Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
106         int                     enabled;
107
108         int                     n_events;
109         int                     n_added;
110         int                     n_txn;
111         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
112         u64                     tags[X86_PMC_IDX_MAX];
113         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114
115         unsigned int            group_flag;
116
117         /*
118          * Intel DebugStore bits
119          */
120         struct debug_store      *ds;
121         u64                     pebs_enabled;
122
123         /*
124          * Intel LBR bits
125          */
126         int                             lbr_users;
127         void                            *lbr_context;
128         struct perf_branch_stack        lbr_stack;
129         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
130
131         /*
132          * AMD specific bits
133          */
134         struct amd_nb           *amd_nb;
135 };
136
137 #define __EVENT_CONSTRAINT(c, n, m, w) {\
138         { .idxmsk64 = (n) },            \
139         .code = (c),                    \
140         .cmask = (m),                   \
141         .weight = (w),                  \
142 }
143
144 #define EVENT_CONSTRAINT(c, n, m)       \
145         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
146
147 /*
148  * Constraint on the Event code.
149  */
150 #define INTEL_EVENT_CONSTRAINT(c, n)    \
151         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
152
153 /*
154  * Constraint on the Event code + UMask + fixed-mask
155  *
156  * filter mask to validate fixed counter events.
157  * the following filters disqualify for fixed counters:
158  *  - inv
159  *  - edge
160  *  - cnt-mask
161  *  The other filters are supported by fixed counters.
162  *  The any-thread option is supported starting with v3.
163  */
164 #define FIXED_EVENT_CONSTRAINT(c, n)    \
165         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
166
167 /*
168  * Constraint on the Event code + UMask
169  */
170 #define PEBS_EVENT_CONSTRAINT(c, n)     \
171         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172
173 #define EVENT_CONSTRAINT_END            \
174         EVENT_CONSTRAINT(0, 0, 0)
175
176 #define for_each_event_constraint(e, c) \
177         for ((e) = (c); (e)->weight; (e)++)
178
179 union perf_capabilities {
180         struct {
181                 u64     lbr_format    : 6;
182                 u64     pebs_trap     : 1;
183                 u64     pebs_arch_reg : 1;
184                 u64     pebs_format   : 4;
185                 u64     smm_freeze    : 1;
186         };
187         u64     capabilities;
188 };
189
190 /*
191  * struct x86_pmu - generic x86 pmu
192  */
193 struct x86_pmu {
194         /*
195          * Generic x86 PMC bits
196          */
197         const char      *name;
198         int             version;
199         int             (*handle_irq)(struct pt_regs *);
200         void            (*disable_all)(void);
201         void            (*enable_all)(int added);
202         void            (*enable)(struct perf_event *);
203         void            (*disable)(struct perf_event *);
204         int             (*hw_config)(struct perf_event *event);
205         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
206         unsigned        eventsel;
207         unsigned        perfctr;
208         u64             (*event_map)(int);
209         int             max_events;
210         int             num_counters;
211         int             num_counters_fixed;
212         int             cntval_bits;
213         u64             cntval_mask;
214         int             apic;
215         u64             max_period;
216         struct event_constraint *
217                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
218                                                  struct perf_event *event);
219
220         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
221                                                  struct perf_event *event);
222         struct event_constraint *event_constraints;
223         void            (*quirks)(void);
224         int             perfctr_second_write;
225
226         int             (*cpu_prepare)(int cpu);
227         void            (*cpu_starting)(int cpu);
228         void            (*cpu_dying)(int cpu);
229         void            (*cpu_dead)(int cpu);
230
231         /*
232          * Intel Arch Perfmon v2+
233          */
234         u64                     intel_ctrl;
235         union perf_capabilities intel_cap;
236
237         /*
238          * Intel DebugStore bits
239          */
240         int             bts, pebs;
241         int             pebs_record_size;
242         void            (*drain_pebs)(struct pt_regs *regs);
243         struct event_constraint *pebs_constraints;
244
245         /*
246          * Intel LBR
247          */
248         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
249         int             lbr_nr;                    /* hardware stack size */
250 };
251
252 static struct x86_pmu x86_pmu __read_mostly;
253
254 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
255         .enabled = 1,
256 };
257
258 static int x86_perf_event_set_period(struct perf_event *event);
259
260 /*
261  * Generalized hw caching related hw_event table, filled
262  * in on a per model basis. A value of 0 means
263  * 'not supported', -1 means 'hw_event makes no sense on
264  * this CPU', any other value means the raw hw_event
265  * ID.
266  */
267
268 #define C(x) PERF_COUNT_HW_CACHE_##x
269
270 static u64 __read_mostly hw_cache_event_ids
271                                 [PERF_COUNT_HW_CACHE_MAX]
272                                 [PERF_COUNT_HW_CACHE_OP_MAX]
273                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
274
275 /*
276  * Propagate event elapsed time into the generic event.
277  * Can only be executed on the CPU where the event is active.
278  * Returns the delta events processed.
279  */
280 static u64
281 x86_perf_event_update(struct perf_event *event)
282 {
283         struct hw_perf_event *hwc = &event->hw;
284         int shift = 64 - x86_pmu.cntval_bits;
285         u64 prev_raw_count, new_raw_count;
286         int idx = hwc->idx;
287         s64 delta;
288
289         if (idx == X86_PMC_IDX_FIXED_BTS)
290                 return 0;
291
292         /*
293          * Careful: an NMI might modify the previous event value.
294          *
295          * Our tactic to handle this is to first atomically read and
296          * exchange a new raw count - then add that new-prev delta
297          * count to the generic event atomically:
298          */
299 again:
300         prev_raw_count = local64_read(&hwc->prev_count);
301         rdmsrl(hwc->event_base + idx, new_raw_count);
302
303         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
304                                         new_raw_count) != prev_raw_count)
305                 goto again;
306
307         /*
308          * Now we have the new raw value and have updated the prev
309          * timestamp already. We can now calculate the elapsed delta
310          * (event-)time and add that to the generic event.
311          *
312          * Careful, not all hw sign-extends above the physical width
313          * of the count.
314          */
315         delta = (new_raw_count << shift) - (prev_raw_count << shift);
316         delta >>= shift;
317
318         local64_add(delta, &event->count);
319         local64_sub(delta, &hwc->period_left);
320
321         return new_raw_count;
322 }
323
324 static atomic_t active_events;
325 static DEFINE_MUTEX(pmc_reserve_mutex);
326
327 #ifdef CONFIG_X86_LOCAL_APIC
328
329 static bool reserve_pmc_hardware(void)
330 {
331         int i;
332
333         if (nmi_watchdog == NMI_LOCAL_APIC)
334                 disable_lapic_nmi_watchdog();
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
338                         goto perfctr_fail;
339         }
340
341         for (i = 0; i < x86_pmu.num_counters; i++) {
342                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
343                         goto eventsel_fail;
344         }
345
346         return true;
347
348 eventsel_fail:
349         for (i--; i >= 0; i--)
350                 release_evntsel_nmi(x86_pmu.eventsel + i);
351
352         i = x86_pmu.num_counters;
353
354 perfctr_fail:
355         for (i--; i >= 0; i--)
356                 release_perfctr_nmi(x86_pmu.perfctr + i);
357
358         if (nmi_watchdog == NMI_LOCAL_APIC)
359                 enable_lapic_nmi_watchdog();
360
361         return false;
362 }
363
364 static void release_pmc_hardware(void)
365 {
366         int i;
367
368         for (i = 0; i < x86_pmu.num_counters; i++) {
369                 release_perfctr_nmi(x86_pmu.perfctr + i);
370                 release_evntsel_nmi(x86_pmu.eventsel + i);
371         }
372
373         if (nmi_watchdog == NMI_LOCAL_APIC)
374                 enable_lapic_nmi_watchdog();
375 }
376
377 #else
378
379 static bool reserve_pmc_hardware(void) { return true; }
380 static void release_pmc_hardware(void) {}
381
382 #endif
383
384 static int reserve_ds_buffers(void);
385 static void release_ds_buffers(void);
386
387 static void hw_perf_event_destroy(struct perf_event *event)
388 {
389         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
390                 release_pmc_hardware();
391                 release_ds_buffers();
392                 mutex_unlock(&pmc_reserve_mutex);
393         }
394 }
395
396 static inline int x86_pmu_initialized(void)
397 {
398         return x86_pmu.handle_irq != NULL;
399 }
400
401 static inline int
402 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
403 {
404         unsigned int cache_type, cache_op, cache_result;
405         u64 config, val;
406
407         config = attr->config;
408
409         cache_type = (config >>  0) & 0xff;
410         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
411                 return -EINVAL;
412
413         cache_op = (config >>  8) & 0xff;
414         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
415                 return -EINVAL;
416
417         cache_result = (config >> 16) & 0xff;
418         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
419                 return -EINVAL;
420
421         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
422
423         if (val == 0)
424                 return -ENOENT;
425
426         if (val == -1)
427                 return -EINVAL;
428
429         hwc->config |= val;
430
431         return 0;
432 }
433
434 static int x86_setup_perfctr(struct perf_event *event)
435 {
436         struct perf_event_attr *attr = &event->attr;
437         struct hw_perf_event *hwc = &event->hw;
438         u64 config;
439
440         if (!hwc->sample_period) {
441                 hwc->sample_period = x86_pmu.max_period;
442                 hwc->last_period = hwc->sample_period;
443                 local64_set(&hwc->period_left, hwc->sample_period);
444         } else {
445                 /*
446                  * If we have a PMU initialized but no APIC
447                  * interrupts, we cannot sample hardware
448                  * events (user-space has to fall back and
449                  * sample via a hrtimer based software event):
450                  */
451                 if (!x86_pmu.apic)
452                         return -EOPNOTSUPP;
453         }
454
455         if (attr->type == PERF_TYPE_RAW)
456                 return 0;
457
458         if (attr->type == PERF_TYPE_HW_CACHE)
459                 return set_ext_hw_attr(hwc, attr);
460
461         if (attr->config >= x86_pmu.max_events)
462                 return -EINVAL;
463
464         /*
465          * The generic map:
466          */
467         config = x86_pmu.event_map(attr->config);
468
469         if (config == 0)
470                 return -ENOENT;
471
472         if (config == -1LL)
473                 return -EINVAL;
474
475         /*
476          * Branch tracing:
477          */
478         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
479             (hwc->sample_period == 1)) {
480                 /* BTS is not supported by this architecture. */
481                 if (!x86_pmu.bts)
482                         return -EOPNOTSUPP;
483
484                 /* BTS is currently only allowed for user-mode. */
485                 if (!attr->exclude_kernel)
486                         return -EOPNOTSUPP;
487         }
488
489         hwc->config |= config;
490
491         return 0;
492 }
493
494 static int x86_pmu_hw_config(struct perf_event *event)
495 {
496         if (event->attr.precise_ip) {
497                 int precise = 0;
498
499                 /* Support for constant skid */
500                 if (x86_pmu.pebs)
501                         precise++;
502
503                 /* Support for IP fixup */
504                 if (x86_pmu.lbr_nr)
505                         precise++;
506
507                 if (event->attr.precise_ip > precise)
508                         return -EOPNOTSUPP;
509         }
510
511         /*
512          * Generate PMC IRQs:
513          * (keep 'enabled' bit clear for now)
514          */
515         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
516
517         /*
518          * Count user and OS events unless requested not to
519          */
520         if (!event->attr.exclude_user)
521                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
522         if (!event->attr.exclude_kernel)
523                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
524
525         if (event->attr.type == PERF_TYPE_RAW)
526                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
527
528         return x86_setup_perfctr(event);
529 }
530
531 /*
532  * Setup the hardware configuration for a given attr_type
533  */
534 static int __hw_perf_event_init(struct perf_event *event)
535 {
536         int err;
537
538         if (!x86_pmu_initialized())
539                 return -ENODEV;
540
541         err = 0;
542         if (!atomic_inc_not_zero(&active_events)) {
543                 mutex_lock(&pmc_reserve_mutex);
544                 if (atomic_read(&active_events) == 0) {
545                         if (!reserve_pmc_hardware())
546                                 err = -EBUSY;
547                         else {
548                                 err = reserve_ds_buffers();
549                                 if (err)
550                                         release_pmc_hardware();
551                         }
552                 }
553                 if (!err)
554                         atomic_inc(&active_events);
555                 mutex_unlock(&pmc_reserve_mutex);
556         }
557         if (err)
558                 return err;
559
560         event->destroy = hw_perf_event_destroy;
561
562         event->hw.idx = -1;
563         event->hw.last_cpu = -1;
564         event->hw.last_tag = ~0ULL;
565
566         return x86_pmu.hw_config(event);
567 }
568
569 static void x86_pmu_disable_all(void)
570 {
571         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
572         int idx;
573
574         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
575                 u64 val;
576
577                 if (!test_bit(idx, cpuc->active_mask))
578                         continue;
579                 rdmsrl(x86_pmu.eventsel + idx, val);
580                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
581                         continue;
582                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
583                 wrmsrl(x86_pmu.eventsel + idx, val);
584         }
585 }
586
587 void hw_perf_disable(void)
588 {
589         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
590
591         if (!x86_pmu_initialized())
592                 return;
593
594         if (!cpuc->enabled)
595                 return;
596
597         cpuc->n_added = 0;
598         cpuc->enabled = 0;
599         barrier();
600
601         x86_pmu.disable_all();
602 }
603
604 static void x86_pmu_enable_all(int added)
605 {
606         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
607         int idx;
608
609         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
610                 struct perf_event *event = cpuc->events[idx];
611                 u64 val;
612
613                 if (!test_bit(idx, cpuc->active_mask))
614                         continue;
615
616                 val = event->hw.config;
617                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
618                 wrmsrl(x86_pmu.eventsel + idx, val);
619         }
620 }
621
622 static const struct pmu pmu;
623
624 static inline int is_x86_event(struct perf_event *event)
625 {
626         return event->pmu == &pmu;
627 }
628
629 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
630 {
631         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
632         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
633         int i, j, w, wmax, num = 0;
634         struct hw_perf_event *hwc;
635
636         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
637
638         for (i = 0; i < n; i++) {
639                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
640                 constraints[i] = c;
641         }
642
643         /*
644          * fastpath, try to reuse previous register
645          */
646         for (i = 0; i < n; i++) {
647                 hwc = &cpuc->event_list[i]->hw;
648                 c = constraints[i];
649
650                 /* never assigned */
651                 if (hwc->idx == -1)
652                         break;
653
654                 /* constraint still honored */
655                 if (!test_bit(hwc->idx, c->idxmsk))
656                         break;
657
658                 /* not already used */
659                 if (test_bit(hwc->idx, used_mask))
660                         break;
661
662                 __set_bit(hwc->idx, used_mask);
663                 if (assign)
664                         assign[i] = hwc->idx;
665         }
666         if (i == n)
667                 goto done;
668
669         /*
670          * begin slow path
671          */
672
673         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
674
675         /*
676          * weight = number of possible counters
677          *
678          * 1    = most constrained, only works on one counter
679          * wmax = least constrained, works on any counter
680          *
681          * assign events to counters starting with most
682          * constrained events.
683          */
684         wmax = x86_pmu.num_counters;
685
686         /*
687          * when fixed event counters are present,
688          * wmax is incremented by 1 to account
689          * for one more choice
690          */
691         if (x86_pmu.num_counters_fixed)
692                 wmax++;
693
694         for (w = 1, num = n; num && w <= wmax; w++) {
695                 /* for each event */
696                 for (i = 0; num && i < n; i++) {
697                         c = constraints[i];
698                         hwc = &cpuc->event_list[i]->hw;
699
700                         if (c->weight != w)
701                                 continue;
702
703                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
704                                 if (!test_bit(j, used_mask))
705                                         break;
706                         }
707
708                         if (j == X86_PMC_IDX_MAX)
709                                 break;
710
711                         __set_bit(j, used_mask);
712
713                         if (assign)
714                                 assign[i] = j;
715                         num--;
716                 }
717         }
718 done:
719         /*
720          * scheduling failed or is just a simulation,
721          * free resources if necessary
722          */
723         if (!assign || num) {
724                 for (i = 0; i < n; i++) {
725                         if (x86_pmu.put_event_constraints)
726                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
727                 }
728         }
729         return num ? -ENOSPC : 0;
730 }
731
732 /*
733  * dogrp: true if must collect siblings events (group)
734  * returns total number of events and error code
735  */
736 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
737 {
738         struct perf_event *event;
739         int n, max_count;
740
741         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
742
743         /* current number of events already accepted */
744         n = cpuc->n_events;
745
746         if (is_x86_event(leader)) {
747                 if (n >= max_count)
748                         return -ENOSPC;
749                 cpuc->event_list[n] = leader;
750                 n++;
751         }
752         if (!dogrp)
753                 return n;
754
755         list_for_each_entry(event, &leader->sibling_list, group_entry) {
756                 if (!is_x86_event(event) ||
757                     event->state <= PERF_EVENT_STATE_OFF)
758                         continue;
759
760                 if (n >= max_count)
761                         return -ENOSPC;
762
763                 cpuc->event_list[n] = event;
764                 n++;
765         }
766         return n;
767 }
768
769 static inline void x86_assign_hw_event(struct perf_event *event,
770                                 struct cpu_hw_events *cpuc, int i)
771 {
772         struct hw_perf_event *hwc = &event->hw;
773
774         hwc->idx = cpuc->assign[i];
775         hwc->last_cpu = smp_processor_id();
776         hwc->last_tag = ++cpuc->tags[i];
777
778         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
779                 hwc->config_base = 0;
780                 hwc->event_base = 0;
781         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
782                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
783                 /*
784                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
785                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
786                  */
787                 hwc->event_base =
788                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
789         } else {
790                 hwc->config_base = x86_pmu.eventsel;
791                 hwc->event_base  = x86_pmu.perfctr;
792         }
793 }
794
795 static inline int match_prev_assignment(struct hw_perf_event *hwc,
796                                         struct cpu_hw_events *cpuc,
797                                         int i)
798 {
799         return hwc->idx == cpuc->assign[i] &&
800                 hwc->last_cpu == smp_processor_id() &&
801                 hwc->last_tag == cpuc->tags[i];
802 }
803
804 static int x86_pmu_start(struct perf_event *event);
805 static void x86_pmu_stop(struct perf_event *event);
806
807 void hw_perf_enable(void)
808 {
809         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
810         struct perf_event *event;
811         struct hw_perf_event *hwc;
812         int i, added = cpuc->n_added;
813
814         if (!x86_pmu_initialized())
815                 return;
816
817         if (cpuc->enabled)
818                 return;
819
820         if (cpuc->n_added) {
821                 int n_running = cpuc->n_events - cpuc->n_added;
822                 /*
823                  * apply assignment obtained either from
824                  * hw_perf_group_sched_in() or x86_pmu_enable()
825                  *
826                  * step1: save events moving to new counters
827                  * step2: reprogram moved events into new counters
828                  */
829                 for (i = 0; i < n_running; i++) {
830                         event = cpuc->event_list[i];
831                         hwc = &event->hw;
832
833                         /*
834                          * we can avoid reprogramming counter if:
835                          * - assigned same counter as last time
836                          * - running on same CPU as last time
837                          * - no other event has used the counter since
838                          */
839                         if (hwc->idx == -1 ||
840                             match_prev_assignment(hwc, cpuc, i))
841                                 continue;
842
843                         x86_pmu_stop(event);
844                 }
845
846                 for (i = 0; i < cpuc->n_events; i++) {
847                         event = cpuc->event_list[i];
848                         hwc = &event->hw;
849
850                         if (!match_prev_assignment(hwc, cpuc, i))
851                                 x86_assign_hw_event(event, cpuc, i);
852                         else if (i < n_running)
853                                 continue;
854
855                         x86_pmu_start(event);
856                 }
857                 cpuc->n_added = 0;
858                 perf_events_lapic_init();
859         }
860
861         cpuc->enabled = 1;
862         barrier();
863
864         x86_pmu.enable_all(added);
865 }
866
867 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
868                                           u64 enable_mask)
869 {
870         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
871 }
872
873 static inline void x86_pmu_disable_event(struct perf_event *event)
874 {
875         struct hw_perf_event *hwc = &event->hw;
876
877         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
878 }
879
880 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
881
882 /*
883  * Set the next IRQ period, based on the hwc->period_left value.
884  * To be called with the event disabled in hw:
885  */
886 static int
887 x86_perf_event_set_period(struct perf_event *event)
888 {
889         struct hw_perf_event *hwc = &event->hw;
890         s64 left = local64_read(&hwc->period_left);
891         s64 period = hwc->sample_period;
892         int ret = 0, idx = hwc->idx;
893
894         if (idx == X86_PMC_IDX_FIXED_BTS)
895                 return 0;
896
897         /*
898          * If we are way outside a reasonable range then just skip forward:
899          */
900         if (unlikely(left <= -period)) {
901                 left = period;
902                 local64_set(&hwc->period_left, left);
903                 hwc->last_period = period;
904                 ret = 1;
905         }
906
907         if (unlikely(left <= 0)) {
908                 left += period;
909                 local64_set(&hwc->period_left, left);
910                 hwc->last_period = period;
911                 ret = 1;
912         }
913         /*
914          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
915          */
916         if (unlikely(left < 2))
917                 left = 2;
918
919         if (left > x86_pmu.max_period)
920                 left = x86_pmu.max_period;
921
922         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
923
924         /*
925          * The hw event starts counting from this event offset,
926          * mark it to be able to extra future deltas:
927          */
928         local64_set(&hwc->prev_count, (u64)-left);
929
930         wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
931
932         /*
933          * Due to erratum on certan cpu we need
934          * a second write to be sure the register
935          * is updated properly
936          */
937         if (x86_pmu.perfctr_second_write) {
938                 wrmsrl(hwc->event_base + idx,
939                         (u64)(-left) & x86_pmu.cntval_mask);
940         }
941
942         perf_event_update_userpage(event);
943
944         return ret;
945 }
946
947 static void x86_pmu_enable_event(struct perf_event *event)
948 {
949         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
950         if (cpuc->enabled)
951                 __x86_pmu_enable_event(&event->hw,
952                                        ARCH_PERFMON_EVENTSEL_ENABLE);
953 }
954
955 /*
956  * activate a single event
957  *
958  * The event is added to the group of enabled events
959  * but only if it can be scehduled with existing events.
960  *
961  * Called with PMU disabled. If successful and return value 1,
962  * then guaranteed to call perf_enable() and hw_perf_enable()
963  */
964 static int x86_pmu_enable(struct perf_event *event)
965 {
966         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
967         struct hw_perf_event *hwc;
968         int assign[X86_PMC_IDX_MAX];
969         int n, n0, ret;
970
971         hwc = &event->hw;
972
973         n0 = cpuc->n_events;
974         n = collect_events(cpuc, event, false);
975         if (n < 0)
976                 return n;
977
978         /*
979          * If group events scheduling transaction was started,
980          * skip the schedulability test here, it will be peformed
981          * at commit time(->commit_txn) as a whole
982          */
983         if (cpuc->group_flag & PERF_EVENT_TXN)
984                 goto out;
985
986         ret = x86_pmu.schedule_events(cpuc, n, assign);
987         if (ret)
988                 return ret;
989         /*
990          * copy new assignment, now we know it is possible
991          * will be used by hw_perf_enable()
992          */
993         memcpy(cpuc->assign, assign, n*sizeof(int));
994
995 out:
996         cpuc->n_events = n;
997         cpuc->n_added += n - n0;
998         cpuc->n_txn += n - n0;
999
1000         return 0;
1001 }
1002
1003 static int x86_pmu_start(struct perf_event *event)
1004 {
1005         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1006         int idx = event->hw.idx;
1007
1008         if (idx == -1)
1009                 return -EAGAIN;
1010
1011         x86_perf_event_set_period(event);
1012         cpuc->events[idx] = event;
1013         __set_bit(idx, cpuc->active_mask);
1014         __set_bit(idx, cpuc->running);
1015         x86_pmu.enable(event);
1016         perf_event_update_userpage(event);
1017
1018         return 0;
1019 }
1020
1021 static void x86_pmu_unthrottle(struct perf_event *event)
1022 {
1023         int ret = x86_pmu_start(event);
1024         WARN_ON_ONCE(ret);
1025 }
1026
1027 void perf_event_print_debug(void)
1028 {
1029         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1030         u64 pebs;
1031         struct cpu_hw_events *cpuc;
1032         unsigned long flags;
1033         int cpu, idx;
1034
1035         if (!x86_pmu.num_counters)
1036                 return;
1037
1038         local_irq_save(flags);
1039
1040         cpu = smp_processor_id();
1041         cpuc = &per_cpu(cpu_hw_events, cpu);
1042
1043         if (x86_pmu.version >= 2) {
1044                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1045                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1046                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1047                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1048                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1049
1050                 pr_info("\n");
1051                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1052                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1053                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1054                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1055                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1056         }
1057         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1058
1059         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1060                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1061                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1062
1063                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1064
1065                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1066                         cpu, idx, pmc_ctrl);
1067                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1068                         cpu, idx, pmc_count);
1069                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1070                         cpu, idx, prev_left);
1071         }
1072         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1073                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1074
1075                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1076                         cpu, idx, pmc_count);
1077         }
1078         local_irq_restore(flags);
1079 }
1080
1081 static void x86_pmu_stop(struct perf_event *event)
1082 {
1083         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084         struct hw_perf_event *hwc = &event->hw;
1085         int idx = hwc->idx;
1086
1087         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1088                 return;
1089
1090         x86_pmu.disable(event);
1091
1092         /*
1093          * Drain the remaining delta count out of a event
1094          * that we are disabling:
1095          */
1096         x86_perf_event_update(event);
1097
1098         cpuc->events[idx] = NULL;
1099 }
1100
1101 static void x86_pmu_disable(struct perf_event *event)
1102 {
1103         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1104         int i;
1105
1106         /*
1107          * If we're called during a txn, we don't need to do anything.
1108          * The events never got scheduled and ->cancel_txn will truncate
1109          * the event_list.
1110          */
1111         if (cpuc->group_flag & PERF_EVENT_TXN)
1112                 return;
1113
1114         x86_pmu_stop(event);
1115
1116         for (i = 0; i < cpuc->n_events; i++) {
1117                 if (event == cpuc->event_list[i]) {
1118
1119                         if (x86_pmu.put_event_constraints)
1120                                 x86_pmu.put_event_constraints(cpuc, event);
1121
1122                         while (++i < cpuc->n_events)
1123                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1124
1125                         --cpuc->n_events;
1126                         break;
1127                 }
1128         }
1129         perf_event_update_userpage(event);
1130 }
1131
1132 static int x86_pmu_handle_irq(struct pt_regs *regs)
1133 {
1134         struct perf_sample_data data;
1135         struct cpu_hw_events *cpuc;
1136         struct perf_event *event;
1137         struct hw_perf_event *hwc;
1138         int idx, handled = 0;
1139         u64 val;
1140
1141         perf_sample_data_init(&data, 0);
1142
1143         cpuc = &__get_cpu_var(cpu_hw_events);
1144
1145         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1146                 if (!test_bit(idx, cpuc->active_mask)) {
1147                         /*
1148                          * Though we deactivated the counter some cpus
1149                          * might still deliver spurious interrupts still
1150                          * in flight. Catch them:
1151                          */
1152                         if (__test_and_clear_bit(idx, cpuc->running))
1153                                 handled++;
1154                         continue;
1155                 }
1156
1157                 event = cpuc->events[idx];
1158                 hwc = &event->hw;
1159
1160                 val = x86_perf_event_update(event);
1161                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1162                         continue;
1163
1164                 /*
1165                  * event overflow
1166                  */
1167                 handled++;
1168                 data.period     = event->hw.last_period;
1169
1170                 if (!x86_perf_event_set_period(event))
1171                         continue;
1172
1173                 if (perf_event_overflow(event, 1, &data, regs))
1174                         x86_pmu_stop(event);
1175         }
1176
1177         if (handled)
1178                 inc_irq_stat(apic_perf_irqs);
1179
1180         return handled;
1181 }
1182
1183 void smp_perf_pending_interrupt(struct pt_regs *regs)
1184 {
1185         irq_enter();
1186         ack_APIC_irq();
1187         inc_irq_stat(apic_pending_irqs);
1188         perf_event_do_pending();
1189         irq_exit();
1190 }
1191
1192 void set_perf_event_pending(void)
1193 {
1194 #ifdef CONFIG_X86_LOCAL_APIC
1195         if (!x86_pmu.apic || !x86_pmu_initialized())
1196                 return;
1197
1198         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1199 #endif
1200 }
1201
1202 void perf_events_lapic_init(void)
1203 {
1204         if (!x86_pmu.apic || !x86_pmu_initialized())
1205                 return;
1206
1207         /*
1208          * Always use NMI for PMU
1209          */
1210         apic_write(APIC_LVTPC, APIC_DM_NMI);
1211 }
1212
1213 struct pmu_nmi_state {
1214         unsigned int    marked;
1215         int             handled;
1216 };
1217
1218 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1219
1220 static int __kprobes
1221 perf_event_nmi_handler(struct notifier_block *self,
1222                          unsigned long cmd, void *__args)
1223 {
1224         struct die_args *args = __args;
1225         unsigned int this_nmi;
1226         int handled;
1227
1228         if (!atomic_read(&active_events))
1229                 return NOTIFY_DONE;
1230
1231         switch (cmd) {
1232         case DIE_NMI:
1233         case DIE_NMI_IPI:
1234                 break;
1235         case DIE_NMIUNKNOWN:
1236                 this_nmi = percpu_read(irq_stat.__nmi_count);
1237                 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1238                         /* let the kernel handle the unknown nmi */
1239                         return NOTIFY_DONE;
1240                 /*
1241                  * This one is a PMU back-to-back nmi. Two events
1242                  * trigger 'simultaneously' raising two back-to-back
1243                  * NMIs. If the first NMI handles both, the latter
1244                  * will be empty and daze the CPU. So, we drop it to
1245                  * avoid false-positive 'unknown nmi' messages.
1246                  */
1247                 return NOTIFY_STOP;
1248         default:
1249                 return NOTIFY_DONE;
1250         }
1251
1252         apic_write(APIC_LVTPC, APIC_DM_NMI);
1253
1254         handled = x86_pmu.handle_irq(args->regs);
1255         if (!handled)
1256                 return NOTIFY_DONE;
1257
1258         this_nmi = percpu_read(irq_stat.__nmi_count);
1259         if ((handled > 1) ||
1260                 /* the next nmi could be a back-to-back nmi */
1261             ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1262              (__get_cpu_var(pmu_nmi).handled > 1))) {
1263                 /*
1264                  * We could have two subsequent back-to-back nmis: The
1265                  * first handles more than one counter, the 2nd
1266                  * handles only one counter and the 3rd handles no
1267                  * counter.
1268                  *
1269                  * This is the 2nd nmi because the previous was
1270                  * handling more than one counter. We will mark the
1271                  * next (3rd) and then drop it if unhandled.
1272                  */
1273                 __get_cpu_var(pmu_nmi).marked   = this_nmi + 1;
1274                 __get_cpu_var(pmu_nmi).handled  = handled;
1275         }
1276
1277         return NOTIFY_STOP;
1278 }
1279
1280 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1281         .notifier_call          = perf_event_nmi_handler,
1282         .next                   = NULL,
1283         .priority               = 1
1284 };
1285
1286 static struct event_constraint unconstrained;
1287 static struct event_constraint emptyconstraint;
1288
1289 static struct event_constraint *
1290 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1291 {
1292         struct event_constraint *c;
1293
1294         if (x86_pmu.event_constraints) {
1295                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1296                         if ((event->hw.config & c->cmask) == c->code)
1297                                 return c;
1298                 }
1299         }
1300
1301         return &unconstrained;
1302 }
1303
1304 #include "perf_event_amd.c"
1305 #include "perf_event_p6.c"
1306 #include "perf_event_p4.c"
1307 #include "perf_event_intel_lbr.c"
1308 #include "perf_event_intel_ds.c"
1309 #include "perf_event_intel.c"
1310
1311 static int __cpuinit
1312 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1313 {
1314         unsigned int cpu = (long)hcpu;
1315         int ret = NOTIFY_OK;
1316
1317         switch (action & ~CPU_TASKS_FROZEN) {
1318         case CPU_UP_PREPARE:
1319                 if (x86_pmu.cpu_prepare)
1320                         ret = x86_pmu.cpu_prepare(cpu);
1321                 break;
1322
1323         case CPU_STARTING:
1324                 if (x86_pmu.cpu_starting)
1325                         x86_pmu.cpu_starting(cpu);
1326                 break;
1327
1328         case CPU_DYING:
1329                 if (x86_pmu.cpu_dying)
1330                         x86_pmu.cpu_dying(cpu);
1331                 break;
1332
1333         case CPU_UP_CANCELED:
1334         case CPU_DEAD:
1335                 if (x86_pmu.cpu_dead)
1336                         x86_pmu.cpu_dead(cpu);
1337                 break;
1338
1339         default:
1340                 break;
1341         }
1342
1343         return ret;
1344 }
1345
1346 static void __init pmu_check_apic(void)
1347 {
1348         if (cpu_has_apic)
1349                 return;
1350
1351         x86_pmu.apic = 0;
1352         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1353         pr_info("no hardware sampling interrupt available.\n");
1354 }
1355
1356 void __init init_hw_perf_events(void)
1357 {
1358         struct event_constraint *c;
1359         int err;
1360
1361         pr_info("Performance Events: ");
1362
1363         switch (boot_cpu_data.x86_vendor) {
1364         case X86_VENDOR_INTEL:
1365                 err = intel_pmu_init();
1366                 break;
1367         case X86_VENDOR_AMD:
1368                 err = amd_pmu_init();
1369                 break;
1370         default:
1371                 return;
1372         }
1373         if (err != 0) {
1374                 pr_cont("no PMU driver, software events only.\n");
1375                 return;
1376         }
1377
1378         pmu_check_apic();
1379
1380         pr_cont("%s PMU driver.\n", x86_pmu.name);
1381
1382         if (x86_pmu.quirks)
1383                 x86_pmu.quirks();
1384
1385         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1386                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1387                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1388                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1389         }
1390         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1391         perf_max_events = x86_pmu.num_counters;
1392
1393         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1394                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1395                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1396                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1397         }
1398
1399         x86_pmu.intel_ctrl |=
1400                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1401
1402         perf_events_lapic_init();
1403         register_die_notifier(&perf_event_nmi_notifier);
1404
1405         unconstrained = (struct event_constraint)
1406                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1407                                    0, x86_pmu.num_counters);
1408
1409         if (x86_pmu.event_constraints) {
1410                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1411                         if (c->cmask != X86_RAW_EVENT_MASK)
1412                                 continue;
1413
1414                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1415                         c->weight += x86_pmu.num_counters;
1416                 }
1417         }
1418
1419         pr_info("... version:                %d\n",     x86_pmu.version);
1420         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1421         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1422         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1423         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1424         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1425         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1426
1427         perf_cpu_notifier(x86_pmu_notifier);
1428 }
1429
1430 static inline void x86_pmu_read(struct perf_event *event)
1431 {
1432         x86_perf_event_update(event);
1433 }
1434
1435 /*
1436  * Start group events scheduling transaction
1437  * Set the flag to make pmu::enable() not perform the
1438  * schedulability test, it will be performed at commit time
1439  */
1440 static void x86_pmu_start_txn(const struct pmu *pmu)
1441 {
1442         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1443
1444         cpuc->group_flag |= PERF_EVENT_TXN;
1445         cpuc->n_txn = 0;
1446 }
1447
1448 /*
1449  * Stop group events scheduling transaction
1450  * Clear the flag and pmu::enable() will perform the
1451  * schedulability test.
1452  */
1453 static void x86_pmu_cancel_txn(const struct pmu *pmu)
1454 {
1455         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1456
1457         cpuc->group_flag &= ~PERF_EVENT_TXN;
1458         /*
1459          * Truncate the collected events.
1460          */
1461         cpuc->n_added -= cpuc->n_txn;
1462         cpuc->n_events -= cpuc->n_txn;
1463 }
1464
1465 /*
1466  * Commit group events scheduling transaction
1467  * Perform the group schedulability test as a whole
1468  * Return 0 if success
1469  */
1470 static int x86_pmu_commit_txn(const struct pmu *pmu)
1471 {
1472         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1473         int assign[X86_PMC_IDX_MAX];
1474         int n, ret;
1475
1476         n = cpuc->n_events;
1477
1478         if (!x86_pmu_initialized())
1479                 return -EAGAIN;
1480
1481         ret = x86_pmu.schedule_events(cpuc, n, assign);
1482         if (ret)
1483                 return ret;
1484
1485         /*
1486          * copy new assignment, now we know it is possible
1487          * will be used by hw_perf_enable()
1488          */
1489         memcpy(cpuc->assign, assign, n*sizeof(int));
1490
1491         cpuc->group_flag &= ~PERF_EVENT_TXN;
1492
1493         return 0;
1494 }
1495
1496 static const struct pmu pmu = {
1497         .enable         = x86_pmu_enable,
1498         .disable        = x86_pmu_disable,
1499         .start          = x86_pmu_start,
1500         .stop           = x86_pmu_stop,
1501         .read           = x86_pmu_read,
1502         .unthrottle     = x86_pmu_unthrottle,
1503         .start_txn      = x86_pmu_start_txn,
1504         .cancel_txn     = x86_pmu_cancel_txn,
1505         .commit_txn     = x86_pmu_commit_txn,
1506 };
1507
1508 /*
1509  * validate that we can schedule this event
1510  */
1511 static int validate_event(struct perf_event *event)
1512 {
1513         struct cpu_hw_events *fake_cpuc;
1514         struct event_constraint *c;
1515         int ret = 0;
1516
1517         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1518         if (!fake_cpuc)
1519                 return -ENOMEM;
1520
1521         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1522
1523         if (!c || !c->weight)
1524                 ret = -ENOSPC;
1525
1526         if (x86_pmu.put_event_constraints)
1527                 x86_pmu.put_event_constraints(fake_cpuc, event);
1528
1529         kfree(fake_cpuc);
1530
1531         return ret;
1532 }
1533
1534 /*
1535  * validate a single event group
1536  *
1537  * validation include:
1538  *      - check events are compatible which each other
1539  *      - events do not compete for the same counter
1540  *      - number of events <= number of counters
1541  *
1542  * validation ensures the group can be loaded onto the
1543  * PMU if it was the only group available.
1544  */
1545 static int validate_group(struct perf_event *event)
1546 {
1547         struct perf_event *leader = event->group_leader;
1548         struct cpu_hw_events *fake_cpuc;
1549         int ret, n;
1550
1551         ret = -ENOMEM;
1552         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1553         if (!fake_cpuc)
1554                 goto out;
1555
1556         /*
1557          * the event is not yet connected with its
1558          * siblings therefore we must first collect
1559          * existing siblings, then add the new event
1560          * before we can simulate the scheduling
1561          */
1562         ret = -ENOSPC;
1563         n = collect_events(fake_cpuc, leader, true);
1564         if (n < 0)
1565                 goto out_free;
1566
1567         fake_cpuc->n_events = n;
1568         n = collect_events(fake_cpuc, event, false);
1569         if (n < 0)
1570                 goto out_free;
1571
1572         fake_cpuc->n_events = n;
1573
1574         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1575
1576 out_free:
1577         kfree(fake_cpuc);
1578 out:
1579         return ret;
1580 }
1581
1582 const struct pmu *hw_perf_event_init(struct perf_event *event)
1583 {
1584         const struct pmu *tmp;
1585         int err;
1586
1587         err = __hw_perf_event_init(event);
1588         if (!err) {
1589                 /*
1590                  * we temporarily connect event to its pmu
1591                  * such that validate_group() can classify
1592                  * it as an x86 event using is_x86_event()
1593                  */
1594                 tmp = event->pmu;
1595                 event->pmu = &pmu;
1596
1597                 if (event->group_leader != event)
1598                         err = validate_group(event);
1599                 else
1600                         err = validate_event(event);
1601
1602                 event->pmu = tmp;
1603         }
1604         if (err) {
1605                 if (event->destroy)
1606                         event->destroy(event);
1607                 return ERR_PTR(err);
1608         }
1609
1610         return &pmu;
1611 }
1612
1613 /*
1614  * callchain support
1615  */
1616
1617 static inline
1618 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1619 {
1620         if (entry->nr < PERF_MAX_STACK_DEPTH)
1621                 entry->ip[entry->nr++] = ip;
1622 }
1623
1624 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
1625 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
1626
1627
1628 static void
1629 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1630 {
1631         /* Ignore warnings */
1632 }
1633
1634 static void backtrace_warning(void *data, char *msg)
1635 {
1636         /* Ignore warnings */
1637 }
1638
1639 static int backtrace_stack(void *data, char *name)
1640 {
1641         return 0;
1642 }
1643
1644 static void backtrace_address(void *data, unsigned long addr, int reliable)
1645 {
1646         struct perf_callchain_entry *entry = data;
1647
1648         callchain_store(entry, addr);
1649 }
1650
1651 static const struct stacktrace_ops backtrace_ops = {
1652         .warning                = backtrace_warning,
1653         .warning_symbol         = backtrace_warning_symbol,
1654         .stack                  = backtrace_stack,
1655         .address                = backtrace_address,
1656         .walk_stack             = print_context_stack_bp,
1657 };
1658
1659 static void
1660 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1661 {
1662         callchain_store(entry, PERF_CONTEXT_KERNEL);
1663         callchain_store(entry, regs->ip);
1664
1665         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1666 }
1667
1668 #ifdef CONFIG_COMPAT
1669 static inline int
1670 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1671 {
1672         /* 32-bit process in 64-bit kernel. */
1673         struct stack_frame_ia32 frame;
1674         const void __user *fp;
1675
1676         if (!test_thread_flag(TIF_IA32))
1677                 return 0;
1678
1679         fp = compat_ptr(regs->bp);
1680         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1681                 unsigned long bytes;
1682                 frame.next_frame     = 0;
1683                 frame.return_address = 0;
1684
1685                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1686                 if (bytes != sizeof(frame))
1687                         break;
1688
1689                 if (fp < compat_ptr(regs->sp))
1690                         break;
1691
1692                 callchain_store(entry, frame.return_address);
1693                 fp = compat_ptr(frame.next_frame);
1694         }
1695         return 1;
1696 }
1697 #else
1698 static inline int
1699 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1700 {
1701     return 0;
1702 }
1703 #endif
1704
1705 static void
1706 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1707 {
1708         struct stack_frame frame;
1709         const void __user *fp;
1710
1711         if (!user_mode(regs))
1712                 regs = task_pt_regs(current);
1713
1714         fp = (void __user *)regs->bp;
1715
1716         callchain_store(entry, PERF_CONTEXT_USER);
1717         callchain_store(entry, regs->ip);
1718
1719         if (perf_callchain_user32(regs, entry))
1720                 return;
1721
1722         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1723                 unsigned long bytes;
1724                 frame.next_frame             = NULL;
1725                 frame.return_address = 0;
1726
1727                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1728                 if (bytes != sizeof(frame))
1729                         break;
1730
1731                 if ((unsigned long)fp < regs->sp)
1732                         break;
1733
1734                 callchain_store(entry, frame.return_address);
1735                 fp = frame.next_frame;
1736         }
1737 }
1738
1739 static void
1740 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1741 {
1742         int is_user;
1743
1744         if (!regs)
1745                 return;
1746
1747         is_user = user_mode(regs);
1748
1749         if (is_user && current->state != TASK_RUNNING)
1750                 return;
1751
1752         if (!is_user)
1753                 perf_callchain_kernel(regs, entry);
1754
1755         if (current->mm)
1756                 perf_callchain_user(regs, entry);
1757 }
1758
1759 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1760 {
1761         struct perf_callchain_entry *entry;
1762
1763         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1764                 /* TODO: We don't support guest os callchain now */
1765                 return NULL;
1766         }
1767
1768         if (in_nmi())
1769                 entry = &__get_cpu_var(pmc_nmi_entry);
1770         else
1771                 entry = &__get_cpu_var(pmc_irq_entry);
1772
1773         entry->nr = 0;
1774
1775         perf_do_callchain(regs, entry);
1776
1777         return entry;
1778 }
1779
1780 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1781 {
1782         unsigned long ip;
1783
1784         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1785                 ip = perf_guest_cbs->get_guest_ip();
1786         else
1787                 ip = instruction_pointer(regs);
1788
1789         return ip;
1790 }
1791
1792 unsigned long perf_misc_flags(struct pt_regs *regs)
1793 {
1794         int misc = 0;
1795
1796         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1797                 if (perf_guest_cbs->is_user_mode())
1798                         misc |= PERF_RECORD_MISC_GUEST_USER;
1799                 else
1800                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1801         } else {
1802                 if (user_mode(regs))
1803                         misc |= PERF_RECORD_MISC_USER;
1804                 else
1805                         misc |= PERF_RECORD_MISC_KERNEL;
1806         }
1807
1808         if (regs->flags & PERF_EFLAGS_EXACT)
1809                 misc |= PERF_RECORD_MISC_EXACT_IP;
1810
1811         return misc;
1812 }