Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/hch/hfsplus
[pandora-kernel.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49
50 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
51                 "acpi-cpufreq", msg)
52
53 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55 MODULE_LICENSE("GPL");
56
57 enum {
58         UNDEFINED_CAPABLE = 0,
59         SYSTEM_INTEL_MSR_CAPABLE,
60         SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE         (0xffff)
64
65 struct acpi_cpufreq_data {
66         struct acpi_processor_performance *acpi_data;
67         struct cpufreq_frequency_table *freq_table;
68         unsigned int resume;
69         unsigned int cpu_feature;
70 };
71
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
73
74 /* acpi_perf_data is a pointer to percpu data. */
75 static struct acpi_processor_performance __percpu *acpi_perf_data;
76
77 static struct cpufreq_driver acpi_cpufreq_driver;
78
79 static unsigned int acpi_pstate_strict;
80
81 static int check_est_cpu(unsigned int cpuid)
82 {
83         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84
85         return cpu_has(cpu, X86_FEATURE_EST);
86 }
87
88 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
89 {
90         struct acpi_processor_performance *perf;
91         int i;
92
93         perf = data->acpi_data;
94
95         for (i = 0; i < perf->state_count; i++) {
96                 if (value == perf->states[i].status)
97                         return data->freq_table[i].frequency;
98         }
99         return 0;
100 }
101
102 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
103 {
104         int i;
105         struct acpi_processor_performance *perf;
106
107         msr &= INTEL_MSR_RANGE;
108         perf = data->acpi_data;
109
110         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
111                 if (msr == perf->states[data->freq_table[i].index].status)
112                         return data->freq_table[i].frequency;
113         }
114         return data->freq_table[0].frequency;
115 }
116
117 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
118 {
119         switch (data->cpu_feature) {
120         case SYSTEM_INTEL_MSR_CAPABLE:
121                 return extract_msr(val, data);
122         case SYSTEM_IO_CAPABLE:
123                 return extract_io(val, data);
124         default:
125                 return 0;
126         }
127 }
128
129 struct msr_addr {
130         u32 reg;
131 };
132
133 struct io_addr {
134         u16 port;
135         u8 bit_width;
136 };
137
138 struct drv_cmd {
139         unsigned int type;
140         const struct cpumask *mask;
141         union {
142                 struct msr_addr msr;
143                 struct io_addr io;
144         } addr;
145         u32 val;
146 };
147
148 /* Called via smp_call_function_single(), on the target CPU */
149 static void do_drv_read(void *_cmd)
150 {
151         struct drv_cmd *cmd = _cmd;
152         u32 h;
153
154         switch (cmd->type) {
155         case SYSTEM_INTEL_MSR_CAPABLE:
156                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
157                 break;
158         case SYSTEM_IO_CAPABLE:
159                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
160                                 &cmd->val,
161                                 (u32)cmd->addr.io.bit_width);
162                 break;
163         default:
164                 break;
165         }
166 }
167
168 /* Called via smp_call_function_many(), on the target CPUs */
169 static void do_drv_write(void *_cmd)
170 {
171         struct drv_cmd *cmd = _cmd;
172         u32 lo, hi;
173
174         switch (cmd->type) {
175         case SYSTEM_INTEL_MSR_CAPABLE:
176                 rdmsr(cmd->addr.msr.reg, lo, hi);
177                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
178                 wrmsr(cmd->addr.msr.reg, lo, hi);
179                 break;
180         case SYSTEM_IO_CAPABLE:
181                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
182                                 cmd->val,
183                                 (u32)cmd->addr.io.bit_width);
184                 break;
185         default:
186                 break;
187         }
188 }
189
190 static void drv_read(struct drv_cmd *cmd)
191 {
192         int err;
193         cmd->val = 0;
194
195         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
196         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
197 }
198
199 static void drv_write(struct drv_cmd *cmd)
200 {
201         int this_cpu;
202
203         this_cpu = get_cpu();
204         if (cpumask_test_cpu(this_cpu, cmd->mask))
205                 do_drv_write(cmd);
206         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
207         put_cpu();
208 }
209
210 static u32 get_cur_val(const struct cpumask *mask)
211 {
212         struct acpi_processor_performance *perf;
213         struct drv_cmd cmd;
214
215         if (unlikely(cpumask_empty(mask)))
216                 return 0;
217
218         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
219         case SYSTEM_INTEL_MSR_CAPABLE:
220                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
221                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
222                 break;
223         case SYSTEM_IO_CAPABLE:
224                 cmd.type = SYSTEM_IO_CAPABLE;
225                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
226                 cmd.addr.io.port = perf->control_register.address;
227                 cmd.addr.io.bit_width = perf->control_register.bit_width;
228                 break;
229         default:
230                 return 0;
231         }
232
233         cmd.mask = mask;
234         drv_read(&cmd);
235
236         dprintk("get_cur_val = %u\n", cmd.val);
237
238         return cmd.val;
239 }
240
241 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
242 {
243         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
244         unsigned int freq;
245         unsigned int cached_freq;
246
247         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
248
249         if (unlikely(data == NULL ||
250                      data->acpi_data == NULL || data->freq_table == NULL)) {
251                 return 0;
252         }
253
254         cached_freq = data->freq_table[data->acpi_data->state].frequency;
255         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
256         if (freq != cached_freq) {
257                 /*
258                  * The dreaded BIOS frequency change behind our back.
259                  * Force set the frequency on next target call.
260                  */
261                 data->resume = 1;
262         }
263
264         dprintk("cur freq = %u\n", freq);
265
266         return freq;
267 }
268
269 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
270                                 struct acpi_cpufreq_data *data)
271 {
272         unsigned int cur_freq;
273         unsigned int i;
274
275         for (i = 0; i < 100; i++) {
276                 cur_freq = extract_freq(get_cur_val(mask), data);
277                 if (cur_freq == freq)
278                         return 1;
279                 udelay(10);
280         }
281         return 0;
282 }
283
284 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
285                                unsigned int target_freq, unsigned int relation)
286 {
287         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
288         struct acpi_processor_performance *perf;
289         struct cpufreq_freqs freqs;
290         struct drv_cmd cmd;
291         unsigned int next_state = 0; /* Index into freq_table */
292         unsigned int next_perf_state = 0; /* Index into perf table */
293         unsigned int i;
294         int result = 0;
295
296         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
297
298         if (unlikely(data == NULL ||
299              data->acpi_data == NULL || data->freq_table == NULL)) {
300                 return -ENODEV;
301         }
302
303         perf = data->acpi_data;
304         result = cpufreq_frequency_table_target(policy,
305                                                 data->freq_table,
306                                                 target_freq,
307                                                 relation, &next_state);
308         if (unlikely(result)) {
309                 result = -ENODEV;
310                 goto out;
311         }
312
313         next_perf_state = data->freq_table[next_state].index;
314         if (perf->state == next_perf_state) {
315                 if (unlikely(data->resume)) {
316                         dprintk("Called after resume, resetting to P%d\n",
317                                 next_perf_state);
318                         data->resume = 0;
319                 } else {
320                         dprintk("Already at target state (P%d)\n",
321                                 next_perf_state);
322                         goto out;
323                 }
324         }
325
326         switch (data->cpu_feature) {
327         case SYSTEM_INTEL_MSR_CAPABLE:
328                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
329                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
330                 cmd.val = (u32) perf->states[next_perf_state].control;
331                 break;
332         case SYSTEM_IO_CAPABLE:
333                 cmd.type = SYSTEM_IO_CAPABLE;
334                 cmd.addr.io.port = perf->control_register.address;
335                 cmd.addr.io.bit_width = perf->control_register.bit_width;
336                 cmd.val = (u32) perf->states[next_perf_state].control;
337                 break;
338         default:
339                 result = -ENODEV;
340                 goto out;
341         }
342
343         /* cpufreq holds the hotplug lock, so we are safe from here on */
344         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
345                 cmd.mask = policy->cpus;
346         else
347                 cmd.mask = cpumask_of(policy->cpu);
348
349         freqs.old = perf->states[perf->state].core_frequency * 1000;
350         freqs.new = data->freq_table[next_state].frequency;
351         for_each_cpu(i, policy->cpus) {
352                 freqs.cpu = i;
353                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
354         }
355
356         drv_write(&cmd);
357
358         if (acpi_pstate_strict) {
359                 if (!check_freqs(cmd.mask, freqs.new, data)) {
360                         dprintk("acpi_cpufreq_target failed (%d)\n",
361                                 policy->cpu);
362                         result = -EAGAIN;
363                         goto out;
364                 }
365         }
366
367         for_each_cpu(i, policy->cpus) {
368                 freqs.cpu = i;
369                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
370         }
371         perf->state = next_perf_state;
372
373 out:
374         return result;
375 }
376
377 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
378 {
379         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
380
381         dprintk("acpi_cpufreq_verify\n");
382
383         return cpufreq_frequency_table_verify(policy, data->freq_table);
384 }
385
386 static unsigned long
387 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
388 {
389         struct acpi_processor_performance *perf = data->acpi_data;
390
391         if (cpu_khz) {
392                 /* search the closest match to cpu_khz */
393                 unsigned int i;
394                 unsigned long freq;
395                 unsigned long freqn = perf->states[0].core_frequency * 1000;
396
397                 for (i = 0; i < (perf->state_count-1); i++) {
398                         freq = freqn;
399                         freqn = perf->states[i+1].core_frequency * 1000;
400                         if ((2 * cpu_khz) > (freqn + freq)) {
401                                 perf->state = i;
402                                 return freq;
403                         }
404                 }
405                 perf->state = perf->state_count-1;
406                 return freqn;
407         } else {
408                 /* assume CPU is at P0... */
409                 perf->state = 0;
410                 return perf->states[0].core_frequency * 1000;
411         }
412 }
413
414 static void free_acpi_perf_data(void)
415 {
416         unsigned int i;
417
418         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
419         for_each_possible_cpu(i)
420                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
421                                  ->shared_cpu_map);
422         free_percpu(acpi_perf_data);
423 }
424
425 /*
426  * acpi_cpufreq_early_init - initialize ACPI P-States library
427  *
428  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
429  * in order to determine correct frequency and voltage pairings. We can
430  * do _PDC and _PSD and find out the processor dependency for the
431  * actual init that will happen later...
432  */
433 static int __init acpi_cpufreq_early_init(void)
434 {
435         unsigned int i;
436         dprintk("acpi_cpufreq_early_init\n");
437
438         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
439         if (!acpi_perf_data) {
440                 dprintk("Memory allocation error for acpi_perf_data.\n");
441                 return -ENOMEM;
442         }
443         for_each_possible_cpu(i) {
444                 if (!zalloc_cpumask_var_node(
445                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
446                         GFP_KERNEL, cpu_to_node(i))) {
447
448                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
449                         free_acpi_perf_data();
450                         return -ENOMEM;
451                 }
452         }
453
454         /* Do initialization in ACPI core */
455         acpi_processor_preregister_performance(acpi_perf_data);
456         return 0;
457 }
458
459 #ifdef CONFIG_SMP
460 /*
461  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
462  * or do it in BIOS firmware and won't inform about it to OS. If not
463  * detected, this has a side effect of making CPU run at a different speed
464  * than OS intended it to run at. Detect it and handle it cleanly.
465  */
466 static int bios_with_sw_any_bug;
467
468 static int sw_any_bug_found(const struct dmi_system_id *d)
469 {
470         bios_with_sw_any_bug = 1;
471         return 0;
472 }
473
474 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
475         {
476                 .callback = sw_any_bug_found,
477                 .ident = "Supermicro Server X6DLP",
478                 .matches = {
479                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
480                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
481                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
482                 },
483         },
484         { }
485 };
486
487 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
488 {
489         /* Intel Xeon Processor 7100 Series Specification Update
490          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
491          * AL30: A Machine Check Exception (MCE) Occurring during an
492          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
493          * Both Processor Cores to Lock Up. */
494         if (c->x86_vendor == X86_VENDOR_INTEL) {
495                 if ((c->x86 == 15) &&
496                     (c->x86_model == 6) &&
497                     (c->x86_mask == 8)) {
498                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
499                             "Xeon(R) 7100 Errata AL30, processors may "
500                             "lock up on frequency changes: disabling "
501                             "acpi-cpufreq.\n");
502                         return -ENODEV;
503                     }
504                 }
505         return 0;
506 }
507 #endif
508
509 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
510 {
511         unsigned int i;
512         unsigned int valid_states = 0;
513         unsigned int cpu = policy->cpu;
514         struct acpi_cpufreq_data *data;
515         unsigned int result = 0;
516         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
517         struct acpi_processor_performance *perf;
518 #ifdef CONFIG_SMP
519         static int blacklisted;
520 #endif
521
522         dprintk("acpi_cpufreq_cpu_init\n");
523
524 #ifdef CONFIG_SMP
525         if (blacklisted)
526                 return blacklisted;
527         blacklisted = acpi_cpufreq_blacklist(c);
528         if (blacklisted)
529                 return blacklisted;
530 #endif
531
532         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
533         if (!data)
534                 return -ENOMEM;
535
536         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
537         per_cpu(acfreq_data, cpu) = data;
538
539         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
540                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
541
542         result = acpi_processor_register_performance(data->acpi_data, cpu);
543         if (result)
544                 goto err_free;
545
546         perf = data->acpi_data;
547         policy->shared_type = perf->shared_type;
548
549         /*
550          * Will let policy->cpus know about dependency only when software
551          * coordination is required.
552          */
553         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
554             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
555                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
556         }
557         cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
558
559 #ifdef CONFIG_SMP
560         dmi_check_system(sw_any_bug_dmi_table);
561         if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
562                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
563                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
564         }
565 #endif
566
567         /* capability check */
568         if (perf->state_count <= 1) {
569                 dprintk("No P-States\n");
570                 result = -ENODEV;
571                 goto err_unreg;
572         }
573
574         if (perf->control_register.space_id != perf->status_register.space_id) {
575                 result = -ENODEV;
576                 goto err_unreg;
577         }
578
579         switch (perf->control_register.space_id) {
580         case ACPI_ADR_SPACE_SYSTEM_IO:
581                 dprintk("SYSTEM IO addr space\n");
582                 data->cpu_feature = SYSTEM_IO_CAPABLE;
583                 break;
584         case ACPI_ADR_SPACE_FIXED_HARDWARE:
585                 dprintk("HARDWARE addr space\n");
586                 if (!check_est_cpu(cpu)) {
587                         result = -ENODEV;
588                         goto err_unreg;
589                 }
590                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
591                 break;
592         default:
593                 dprintk("Unknown addr space %d\n",
594                         (u32) (perf->control_register.space_id));
595                 result = -ENODEV;
596                 goto err_unreg;
597         }
598
599         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
600                     (perf->state_count+1), GFP_KERNEL);
601         if (!data->freq_table) {
602                 result = -ENOMEM;
603                 goto err_unreg;
604         }
605
606         /* detect transition latency */
607         policy->cpuinfo.transition_latency = 0;
608         for (i = 0; i < perf->state_count; i++) {
609                 if ((perf->states[i].transition_latency * 1000) >
610                     policy->cpuinfo.transition_latency)
611                         policy->cpuinfo.transition_latency =
612                             perf->states[i].transition_latency * 1000;
613         }
614
615         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
616         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
617             policy->cpuinfo.transition_latency > 20 * 1000) {
618                 policy->cpuinfo.transition_latency = 20 * 1000;
619                 printk_once(KERN_INFO
620                             "P-state transition latency capped at 20 uS\n");
621         }
622
623         /* table init */
624         for (i = 0; i < perf->state_count; i++) {
625                 if (i > 0 && perf->states[i].core_frequency >=
626                     data->freq_table[valid_states-1].frequency / 1000)
627                         continue;
628
629                 data->freq_table[valid_states].index = i;
630                 data->freq_table[valid_states].frequency =
631                     perf->states[i].core_frequency * 1000;
632                 valid_states++;
633         }
634         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
635         perf->state = 0;
636
637         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
638         if (result)
639                 goto err_freqfree;
640
641         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
642                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
643
644         switch (perf->control_register.space_id) {
645         case ACPI_ADR_SPACE_SYSTEM_IO:
646                 /* Current speed is unknown and not detectable by IO port */
647                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
648                 break;
649         case ACPI_ADR_SPACE_FIXED_HARDWARE:
650                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
651                 policy->cur = get_cur_freq_on_cpu(cpu);
652                 break;
653         default:
654                 break;
655         }
656
657         /* notify BIOS that we exist */
658         acpi_processor_notify_smm(THIS_MODULE);
659
660         /* Check for APERF/MPERF support in hardware */
661         if (cpu_has(c, X86_FEATURE_APERFMPERF))
662                 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
663
664         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
665         for (i = 0; i < perf->state_count; i++)
666                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
667                         (i == perf->state ? '*' : ' '), i,
668                         (u32) perf->states[i].core_frequency,
669                         (u32) perf->states[i].power,
670                         (u32) perf->states[i].transition_latency);
671
672         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
673
674         /*
675          * the first call to ->target() should result in us actually
676          * writing something to the appropriate registers.
677          */
678         data->resume = 1;
679
680         return result;
681
682 err_freqfree:
683         kfree(data->freq_table);
684 err_unreg:
685         acpi_processor_unregister_performance(perf, cpu);
686 err_free:
687         kfree(data);
688         per_cpu(acfreq_data, cpu) = NULL;
689
690         return result;
691 }
692
693 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
694 {
695         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
696
697         dprintk("acpi_cpufreq_cpu_exit\n");
698
699         if (data) {
700                 cpufreq_frequency_table_put_attr(policy->cpu);
701                 per_cpu(acfreq_data, policy->cpu) = NULL;
702                 acpi_processor_unregister_performance(data->acpi_data,
703                                                       policy->cpu);
704                 kfree(data->freq_table);
705                 kfree(data);
706         }
707
708         return 0;
709 }
710
711 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
712 {
713         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
714
715         dprintk("acpi_cpufreq_resume\n");
716
717         data->resume = 1;
718
719         return 0;
720 }
721
722 static struct freq_attr *acpi_cpufreq_attr[] = {
723         &cpufreq_freq_attr_scaling_available_freqs,
724         NULL,
725 };
726
727 static struct cpufreq_driver acpi_cpufreq_driver = {
728         .verify         = acpi_cpufreq_verify,
729         .target         = acpi_cpufreq_target,
730         .bios_limit     = acpi_processor_get_bios_limit,
731         .init           = acpi_cpufreq_cpu_init,
732         .exit           = acpi_cpufreq_cpu_exit,
733         .resume         = acpi_cpufreq_resume,
734         .name           = "acpi-cpufreq",
735         .owner          = THIS_MODULE,
736         .attr           = acpi_cpufreq_attr,
737 };
738
739 static int __init acpi_cpufreq_init(void)
740 {
741         int ret;
742
743         if (acpi_disabled)
744                 return 0;
745
746         dprintk("acpi_cpufreq_init\n");
747
748         ret = acpi_cpufreq_early_init();
749         if (ret)
750                 return ret;
751
752         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
753         if (ret)
754                 free_acpi_perf_data();
755
756         return ret;
757 }
758
759 static void __exit acpi_cpufreq_exit(void)
760 {
761         dprintk("acpi_cpufreq_exit\n");
762
763         cpufreq_unregister_driver(&acpi_cpufreq_driver);
764
765         free_percpu(acpi_perf_data);
766 }
767
768 module_param(acpi_pstate_strict, uint, 0644);
769 MODULE_PARM_DESC(acpi_pstate_strict,
770         "value 0 or non-zero. non-zero -> strict ACPI checks are "
771         "performed during frequency changes.");
772
773 late_initcall(acpi_cpufreq_init);
774 module_exit(acpi_cpufreq_exit);
775
776 MODULE_ALIAS("acpi");