return steal;
530 }
531
532 void kvm_disable_steal_time(void)
533 {
534         if (!has_steal_clock)
535                 return;
536
537         wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
538 }
539
540 #ifdef CONFIG_SMP
541 static void __init kvm_smp_prepare_boot_cpu(void)
542 {
543 #ifdef CONFIG_KVM_CLOCK
544         WARN_ON(kvm_register_clock("primary cpu clock"));
545 #endif
546         kvm_guest_cpu_init();
547         native_smp_prepare_boot_cpu();
548 }
549
550 static void __cpuinit kvm_guest_cpu_online(void *dummy)
551 {
552         kvm_guest_cpu_init();
553 }
554
555 static void kvm_guest_cpu_offline(void *dummy)
556 {
557         kvm_disable_steal_time();
558         kvm_pv_disable_apf(NULL);
559         apf_task_wake_all();
560 }
561
562 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
563                                     unsigned long action, void *hcpu)
564 {
565         int cpu = (unsigned long)hcpu;
566         switch (action) {
567         case CPU_ONLINE:
568         case CPU_DOWN_FAILED:
569         case CPU_ONLINE_FROZEN:
570                 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
571                 break;
572         case CPU_DOWN_PREPARE:
573         case CPU_DOWN_PREPARE_FROZEN:
574                 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
575                 break;
576         default:
577                 break;
578         }
579         return NOTIFY_OK;
580 }
581
582 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
583         .notifier_call  = kvm_cpu_notify,
584 };
585 #endif
586
587 static void __init kvm_apf_trap_init(void)
588 {
589         set_intr_gate(14, &async_page_fault);
590 }
591
592 void __init kvm_guest_init(void)
593 {
594         int i;
595
596         if (!kvm_para_available())
597                 return;
598
599         paravirt_ops_setup();
600         register_reboot_notifier(&kvm_pv_reboot_nb);
601         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
602                 spin_lock_init(&async_pf_sleepers[i].lock);
603         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
604                 x86_init.irqs.trap_init = kvm_apf_trap_init;
605
606         if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
607                 has_steal_clock = 1;
608                 pv_time_ops.steal_clock = kvm_steal_clock;
609         }
610
611 #ifdef CONFIG_SMP
612         smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
613         register_cpu_notifier(&kvm_cpu_notifier);
614 #else
615         kvm_guest_cpu_init();
616 #endif
617 }
618
619 static __init int activate_jump_labels(void)
620 {
621         if (has_steal_clock) {
622                 jump_label_inc(&paravirt_steal_enabled);
623                 if (steal_acc)
624                         jump_label_inc(&paravirt_steal_rq_enabled);
625         }
626
627         return 0;
628 }
629 arch_initcall(activate_jump_labels);