Merge branch 'of-pci' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define HPET_MIN_CYCLES                 128
31 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
32
33 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 u8                                      hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long                    hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline unsigned int hpet_readl(unsigned int a)
57 {
58         return readl(hpet_virt_address + a);
59 }
60
61 static inline void hpet_writel(unsigned int d, unsigned int a)
62 {
63         writel(d, hpet_virt_address + a);
64 }
65
66 #ifdef CONFIG_X86_64
67 #include <asm/pgtable.h>
68 #endif
69
70 static inline void hpet_set_mapping(void)
71 {
72         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
73 #ifdef CONFIG_X86_64
74         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
75 #endif
76 }
77
78 static inline void hpet_clear_mapping(void)
79 {
80         iounmap(hpet_virt_address);
81         hpet_virt_address = NULL;
82 }
83
84 /*
85  * HPET command line enable / disable
86  */
87 static int boot_hpet_disable;
88 int hpet_force_user;
89 static int hpet_verbose;
90
91 static int __init hpet_setup(char *str)
92 {
93         if (str) {
94                 if (!strncmp("disable", str, 7))
95                         boot_hpet_disable = 1;
96                 if (!strncmp("force", str, 5))
97                         hpet_force_user = 1;
98                 if (!strncmp("verbose", str, 7))
99                         hpet_verbose = 1;
100         }
101         return 1;
102 }
103 __setup("hpet=", hpet_setup);
104
105 static int __init disable_hpet(char *str)
106 {
107         boot_hpet_disable = 1;
108         return 1;
109 }
110 __setup("nohpet", disable_hpet);
111
112 static inline int is_hpet_capable(void)
113 {
114         return !boot_hpet_disable && hpet_address;
115 }
116
117 /*
118  * HPET timer interrupt enable / disable
119  */
120 static int hpet_legacy_int_enabled;
121
122 /**
123  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
124  */
125 int is_hpet_enabled(void)
126 {
127         return is_hpet_capable() && hpet_legacy_int_enabled;
128 }
129 EXPORT_SYMBOL_GPL(is_hpet_enabled);
130
131 static void _hpet_print_config(const char *function, int line)
132 {
133         u32 i, timers, l, h;
134         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
135         l = hpet_readl(HPET_ID);
136         h = hpet_readl(HPET_PERIOD);
137         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
139         l = hpet_readl(HPET_CFG);
140         h = hpet_readl(HPET_STATUS);
141         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
142         l = hpet_readl(HPET_COUNTER);
143         h = hpet_readl(HPET_COUNTER+4);
144         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
145
146         for (i = 0; i < timers; i++) {
147                 l = hpet_readl(HPET_Tn_CFG(i));
148                 h = hpet_readl(HPET_Tn_CFG(i)+4);
149                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
150                        i, l, h);
151                 l = hpet_readl(HPET_Tn_CMP(i));
152                 h = hpet_readl(HPET_Tn_CMP(i)+4);
153                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
154                        i, l, h);
155                 l = hpet_readl(HPET_Tn_ROUTE(i));
156                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
157                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
158                        i, l, h);
159         }
160 }
161
162 #define hpet_print_config()                                     \
163 do {                                                            \
164         if (hpet_verbose)                                       \
165                 _hpet_print_config(__FUNCTION__, __LINE__);     \
166 } while (0)
167
168 /*
169  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
170  * timer 0 and timer 1 in case of RTC emulation.
171  */
172 #ifdef CONFIG_HPET
173
174 static void hpet_reserve_msi_timers(struct hpet_data *hd);
175
176 static void hpet_reserve_platform_timers(unsigned int id)
177 {
178         struct hpet __iomem *hpet = hpet_virt_address;
179         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
180         unsigned int nrtimers, i;
181         struct hpet_data hd;
182
183         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
184
185         memset(&hd, 0, sizeof(hd));
186         hd.hd_phys_address      = hpet_address;
187         hd.hd_address           = hpet;
188         hd.hd_nirqs             = nrtimers;
189         hpet_reserve_timer(&hd, 0);
190
191 #ifdef CONFIG_HPET_EMULATE_RTC
192         hpet_reserve_timer(&hd, 1);
193 #endif
194
195         /*
196          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
197          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
198          * don't bother configuring *any* comparator interrupts.
199          */
200         hd.hd_irq[0] = HPET_LEGACY_8254;
201         hd.hd_irq[1] = HPET_LEGACY_RTC;
202
203         for (i = 2; i < nrtimers; timer++, i++) {
204                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
205                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
206         }
207
208         hpet_reserve_msi_timers(&hd);
209
210         hpet_alloc(&hd);
211
212 }
213 #else
214 static void hpet_reserve_platform_timers(unsigned int id) { }
215 #endif
216
217 /*
218  * Common hpet info
219  */
220 static unsigned long hpet_freq;
221
222 static void hpet_legacy_set_mode(enum clock_event_mode mode,
223                           struct clock_event_device *evt);
224 static int hpet_legacy_next_event(unsigned long delta,
225                            struct clock_event_device *evt);
226
227 /*
228  * The hpet clock event device
229  */
230 static struct clock_event_device hpet_clockevent = {
231         .name           = "hpet",
232         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
233         .set_mode       = hpet_legacy_set_mode,
234         .set_next_event = hpet_legacy_next_event,
235         .irq            = 0,
236         .rating         = 50,
237 };
238
239 static void hpet_stop_counter(void)
240 {
241         unsigned long cfg = hpet_readl(HPET_CFG);
242         cfg &= ~HPET_CFG_ENABLE;
243         hpet_writel(cfg, HPET_CFG);
244 }
245
246 static void hpet_reset_counter(void)
247 {
248         hpet_writel(0, HPET_COUNTER);
249         hpet_writel(0, HPET_COUNTER + 4);
250 }
251
252 static void hpet_start_counter(void)
253 {
254         unsigned int cfg = hpet_readl(HPET_CFG);
255         cfg |= HPET_CFG_ENABLE;
256         hpet_writel(cfg, HPET_CFG);
257 }
258
259 static void hpet_restart_counter(void)
260 {
261         hpet_stop_counter();
262         hpet_reset_counter();
263         hpet_start_counter();
264 }
265
266 static void hpet_resume_device(void)
267 {
268         force_hpet_resume();
269 }
270
271 static void hpet_resume_counter(struct clocksource *cs)
272 {
273         hpet_resume_device();
274         hpet_restart_counter();
275 }
276
277 static void hpet_enable_legacy_int(void)
278 {
279         unsigned int cfg = hpet_readl(HPET_CFG);
280
281         cfg |= HPET_CFG_LEGACY;
282         hpet_writel(cfg, HPET_CFG);
283         hpet_legacy_int_enabled = 1;
284 }
285
286 static void hpet_legacy_clockevent_register(void)
287 {
288         /* Start HPET legacy interrupts */
289         hpet_enable_legacy_int();
290
291         /*
292          * Start hpet with the boot cpu mask and make it
293          * global after the IO_APIC has been initialized.
294          */
295         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
296         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
297                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
298         global_clock_event = &hpet_clockevent;
299         printk(KERN_DEBUG "hpet clockevent registered\n");
300 }
301
302 static int hpet_setup_msi_irq(unsigned int irq);
303
304 static void hpet_set_mode(enum clock_event_mode mode,
305                           struct clock_event_device *evt, int timer)
306 {
307         unsigned int cfg, cmp, now;
308         uint64_t delta;
309
310         switch (mode) {
311         case CLOCK_EVT_MODE_PERIODIC:
312                 hpet_stop_counter();
313                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
314                 delta >>= evt->shift;
315                 now = hpet_readl(HPET_COUNTER);
316                 cmp = now + (unsigned int) delta;
317                 cfg = hpet_readl(HPET_Tn_CFG(timer));
318                 /* Make sure we use edge triggered interrupts */
319                 cfg &= ~HPET_TN_LEVEL;
320                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
321                        HPET_TN_SETVAL | HPET_TN_32BIT;
322                 hpet_writel(cfg, HPET_Tn_CFG(timer));
323                 hpet_writel(cmp, HPET_Tn_CMP(timer));
324                 udelay(1);
325                 /*
326                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
327                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
328                  * bit is automatically cleared after the first write.
329                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
330                  * Publication # 24674)
331                  */
332                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
333                 hpet_start_counter();
334                 hpet_print_config();
335                 break;
336
337         case CLOCK_EVT_MODE_ONESHOT:
338                 cfg = hpet_readl(HPET_Tn_CFG(timer));
339                 cfg &= ~HPET_TN_PERIODIC;
340                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
341                 hpet_writel(cfg, HPET_Tn_CFG(timer));
342                 break;
343
344         case CLOCK_EVT_MODE_UNUSED:
345         case CLOCK_EVT_MODE_SHUTDOWN:
346                 cfg = hpet_readl(HPET_Tn_CFG(timer));
347                 cfg &= ~HPET_TN_ENABLE;
348                 hpet_writel(cfg, HPET_Tn_CFG(timer));
349                 break;
350
351         case CLOCK_EVT_MODE_RESUME:
352                 if (timer == 0) {
353                         hpet_enable_legacy_int();
354                 } else {
355                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
356                         hpet_setup_msi_irq(hdev->irq);
357                         disable_irq(hdev->irq);
358                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359                         enable_irq(hdev->irq);
360                 }
361                 hpet_print_config();
362                 break;
363         }
364 }
365
366 static int hpet_next_event(unsigned long delta,
367                            struct clock_event_device *evt, int timer)
368 {
369         u32 cnt;
370         s32 res;
371
372         cnt = hpet_readl(HPET_COUNTER);
373         cnt += (u32) delta;
374         hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376         /*
377          * HPETs are a complete disaster. The compare register is
378          * based on a equal comparison and neither provides a less
379          * than or equal functionality (which would require to take
380          * the wraparound into account) nor a simple count down event
381          * mode. Further the write to the comparator register is
382          * delayed internally up to two HPET clock cycles in certain
383          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384          * longer delays. We worked around that by reading back the
385          * compare register, but that required another workaround for
386          * ICH9,10 chips where the first readout after write can
387          * return the old stale value. We already had a minimum
388          * programming delta of 5us enforced, but a NMI or SMI hitting
389          * between the counter readout and the comparator write can
390          * move us behind that point easily. Now instead of reading
391          * the compare register back several times, we make the ETIME
392          * decision based on the following: Return ETIME if the
393          * counter value after the write is less than HPET_MIN_CYCLES
394          * away from the event or if the counter is already ahead of
395          * the event. The minimum programming delta for the generic
396          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397          */
398         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400         return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
403 static void hpet_legacy_set_mode(enum clock_event_mode mode,
404                         struct clock_event_device *evt)
405 {
406         hpet_set_mode(mode, evt, 0);
407 }
408
409 static int hpet_legacy_next_event(unsigned long delta,
410                         struct clock_event_device *evt)
411 {
412         return hpet_next_event(delta, evt, 0);
413 }
414
415 /*
416  * HPET MSI Support
417  */
418 #ifdef CONFIG_PCI_MSI
419
420 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
421 static struct hpet_dev  *hpet_devs;
422
423 void hpet_msi_unmask(struct irq_data *data)
424 {
425         struct hpet_dev *hdev = data->handler_data;
426         unsigned int cfg;
427
428         /* unmask it */
429         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
430         cfg |= HPET_TN_FSB;
431         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
432 }
433
434 void hpet_msi_mask(struct irq_data *data)
435 {
436         struct hpet_dev *hdev = data->handler_data;
437         unsigned int cfg;
438
439         /* mask it */
440         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
441         cfg &= ~HPET_TN_FSB;
442         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
443 }
444
445 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
446 {
447         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
448         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
449 }
450
451 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
452 {
453         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
454         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
455         msg->address_hi = 0;
456 }
457
458 static void hpet_msi_set_mode(enum clock_event_mode mode,
459                                 struct clock_event_device *evt)
460 {
461         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
462         hpet_set_mode(mode, evt, hdev->num);
463 }
464
465 static int hpet_msi_next_event(unsigned long delta,
466                                 struct clock_event_device *evt)
467 {
468         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
469         return hpet_next_event(delta, evt, hdev->num);
470 }
471
472 static int hpet_setup_msi_irq(unsigned int irq)
473 {
474         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
475                 destroy_irq(irq);
476                 return -EINVAL;
477         }
478         return 0;
479 }
480
481 static int hpet_assign_irq(struct hpet_dev *dev)
482 {
483         unsigned int irq;
484
485         irq = create_irq_nr(0, -1);
486         if (!irq)
487                 return -EINVAL;
488
489         irq_set_handler_data(irq, dev);
490
491         if (hpet_setup_msi_irq(irq))
492                 return -EINVAL;
493
494         dev->irq = irq;
495         return 0;
496 }
497
498 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
499 {
500         struct hpet_dev *dev = (struct hpet_dev *)data;
501         struct clock_event_device *hevt = &dev->evt;
502
503         if (!hevt->event_handler) {
504                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
505                                 dev->num);
506                 return IRQ_HANDLED;
507         }
508
509         hevt->event_handler(hevt);
510         return IRQ_HANDLED;
511 }
512
513 static int hpet_setup_irq(struct hpet_dev *dev)
514 {
515
516         if (request_irq(dev->irq, hpet_interrupt_handler,
517                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
518                         dev->name, dev))
519                 return -1;
520
521         disable_irq(dev->irq);
522         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
523         enable_irq(dev->irq);
524
525         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
526                          dev->name, dev->irq);
527
528         return 0;
529 }
530
531 /* This should be called in specific @cpu */
532 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
533 {
534         struct clock_event_device *evt = &hdev->evt;
535
536         WARN_ON(cpu != smp_processor_id());
537         if (!(hdev->flags & HPET_DEV_VALID))
538                 return;
539
540         if (hpet_setup_msi_irq(hdev->irq))
541                 return;
542
543         hdev->cpu = cpu;
544         per_cpu(cpu_hpet_dev, cpu) = hdev;
545         evt->name = hdev->name;
546         hpet_setup_irq(hdev);
547         evt->irq = hdev->irq;
548
549         evt->rating = 110;
550         evt->features = CLOCK_EVT_FEAT_ONESHOT;
551         if (hdev->flags & HPET_DEV_PERI_CAP)
552                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
553
554         evt->set_mode = hpet_msi_set_mode;
555         evt->set_next_event = hpet_msi_next_event;
556         evt->cpumask = cpumask_of(hdev->cpu);
557
558         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
559                                         0x7FFFFFFF);
560 }
561
562 #ifdef CONFIG_HPET
563 /* Reserve at least one timer for userspace (/dev/hpet) */
564 #define RESERVE_TIMERS 1
565 #else
566 #define RESERVE_TIMERS 0
567 #endif
568
569 static void hpet_msi_capability_lookup(unsigned int start_timer)
570 {
571         unsigned int id;
572         unsigned int num_timers;
573         unsigned int num_timers_used = 0;
574         int i;
575
576         if (hpet_msi_disable)
577                 return;
578
579         if (boot_cpu_has(X86_FEATURE_ARAT))
580                 return;
581         id = hpet_readl(HPET_ID);
582
583         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
584         num_timers++; /* Value read out starts from 0 */
585         hpet_print_config();
586
587         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
588         if (!hpet_devs)
589                 return;
590
591         hpet_num_timers = num_timers;
592
593         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
594                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
595                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
596
597                 /* Only consider HPET timer with MSI support */
598                 if (!(cfg & HPET_TN_FSB_CAP))
599                         continue;
600
601                 hdev->flags = 0;
602                 if (cfg & HPET_TN_PERIODIC_CAP)
603                         hdev->flags |= HPET_DEV_PERI_CAP;
604                 hdev->num = i;
605
606                 sprintf(hdev->name, "hpet%d", i);
607                 if (hpet_assign_irq(hdev))
608                         continue;
609
610                 hdev->flags |= HPET_DEV_FSB_CAP;
611                 hdev->flags |= HPET_DEV_VALID;
612                 num_timers_used++;
613                 if (num_timers_used == num_possible_cpus())
614                         break;
615         }
616
617         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
618                 num_timers, num_timers_used);
619 }
620
621 #ifdef CONFIG_HPET
622 static void hpet_reserve_msi_timers(struct hpet_data *hd)
623 {
624         int i;
625
626         if (!hpet_devs)
627                 return;
628
629         for (i = 0; i < hpet_num_timers; i++) {
630                 struct hpet_dev *hdev = &hpet_devs[i];
631
632                 if (!(hdev->flags & HPET_DEV_VALID))
633                         continue;
634
635                 hd->hd_irq[hdev->num] = hdev->irq;
636                 hpet_reserve_timer(hd, hdev->num);
637         }
638 }
639 #endif
640
641 static struct hpet_dev *hpet_get_unused_timer(void)
642 {
643         int i;
644
645         if (!hpet_devs)
646                 return NULL;
647
648         for (i = 0; i < hpet_num_timers; i++) {
649                 struct hpet_dev *hdev = &hpet_devs[i];
650
651                 if (!(hdev->flags & HPET_DEV_VALID))
652                         continue;
653                 if (test_and_set_bit(HPET_DEV_USED_BIT,
654                         (unsigned long *)&hdev->flags))
655                         continue;
656                 return hdev;
657         }
658         return NULL;
659 }
660
661 struct hpet_work_struct {
662         struct delayed_work work;
663         struct completion complete;
664 };
665
666 static void hpet_work(struct work_struct *w)
667 {
668         struct hpet_dev *hdev;
669         int cpu = smp_processor_id();
670         struct hpet_work_struct *hpet_work;
671
672         hpet_work = container_of(w, struct hpet_work_struct, work.work);
673
674         hdev = hpet_get_unused_timer();
675         if (hdev)
676                 init_one_hpet_msi_clockevent(hdev, cpu);
677
678         complete(&hpet_work->complete);
679 }
680
681 static int hpet_cpuhp_notify(struct notifier_block *n,
682                 unsigned long action, void *hcpu)
683 {
684         unsigned long cpu = (unsigned long)hcpu;
685         struct hpet_work_struct work;
686         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
687
688         switch (action & 0xf) {
689         case CPU_ONLINE:
690                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
691                 init_completion(&work.complete);
692                 /* FIXME: add schedule_work_on() */
693                 schedule_delayed_work_on(cpu, &work.work, 0);
694                 wait_for_completion(&work.complete);
695                 destroy_timer_on_stack(&work.work.timer);
696                 break;
697         case CPU_DEAD:
698                 if (hdev) {
699                         free_irq(hdev->irq, hdev);
700                         hdev->flags &= ~HPET_DEV_USED;
701                         per_cpu(cpu_hpet_dev, cpu) = NULL;
702                 }
703                 break;
704         }
705         return NOTIFY_OK;
706 }
707 #else
708
709 static int hpet_setup_msi_irq(unsigned int irq)
710 {
711         return 0;
712 }
713 static void hpet_msi_capability_lookup(unsigned int start_timer)
714 {
715         return;
716 }
717
718 #ifdef CONFIG_HPET
719 static void hpet_reserve_msi_timers(struct hpet_data *hd)
720 {
721         return;
722 }
723 #endif
724
725 static int hpet_cpuhp_notify(struct notifier_block *n,
726                 unsigned long action, void *hcpu)
727 {
728         return NOTIFY_OK;
729 }
730
731 #endif
732
733 /*
734  * Clock source related code
735  */
736 static cycle_t read_hpet(struct clocksource *cs)
737 {
738         return (cycle_t)hpet_readl(HPET_COUNTER);
739 }
740
741 #ifdef CONFIG_X86_64
742 static cycle_t __vsyscall_fn vread_hpet(void)
743 {
744         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
745 }
746 #endif
747
748 static struct clocksource clocksource_hpet = {
749         .name           = "hpet",
750         .rating         = 250,
751         .read           = read_hpet,
752         .mask           = HPET_MASK,
753         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
754         .resume         = hpet_resume_counter,
755 #ifdef CONFIG_X86_64
756         .vread          = vread_hpet,
757 #endif
758 };
759
760 static int hpet_clocksource_register(void)
761 {
762         u64 start, now;
763         cycle_t t1;
764
765         /* Start the counter */
766         hpet_restart_counter();
767
768         /* Verify whether hpet counter works */
769         t1 = hpet_readl(HPET_COUNTER);
770         rdtscll(start);
771
772         /*
773          * We don't know the TSC frequency yet, but waiting for
774          * 200000 TSC cycles is safe:
775          * 4 GHz == 50us
776          * 1 GHz == 200us
777          */
778         do {
779                 rep_nop();
780                 rdtscll(now);
781         } while ((now - start) < 200000UL);
782
783         if (t1 == hpet_readl(HPET_COUNTER)) {
784                 printk(KERN_WARNING
785                        "HPET counter not counting. HPET disabled\n");
786                 return -ENODEV;
787         }
788
789         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
790         return 0;
791 }
792
793 /**
794  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
795  */
796 int __init hpet_enable(void)
797 {
798         unsigned long hpet_period;
799         unsigned int id;
800         u64 freq;
801         int i;
802
803         if (!is_hpet_capable())
804                 return 0;
805
806         hpet_set_mapping();
807
808         /*
809          * Read the period and check for a sane value:
810          */
811         hpet_period = hpet_readl(HPET_PERIOD);
812
813         /*
814          * AMD SB700 based systems with spread spectrum enabled use a
815          * SMM based HPET emulation to provide proper frequency
816          * setting. The SMM code is initialized with the first HPET
817          * register access and takes some time to complete. During
818          * this time the config register reads 0xffffffff. We check
819          * for max. 1000 loops whether the config register reads a non
820          * 0xffffffff value to make sure that HPET is up and running
821          * before we go further. A counting loop is safe, as the HPET
822          * access takes thousands of CPU cycles. On non SB700 based
823          * machines this check is only done once and has no side
824          * effects.
825          */
826         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
827                 if (i == 1000) {
828                         printk(KERN_WARNING
829                                "HPET config register value = 0xFFFFFFFF. "
830                                "Disabling HPET\n");
831                         goto out_nohpet;
832                 }
833         }
834
835         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
836                 goto out_nohpet;
837
838         /*
839          * The period is a femto seconds value. Convert it to a
840          * frequency.
841          */
842         freq = FSEC_PER_SEC;
843         do_div(freq, hpet_period);
844         hpet_freq = freq;
845
846         /*
847          * Read the HPET ID register to retrieve the IRQ routing
848          * information and the number of channels
849          */
850         id = hpet_readl(HPET_ID);
851         hpet_print_config();
852
853 #ifdef CONFIG_HPET_EMULATE_RTC
854         /*
855          * The legacy routing mode needs at least two channels, tick timer
856          * and the rtc emulation channel.
857          */
858         if (!(id & HPET_ID_NUMBER))
859                 goto out_nohpet;
860 #endif
861
862         if (hpet_clocksource_register())
863                 goto out_nohpet;
864
865         if (id & HPET_ID_LEGSUP) {
866                 hpet_legacy_clockevent_register();
867                 return 1;
868         }
869         return 0;
870
871 out_nohpet:
872         hpet_clear_mapping();
873         hpet_address = 0;
874         return 0;
875 }
876
877 /*
878  * Needs to be late, as the reserve_timer code calls kalloc !
879  *
880  * Not a problem on i386 as hpet_enable is called from late_time_init,
881  * but on x86_64 it is necessary !
882  */
883 static __init int hpet_late_init(void)
884 {
885         int cpu;
886
887         if (boot_hpet_disable)
888                 return -ENODEV;
889
890         if (!hpet_address) {
891                 if (!force_hpet_address)
892                         return -ENODEV;
893
894                 hpet_address = force_hpet_address;
895                 hpet_enable();
896         }
897
898         if (!hpet_virt_address)
899                 return -ENODEV;
900
901         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
902                 hpet_msi_capability_lookup(2);
903         else
904                 hpet_msi_capability_lookup(0);
905
906         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
907         hpet_print_config();
908
909         if (hpet_msi_disable)
910                 return 0;
911
912         if (boot_cpu_has(X86_FEATURE_ARAT))
913                 return 0;
914
915         for_each_online_cpu(cpu) {
916                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917         }
918
919         /* This notifier should be called after workqueue is ready */
920         hotcpu_notifier(hpet_cpuhp_notify, -20);
921
922         return 0;
923 }
924 fs_initcall(hpet_late_init);
925
926 void hpet_disable(void)
927 {
928         if (is_hpet_capable() && hpet_virt_address) {
929                 unsigned int cfg = hpet_readl(HPET_CFG);
930
931                 if (hpet_legacy_int_enabled) {
932                         cfg &= ~HPET_CFG_LEGACY;
933                         hpet_legacy_int_enabled = 0;
934                 }
935                 cfg &= ~HPET_CFG_ENABLE;
936                 hpet_writel(cfg, HPET_CFG);
937         }
938 }
939
940 #ifdef CONFIG_HPET_EMULATE_RTC
941
942 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
943  * is enabled, we support RTC interrupt functionality in software.
944  * RTC has 3 kinds of interrupts:
945  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
946  *    is updated
947  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
948  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
949  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
950  * (1) and (2) above are implemented using polling at a frequency of
951  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
952  * overhead. (DEFAULT_RTC_INT_FREQ)
953  * For (3), we use interrupts at 64Hz or user specified periodic
954  * frequency, whichever is higher.
955  */
956 #include <linux/mc146818rtc.h>
957 #include <linux/rtc.h>
958 #include <asm/rtc.h>
959
960 #define DEFAULT_RTC_INT_FREQ    64
961 #define DEFAULT_RTC_SHIFT       6
962 #define RTC_NUM_INTS            1
963
964 static unsigned long hpet_rtc_flags;
965 static int hpet_prev_update_sec;
966 static struct rtc_time hpet_alarm_time;
967 static unsigned long hpet_pie_count;
968 static u32 hpet_t1_cmp;
969 static u32 hpet_default_delta;
970 static u32 hpet_pie_delta;
971 static unsigned long hpet_pie_limit;
972
973 static rtc_irq_handler irq_handler;
974
975 /*
976  * Check that the hpet counter c1 is ahead of the c2
977  */
978 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
979 {
980         return (s32)(c2 - c1) < 0;
981 }
982
983 /*
984  * Registers a IRQ handler.
985  */
986 int hpet_register_irq_handler(rtc_irq_handler handler)
987 {
988         if (!is_hpet_enabled())
989                 return -ENODEV;
990         if (irq_handler)
991                 return -EBUSY;
992
993         irq_handler = handler;
994
995         return 0;
996 }
997 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
998
999 /*
1000  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1001  * and does cleanup.
1002  */
1003 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1004 {
1005         if (!is_hpet_enabled())
1006                 return;
1007
1008         irq_handler = NULL;
1009         hpet_rtc_flags = 0;
1010 }
1011 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1012
1013 /*
1014  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1015  * is not supported by all HPET implementations for timer 1.
1016  *
1017  * hpet_rtc_timer_init() is called when the rtc is initialized.
1018  */
1019 int hpet_rtc_timer_init(void)
1020 {
1021         unsigned int cfg, cnt, delta;
1022         unsigned long flags;
1023
1024         if (!is_hpet_enabled())
1025                 return 0;
1026
1027         if (!hpet_default_delta) {
1028                 uint64_t clc;
1029
1030                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1031                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1032                 hpet_default_delta = clc;
1033         }
1034
1035         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1036                 delta = hpet_default_delta;
1037         else
1038                 delta = hpet_pie_delta;
1039
1040         local_irq_save(flags);
1041
1042         cnt = delta + hpet_readl(HPET_COUNTER);
1043         hpet_writel(cnt, HPET_T1_CMP);
1044         hpet_t1_cmp = cnt;
1045
1046         cfg = hpet_readl(HPET_T1_CFG);
1047         cfg &= ~HPET_TN_PERIODIC;
1048         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1049         hpet_writel(cfg, HPET_T1_CFG);
1050
1051         local_irq_restore(flags);
1052
1053         return 1;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1056
1057 /*
1058  * The functions below are called from rtc driver.
1059  * Return 0 if HPET is not being used.
1060  * Otherwise do the necessary changes and return 1.
1061  */
1062 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1063 {
1064         if (!is_hpet_enabled())
1065                 return 0;
1066
1067         hpet_rtc_flags &= ~bit_mask;
1068         return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1071
1072 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1073 {
1074         unsigned long oldbits = hpet_rtc_flags;
1075
1076         if (!is_hpet_enabled())
1077                 return 0;
1078
1079         hpet_rtc_flags |= bit_mask;
1080
1081         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1082                 hpet_prev_update_sec = -1;
1083
1084         if (!oldbits)
1085                 hpet_rtc_timer_init();
1086
1087         return 1;
1088 }
1089 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1090
1091 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1092                         unsigned char sec)
1093 {
1094         if (!is_hpet_enabled())
1095                 return 0;
1096
1097         hpet_alarm_time.tm_hour = hrs;
1098         hpet_alarm_time.tm_min = min;
1099         hpet_alarm_time.tm_sec = sec;
1100
1101         return 1;
1102 }
1103 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1104
1105 int hpet_set_periodic_freq(unsigned long freq)
1106 {
1107         uint64_t clc;
1108
1109         if (!is_hpet_enabled())
1110                 return 0;
1111
1112         if (freq <= DEFAULT_RTC_INT_FREQ)
1113                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1114         else {
1115                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1116                 do_div(clc, freq);
1117                 clc >>= hpet_clockevent.shift;
1118                 hpet_pie_delta = clc;
1119                 hpet_pie_limit = 0;
1120         }
1121         return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1124
1125 int hpet_rtc_dropped_irq(void)
1126 {
1127         return is_hpet_enabled();
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1130
1131 static void hpet_rtc_timer_reinit(void)
1132 {
1133         unsigned int cfg, delta;
1134         int lost_ints = -1;
1135
1136         if (unlikely(!hpet_rtc_flags)) {
1137                 cfg = hpet_readl(HPET_T1_CFG);
1138                 cfg &= ~HPET_TN_ENABLE;
1139                 hpet_writel(cfg, HPET_T1_CFG);
1140                 return;
1141         }
1142
1143         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1144                 delta = hpet_default_delta;
1145         else
1146                 delta = hpet_pie_delta;
1147
1148         /*
1149          * Increment the comparator value until we are ahead of the
1150          * current count.
1151          */
1152         do {
1153                 hpet_t1_cmp += delta;
1154                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1155                 lost_ints++;
1156         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1157
1158         if (lost_ints) {
1159                 if (hpet_rtc_flags & RTC_PIE)
1160                         hpet_pie_count += lost_ints;
1161                 if (printk_ratelimit())
1162                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1163                                 lost_ints);
1164         }
1165 }
1166
1167 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1168 {
1169         struct rtc_time curr_time;
1170         unsigned long rtc_int_flag = 0;
1171
1172         hpet_rtc_timer_reinit();
1173         memset(&curr_time, 0, sizeof(struct rtc_time));
1174
1175         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1176                 get_rtc_time(&curr_time);
1177
1178         if (hpet_rtc_flags & RTC_UIE &&
1179             curr_time.tm_sec != hpet_prev_update_sec) {
1180                 if (hpet_prev_update_sec >= 0)
1181                         rtc_int_flag = RTC_UF;
1182                 hpet_prev_update_sec = curr_time.tm_sec;
1183         }
1184
1185         if (hpet_rtc_flags & RTC_PIE &&
1186             ++hpet_pie_count >= hpet_pie_limit) {
1187                 rtc_int_flag |= RTC_PF;
1188                 hpet_pie_count = 0;
1189         }
1190
1191         if (hpet_rtc_flags & RTC_AIE &&
1192             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1193             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1194             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1195                         rtc_int_flag |= RTC_AF;
1196
1197         if (rtc_int_flag) {
1198                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1199                 if (irq_handler)
1200                         irq_handler(rtc_int_flag, dev_id);
1201         }
1202         return IRQ_HANDLED;
1203 }
1204 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1205 #endif