Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159         /* Handle unaligned load/store */
160         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161                 unsigned short val_16;
162                 switch (size) {
163                 case 2:
164                         err = copy_from_user(&val_16, addr, sizeof(val_16));
165                         val = sign_ext ? ((short)val_16) : val_16;
166                         break;
167                 case 4:
168                         err = copy_from_user(&val, addr, sizeof(val));
169                         break;
170                 default:
171                         BUG();
172                 }
173                 if (err == 0) {
174                         state->update_reg = val_reg;
175                         state->update_value = val;
176                         state->update = 1;
177                 }
178         } else {
179                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180                 err = copy_to_user(addr, &val, size);
181         }
182
183         if (err) {
184                 siginfo_t info = {
185                         .si_signo = SIGSEGV,
186                         .si_code = SEGV_MAPERR,
187                         .si_addr = addr
188                 };
189                 force_sig_info(info.si_signo, &info, current);
190                 return (tile_bundle_bits) 0;
191         }
192
193         if (unaligned_fixup == 0) {
194                 siginfo_t info = {
195                         .si_signo = SIGBUS,
196                         .si_code = BUS_ADRALN,
197                         .si_addr = addr
198                 };
199                 force_sig_info(info.si_signo, &info, current);
200                 return (tile_bundle_bits) 0;
201         }
202
203         if (unaligned_printk || unaligned_fixup_count == 0) {
204                 pr_info("Process %d/%s: PC %#lx: Fixup of"
205                         " unaligned %s at %#lx.\n",
206                         current->pid, current->comm, regs->pc,
207                         (mem_op == MEMOP_LOAD ||
208                          mem_op == MEMOP_LOAD_POSTINCR) ?
209                         "load" : "store",
210                         (unsigned long)addr);
211                 if (!unaligned_printk) {
212 #define P pr_info
213 P("\n");
214 P("Unaligned fixups in the kernel will slow your application considerably.\n");
215 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218 P("access will become a SIGBUS you can debug. No further warnings will be\n");
219 P("shown so as to avoid additional slowdown, but you can track the number\n");
220 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
222 P("\n");
223 #undef P
224                 }
225         }
226         ++unaligned_fixup_count;
227
228         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
229                 /* Convert the Y2 instruction to a prefetch. */
230                 bundle &= ~(create_SrcBDest_Y2(-1) |
231                             create_Opcode_Y2(-1));
232                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
233                            create_Opcode_Y2(LW_OPCODE_Y2));
234         /* Replace the load postincr with an addi */
235         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
236                 bundle = addi_X1(bundle, addr_reg, addr_reg,
237                                  get_Imm8_X1(bundle));
238         /* Replace the store postincr with an addi */
239         } else if (mem_op == MEMOP_STORE_POSTINCR) {
240                 bundle = addi_X1(bundle, addr_reg, addr_reg,
241                                  get_Dest_Imm8_X1(bundle));
242         } else {
243                 /* Convert the X1 instruction to a nop. */
244                 bundle &= ~(create_Opcode_X1(-1) |
245                             create_UnShOpcodeExtension_X1(-1) |
246                             create_UnOpcodeExtension_X1(-1));
247                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
248                            create_UnShOpcodeExtension_X1(
249                                    UN_0_SHUN_0_OPCODE_X1) |
250                            create_UnOpcodeExtension_X1(
251                                    NOP_UN_0_SHUN_0_OPCODE_X1));
252         }
253
254         return bundle;
255 }
256
257 /*
258  * Called after execve() has started the new image.  This allows us
259  * to reset the info state.  Note that the the mmap'ed memory, if there
260  * was any, has already been unmapped by the exec.
261  */
262 void single_step_execve(void)
263 {
264         struct thread_info *ti = current_thread_info();
265         kfree(ti->step_state);
266         ti->step_state = NULL;
267 }
268
269 /**
270  * single_step_once() - entry point when single stepping has been triggered.
271  * @regs: The machine register state
272  *
273  *  When we arrive at this routine via a trampoline, the single step
274  *  engine copies the executing bundle to the single step buffer.
275  *  If the instruction is a condition branch, then the target is
276  *  reset to one past the next instruction. If the instruction
277  *  sets the lr, then that is noted. If the instruction is a jump
278  *  or call, then the new target pc is preserved and the current
279  *  bundle instruction set to null.
280  *
281  *  The necessary post-single-step rewriting information is stored in
282  *  single_step_state->  We use data segment values because the
283  *  stack will be rewound when we run the rewritten single-stepped
284  *  instruction.
285  */
286 void single_step_once(struct pt_regs *regs)
287 {
288         extern tile_bundle_bits __single_step_ill_insn;
289         extern tile_bundle_bits __single_step_j_insn;
290         extern tile_bundle_bits __single_step_addli_insn;
291         extern tile_bundle_bits __single_step_auli_insn;
292         struct thread_info *info = (void *)current_thread_info();
293         struct single_step_state *state = info->step_state;
294         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
295         tile_bundle_bits __user *buffer, *pc;
296         tile_bundle_bits bundle;
297         int temp_reg;
298         int target_reg = TREG_LR;
299         int err;
300         enum mem_op mem_op = MEMOP_NONE;
301         int size = 0, sign_ext = 0;  /* happy compiler */
302
303         asm(
304 "    .pushsection .rodata.single_step\n"
305 "    .align 8\n"
306 "    .globl    __single_step_ill_insn\n"
307 "__single_step_ill_insn:\n"
308 "    ill\n"
309 "    .globl    __single_step_addli_insn\n"
310 "__single_step_addli_insn:\n"
311 "    { nop; addli r0, zero, 0 }\n"
312 "    .globl    __single_step_auli_insn\n"
313 "__single_step_auli_insn:\n"
314 "    { nop; auli r0, r0, 0 }\n"
315 "    .globl    __single_step_j_insn\n"
316 "__single_step_j_insn:\n"
317 "    j .\n"
318 "    .popsection\n"
319         );
320
321         if (state == NULL) {
322                 /* allocate a page of writable, executable memory */
323                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
324                 if (state == NULL) {
325                         pr_err("Out of kernel memory trying to single-step\n");
326                         return;
327                 }
328
329                 /* allocate a cache line of writable, executable memory */
330                 down_write(&current->mm->mmap_sem);
331                 buffer = (void __user *) do_mmap(NULL, 0, 64,
332                                           PROT_EXEC | PROT_READ | PROT_WRITE,
333                                           MAP_PRIVATE | MAP_ANONYMOUS,
334                                           0);
335                 up_write(&current->mm->mmap_sem);
336
337                 if (IS_ERR((void __force *)buffer)) {
338                         kfree(state);
339                         pr_err("Out of kernel pages trying to single-step\n");
340                         return;
341                 }
342
343                 state->buffer = buffer;
344                 state->is_enabled = 0;
345
346                 info->step_state = state;
347
348                 /* Validate our stored instruction patterns */
349                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
350                        ADDLI_OPCODE_X1);
351                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
352                        AULI_OPCODE_X1);
353                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
354                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
355                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
356         }
357
358         /*
359          * If we are returning from a syscall, we still haven't hit the
360          * "ill" for the swint1 instruction.  So back the PC up to be
361          * pointing at the swint1, but we'll actually return directly
362          * back to the "ill" so we come back in via SIGILL as if we
363          * had "executed" the swint1 without ever being in kernel space.
364          */
365         if (regs->faultnum == INT_SWINT_1)
366                 regs->pc -= 8;
367
368         pc = (tile_bundle_bits __user *)(regs->pc);
369         if (get_user(bundle, pc) != 0) {
370                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
371                 return;
372         }
373
374         /* We'll follow the instruction with 2 ill op bundles */
375         state->orig_pc = (unsigned long)pc;
376         state->next_pc = (unsigned long)(pc + 1);
377         state->branch_next_pc = 0;
378         state->update = 0;
379
380         if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
381                 /* two wide, check for control flow */
382                 int opcode = get_Opcode_X1(bundle);
383
384                 switch (opcode) {
385                 /* branches */
386                 case BRANCH_OPCODE_X1:
387                 {
388                         s32 offset = signExtend17(get_BrOff_X1(bundle));
389
390                         /*
391                          * For branches, we use a rewriting trick to let the
392                          * hardware evaluate whether the branch is taken or
393                          * untaken.  We record the target offset and then
394                          * rewrite the branch instruction to target 1 insn
395                          * ahead if the branch is taken.  We then follow the
396                          * rewritten branch with two bundles, each containing
397                          * an "ill" instruction. The supervisor examines the
398                          * pc after the single step code is executed, and if
399                          * the pc is the first ill instruction, then the
400                          * branch (if any) was not taken.  If the pc is the
401                          * second ill instruction, then the branch was
402                          * taken. The new pc is computed for these cases, and
403                          * inserted into the registers for the thread.  If
404                          * the pc is the start of the single step code, then
405                          * an exception or interrupt was taken before the
406                          * code started processing, and the same "original"
407                          * pc is restored.  This change, different from the
408                          * original implementation, has the advantage of
409                          * executing a single user instruction.
410                          */
411                         state->branch_next_pc = (unsigned long)(pc + offset);
412
413                         /* rewrite branch offset to go forward one bundle */
414                         bundle = set_BrOff_X1(bundle, 2);
415                 }
416                 break;
417
418                 /* jumps */
419                 case JALB_OPCODE_X1:
420                 case JALF_OPCODE_X1:
421                         state->update = 1;
422                         state->next_pc =
423                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
424                         break;
425
426                 case JB_OPCODE_X1:
427                 case JF_OPCODE_X1:
428                         state->next_pc =
429                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
430                         bundle = nop_X1(bundle);
431                         break;
432
433                 case SPECIAL_0_OPCODE_X1:
434                         switch (get_RRROpcodeExtension_X1(bundle)) {
435                         /* jump-register */
436                         case JALRP_SPECIAL_0_OPCODE_X1:
437                         case JALR_SPECIAL_0_OPCODE_X1:
438                                 state->update = 1;
439                                 state->next_pc =
440                                         regs->regs[get_SrcA_X1(bundle)];
441                                 break;
442
443                         case JRP_SPECIAL_0_OPCODE_X1:
444                         case JR_SPECIAL_0_OPCODE_X1:
445                                 state->next_pc =
446                                         regs->regs[get_SrcA_X1(bundle)];
447                                 bundle = nop_X1(bundle);
448                                 break;
449
450                         case LNK_SPECIAL_0_OPCODE_X1:
451                                 state->update = 1;
452                                 target_reg = get_Dest_X1(bundle);
453                                 break;
454
455                         /* stores */
456                         case SH_SPECIAL_0_OPCODE_X1:
457                                 mem_op = MEMOP_STORE;
458                                 size = 2;
459                                 break;
460
461                         case SW_SPECIAL_0_OPCODE_X1:
462                                 mem_op = MEMOP_STORE;
463                                 size = 4;
464                                 break;
465                         }
466                         break;
467
468                 /* loads and iret */
469                 case SHUN_0_OPCODE_X1:
470                         if (get_UnShOpcodeExtension_X1(bundle) ==
471                             UN_0_SHUN_0_OPCODE_X1) {
472                                 switch (get_UnOpcodeExtension_X1(bundle)) {
473                                 case LH_UN_0_SHUN_0_OPCODE_X1:
474                                         mem_op = MEMOP_LOAD;
475                                         size = 2;
476                                         sign_ext = 1;
477                                         break;
478
479                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
480                                         mem_op = MEMOP_LOAD;
481                                         size = 2;
482                                         sign_ext = 0;
483                                         break;
484
485                                 case LW_UN_0_SHUN_0_OPCODE_X1:
486                                         mem_op = MEMOP_LOAD;
487                                         size = 4;
488                                         break;
489
490                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
491                                 {
492                                         unsigned long ex0_0 = __insn_mfspr(
493                                                 SPR_EX_CONTEXT_0_0);
494                                         unsigned long ex0_1 = __insn_mfspr(
495                                                 SPR_EX_CONTEXT_0_1);
496                                         /*
497                                          * Special-case it if we're iret'ing
498                                          * to PL0 again.  Otherwise just let
499                                          * it run and it will generate SIGILL.
500                                          */
501                                         if (EX1_PL(ex0_1) == USER_PL) {
502                                                 state->next_pc = ex0_0;
503                                                 regs->ex1 = ex0_1;
504                                                 bundle = nop_X1(bundle);
505                                         }
506                                 }
507                                 }
508                         }
509                         break;
510
511 #if CHIP_HAS_WH64()
512                 /* postincrement operations */
513                 case IMM_0_OPCODE_X1:
514                         switch (get_ImmOpcodeExtension_X1(bundle)) {
515                         case LWADD_IMM_0_OPCODE_X1:
516                                 mem_op = MEMOP_LOAD_POSTINCR;
517                                 size = 4;
518                                 break;
519
520                         case LHADD_IMM_0_OPCODE_X1:
521                                 mem_op = MEMOP_LOAD_POSTINCR;
522                                 size = 2;
523                                 sign_ext = 1;
524                                 break;
525
526                         case LHADD_U_IMM_0_OPCODE_X1:
527                                 mem_op = MEMOP_LOAD_POSTINCR;
528                                 size = 2;
529                                 sign_ext = 0;
530                                 break;
531
532                         case SWADD_IMM_0_OPCODE_X1:
533                                 mem_op = MEMOP_STORE_POSTINCR;
534                                 size = 4;
535                                 break;
536
537                         case SHADD_IMM_0_OPCODE_X1:
538                                 mem_op = MEMOP_STORE_POSTINCR;
539                                 size = 2;
540                                 break;
541
542                         default:
543                                 break;
544                         }
545                         break;
546 #endif /* CHIP_HAS_WH64() */
547                 }
548
549                 if (state->update) {
550                         /*
551                          * Get an available register.  We start with a
552                          * bitmask with 1's for available registers.
553                          * We truncate to the low 32 registers since
554                          * we are guaranteed to have set bits in the
555                          * low 32 bits, then use ctz to pick the first.
556                          */
557                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
558                                            (1ULL << get_SrcA_X0(bundle)) |
559                                            (1ULL << get_SrcB_X0(bundle)) |
560                                            (1ULL << target_reg));
561                         temp_reg = __builtin_ctz(mask);
562                         state->update_reg = temp_reg;
563                         state->update_value = regs->regs[temp_reg];
564                         regs->regs[temp_reg] = (unsigned long) (pc+1);
565                         regs->flags |= PT_FLAGS_RESTORE_REGS;
566                         bundle = move_X1(bundle, target_reg, temp_reg);
567                 }
568         } else {
569                 int opcode = get_Opcode_Y2(bundle);
570
571                 switch (opcode) {
572                 /* loads */
573                 case LH_OPCODE_Y2:
574                         mem_op = MEMOP_LOAD;
575                         size = 2;
576                         sign_ext = 1;
577                         break;
578
579                 case LH_U_OPCODE_Y2:
580                         mem_op = MEMOP_LOAD;
581                         size = 2;
582                         sign_ext = 0;
583                         break;
584
585                 case LW_OPCODE_Y2:
586                         mem_op = MEMOP_LOAD;
587                         size = 4;
588                         break;
589
590                 /* stores */
591                 case SH_OPCODE_Y2:
592                         mem_op = MEMOP_STORE;
593                         size = 2;
594                         break;
595
596                 case SW_OPCODE_Y2:
597                         mem_op = MEMOP_STORE;
598                         size = 4;
599                         break;
600                 }
601         }
602
603         /*
604          * Check if we need to rewrite an unaligned load/store.
605          * Returning zero is a special value meaning we need to SIGSEGV.
606          */
607         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
608                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
609                                                       mem_op, size, sign_ext);
610                 if (bundle == 0)
611                         return;
612         }
613
614         /* write the bundle to our execution area */
615         buffer = state->buffer;
616         err = __put_user(bundle, buffer++);
617
618         /*
619          * If we're really single-stepping, we take an INT_ILL after.
620          * If we're just handling an unaligned access, we can just
621          * jump directly back to where we were in user code.
622          */
623         if (is_single_step) {
624                 err |= __put_user(__single_step_ill_insn, buffer++);
625                 err |= __put_user(__single_step_ill_insn, buffer++);
626         } else {
627                 long delta;
628
629                 if (state->update) {
630                         /* We have some state to update; do it inline */
631                         int ha16;
632                         bundle = __single_step_addli_insn;
633                         bundle |= create_Dest_X1(state->update_reg);
634                         bundle |= create_Imm16_X1(state->update_value);
635                         err |= __put_user(bundle, buffer++);
636                         bundle = __single_step_auli_insn;
637                         bundle |= create_Dest_X1(state->update_reg);
638                         bundle |= create_SrcA_X1(state->update_reg);
639                         ha16 = (state->update_value + 0x8000) >> 16;
640                         bundle |= create_Imm16_X1(ha16);
641                         err |= __put_user(bundle, buffer++);
642                         state->update = 0;
643                 }
644
645                 /* End with a jump back to the next instruction */
646                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
647                         (unsigned long)buffer) >>
648                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
649                 bundle = __single_step_j_insn;
650                 bundle |= create_JOffLong_X1(delta);
651                 err |= __put_user(bundle, buffer++);
652         }
653
654         if (err) {
655                 pr_err("Fault when writing to single-step buffer\n");
656                 return;
657         }
658
659         /*
660          * Flush the buffer.
661          * We do a local flush only, since this is a thread-specific buffer.
662          */
663         __flush_icache_range((unsigned long)state->buffer,
664                              (unsigned long)buffer);
665
666         /* Indicate enabled */
667         state->is_enabled = is_single_step;
668         regs->pc = (unsigned long)state->buffer;
669
670         /* Fault immediately if we are coming back from a syscall. */
671         if (regs->faultnum == INT_SWINT_1)
672                 regs->pc += 8;
673 }
674
675 #else
676 #include <linux/smp.h>
677 #include <linux/ptrace.h>
678 #include <arch/spr_def.h>
679
680 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
681
682
683 /*
684  * Called directly on the occasion of an interrupt.
685  *
686  * If the process doesn't have single step set, then we use this as an
687  * opportunity to turn single step off.
688  *
689  * It has been mentioned that we could conditionally turn off single stepping
690  * on each entry into the kernel and rely on single_step_once to turn it
691  * on for the processes that matter (as we already do), but this
692  * implementation is somewhat more efficient in that we muck with registers
693  * once on a bum interrupt rather than on every entry into the kernel.
694  *
695  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
696  * so we have to run through this process again before we can say that an
697  * instruction has executed.
698  *
699  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
700  * it changes the PC.  If it hasn't changed, then we know that the interrupt
701  * wasn't generated by swint and we'll need to run this process again before
702  * we can say an instruction has executed.
703  *
704  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
705  * on with our lives.
706  */
707
708 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
709 {
710         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
711         struct thread_info *info = (void *)current_thread_info();
712         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
713         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
714
715         if (is_single_step == 0) {
716                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
717
718         } else if ((*ss_pc != regs->pc) ||
719                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
720
721                 ptrace_notify(SIGTRAP);
722                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
723                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
724                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
725         }
726 }
727
728
729 /*
730  * Called from need_singlestep.  Set up the control registers and the enable
731  * register, then return back.
732  */
733
734 void single_step_once(struct pt_regs *regs)
735 {
736         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
737         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
738
739         *ss_pc = regs->pc;
740         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
741         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
742         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
743         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
744 }
745
746 void single_step_execve(void)
747 {
748         /* Nothing */
749 }
750
751 #endif /* !__tilegx__ */