Merge branch 'connlimit' of git://dev.medozas.de/linux
[pandora-kernel.git] / arch / x86 / kernel / kvm.c
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
41
42 #define MMU_QUEUE_SIZE 1024
43
44 static int kvmapf = 1;
45
46 static int parse_no_kvmapf(char *arg)
47 {
48         kvmapf = 0;
49         return 0;
50 }
51
52 early_param("no-kvmapf", parse_no_kvmapf);
53
54 struct kvm_para_state {
55         u8 mmu_queue[MMU_QUEUE_SIZE];
56         int mmu_queue_len;
57 };
58
59 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
60 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
61
62 static struct kvm_para_state *kvm_para_state(void)
63 {
64         return &per_cpu(para_state, raw_smp_processor_id());
65 }
66
67 /*
68  * No need for any "IO delay" on KVM
69  */
70 static void kvm_io_delay(void)
71 {
72 }
73
74 #define KVM_TASK_SLEEP_HASHBITS 8
75 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
76
77 struct kvm_task_sleep_node {
78         struct hlist_node link;
79         wait_queue_head_t wq;
80         u32 token;
81         int cpu;
82         bool halted;
83         struct mm_struct *mm;
84 };
85
86 static struct kvm_task_sleep_head {
87         spinlock_t lock;
88         struct hlist_head list;
89 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
90
91 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
92                                                   u32 token)
93 {
94         struct hlist_node *p;
95
96         hlist_for_each(p, &b->list) {
97                 struct kvm_task_sleep_node *n =
98                         hlist_entry(p, typeof(*n), link);
99                 if (n->token == token)
100                         return n;
101         }
102
103         return NULL;
104 }
105
106 void kvm_async_pf_task_wait(u32 token)
107 {
108         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
109         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
110         struct kvm_task_sleep_node n, *e;
111         DEFINE_WAIT(wait);
112         int cpu, idle;
113
114         cpu = get_cpu();
115         idle = idle_cpu(cpu);
116         put_cpu();
117
118         spin_lock(&b->lock);
119         e = _find_apf_task(b, token);
120         if (e) {
121                 /* dummy entry exist -> wake up was delivered ahead of PF */
122                 hlist_del(&e->link);
123                 kfree(e);
124                 spin_unlock(&b->lock);
125                 return;
126         }
127
128         n.token = token;
129         n.cpu = smp_processor_id();
130         n.mm = current->active_mm;
131         n.halted = idle || preempt_count() > 1;
132         atomic_inc(&n.mm->mm_count);
133         init_waitqueue_head(&n.wq);
134         hlist_add_head(&n.link, &b->list);
135         spin_unlock(&b->lock);
136
137         for (;;) {
138                 if (!n.halted)
139                         prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
140                 if (hlist_unhashed(&n.link))
141                         break;
142
143                 if (!n.halted) {
144                         local_irq_enable();
145                         schedule();
146                         local_irq_disable();
147                 } else {
148                         /*
149                          * We cannot reschedule. So halt.
150                          */
151                         native_safe_halt();
152                         local_irq_disable();
153                 }
154         }
155         if (!n.halted)
156                 finish_wait(&n.wq, &wait);
157
158         return;
159 }
160 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
161
162 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
163 {
164         hlist_del_init(&n->link);
165         if (!n->mm)
166                 return;
167         mmdrop(n->mm);
168         if (n->halted)
169                 smp_send_reschedule(n->cpu);
170         else if (waitqueue_active(&n->wq))
171                 wake_up(&n->wq);
172 }
173
174 static void apf_task_wake_all(void)
175 {
176         int i;
177
178         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
179                 struct hlist_node *p, *next;
180                 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
181                 spin_lock(&b->lock);
182                 hlist_for_each_safe(p, next, &b->list) {
183                         struct kvm_task_sleep_node *n =
184                                 hlist_entry(p, typeof(*n), link);
185                         if (n->cpu == smp_processor_id())
186                                 apf_task_wake_one(n);
187                 }
188                 spin_unlock(&b->lock);
189         }
190 }
191
192 void kvm_async_pf_task_wake(u32 token)
193 {
194         u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
195         struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
196         struct kvm_task_sleep_node *n;
197
198         if (token == ~0) {
199                 apf_task_wake_all();
200                 return;
201         }
202
203 again:
204         spin_lock(&b->lock);
205         n = _find_apf_task(b, token);
206         if (!n) {
207                 /*
208                  * async PF was not yet handled.
209                  * Add dummy entry for the token.
210                  */
211                 n = kmalloc(sizeof(*n), GFP_ATOMIC);
212                 if (!n) {
213                         /*
214                          * Allocation failed! Busy wait while other cpu
215                          * handles async PF.
216                          */
217                         spin_unlock(&b->lock);
218                         cpu_relax();
219                         goto again;
220                 }
221                 n->token = token;
222                 n->cpu = smp_processor_id();
223                 n->mm = NULL;
224                 init_waitqueue_head(&n->wq);
225                 hlist_add_head(&n->link, &b->list);
226         } else
227                 apf_task_wake_one(n);
228         spin_unlock(&b->lock);
229         return;
230 }
231 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
232
233 u32 kvm_read_and_reset_pf_reason(void)
234 {
235         u32 reason = 0;
236
237         if (__get_cpu_var(apf_reason).enabled) {
238                 reason = __get_cpu_var(apf_reason).reason;
239                 __get_cpu_var(apf_reason).reason = 0;
240         }
241
242         return reason;
243 }
244 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
245
246 dotraplinkage void __kprobes
247 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
248 {
249         switch (kvm_read_and_reset_pf_reason()) {
250         default:
251                 do_page_fault(regs, error_code);
252                 break;
253         case KVM_PV_REASON_PAGE_NOT_PRESENT:
254                 /* page is swapped out by the host. */
255                 kvm_async_pf_task_wait((u32)read_cr2());
256                 break;
257         case KVM_PV_REASON_PAGE_READY:
258                 kvm_async_pf_task_wake((u32)read_cr2());
259                 break;
260         }
261 }
262
263 static void kvm_mmu_op(void *buffer, unsigned len)
264 {
265         int r;
266         unsigned long a1, a2;
267
268         do {
269                 a1 = __pa(buffer);
270                 a2 = 0;   /* on i386 __pa() always returns <4G */
271                 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
272                 buffer += r;
273                 len -= r;
274         } while (len);
275 }
276
277 static void mmu_queue_flush(struct kvm_para_state *state)
278 {
279         if (state->mmu_queue_len) {
280                 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
281                 state->mmu_queue_len = 0;
282         }
283 }
284
285 static void kvm_deferred_mmu_op(void *buffer, int len)
286 {
287         struct kvm_para_state *state = kvm_para_state();
288
289         if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
290                 kvm_mmu_op(buffer, len);
291                 return;
292         }
293         if (state->mmu_queue_len + len > sizeof state->mmu_queue)
294                 mmu_queue_flush(state);
295         memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
296         state->mmu_queue_len += len;
297 }
298
299 static void kvm_mmu_write(void *dest, u64 val)
300 {
301         __u64 pte_phys;
302         struct kvm_mmu_op_write_pte wpte;
303
304 #ifdef CONFIG_HIGHPTE
305         struct page *page;
306         unsigned long dst = (unsigned long) dest;
307
308         page = kmap_atomic_to_page(dest);
309         pte_phys = page_to_pfn(page);
310         pte_phys <<= PAGE_SHIFT;
311         pte_phys += (dst & ~(PAGE_MASK));
312 #else
313         pte_phys = (unsigned long)__pa(dest);
314 #endif
315         wpte.header.op = KVM_MMU_OP_WRITE_PTE;
316         wpte.pte_val = val;
317         wpte.pte_phys = pte_phys;
318
319         kvm_deferred_mmu_op(&wpte, sizeof wpte);
320 }
321
322 /*
323  * We only need to hook operations that are MMU writes.  We hook these so that
324  * we can use lazy MMU mode to batch these operations.  We could probably
325  * improve the performance of the host code if we used some of the information
326  * here to simplify processing of batched writes.
327  */
328 static void kvm_set_pte(pte_t *ptep, pte_t pte)
329 {
330         kvm_mmu_write(ptep, pte_val(pte));
331 }
332
333 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
334                            pte_t *ptep, pte_t pte)
335 {
336         kvm_mmu_write(ptep, pte_val(pte));
337 }
338
339 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
340 {
341         kvm_mmu_write(pmdp, pmd_val(pmd));
342 }
343
344 #if PAGETABLE_LEVELS >= 3
345 #ifdef CONFIG_X86_PAE
346 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
347 {
348         kvm_mmu_write(ptep, pte_val(pte));
349 }
350
351 static void kvm_pte_clear(struct mm_struct *mm,
352                           unsigned long addr, pte_t *ptep)
353 {
354         kvm_mmu_write(ptep, 0);
355 }
356
357 static void kvm_pmd_clear(pmd_t *pmdp)
358 {
359         kvm_mmu_write(pmdp, 0);
360 }
361 #endif
362
363 static void kvm_set_pud(pud_t *pudp, pud_t pud)
364 {
365         kvm_mmu_write(pudp, pud_val(pud));
366 }
367
368 #if PAGETABLE_LEVELS == 4
369 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
370 {
371         kvm_mmu_write(pgdp, pgd_val(pgd));
372 }
373 #endif
374 #endif /* PAGETABLE_LEVELS >= 3 */
375
376 static void kvm_flush_tlb(void)
377 {
378         struct kvm_mmu_op_flush_tlb ftlb = {
379                 .header.op = KVM_MMU_OP_FLUSH_TLB,
380         };
381
382         kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
383 }
384
385 static void kvm_release_pt(unsigned long pfn)
386 {
387         struct kvm_mmu_op_release_pt rpt = {
388                 .header.op = KVM_MMU_OP_RELEASE_PT,
389                 .pt_phys = (u64)pfn << PAGE_SHIFT,
390         };
391
392         kvm_mmu_op(&rpt, sizeof rpt);
393 }
394
395 static void kvm_enter_lazy_mmu(void)
396 {
397         paravirt_enter_lazy_mmu();
398 }
399
400 static void kvm_leave_lazy_mmu(void)
401 {
402         struct kvm_para_state *state = kvm_para_state();
403
404         mmu_queue_flush(state);
405         paravirt_leave_lazy_mmu();
406 }
407
408 static void __init paravirt_ops_setup(void)
409 {
410         pv_info.name = "KVM";
411         pv_info.paravirt_enabled = 1;
412
413         if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
414                 pv_cpu_ops.io_delay = kvm_io_delay;
415
416         if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
417                 pv_mmu_ops.set_pte = kvm_set_pte;
418                 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
419                 pv_mmu_ops.set_pmd = kvm_set_pmd;
420 #if PAGETABLE_LEVELS >= 3
421 #ifdef CONFIG_X86_PAE
422                 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
423                 pv_mmu_ops.pte_clear = kvm_pte_clear;
424                 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
425 #endif
426                 pv_mmu_ops.set_pud = kvm_set_pud;
427 #if PAGETABLE_LEVELS == 4
428                 pv_mmu_ops.set_pgd = kvm_set_pgd;
429 #endif
430 #endif
431                 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
432                 pv_mmu_ops.release_pte = kvm_release_pt;
433                 pv_mmu_ops.release_pmd = kvm_release_pt;
434                 pv_mmu_ops.release_pud = kvm_release_pt;
435
436                 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
437                 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
438         }
439 #ifdef CONFIG_X86_IO_APIC
440         no_timer_check = 1;
441 #endif
442 }
443
444 void __cpuinit kvm_guest_cpu_init(void)
445 {
446         if (!kvm_para_available())
447                 return;
448
449         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
450                 u64 pa = __pa(&__get_cpu_var(apf_reason));
451
452 #ifdef CONFIG_PREEMPT
453                 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
454 #endif
455                 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
456                 __get_cpu_var(apf_reason).enabled = 1;
457                 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
458                        smp_processor_id());
459         }
460 }
461
462 static void kvm_pv_disable_apf(void *unused)
463 {
464         if (!__get_cpu_var(apf_reason).enabled)
465                 return;
466
467         wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
468         __get_cpu_var(apf_reason).enabled = 0;
469
470         printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
471                smp_processor_id());
472 }
473
474 static int kvm_pv_reboot_notify(struct notifier_block *nb,
475                                 unsigned long code, void *unused)
476 {
477         if (code == SYS_RESTART)
478                 on_each_cpu(kvm_pv_disable_apf, NULL, 1);
479         return NOTIFY_DONE;
480 }
481
482 static struct notifier_block kvm_pv_reboot_nb = {
483         .notifier_call = kvm_pv_reboot_notify,
484 };
485
486 #ifdef CONFIG_SMP
487 static void __init kvm_smp_prepare_boot_cpu(void)
488 {
489 #ifdef CONFIG_KVM_CLOCK
490         WARN_ON(kvm_register_clock("primary cpu clock"));
491 #endif
492         kvm_guest_cpu_init();
493         native_smp_prepare_boot_cpu();
494 }
495
496 static void kvm_guest_cpu_online(void *dummy)
497 {
498         kvm_guest_cpu_init();
499 }
500
501 static void kvm_guest_cpu_offline(void *dummy)
502 {
503         kvm_pv_disable_apf(NULL);
504         apf_task_wake_all();
505 }
506
507 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
508                                     unsigned long action, void *hcpu)
509 {
510         int cpu = (unsigned long)hcpu;
511         switch (action) {
512         case CPU_ONLINE:
513         case CPU_DOWN_FAILED:
514         case CPU_ONLINE_FROZEN:
515                 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
516                 break;
517         case CPU_DOWN_PREPARE:
518         case CPU_DOWN_PREPARE_FROZEN:
519                 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
520                 break;
521         default:
522                 break;
523         }
524         return NOTIFY_OK;
525 }
526
527 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
528         .notifier_call  = kvm_cpu_notify,
529 };
530 #endif
531
532 static void __init kvm_apf_trap_init(void)
533 {
534         set_intr_gate(14, &async_page_fault);
535 }
536
537 void __init kvm_guest_init(void)
538 {
539         int i;
540
541         if (!kvm_para_available())
542                 return;
543
544         paravirt_ops_setup();
545         register_reboot_notifier(&kvm_pv_reboot_nb);
546         for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
547                 spin_lock_init(&async_pf_sleepers[i].lock);
548         if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
549                 x86_init.irqs.trap_init = kvm_apf_trap_init;
550
551 #ifdef CONFIG_SMP
552         smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
553         register_cpu_notifier(&kvm_cpu_notifier);
554 #else
555         kvm_guest_cpu_init();
556 #endif
557 }