Merge branch 'topic/hdsp' into for-linus
[pandora-kernel.git] / arch / x86 / include / asm / spinlock.h
1 #ifndef _ASM_X86_SPINLOCK_H
2 #define _ASM_X86_SPINLOCK_H
3
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9 #include <asm/paravirt.h>
10 /*
11  * Your basic SMP spinlocks, allowing only a single CPU anywhere
12  *
13  * Simple spin lock operations.  There are two variants, one clears IRQ's
14  * on the local processor, one does not.
15  *
16  * These are fair FIFO ticket locks, which are currently limited to 256
17  * CPUs.
18  *
19  * (the type definitions are in asm/spinlock_types.h)
20  */
21
22 #ifdef CONFIG_X86_32
23 # define LOCK_PTR_REG "a"
24 # define REG_PTR_MODE "k"
25 #else
26 # define LOCK_PTR_REG "D"
27 # define REG_PTR_MODE "q"
28 #endif
29
30 #if defined(CONFIG_X86_32) && \
31         (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
32 /*
33  * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
34  * (PPro errata 66, 92)
35  */
36 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
37 #else
38 # define UNLOCK_LOCK_PREFIX
39 #endif
40
41 /*
42  * Ticket locks are conceptually two parts, one indicating the current head of
43  * the queue, and the other indicating the current tail. The lock is acquired
44  * by atomically noting the tail and incrementing it by one (thus adding
45  * ourself to the queue and noting our position), then waiting until the head
46  * becomes equal to the the initial value of the tail.
47  *
48  * We use an xadd covering *both* parts of the lock, to increment the tail and
49  * also load the position of the head, which takes care of memory ordering
50  * issues and should be optimal for the uncontended case. Note the tail must be
51  * in the high part, because a wide xadd increment of the low part would carry
52  * up and contaminate the high part.
53  *
54  * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
55  * save some instructions and make the code more elegant. There really isn't
56  * much between them in performance though, especially as locks are out of line.
57  */
58 #if (NR_CPUS < 256)
59 #define TICKET_SHIFT 8
60
61 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
62 {
63         short inc = 0x0100;
64
65         asm volatile (
66                 LOCK_PREFIX "xaddw %w0, %1\n"
67                 "1:\t"
68                 "cmpb %h0, %b0\n\t"
69                 "je 2f\n\t"
70                 "rep ; nop\n\t"
71                 "movb %1, %b0\n\t"
72                 /* don't need lfence here, because loads are in-order */
73                 "jmp 1b\n"
74                 "2:"
75                 : "+Q" (inc), "+m" (lock->slock)
76                 :
77                 : "memory", "cc");
78 }
79
80 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
81 {
82         int tmp, new;
83
84         asm volatile("movzwl %2, %0\n\t"
85                      "cmpb %h0,%b0\n\t"
86                      "leal 0x100(%" REG_PTR_MODE "0), %1\n\t"
87                      "jne 1f\n\t"
88                      LOCK_PREFIX "cmpxchgw %w1,%2\n\t"
89                      "1:"
90                      "sete %b1\n\t"
91                      "movzbl %b1,%0\n\t"
92                      : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
93                      :
94                      : "memory", "cc");
95
96         return tmp;
97 }
98
99 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
100 {
101         asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
102                      : "+m" (lock->slock)
103                      :
104                      : "memory", "cc");
105 }
106 #else
107 #define TICKET_SHIFT 16
108
109 static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock)
110 {
111         int inc = 0x00010000;
112         int tmp;
113
114         asm volatile(LOCK_PREFIX "xaddl %0, %1\n"
115                      "movzwl %w0, %2\n\t"
116                      "shrl $16, %0\n\t"
117                      "1:\t"
118                      "cmpl %0, %2\n\t"
119                      "je 2f\n\t"
120                      "rep ; nop\n\t"
121                      "movzwl %1, %2\n\t"
122                      /* don't need lfence here, because loads are in-order */
123                      "jmp 1b\n"
124                      "2:"
125                      : "+r" (inc), "+m" (lock->slock), "=&r" (tmp)
126                      :
127                      : "memory", "cc");
128 }
129
130 static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock)
131 {
132         int tmp;
133         int new;
134
135         asm volatile("movl %2,%0\n\t"
136                      "movl %0,%1\n\t"
137                      "roll $16, %0\n\t"
138                      "cmpl %0,%1\n\t"
139                      "leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t"
140                      "jne 1f\n\t"
141                      LOCK_PREFIX "cmpxchgl %1,%2\n\t"
142                      "1:"
143                      "sete %b1\n\t"
144                      "movzbl %b1,%0\n\t"
145                      : "=&a" (tmp), "=&q" (new), "+m" (lock->slock)
146                      :
147                      : "memory", "cc");
148
149         return tmp;
150 }
151
152 static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock)
153 {
154         asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
155                      : "+m" (lock->slock)
156                      :
157                      : "memory", "cc");
158 }
159 #endif
160
161 static inline int __ticket_spin_is_locked(raw_spinlock_t *lock)
162 {
163         int tmp = ACCESS_ONCE(lock->slock);
164
165         return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1));
166 }
167
168 static inline int __ticket_spin_is_contended(raw_spinlock_t *lock)
169 {
170         int tmp = ACCESS_ONCE(lock->slock);
171
172         return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1;
173 }
174
175 #ifndef CONFIG_PARAVIRT_SPINLOCKS
176
177 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
178 {
179         return __ticket_spin_is_locked(lock);
180 }
181
182 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
183 {
184         return __ticket_spin_is_contended(lock);
185 }
186 #define __raw_spin_is_contended __raw_spin_is_contended
187
188 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
189 {
190         __ticket_spin_lock(lock);
191 }
192
193 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
194 {
195         return __ticket_spin_trylock(lock);
196 }
197
198 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
199 {
200         __ticket_spin_unlock(lock);
201 }
202
203 static __always_inline void __raw_spin_lock_flags(raw_spinlock_t *lock,
204                                                   unsigned long flags)
205 {
206         __raw_spin_lock(lock);
207 }
208
209 #endif  /* CONFIG_PARAVIRT_SPINLOCKS */
210
211 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
212 {
213         while (__raw_spin_is_locked(lock))
214                 cpu_relax();
215 }
216
217 /*
218  * Read-write spinlocks, allowing multiple readers
219  * but only one writer.
220  *
221  * NOTE! it is quite common to have readers in interrupts
222  * but no interrupt writers. For those circumstances we
223  * can "mix" irq-safe locks - any writer needs to get a
224  * irq-safe write-lock, but readers can get non-irqsafe
225  * read-locks.
226  *
227  * On x86, we implement read-write locks as a 32-bit counter
228  * with the high bit (sign) being the "contended" bit.
229  */
230
231 /**
232  * read_can_lock - would read_trylock() succeed?
233  * @lock: the rwlock in question.
234  */
235 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
236 {
237         return (int)(lock)->lock > 0;
238 }
239
240 /**
241  * write_can_lock - would write_trylock() succeed?
242  * @lock: the rwlock in question.
243  */
244 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
245 {
246         return (lock)->lock == RW_LOCK_BIAS;
247 }
248
249 static inline void __raw_read_lock(raw_rwlock_t *rw)
250 {
251         asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
252                      "jns 1f\n"
253                      "call __read_lock_failed\n\t"
254                      "1:\n"
255                      ::LOCK_PTR_REG (rw) : "memory");
256 }
257
258 static inline void __raw_write_lock(raw_rwlock_t *rw)
259 {
260         asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
261                      "jz 1f\n"
262                      "call __write_lock_failed\n\t"
263                      "1:\n"
264                      ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
265 }
266
267 static inline int __raw_read_trylock(raw_rwlock_t *lock)
268 {
269         atomic_t *count = (atomic_t *)lock;
270
271         if (atomic_dec_return(count) >= 0)
272                 return 1;
273         atomic_inc(count);
274         return 0;
275 }
276
277 static inline int __raw_write_trylock(raw_rwlock_t *lock)
278 {
279         atomic_t *count = (atomic_t *)lock;
280
281         if (atomic_sub_and_test(RW_LOCK_BIAS, count))
282                 return 1;
283         atomic_add(RW_LOCK_BIAS, count);
284         return 0;
285 }
286
287 static inline void __raw_read_unlock(raw_rwlock_t *rw)
288 {
289         asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
290 }
291
292 static inline void __raw_write_unlock(raw_rwlock_t *rw)
293 {
294         asm volatile(LOCK_PREFIX "addl %1, %0"
295                      : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
296 }
297
298 #define __raw_read_lock_flags(lock, flags) __raw_read_lock(lock)
299 #define __raw_write_lock_flags(lock, flags) __raw_write_lock(lock)
300
301 #define _raw_spin_relax(lock)   cpu_relax()
302 #define _raw_read_relax(lock)   cpu_relax()
303 #define _raw_write_relax(lock)  cpu_relax()
304
305 #endif /* _ASM_X86_SPINLOCK_H */