Merge branch 'agp-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22                                 struct task_struct *next);
23 struct tss_struct;
24 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
25                       struct tss_struct *tss);
26
27 #ifdef CONFIG_X86_32
28
29 #ifdef CONFIG_CC_STACKPROTECTOR
30 #define __switch_canary                                                 \
31         "movl %P[task_canary](%[next]), %%ebx\n\t"                      \
32         "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
33 #define __switch_canary_oparam                                          \
34         , [stack_canary] "=m" (per_cpu_var(stack_canary.canary))
35 #define __switch_canary_iparam                                          \
36         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
37 #else   /* CC_STACKPROTECTOR */
38 #define __switch_canary
39 #define __switch_canary_oparam
40 #define __switch_canary_iparam
41 #endif  /* CC_STACKPROTECTOR */
42
43 /*
44  * Saving eflags is important. It switches not only IOPL between tasks,
45  * it also protects other tasks from NT leaking through sysenter etc.
46  */
47 #define switch_to(prev, next, last)                                     \
48 do {                                                                    \
49         /*                                                              \
50          * Context-switching clobbers all registers, so we clobber      \
51          * them explicitly, via unused output variables.                \
52          * (EAX and EBP is not listed because EBP is saved/restored     \
53          * explicitly for wchan access and EAX is the return value of   \
54          * __switch_to())                                               \
55          */                                                             \
56         unsigned long ebx, ecx, edx, esi, edi;                          \
57                                                                         \
58         asm volatile("pushfl\n\t"               /* save    flags */     \
59                      "pushl %%ebp\n\t"          /* save    EBP   */     \
60                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
61                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
62                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
63                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
64                      __switch_canary                                    \
65                      "jmp __switch_to\n"        /* regparm call  */     \
66                      "1:\t"                                             \
67                      "popl %%ebp\n\t"           /* restore EBP   */     \
68                      "popfl\n"                  /* restore flags */     \
69                                                                         \
70                      /* output parameters */                            \
71                      : [prev_sp] "=m" (prev->thread.sp),                \
72                        [prev_ip] "=m" (prev->thread.ip),                \
73                        "=a" (last),                                     \
74                                                                         \
75                        /* clobbered output registers: */                \
76                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
77                        "=S" (esi), "=D" (edi)                           \
78                                                                         \
79                        __switch_canary_oparam                           \
80                                                                         \
81                        /* input parameters: */                          \
82                      : [next_sp]  "m" (next->thread.sp),                \
83                        [next_ip]  "m" (next->thread.ip),                \
84                                                                         \
85                        /* regparm parameters for __switch_to(): */      \
86                        [prev]     "a" (prev),                           \
87                        [next]     "d" (next)                            \
88                                                                         \
89                        __switch_canary_iparam                           \
90                                                                         \
91                      : /* reloaded segment registers */                 \
92                         "memory");                                      \
93 } while (0)
94
95 /*
96  * disable hlt during certain critical i/o operations
97  */
98 #define HAVE_DISABLE_HLT
99 #else
100 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
101 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
102
103 /* frame pointer must be last for get_wchan */
104 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
105 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
106
107 #define __EXTRA_CLOBBER  \
108         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
109           "r12", "r13", "r14", "r15"
110
111 #ifdef CONFIG_CC_STACKPROTECTOR
112 #define __switch_canary                                                   \
113         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
114         "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
115 #define __switch_canary_oparam                                            \
116         , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
117 #define __switch_canary_iparam                                            \
118         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
119 #else   /* CC_STACKPROTECTOR */
120 #define __switch_canary
121 #define __switch_canary_oparam
122 #define __switch_canary_iparam
123 #endif  /* CC_STACKPROTECTOR */
124
125 /* Save restore flags to clear handle leaking NT */
126 #define switch_to(prev, next, last) \
127         asm volatile(SAVE_CONTEXT                                         \
128              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
129              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
130              "call __switch_to\n\t"                                       \
131              ".globl thread_return\n"                                     \
132              "thread_return:\n\t"                                         \
133              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
134              __switch_canary                                              \
135              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
136              "movq %%rax,%%rdi\n\t"                                       \
137              "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"         \
138              "jnz   ret_from_fork\n\t"                                    \
139              RESTORE_CONTEXT                                              \
140              : "=a" (last)                                                \
141                __switch_canary_oparam                                     \
142              : [next] "S" (next), [prev] "D" (prev),                      \
143                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
144                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
145                [_tif_fork] "i" (_TIF_FORK),                               \
146                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
147                [current_task] "m" (per_cpu_var(current_task))             \
148                __switch_canary_iparam                                     \
149              : "memory", "cc" __EXTRA_CLOBBER)
150 #endif
151
152 #ifdef __KERNEL__
153
154 extern void native_load_gs_index(unsigned);
155
156 /*
157  * Load a segment. Fall back on loading the zero
158  * segment if something goes wrong..
159  */
160 #define loadsegment(seg, value)                 \
161         asm volatile("\n"                       \
162                      "1:\t"                     \
163                      "movl %k0,%%" #seg "\n"    \
164                      "2:\n"                     \
165                      ".section .fixup,\"ax\"\n" \
166                      "3:\t"                     \
167                      "movl %k1, %%" #seg "\n\t" \
168                      "jmp 2b\n"                 \
169                      ".previous\n"              \
170                      _ASM_EXTABLE(1b,3b)        \
171                      : :"r" (value), "r" (0) : "memory")
172
173
174 /*
175  * Save a segment register away
176  */
177 #define savesegment(seg, value)                         \
178         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
179
180 /*
181  * x86_32 user gs accessors.
182  */
183 #ifdef CONFIG_X86_32
184 #ifdef CONFIG_X86_32_LAZY_GS
185 #define get_user_gs(regs)       (u16)({unsigned long v; savesegment(gs, v); v;})
186 #define set_user_gs(regs, v)    loadsegment(gs, (unsigned long)(v))
187 #define task_user_gs(tsk)       ((tsk)->thread.gs)
188 #define lazy_save_gs(v)         savesegment(gs, (v))
189 #define lazy_load_gs(v)         loadsegment(gs, (v))
190 #else   /* X86_32_LAZY_GS */
191 #define get_user_gs(regs)       (u16)((regs)->gs)
192 #define set_user_gs(regs, v)    do { (regs)->gs = (v); } while (0)
193 #define task_user_gs(tsk)       (task_pt_regs(tsk)->gs)
194 #define lazy_save_gs(v)         do { } while (0)
195 #define lazy_load_gs(v)         do { } while (0)
196 #endif  /* X86_32_LAZY_GS */
197 #endif  /* X86_32 */
198
199 static inline unsigned long get_limit(unsigned long segment)
200 {
201         unsigned long __limit;
202         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
203         return __limit + 1;
204 }
205
206 static inline void native_clts(void)
207 {
208         asm volatile("clts");
209 }
210
211 /*
212  * Volatile isn't enough to prevent the compiler from reordering the
213  * read/write functions for the control registers and messing everything up.
214  * A memory clobber would solve the problem, but would prevent reordering of
215  * all loads stores around it, which can hurt performance. Solution is to
216  * use a variable and mimic reads and writes to it to enforce serialization
217  */
218 static unsigned long __force_order;
219
220 static inline unsigned long native_read_cr0(void)
221 {
222         unsigned long val;
223         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
224         return val;
225 }
226
227 static inline void native_write_cr0(unsigned long val)
228 {
229         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
230 }
231
232 static inline unsigned long native_read_cr2(void)
233 {
234         unsigned long val;
235         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
236         return val;
237 }
238
239 static inline void native_write_cr2(unsigned long val)
240 {
241         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
242 }
243
244 static inline unsigned long native_read_cr3(void)
245 {
246         unsigned long val;
247         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
248         return val;
249 }
250
251 static inline void native_write_cr3(unsigned long val)
252 {
253         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
254 }
255
256 static inline unsigned long native_read_cr4(void)
257 {
258         unsigned long val;
259         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
260         return val;
261 }
262
263 static inline unsigned long native_read_cr4_safe(void)
264 {
265         unsigned long val;
266         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
267          * exists, so it will never fail. */
268 #ifdef CONFIG_X86_32
269         asm volatile("1: mov %%cr4, %0\n"
270                      "2:\n"
271                      _ASM_EXTABLE(1b, 2b)
272                      : "=r" (val), "=m" (__force_order) : "0" (0));
273 #else
274         val = native_read_cr4();
275 #endif
276         return val;
277 }
278
279 static inline void native_write_cr4(unsigned long val)
280 {
281         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
282 }
283
284 #ifdef CONFIG_X86_64
285 static inline unsigned long native_read_cr8(void)
286 {
287         unsigned long cr8;
288         asm volatile("movq %%cr8,%0" : "=r" (cr8));
289         return cr8;
290 }
291
292 static inline void native_write_cr8(unsigned long val)
293 {
294         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
295 }
296 #endif
297
298 static inline void native_wbinvd(void)
299 {
300         asm volatile("wbinvd": : :"memory");
301 }
302
303 #ifdef CONFIG_PARAVIRT
304 #include <asm/paravirt.h>
305 #else
306 #define read_cr0()      (native_read_cr0())
307 #define write_cr0(x)    (native_write_cr0(x))
308 #define read_cr2()      (native_read_cr2())
309 #define write_cr2(x)    (native_write_cr2(x))
310 #define read_cr3()      (native_read_cr3())
311 #define write_cr3(x)    (native_write_cr3(x))
312 #define read_cr4()      (native_read_cr4())
313 #define read_cr4_safe() (native_read_cr4_safe())
314 #define write_cr4(x)    (native_write_cr4(x))
315 #define wbinvd()        (native_wbinvd())
316 #ifdef CONFIG_X86_64
317 #define read_cr8()      (native_read_cr8())
318 #define write_cr8(x)    (native_write_cr8(x))
319 #define load_gs_index   native_load_gs_index
320 #endif
321
322 /* Clear the 'TS' bit */
323 #define clts()          (native_clts())
324
325 #endif/* CONFIG_PARAVIRT */
326
327 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
328
329 #endif /* __KERNEL__ */
330
331 static inline void clflush(volatile void *__p)
332 {
333         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
334 }
335
336 #define nop() asm volatile ("nop")
337
338 void disable_hlt(void);
339 void enable_hlt(void);
340
341 void cpu_idle_wait(void);
342
343 extern unsigned long arch_align_stack(unsigned long sp);
344 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
345
346 void default_idle(void);
347
348 void stop_this_cpu(void *dummy);
349
350 /*
351  * Force strict CPU ordering.
352  * And yes, this is required on UP too when we're talking
353  * to devices.
354  */
355 #ifdef CONFIG_X86_32
356 /*
357  * Some non-Intel clones support out of order store. wmb() ceases to be a
358  * nop for these.
359  */
360 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
361 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
362 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
363 #else
364 #define mb()    asm volatile("mfence":::"memory")
365 #define rmb()   asm volatile("lfence":::"memory")
366 #define wmb()   asm volatile("sfence" ::: "memory")
367 #endif
368
369 /**
370  * read_barrier_depends - Flush all pending reads that subsequents reads
371  * depend on.
372  *
373  * No data-dependent reads from memory-like regions are ever reordered
374  * over this barrier.  All reads preceding this primitive are guaranteed
375  * to access memory (but not necessarily other CPUs' caches) before any
376  * reads following this primitive that depend on the data return by
377  * any of the preceding reads.  This primitive is much lighter weight than
378  * rmb() on most CPUs, and is never heavier weight than is
379  * rmb().
380  *
381  * These ordering constraints are respected by both the local CPU
382  * and the compiler.
383  *
384  * Ordering is not guaranteed by anything other than these primitives,
385  * not even by data dependencies.  See the documentation for
386  * memory_barrier() for examples and URLs to more information.
387  *
388  * For example, the following code would force ordering (the initial
389  * value of "a" is zero, "b" is one, and "p" is "&a"):
390  *
391  * <programlisting>
392  *      CPU 0                           CPU 1
393  *
394  *      b = 2;
395  *      memory_barrier();
396  *      p = &b;                         q = p;
397  *                                      read_barrier_depends();
398  *                                      d = *q;
399  * </programlisting>
400  *
401  * because the read of "*q" depends on the read of "p" and these
402  * two reads are separated by a read_barrier_depends().  However,
403  * the following code, with the same initial values for "a" and "b":
404  *
405  * <programlisting>
406  *      CPU 0                           CPU 1
407  *
408  *      a = 2;
409  *      memory_barrier();
410  *      b = 3;                          y = b;
411  *                                      read_barrier_depends();
412  *                                      x = a;
413  * </programlisting>
414  *
415  * does not enforce ordering, since there is no data dependency between
416  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
417  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
418  * in cases like this where there are no data dependencies.
419  **/
420
421 #define read_barrier_depends()  do { } while (0)
422
423 #ifdef CONFIG_SMP
424 #define smp_mb()        mb()
425 #ifdef CONFIG_X86_PPRO_FENCE
426 # define smp_rmb()      rmb()
427 #else
428 # define smp_rmb()      barrier()
429 #endif
430 #ifdef CONFIG_X86_OOSTORE
431 # define smp_wmb()      wmb()
432 #else
433 # define smp_wmb()      barrier()
434 #endif
435 #define smp_read_barrier_depends()      read_barrier_depends()
436 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
437 #else
438 #define smp_mb()        barrier()
439 #define smp_rmb()       barrier()
440 #define smp_wmb()       barrier()
441 #define smp_read_barrier_depends()      do { } while (0)
442 #define set_mb(var, value) do { var = value; barrier(); } while (0)
443 #endif
444
445 /*
446  * Stop RDTSC speculation. This is needed when you need to use RDTSC
447  * (or get_cycles or vread that possibly accesses the TSC) in a defined
448  * code region.
449  *
450  * (Could use an alternative three way for this if there was one.)
451  */
452 static inline void rdtsc_barrier(void)
453 {
454         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
455         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
456 }
457
458 #endif /* _ASM_X86_SYSTEM_H */