Merge branches 'perf-urgent-for-linus' and 'sched-urgent-for-linus' of git://git...
[pandora-kernel.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/sysdev.h>
6 #include <linux/delay.h>
7 #include <linux/errno.h>
8 #include <linux/i8253.h>
9 #include <linux/slab.h>
10 #include <linux/hpet.h>
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/io.h>
15
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC                   1000000L
25
26 #define HPET_DEV_USED_BIT               2
27 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID                  0x8
29 #define HPET_DEV_FSB_CAP                0x1000
30 #define HPET_DEV_PERI_CAP               0x2000
31
32 #define HPET_MIN_CYCLES                 128
33 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
36
37 /*
38  * HPET address is set in acpi/boot.c, when an ACPI entry exists
39  */
40 unsigned long                           hpet_address;
41 u8                                      hpet_blockid; /* OS timer block num */
42 u8                                      hpet_msi_disable;
43
44 #ifdef CONFIG_PCI_MSI
45 static unsigned long                    hpet_num_timers;
46 #endif
47 static void __iomem                     *hpet_virt_address;
48
49 struct hpet_dev {
50         struct clock_event_device       evt;
51         unsigned int                    num;
52         int                             cpu;
53         unsigned int                    irq;
54         unsigned int                    flags;
55         char                            name[10];
56 };
57
58 inline unsigned int hpet_readl(unsigned int a)
59 {
60         return readl(hpet_virt_address + a);
61 }
62
63 static inline void hpet_writel(unsigned int d, unsigned int a)
64 {
65         writel(d, hpet_virt_address + a);
66 }
67
68 #ifdef CONFIG_X86_64
69 #include <asm/pgtable.h>
70 #endif
71
72 static inline void hpet_set_mapping(void)
73 {
74         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
75 #ifdef CONFIG_X86_64
76         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
77 #endif
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82         iounmap(hpet_virt_address);
83         hpet_virt_address = NULL;
84 }
85
86 /*
87  * HPET command line enable / disable
88  */
89 static int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95         if (str) {
96                 if (!strncmp("disable", str, 7))
97                         boot_hpet_disable = 1;
98                 if (!strncmp("force", str, 5))
99                         hpet_force_user = 1;
100                 if (!strncmp("verbose", str, 7))
101                         hpet_verbose = 1;
102         }
103         return 1;
104 }
105 __setup("hpet=", hpet_setup);
106
107 static int __init disable_hpet(char *str)
108 {
109         boot_hpet_disable = 1;
110         return 1;
111 }
112 __setup("nohpet", disable_hpet);
113
114 static inline int is_hpet_capable(void)
115 {
116         return !boot_hpet_disable && hpet_address;
117 }
118
119 /*
120  * HPET timer interrupt enable / disable
121  */
122 static int hpet_legacy_int_enabled;
123
124 /**
125  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
126  */
127 int is_hpet_enabled(void)
128 {
129         return is_hpet_capable() && hpet_legacy_int_enabled;
130 }
131 EXPORT_SYMBOL_GPL(is_hpet_enabled);
132
133 static void _hpet_print_config(const char *function, int line)
134 {
135         u32 i, timers, l, h;
136         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
137         l = hpet_readl(HPET_ID);
138         h = hpet_readl(HPET_PERIOD);
139         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
140         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
141         l = hpet_readl(HPET_CFG);
142         h = hpet_readl(HPET_STATUS);
143         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
144         l = hpet_readl(HPET_COUNTER);
145         h = hpet_readl(HPET_COUNTER+4);
146         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
147
148         for (i = 0; i < timers; i++) {
149                 l = hpet_readl(HPET_Tn_CFG(i));
150                 h = hpet_readl(HPET_Tn_CFG(i)+4);
151                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
152                        i, l, h);
153                 l = hpet_readl(HPET_Tn_CMP(i));
154                 h = hpet_readl(HPET_Tn_CMP(i)+4);
155                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
156                        i, l, h);
157                 l = hpet_readl(HPET_Tn_ROUTE(i));
158                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
159                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
160                        i, l, h);
161         }
162 }
163
164 #define hpet_print_config()                                     \
165 do {                                                            \
166         if (hpet_verbose)                                       \
167                 _hpet_print_config(__FUNCTION__, __LINE__);     \
168 } while (0)
169
170 /*
171  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
172  * timer 0 and timer 1 in case of RTC emulation.
173  */
174 #ifdef CONFIG_HPET
175
176 static void hpet_reserve_msi_timers(struct hpet_data *hd);
177
178 static void hpet_reserve_platform_timers(unsigned int id)
179 {
180         struct hpet __iomem *hpet = hpet_virt_address;
181         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
182         unsigned int nrtimers, i;
183         struct hpet_data hd;
184
185         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
186
187         memset(&hd, 0, sizeof(hd));
188         hd.hd_phys_address      = hpet_address;
189         hd.hd_address           = hpet;
190         hd.hd_nirqs             = nrtimers;
191         hpet_reserve_timer(&hd, 0);
192
193 #ifdef CONFIG_HPET_EMULATE_RTC
194         hpet_reserve_timer(&hd, 1);
195 #endif
196
197         /*
198          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
200          * don't bother configuring *any* comparator interrupts.
201          */
202         hd.hd_irq[0] = HPET_LEGACY_8254;
203         hd.hd_irq[1] = HPET_LEGACY_RTC;
204
205         for (i = 2; i < nrtimers; timer++, i++) {
206                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
207                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
208         }
209
210         hpet_reserve_msi_timers(&hd);
211
212         hpet_alloc(&hd);
213
214 }
215 #else
216 static void hpet_reserve_platform_timers(unsigned int id) { }
217 #endif
218
219 /*
220  * Common hpet info
221  */
222 static unsigned long hpet_freq;
223
224 static void hpet_legacy_set_mode(enum clock_event_mode mode,
225                           struct clock_event_device *evt);
226 static int hpet_legacy_next_event(unsigned long delta,
227                            struct clock_event_device *evt);
228
229 /*
230  * The hpet clock event device
231  */
232 static struct clock_event_device hpet_clockevent = {
233         .name           = "hpet",
234         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
235         .set_mode       = hpet_legacy_set_mode,
236         .set_next_event = hpet_legacy_next_event,
237         .irq            = 0,
238         .rating         = 50,
239 };
240
241 static void hpet_stop_counter(void)
242 {
243         unsigned long cfg = hpet_readl(HPET_CFG);
244         cfg &= ~HPET_CFG_ENABLE;
245         hpet_writel(cfg, HPET_CFG);
246 }
247
248 static void hpet_reset_counter(void)
249 {
250         hpet_writel(0, HPET_COUNTER);
251         hpet_writel(0, HPET_COUNTER + 4);
252 }
253
254 static void hpet_start_counter(void)
255 {
256         unsigned int cfg = hpet_readl(HPET_CFG);
257         cfg |= HPET_CFG_ENABLE;
258         hpet_writel(cfg, HPET_CFG);
259 }
260
261 static void hpet_restart_counter(void)
262 {
263         hpet_stop_counter();
264         hpet_reset_counter();
265         hpet_start_counter();
266 }
267
268 static void hpet_resume_device(void)
269 {
270         force_hpet_resume();
271 }
272
273 static void hpet_resume_counter(struct clocksource *cs)
274 {
275         hpet_resume_device();
276         hpet_restart_counter();
277 }
278
279 static void hpet_enable_legacy_int(void)
280 {
281         unsigned int cfg = hpet_readl(HPET_CFG);
282
283         cfg |= HPET_CFG_LEGACY;
284         hpet_writel(cfg, HPET_CFG);
285         hpet_legacy_int_enabled = 1;
286 }
287
288 static void hpet_legacy_clockevent_register(void)
289 {
290         /* Start HPET legacy interrupts */
291         hpet_enable_legacy_int();
292
293         /*
294          * Start hpet with the boot cpu mask and make it
295          * global after the IO_APIC has been initialized.
296          */
297         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
298         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
299                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
300         global_clock_event = &hpet_clockevent;
301         printk(KERN_DEBUG "hpet clockevent registered\n");
302 }
303
304 static int hpet_setup_msi_irq(unsigned int irq);
305
306 static void hpet_set_mode(enum clock_event_mode mode,
307                           struct clock_event_device *evt, int timer)
308 {
309         unsigned int cfg, cmp, now;
310         uint64_t delta;
311
312         switch (mode) {
313         case CLOCK_EVT_MODE_PERIODIC:
314                 hpet_stop_counter();
315                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
316                 delta >>= evt->shift;
317                 now = hpet_readl(HPET_COUNTER);
318                 cmp = now + (unsigned int) delta;
319                 cfg = hpet_readl(HPET_Tn_CFG(timer));
320                 /* Make sure we use edge triggered interrupts */
321                 cfg &= ~HPET_TN_LEVEL;
322                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
323                        HPET_TN_SETVAL | HPET_TN_32BIT;
324                 hpet_writel(cfg, HPET_Tn_CFG(timer));
325                 hpet_writel(cmp, HPET_Tn_CMP(timer));
326                 udelay(1);
327                 /*
328                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
329                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
330                  * bit is automatically cleared after the first write.
331                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
332                  * Publication # 24674)
333                  */
334                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
335                 hpet_start_counter();
336                 hpet_print_config();
337                 break;
338
339         case CLOCK_EVT_MODE_ONESHOT:
340                 cfg = hpet_readl(HPET_Tn_CFG(timer));
341                 cfg &= ~HPET_TN_PERIODIC;
342                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
343                 hpet_writel(cfg, HPET_Tn_CFG(timer));
344                 break;
345
346         case CLOCK_EVT_MODE_UNUSED:
347         case CLOCK_EVT_MODE_SHUTDOWN:
348                 cfg = hpet_readl(HPET_Tn_CFG(timer));
349                 cfg &= ~HPET_TN_ENABLE;
350                 hpet_writel(cfg, HPET_Tn_CFG(timer));
351                 break;
352
353         case CLOCK_EVT_MODE_RESUME:
354                 if (timer == 0) {
355                         hpet_enable_legacy_int();
356                 } else {
357                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
358                         hpet_setup_msi_irq(hdev->irq);
359                         disable_irq(hdev->irq);
360                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
361                         enable_irq(hdev->irq);
362                 }
363                 hpet_print_config();
364                 break;
365         }
366 }
367
368 static int hpet_next_event(unsigned long delta,
369                            struct clock_event_device *evt, int timer)
370 {
371         u32 cnt;
372         s32 res;
373
374         cnt = hpet_readl(HPET_COUNTER);
375         cnt += (u32) delta;
376         hpet_writel(cnt, HPET_Tn_CMP(timer));
377
378         /*
379          * HPETs are a complete disaster. The compare register is
380          * based on a equal comparison and neither provides a less
381          * than or equal functionality (which would require to take
382          * the wraparound into account) nor a simple count down event
383          * mode. Further the write to the comparator register is
384          * delayed internally up to two HPET clock cycles in certain
385          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
386          * longer delays. We worked around that by reading back the
387          * compare register, but that required another workaround for
388          * ICH9,10 chips where the first readout after write can
389          * return the old stale value. We already had a minimum
390          * programming delta of 5us enforced, but a NMI or SMI hitting
391          * between the counter readout and the comparator write can
392          * move us behind that point easily. Now instead of reading
393          * the compare register back several times, we make the ETIME
394          * decision based on the following: Return ETIME if the
395          * counter value after the write is less than HPET_MIN_CYCLES
396          * away from the event or if the counter is already ahead of
397          * the event. The minimum programming delta for the generic
398          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
399          */
400         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
401
402         return res < HPET_MIN_CYCLES ? -ETIME : 0;
403 }
404
405 static void hpet_legacy_set_mode(enum clock_event_mode mode,
406                         struct clock_event_device *evt)
407 {
408         hpet_set_mode(mode, evt, 0);
409 }
410
411 static int hpet_legacy_next_event(unsigned long delta,
412                         struct clock_event_device *evt)
413 {
414         return hpet_next_event(delta, evt, 0);
415 }
416
417 /*
418  * HPET MSI Support
419  */
420 #ifdef CONFIG_PCI_MSI
421
422 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
423 static struct hpet_dev  *hpet_devs;
424
425 void hpet_msi_unmask(struct irq_data *data)
426 {
427         struct hpet_dev *hdev = data->handler_data;
428         unsigned int cfg;
429
430         /* unmask it */
431         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
432         cfg |= HPET_TN_FSB;
433         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
434 }
435
436 void hpet_msi_mask(struct irq_data *data)
437 {
438         struct hpet_dev *hdev = data->handler_data;
439         unsigned int cfg;
440
441         /* mask it */
442         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
443         cfg &= ~HPET_TN_FSB;
444         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
445 }
446
447 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
448 {
449         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
450         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
451 }
452
453 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
454 {
455         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
456         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
457         msg->address_hi = 0;
458 }
459
460 static void hpet_msi_set_mode(enum clock_event_mode mode,
461                                 struct clock_event_device *evt)
462 {
463         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
464         hpet_set_mode(mode, evt, hdev->num);
465 }
466
467 static int hpet_msi_next_event(unsigned long delta,
468                                 struct clock_event_device *evt)
469 {
470         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
471         return hpet_next_event(delta, evt, hdev->num);
472 }
473
474 static int hpet_setup_msi_irq(unsigned int irq)
475 {
476         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
477                 destroy_irq(irq);
478                 return -EINVAL;
479         }
480         return 0;
481 }
482
483 static int hpet_assign_irq(struct hpet_dev *dev)
484 {
485         unsigned int irq;
486
487         irq = create_irq_nr(0, -1);
488         if (!irq)
489                 return -EINVAL;
490
491         irq_set_handler_data(irq, dev);
492
493         if (hpet_setup_msi_irq(irq))
494                 return -EINVAL;
495
496         dev->irq = irq;
497         return 0;
498 }
499
500 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
501 {
502         struct hpet_dev *dev = (struct hpet_dev *)data;
503         struct clock_event_device *hevt = &dev->evt;
504
505         if (!hevt->event_handler) {
506                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
507                                 dev->num);
508                 return IRQ_HANDLED;
509         }
510
511         hevt->event_handler(hevt);
512         return IRQ_HANDLED;
513 }
514
515 static int hpet_setup_irq(struct hpet_dev *dev)
516 {
517
518         if (request_irq(dev->irq, hpet_interrupt_handler,
519                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
520                         dev->name, dev))
521                 return -1;
522
523         disable_irq(dev->irq);
524         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
525         enable_irq(dev->irq);
526
527         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
528                          dev->name, dev->irq);
529
530         return 0;
531 }
532
533 /* This should be called in specific @cpu */
534 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
535 {
536         struct clock_event_device *evt = &hdev->evt;
537
538         WARN_ON(cpu != smp_processor_id());
539         if (!(hdev->flags & HPET_DEV_VALID))
540                 return;
541
542         if (hpet_setup_msi_irq(hdev->irq))
543                 return;
544
545         hdev->cpu = cpu;
546         per_cpu(cpu_hpet_dev, cpu) = hdev;
547         evt->name = hdev->name;
548         hpet_setup_irq(hdev);
549         evt->irq = hdev->irq;
550
551         evt->rating = 110;
552         evt->features = CLOCK_EVT_FEAT_ONESHOT;
553         if (hdev->flags & HPET_DEV_PERI_CAP)
554                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
555
556         evt->set_mode = hpet_msi_set_mode;
557         evt->set_next_event = hpet_msi_next_event;
558         evt->cpumask = cpumask_of(hdev->cpu);
559
560         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
561                                         0x7FFFFFFF);
562 }
563
564 #ifdef CONFIG_HPET
565 /* Reserve at least one timer for userspace (/dev/hpet) */
566 #define RESERVE_TIMERS 1
567 #else
568 #define RESERVE_TIMERS 0
569 #endif
570
571 static void hpet_msi_capability_lookup(unsigned int start_timer)
572 {
573         unsigned int id;
574         unsigned int num_timers;
575         unsigned int num_timers_used = 0;
576         int i;
577
578         if (hpet_msi_disable)
579                 return;
580
581         if (boot_cpu_has(X86_FEATURE_ARAT))
582                 return;
583         id = hpet_readl(HPET_ID);
584
585         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
586         num_timers++; /* Value read out starts from 0 */
587         hpet_print_config();
588
589         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
590         if (!hpet_devs)
591                 return;
592
593         hpet_num_timers = num_timers;
594
595         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
596                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
597                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
598
599                 /* Only consider HPET timer with MSI support */
600                 if (!(cfg & HPET_TN_FSB_CAP))
601                         continue;
602
603                 hdev->flags = 0;
604                 if (cfg & HPET_TN_PERIODIC_CAP)
605                         hdev->flags |= HPET_DEV_PERI_CAP;
606                 hdev->num = i;
607
608                 sprintf(hdev->name, "hpet%d", i);
609                 if (hpet_assign_irq(hdev))
610                         continue;
611
612                 hdev->flags |= HPET_DEV_FSB_CAP;
613                 hdev->flags |= HPET_DEV_VALID;
614                 num_timers_used++;
615                 if (num_timers_used == num_possible_cpus())
616                         break;
617         }
618
619         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
620                 num_timers, num_timers_used);
621 }
622
623 #ifdef CONFIG_HPET
624 static void hpet_reserve_msi_timers(struct hpet_data *hd)
625 {
626         int i;
627
628         if (!hpet_devs)
629                 return;
630
631         for (i = 0; i < hpet_num_timers; i++) {
632                 struct hpet_dev *hdev = &hpet_devs[i];
633
634                 if (!(hdev->flags & HPET_DEV_VALID))
635                         continue;
636
637                 hd->hd_irq[hdev->num] = hdev->irq;
638                 hpet_reserve_timer(hd, hdev->num);
639         }
640 }
641 #endif
642
643 static struct hpet_dev *hpet_get_unused_timer(void)
644 {
645         int i;
646
647         if (!hpet_devs)
648                 return NULL;
649
650         for (i = 0; i < hpet_num_timers; i++) {
651                 struct hpet_dev *hdev = &hpet_devs[i];
652
653                 if (!(hdev->flags & HPET_DEV_VALID))
654                         continue;
655                 if (test_and_set_bit(HPET_DEV_USED_BIT,
656                         (unsigned long *)&hdev->flags))
657                         continue;
658                 return hdev;
659         }
660         return NULL;
661 }
662
663 struct hpet_work_struct {
664         struct delayed_work work;
665         struct completion complete;
666 };
667
668 static void hpet_work(struct work_struct *w)
669 {
670         struct hpet_dev *hdev;
671         int cpu = smp_processor_id();
672         struct hpet_work_struct *hpet_work;
673
674         hpet_work = container_of(w, struct hpet_work_struct, work.work);
675
676         hdev = hpet_get_unused_timer();
677         if (hdev)
678                 init_one_hpet_msi_clockevent(hdev, cpu);
679
680         complete(&hpet_work->complete);
681 }
682
683 static int hpet_cpuhp_notify(struct notifier_block *n,
684                 unsigned long action, void *hcpu)
685 {
686         unsigned long cpu = (unsigned long)hcpu;
687         struct hpet_work_struct work;
688         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
689
690         switch (action & 0xf) {
691         case CPU_ONLINE:
692                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
693                 init_completion(&work.complete);
694                 /* FIXME: add schedule_work_on() */
695                 schedule_delayed_work_on(cpu, &work.work, 0);
696                 wait_for_completion(&work.complete);
697                 destroy_timer_on_stack(&work.work.timer);
698                 break;
699         case CPU_DEAD:
700                 if (hdev) {
701                         free_irq(hdev->irq, hdev);
702                         hdev->flags &= ~HPET_DEV_USED;
703                         per_cpu(cpu_hpet_dev, cpu) = NULL;
704                 }
705                 break;
706         }
707         return NOTIFY_OK;
708 }
709 #else
710
711 static int hpet_setup_msi_irq(unsigned int irq)
712 {
713         return 0;
714 }
715 static void hpet_msi_capability_lookup(unsigned int start_timer)
716 {
717         return;
718 }
719
720 #ifdef CONFIG_HPET
721 static void hpet_reserve_msi_timers(struct hpet_data *hd)
722 {
723         return;
724 }
725 #endif
726
727 static int hpet_cpuhp_notify(struct notifier_block *n,
728                 unsigned long action, void *hcpu)
729 {
730         return NOTIFY_OK;
731 }
732
733 #endif
734
735 /*
736  * Clock source related code
737  */
738 static cycle_t read_hpet(struct clocksource *cs)
739 {
740         return (cycle_t)hpet_readl(HPET_COUNTER);
741 }
742
743 static struct clocksource clocksource_hpet = {
744         .name           = "hpet",
745         .rating         = 250,
746         .read           = read_hpet,
747         .mask           = HPET_MASK,
748         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
749         .resume         = hpet_resume_counter,
750 #ifdef CONFIG_X86_64
751         .archdata       = { .vclock_mode = VCLOCK_HPET },
752 #endif
753 };
754
755 static int hpet_clocksource_register(void)
756 {
757         u64 start, now;
758         cycle_t t1;
759
760         /* Start the counter */
761         hpet_restart_counter();
762
763         /* Verify whether hpet counter works */
764         t1 = hpet_readl(HPET_COUNTER);
765         rdtscll(start);
766
767         /*
768          * We don't know the TSC frequency yet, but waiting for
769          * 200000 TSC cycles is safe:
770          * 4 GHz == 50us
771          * 1 GHz == 200us
772          */
773         do {
774                 rep_nop();
775                 rdtscll(now);
776         } while ((now - start) < 200000UL);
777
778         if (t1 == hpet_readl(HPET_COUNTER)) {
779                 printk(KERN_WARNING
780                        "HPET counter not counting. HPET disabled\n");
781                 return -ENODEV;
782         }
783
784         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
785         return 0;
786 }
787
788 /**
789  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
790  */
791 int __init hpet_enable(void)
792 {
793         unsigned long hpet_period;
794         unsigned int id;
795         u64 freq;
796         int i;
797
798         if (!is_hpet_capable())
799                 return 0;
800
801         hpet_set_mapping();
802
803         /*
804          * Read the period and check for a sane value:
805          */
806         hpet_period = hpet_readl(HPET_PERIOD);
807
808         /*
809          * AMD SB700 based systems with spread spectrum enabled use a
810          * SMM based HPET emulation to provide proper frequency
811          * setting. The SMM code is initialized with the first HPET
812          * register access and takes some time to complete. During
813          * this time the config register reads 0xffffffff. We check
814          * for max. 1000 loops whether the config register reads a non
815          * 0xffffffff value to make sure that HPET is up and running
816          * before we go further. A counting loop is safe, as the HPET
817          * access takes thousands of CPU cycles. On non SB700 based
818          * machines this check is only done once and has no side
819          * effects.
820          */
821         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
822                 if (i == 1000) {
823                         printk(KERN_WARNING
824                                "HPET config register value = 0xFFFFFFFF. "
825                                "Disabling HPET\n");
826                         goto out_nohpet;
827                 }
828         }
829
830         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
831                 goto out_nohpet;
832
833         /*
834          * The period is a femto seconds value. Convert it to a
835          * frequency.
836          */
837         freq = FSEC_PER_SEC;
838         do_div(freq, hpet_period);
839         hpet_freq = freq;
840
841         /*
842          * Read the HPET ID register to retrieve the IRQ routing
843          * information and the number of channels
844          */
845         id = hpet_readl(HPET_ID);
846         hpet_print_config();
847
848 #ifdef CONFIG_HPET_EMULATE_RTC
849         /*
850          * The legacy routing mode needs at least two channels, tick timer
851          * and the rtc emulation channel.
852          */
853         if (!(id & HPET_ID_NUMBER))
854                 goto out_nohpet;
855 #endif
856
857         if (hpet_clocksource_register())
858                 goto out_nohpet;
859
860         if (id & HPET_ID_LEGSUP) {
861                 hpet_legacy_clockevent_register();
862                 return 1;
863         }
864         return 0;
865
866 out_nohpet:
867         hpet_clear_mapping();
868         hpet_address = 0;
869         return 0;
870 }
871
872 /*
873  * Needs to be late, as the reserve_timer code calls kalloc !
874  *
875  * Not a problem on i386 as hpet_enable is called from late_time_init,
876  * but on x86_64 it is necessary !
877  */
878 static __init int hpet_late_init(void)
879 {
880         int cpu;
881
882         if (boot_hpet_disable)
883                 return -ENODEV;
884
885         if (!hpet_address) {
886                 if (!force_hpet_address)
887                         return -ENODEV;
888
889                 hpet_address = force_hpet_address;
890                 hpet_enable();
891         }
892
893         if (!hpet_virt_address)
894                 return -ENODEV;
895
896         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
897                 hpet_msi_capability_lookup(2);
898         else
899                 hpet_msi_capability_lookup(0);
900
901         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
902         hpet_print_config();
903
904         if (hpet_msi_disable)
905                 return 0;
906
907         if (boot_cpu_has(X86_FEATURE_ARAT))
908                 return 0;
909
910         for_each_online_cpu(cpu) {
911                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
912         }
913
914         /* This notifier should be called after workqueue is ready */
915         hotcpu_notifier(hpet_cpuhp_notify, -20);
916
917         return 0;
918 }
919 fs_initcall(hpet_late_init);
920
921 void hpet_disable(void)
922 {
923         if (is_hpet_capable() && hpet_virt_address) {
924                 unsigned int cfg = hpet_readl(HPET_CFG);
925
926                 if (hpet_legacy_int_enabled) {
927                         cfg &= ~HPET_CFG_LEGACY;
928                         hpet_legacy_int_enabled = 0;
929                 }
930                 cfg &= ~HPET_CFG_ENABLE;
931                 hpet_writel(cfg, HPET_CFG);
932         }
933 }
934
935 #ifdef CONFIG_HPET_EMULATE_RTC
936
937 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
938  * is enabled, we support RTC interrupt functionality in software.
939  * RTC has 3 kinds of interrupts:
940  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
941  *    is updated
942  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
943  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
944  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
945  * (1) and (2) above are implemented using polling at a frequency of
946  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
947  * overhead. (DEFAULT_RTC_INT_FREQ)
948  * For (3), we use interrupts at 64Hz or user specified periodic
949  * frequency, whichever is higher.
950  */
951 #include <linux/mc146818rtc.h>
952 #include <linux/rtc.h>
953 #include <asm/rtc.h>
954
955 #define DEFAULT_RTC_INT_FREQ    64
956 #define DEFAULT_RTC_SHIFT       6
957 #define RTC_NUM_INTS            1
958
959 static unsigned long hpet_rtc_flags;
960 static int hpet_prev_update_sec;
961 static struct rtc_time hpet_alarm_time;
962 static unsigned long hpet_pie_count;
963 static u32 hpet_t1_cmp;
964 static u32 hpet_default_delta;
965 static u32 hpet_pie_delta;
966 static unsigned long hpet_pie_limit;
967
968 static rtc_irq_handler irq_handler;
969
970 /*
971  * Check that the hpet counter c1 is ahead of the c2
972  */
973 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
974 {
975         return (s32)(c2 - c1) < 0;
976 }
977
978 /*
979  * Registers a IRQ handler.
980  */
981 int hpet_register_irq_handler(rtc_irq_handler handler)
982 {
983         if (!is_hpet_enabled())
984                 return -ENODEV;
985         if (irq_handler)
986                 return -EBUSY;
987
988         irq_handler = handler;
989
990         return 0;
991 }
992 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
993
994 /*
995  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
996  * and does cleanup.
997  */
998 void hpet_unregister_irq_handler(rtc_irq_handler handler)
999 {
1000         if (!is_hpet_enabled())
1001                 return;
1002
1003         irq_handler = NULL;
1004         hpet_rtc_flags = 0;
1005 }
1006 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1007
1008 /*
1009  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1010  * is not supported by all HPET implementations for timer 1.
1011  *
1012  * hpet_rtc_timer_init() is called when the rtc is initialized.
1013  */
1014 int hpet_rtc_timer_init(void)
1015 {
1016         unsigned int cfg, cnt, delta;
1017         unsigned long flags;
1018
1019         if (!is_hpet_enabled())
1020                 return 0;
1021
1022         if (!hpet_default_delta) {
1023                 uint64_t clc;
1024
1025                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1026                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1027                 hpet_default_delta = clc;
1028         }
1029
1030         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1031                 delta = hpet_default_delta;
1032         else
1033                 delta = hpet_pie_delta;
1034
1035         local_irq_save(flags);
1036
1037         cnt = delta + hpet_readl(HPET_COUNTER);
1038         hpet_writel(cnt, HPET_T1_CMP);
1039         hpet_t1_cmp = cnt;
1040
1041         cfg = hpet_readl(HPET_T1_CFG);
1042         cfg &= ~HPET_TN_PERIODIC;
1043         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1044         hpet_writel(cfg, HPET_T1_CFG);
1045
1046         local_irq_restore(flags);
1047
1048         return 1;
1049 }
1050 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1051
1052 static void hpet_disable_rtc_channel(void)
1053 {
1054         unsigned long cfg;
1055         cfg = hpet_readl(HPET_T1_CFG);
1056         cfg &= ~HPET_TN_ENABLE;
1057         hpet_writel(cfg, HPET_T1_CFG);
1058 }
1059
1060 /*
1061  * The functions below are called from rtc driver.
1062  * Return 0 if HPET is not being used.
1063  * Otherwise do the necessary changes and return 1.
1064  */
1065 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1066 {
1067         if (!is_hpet_enabled())
1068                 return 0;
1069
1070         hpet_rtc_flags &= ~bit_mask;
1071         if (unlikely(!hpet_rtc_flags))
1072                 hpet_disable_rtc_channel();
1073
1074         return 1;
1075 }
1076 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1077
1078 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1079 {
1080         unsigned long oldbits = hpet_rtc_flags;
1081
1082         if (!is_hpet_enabled())
1083                 return 0;
1084
1085         hpet_rtc_flags |= bit_mask;
1086
1087         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1088                 hpet_prev_update_sec = -1;
1089
1090         if (!oldbits)
1091                 hpet_rtc_timer_init();
1092
1093         return 1;
1094 }
1095 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1096
1097 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1098                         unsigned char sec)
1099 {
1100         if (!is_hpet_enabled())
1101                 return 0;
1102
1103         hpet_alarm_time.tm_hour = hrs;
1104         hpet_alarm_time.tm_min = min;
1105         hpet_alarm_time.tm_sec = sec;
1106
1107         return 1;
1108 }
1109 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1110
1111 int hpet_set_periodic_freq(unsigned long freq)
1112 {
1113         uint64_t clc;
1114
1115         if (!is_hpet_enabled())
1116                 return 0;
1117
1118         if (freq <= DEFAULT_RTC_INT_FREQ)
1119                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1120         else {
1121                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1122                 do_div(clc, freq);
1123                 clc >>= hpet_clockevent.shift;
1124                 hpet_pie_delta = clc;
1125                 hpet_pie_limit = 0;
1126         }
1127         return 1;
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1130
1131 int hpet_rtc_dropped_irq(void)
1132 {
1133         return is_hpet_enabled();
1134 }
1135 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1136
1137 static void hpet_rtc_timer_reinit(void)
1138 {
1139         unsigned int delta;
1140         int lost_ints = -1;
1141
1142         if (unlikely(!hpet_rtc_flags))
1143                 hpet_disable_rtc_channel();
1144
1145         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1146                 delta = hpet_default_delta;
1147         else
1148                 delta = hpet_pie_delta;
1149
1150         /*
1151          * Increment the comparator value until we are ahead of the
1152          * current count.
1153          */
1154         do {
1155                 hpet_t1_cmp += delta;
1156                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1157                 lost_ints++;
1158         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1159
1160         if (lost_ints) {
1161                 if (hpet_rtc_flags & RTC_PIE)
1162                         hpet_pie_count += lost_ints;
1163                 if (printk_ratelimit())
1164                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1165                                 lost_ints);
1166         }
1167 }
1168
1169 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1170 {
1171         struct rtc_time curr_time;
1172         unsigned long rtc_int_flag = 0;
1173
1174         hpet_rtc_timer_reinit();
1175         memset(&curr_time, 0, sizeof(struct rtc_time));
1176
1177         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1178                 get_rtc_time(&curr_time);
1179
1180         if (hpet_rtc_flags & RTC_UIE &&
1181             curr_time.tm_sec != hpet_prev_update_sec) {
1182                 if (hpet_prev_update_sec >= 0)
1183                         rtc_int_flag = RTC_UF;
1184                 hpet_prev_update_sec = curr_time.tm_sec;
1185         }
1186
1187         if (hpet_rtc_flags & RTC_PIE &&
1188             ++hpet_pie_count >= hpet_pie_limit) {
1189                 rtc_int_flag |= RTC_PF;
1190                 hpet_pie_count = 0;
1191         }
1192
1193         if (hpet_rtc_flags & RTC_AIE &&
1194             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1195             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1196             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1197                         rtc_int_flag |= RTC_AF;
1198
1199         if (rtc_int_flag) {
1200                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1201                 if (irq_handler)
1202                         irq_handler(rtc_int_flag, dev_id);
1203         }
1204         return IRQ_HANDLED;
1205 }
1206 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1207 #endif