Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[pandora-kernel.git] / arch / tile / kernel / single_step.c
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  * Derived from iLib's single-stepping code.
16  */
17
18 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
19
20 /* These functions are only used on the TILE platform */
21 #include <linux/slab.h>
22 #include <linux/thread_info.h>
23 #include <linux/uaccess.h>
24 #include <linux/mman.h>
25 #include <linux/types.h>
26 #include <linux/err.h>
27 #include <asm/cacheflush.h>
28 #include <asm/opcode-tile.h>
29 #include <asm/opcode_constants.h>
30 #include <arch/abi.h>
31
32 #define signExtend17(val) sign_extend((val), 17)
33 #define TILE_X1_MASK (0xffffffffULL << 31)
34
35 int unaligned_printk;
36
37 static int __init setup_unaligned_printk(char *str)
38 {
39         long val;
40         if (strict_strtol(str, 0, &val) != 0)
41                 return 0;
42         unaligned_printk = val;
43         pr_info("Printk for each unaligned data accesses is %s\n",
44                 unaligned_printk ? "enabled" : "disabled");
45         return 1;
46 }
47 __setup("unaligned_printk=", setup_unaligned_printk);
48
49 unsigned int unaligned_fixup_count;
50
51 enum mem_op {
52         MEMOP_NONE,
53         MEMOP_LOAD,
54         MEMOP_STORE,
55         MEMOP_LOAD_POSTINCR,
56         MEMOP_STORE_POSTINCR
57 };
58
59 static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, int32_t offset)
60 {
61         tile_bundle_bits result;
62
63         /* mask out the old offset */
64         tile_bundle_bits mask = create_BrOff_X1(-1);
65         result = n & (~mask);
66
67         /* or in the new offset */
68         result |= create_BrOff_X1(offset);
69
70         return result;
71 }
72
73 static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src)
74 {
75         tile_bundle_bits result;
76         tile_bundle_bits op;
77
78         result = n & (~TILE_X1_MASK);
79
80         op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
81                 create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
82                 create_Dest_X1(dest) |
83                 create_SrcB_X1(TREG_ZERO) |
84                 create_SrcA_X1(src) ;
85
86         result |= op;
87         return result;
88 }
89
90 static inline tile_bundle_bits nop_X1(tile_bundle_bits n)
91 {
92         return move_X1(n, TREG_ZERO, TREG_ZERO);
93 }
94
95 static inline tile_bundle_bits addi_X1(
96         tile_bundle_bits n, int dest, int src, int imm)
97 {
98         n &= ~TILE_X1_MASK;
99
100         n |=  (create_SrcA_X1(src) |
101                create_Dest_X1(dest) |
102                create_Imm8_X1(imm) |
103                create_S_X1(0) |
104                create_Opcode_X1(IMM_0_OPCODE_X1) |
105                create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
106
107         return n;
108 }
109
110 static tile_bundle_bits rewrite_load_store_unaligned(
111         struct single_step_state *state,
112         tile_bundle_bits bundle,
113         struct pt_regs *regs,
114         enum mem_op mem_op,
115         int size, int sign_ext)
116 {
117         unsigned char __user *addr;
118         int val_reg, addr_reg, err, val;
119
120         /* Get address and value registers */
121         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
122                 addr_reg = get_SrcA_Y2(bundle);
123                 val_reg = get_SrcBDest_Y2(bundle);
124         } else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
125                 addr_reg = get_SrcA_X1(bundle);
126                 val_reg  = get_Dest_X1(bundle);
127         } else {
128                 addr_reg = get_SrcA_X1(bundle);
129                 val_reg  = get_SrcB_X1(bundle);
130         }
131
132         /*
133          * If registers are not GPRs, don't try to handle it.
134          *
135          * FIXME: we could handle non-GPR loads by getting the real value
136          * from memory, writing it to the single step buffer, using a
137          * temp_reg to hold a pointer to that memory, then executing that
138          * instruction and resetting temp_reg.  For non-GPR stores, it's a
139          * little trickier; we could use the single step buffer for that
140          * too, but we'd have to add some more state bits so that we could
141          * call back in here to copy that value to the real target.  For
142          * now, we just handle the simple case.
143          */
144         if ((val_reg >= PTREGS_NR_GPRS &&
145              (val_reg != TREG_ZERO ||
146               mem_op == MEMOP_LOAD ||
147               mem_op == MEMOP_LOAD_POSTINCR)) ||
148             addr_reg >= PTREGS_NR_GPRS)
149                 return bundle;
150
151         /* If it's aligned, don't handle it specially */
152         addr = (void __user *)regs->regs[addr_reg];
153         if (((unsigned long)addr % size) == 0)
154                 return bundle;
155
156 #ifndef __LITTLE_ENDIAN
157 # error We assume little-endian representation with copy_xx_user size 2 here
158 #endif
159         /* Handle unaligned load/store */
160         if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
161                 unsigned short val_16;
162                 switch (size) {
163                 case 2:
164                         err = copy_from_user(&val_16, addr, sizeof(val_16));
165                         val = sign_ext ? ((short)val_16) : val_16;
166                         break;
167                 case 4:
168                         err = copy_from_user(&val, addr, sizeof(val));
169                         break;
170                 default:
171                         BUG();
172                 }
173                 if (err == 0) {
174                         state->update_reg = val_reg;
175                         state->update_value = val;
176                         state->update = 1;
177                 }
178         } else {
179                 val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
180                 err = copy_to_user(addr, &val, size);
181         }
182
183         if (err) {
184                 siginfo_t info = {
185                         .si_signo = SIGSEGV,
186                         .si_code = SEGV_MAPERR,
187                         .si_addr = addr
188                 };
189                 force_sig_info(info.si_signo, &info, current);
190                 return (tile_bundle_bits) 0;
191         }
192
193         if (unaligned_fixup == 0) {
194                 siginfo_t info = {
195                         .si_signo = SIGBUS,
196                         .si_code = BUS_ADRALN,
197                         .si_addr = addr
198                 };
199                 force_sig_info(info.si_signo, &info, current);
200                 return (tile_bundle_bits) 0;
201         }
202
203         if (unaligned_printk || unaligned_fixup_count == 0) {
204                 pr_info("Process %d/%s: PC %#lx: Fixup of"
205                         " unaligned %s at %#lx.\n",
206                         current->pid, current->comm, regs->pc,
207                         (mem_op == MEMOP_LOAD ||
208                          mem_op == MEMOP_LOAD_POSTINCR) ?
209                         "load" : "store",
210                         (unsigned long)addr);
211                 if (!unaligned_printk) {
212 #define P pr_info
213 P("\n");
214 P("Unaligned fixups in the kernel will slow your application considerably.\n");
215 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
216 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
217 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
218 P("access will become a SIGBUS you can debug. No further warnings will be\n");
219 P("shown so as to avoid additional slowdown, but you can track the number\n");
220 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
221 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
222 P("\n");
223 #undef P
224                 }
225         }
226         ++unaligned_fixup_count;
227
228         if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) {
229                 /* Convert the Y2 instruction to a prefetch. */
230                 bundle &= ~(create_SrcBDest_Y2(-1) |
231                             create_Opcode_Y2(-1));
232                 bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
233                            create_Opcode_Y2(LW_OPCODE_Y2));
234         /* Replace the load postincr with an addi */
235         } else if (mem_op == MEMOP_LOAD_POSTINCR) {
236                 bundle = addi_X1(bundle, addr_reg, addr_reg,
237                                  get_Imm8_X1(bundle));
238         /* Replace the store postincr with an addi */
239         } else if (mem_op == MEMOP_STORE_POSTINCR) {
240                 bundle = addi_X1(bundle, addr_reg, addr_reg,
241                                  get_Dest_Imm8_X1(bundle));
242         } else {
243                 /* Convert the X1 instruction to a nop. */
244                 bundle &= ~(create_Opcode_X1(-1) |
245                             create_UnShOpcodeExtension_X1(-1) |
246                             create_UnOpcodeExtension_X1(-1));
247                 bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
248                            create_UnShOpcodeExtension_X1(
249                                    UN_0_SHUN_0_OPCODE_X1) |
250                            create_UnOpcodeExtension_X1(
251                                    NOP_UN_0_SHUN_0_OPCODE_X1));
252         }
253
254         return bundle;
255 }
256
257 /**
258  * single_step_once() - entry point when single stepping has been triggered.
259  * @regs: The machine register state
260  *
261  *  When we arrive at this routine via a trampoline, the single step
262  *  engine copies the executing bundle to the single step buffer.
263  *  If the instruction is a condition branch, then the target is
264  *  reset to one past the next instruction. If the instruction
265  *  sets the lr, then that is noted. If the instruction is a jump
266  *  or call, then the new target pc is preserved and the current
267  *  bundle instruction set to null.
268  *
269  *  The necessary post-single-step rewriting information is stored in
270  *  single_step_state->  We use data segment values because the
271  *  stack will be rewound when we run the rewritten single-stepped
272  *  instruction.
273  */
274 void single_step_once(struct pt_regs *regs)
275 {
276         extern tile_bundle_bits __single_step_ill_insn;
277         extern tile_bundle_bits __single_step_j_insn;
278         extern tile_bundle_bits __single_step_addli_insn;
279         extern tile_bundle_bits __single_step_auli_insn;
280         struct thread_info *info = (void *)current_thread_info();
281         struct single_step_state *state = info->step_state;
282         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
283         tile_bundle_bits __user *buffer, *pc;
284         tile_bundle_bits bundle;
285         int temp_reg;
286         int target_reg = TREG_LR;
287         int err;
288         enum mem_op mem_op = MEMOP_NONE;
289         int size = 0, sign_ext = 0;  /* happy compiler */
290
291         asm(
292 "    .pushsection .rodata.single_step\n"
293 "    .align 8\n"
294 "    .globl    __single_step_ill_insn\n"
295 "__single_step_ill_insn:\n"
296 "    ill\n"
297 "    .globl    __single_step_addli_insn\n"
298 "__single_step_addli_insn:\n"
299 "    { nop; addli r0, zero, 0 }\n"
300 "    .globl    __single_step_auli_insn\n"
301 "__single_step_auli_insn:\n"
302 "    { nop; auli r0, r0, 0 }\n"
303 "    .globl    __single_step_j_insn\n"
304 "__single_step_j_insn:\n"
305 "    j .\n"
306 "    .popsection\n"
307         );
308
309         if (state == NULL) {
310                 /* allocate a page of writable, executable memory */
311                 state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
312                 if (state == NULL) {
313                         pr_err("Out of kernel memory trying to single-step\n");
314                         return;
315                 }
316
317                 /* allocate a cache line of writable, executable memory */
318                 down_write(&current->mm->mmap_sem);
319                 buffer = (void __user *) do_mmap(NULL, 0, 64,
320                                           PROT_EXEC | PROT_READ | PROT_WRITE,
321                                           MAP_PRIVATE | MAP_ANONYMOUS,
322                                           0);
323                 up_write(&current->mm->mmap_sem);
324
325                 if (IS_ERR((void __force *)buffer)) {
326                         kfree(state);
327                         pr_err("Out of kernel pages trying to single-step\n");
328                         return;
329                 }
330
331                 state->buffer = buffer;
332                 state->is_enabled = 0;
333
334                 info->step_state = state;
335
336                 /* Validate our stored instruction patterns */
337                 BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
338                        ADDLI_OPCODE_X1);
339                 BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
340                        AULI_OPCODE_X1);
341                 BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
342                 BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
343                 BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
344         }
345
346         /*
347          * If we are returning from a syscall, we still haven't hit the
348          * "ill" for the swint1 instruction.  So back the PC up to be
349          * pointing at the swint1, but we'll actually return directly
350          * back to the "ill" so we come back in via SIGILL as if we
351          * had "executed" the swint1 without ever being in kernel space.
352          */
353         if (regs->faultnum == INT_SWINT_1)
354                 regs->pc -= 8;
355
356         pc = (tile_bundle_bits __user *)(regs->pc);
357         if (get_user(bundle, pc) != 0) {
358                 pr_err("Couldn't read instruction at %p trying to step\n", pc);
359                 return;
360         }
361
362         /* We'll follow the instruction with 2 ill op bundles */
363         state->orig_pc = (unsigned long)pc;
364         state->next_pc = (unsigned long)(pc + 1);
365         state->branch_next_pc = 0;
366         state->update = 0;
367
368         if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) {
369                 /* two wide, check for control flow */
370                 int opcode = get_Opcode_X1(bundle);
371
372                 switch (opcode) {
373                 /* branches */
374                 case BRANCH_OPCODE_X1:
375                 {
376                         int32_t offset = signExtend17(get_BrOff_X1(bundle));
377
378                         /*
379                          * For branches, we use a rewriting trick to let the
380                          * hardware evaluate whether the branch is taken or
381                          * untaken.  We record the target offset and then
382                          * rewrite the branch instruction to target 1 insn
383                          * ahead if the branch is taken.  We then follow the
384                          * rewritten branch with two bundles, each containing
385                          * an "ill" instruction. The supervisor examines the
386                          * pc after the single step code is executed, and if
387                          * the pc is the first ill instruction, then the
388                          * branch (if any) was not taken.  If the pc is the
389                          * second ill instruction, then the branch was
390                          * taken. The new pc is computed for these cases, and
391                          * inserted into the registers for the thread.  If
392                          * the pc is the start of the single step code, then
393                          * an exception or interrupt was taken before the
394                          * code started processing, and the same "original"
395                          * pc is restored.  This change, different from the
396                          * original implementation, has the advantage of
397                          * executing a single user instruction.
398                          */
399                         state->branch_next_pc = (unsigned long)(pc + offset);
400
401                         /* rewrite branch offset to go forward one bundle */
402                         bundle = set_BrOff_X1(bundle, 2);
403                 }
404                 break;
405
406                 /* jumps */
407                 case JALB_OPCODE_X1:
408                 case JALF_OPCODE_X1:
409                         state->update = 1;
410                         state->next_pc =
411                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
412                         break;
413
414                 case JB_OPCODE_X1:
415                 case JF_OPCODE_X1:
416                         state->next_pc =
417                                 (unsigned long) (pc + get_JOffLong_X1(bundle));
418                         bundle = nop_X1(bundle);
419                         break;
420
421                 case SPECIAL_0_OPCODE_X1:
422                         switch (get_RRROpcodeExtension_X1(bundle)) {
423                         /* jump-register */
424                         case JALRP_SPECIAL_0_OPCODE_X1:
425                         case JALR_SPECIAL_0_OPCODE_X1:
426                                 state->update = 1;
427                                 state->next_pc =
428                                         regs->regs[get_SrcA_X1(bundle)];
429                                 break;
430
431                         case JRP_SPECIAL_0_OPCODE_X1:
432                         case JR_SPECIAL_0_OPCODE_X1:
433                                 state->next_pc =
434                                         regs->regs[get_SrcA_X1(bundle)];
435                                 bundle = nop_X1(bundle);
436                                 break;
437
438                         case LNK_SPECIAL_0_OPCODE_X1:
439                                 state->update = 1;
440                                 target_reg = get_Dest_X1(bundle);
441                                 break;
442
443                         /* stores */
444                         case SH_SPECIAL_0_OPCODE_X1:
445                                 mem_op = MEMOP_STORE;
446                                 size = 2;
447                                 break;
448
449                         case SW_SPECIAL_0_OPCODE_X1:
450                                 mem_op = MEMOP_STORE;
451                                 size = 4;
452                                 break;
453                         }
454                         break;
455
456                 /* loads and iret */
457                 case SHUN_0_OPCODE_X1:
458                         if (get_UnShOpcodeExtension_X1(bundle) ==
459                             UN_0_SHUN_0_OPCODE_X1) {
460                                 switch (get_UnOpcodeExtension_X1(bundle)) {
461                                 case LH_UN_0_SHUN_0_OPCODE_X1:
462                                         mem_op = MEMOP_LOAD;
463                                         size = 2;
464                                         sign_ext = 1;
465                                         break;
466
467                                 case LH_U_UN_0_SHUN_0_OPCODE_X1:
468                                         mem_op = MEMOP_LOAD;
469                                         size = 2;
470                                         sign_ext = 0;
471                                         break;
472
473                                 case LW_UN_0_SHUN_0_OPCODE_X1:
474                                         mem_op = MEMOP_LOAD;
475                                         size = 4;
476                                         break;
477
478                                 case IRET_UN_0_SHUN_0_OPCODE_X1:
479                                 {
480                                         unsigned long ex0_0 = __insn_mfspr(
481                                                 SPR_EX_CONTEXT_0_0);
482                                         unsigned long ex0_1 = __insn_mfspr(
483                                                 SPR_EX_CONTEXT_0_1);
484                                         /*
485                                          * Special-case it if we're iret'ing
486                                          * to PL0 again.  Otherwise just let
487                                          * it run and it will generate SIGILL.
488                                          */
489                                         if (EX1_PL(ex0_1) == USER_PL) {
490                                                 state->next_pc = ex0_0;
491                                                 regs->ex1 = ex0_1;
492                                                 bundle = nop_X1(bundle);
493                                         }
494                                 }
495                                 }
496                         }
497                         break;
498
499 #if CHIP_HAS_WH64()
500                 /* postincrement operations */
501                 case IMM_0_OPCODE_X1:
502                         switch (get_ImmOpcodeExtension_X1(bundle)) {
503                         case LWADD_IMM_0_OPCODE_X1:
504                                 mem_op = MEMOP_LOAD_POSTINCR;
505                                 size = 4;
506                                 break;
507
508                         case LHADD_IMM_0_OPCODE_X1:
509                                 mem_op = MEMOP_LOAD_POSTINCR;
510                                 size = 2;
511                                 sign_ext = 1;
512                                 break;
513
514                         case LHADD_U_IMM_0_OPCODE_X1:
515                                 mem_op = MEMOP_LOAD_POSTINCR;
516                                 size = 2;
517                                 sign_ext = 0;
518                                 break;
519
520                         case SWADD_IMM_0_OPCODE_X1:
521                                 mem_op = MEMOP_STORE_POSTINCR;
522                                 size = 4;
523                                 break;
524
525                         case SHADD_IMM_0_OPCODE_X1:
526                                 mem_op = MEMOP_STORE_POSTINCR;
527                                 size = 2;
528                                 break;
529
530                         default:
531                                 break;
532                         }
533                         break;
534 #endif /* CHIP_HAS_WH64() */
535                 }
536
537                 if (state->update) {
538                         /*
539                          * Get an available register.  We start with a
540                          * bitmask with 1's for available registers.
541                          * We truncate to the low 32 registers since
542                          * we are guaranteed to have set bits in the
543                          * low 32 bits, then use ctz to pick the first.
544                          */
545                         u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
546                                            (1ULL << get_SrcA_X0(bundle)) |
547                                            (1ULL << get_SrcB_X0(bundle)) |
548                                            (1ULL << target_reg));
549                         temp_reg = __builtin_ctz(mask);
550                         state->update_reg = temp_reg;
551                         state->update_value = regs->regs[temp_reg];
552                         regs->regs[temp_reg] = (unsigned long) (pc+1);
553                         regs->flags |= PT_FLAGS_RESTORE_REGS;
554                         bundle = move_X1(bundle, target_reg, temp_reg);
555                 }
556         } else {
557                 int opcode = get_Opcode_Y2(bundle);
558
559                 switch (opcode) {
560                 /* loads */
561                 case LH_OPCODE_Y2:
562                         mem_op = MEMOP_LOAD;
563                         size = 2;
564                         sign_ext = 1;
565                         break;
566
567                 case LH_U_OPCODE_Y2:
568                         mem_op = MEMOP_LOAD;
569                         size = 2;
570                         sign_ext = 0;
571                         break;
572
573                 case LW_OPCODE_Y2:
574                         mem_op = MEMOP_LOAD;
575                         size = 4;
576                         break;
577
578                 /* stores */
579                 case SH_OPCODE_Y2:
580                         mem_op = MEMOP_STORE;
581                         size = 2;
582                         break;
583
584                 case SW_OPCODE_Y2:
585                         mem_op = MEMOP_STORE;
586                         size = 4;
587                         break;
588                 }
589         }
590
591         /*
592          * Check if we need to rewrite an unaligned load/store.
593          * Returning zero is a special value meaning we need to SIGSEGV.
594          */
595         if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) {
596                 bundle = rewrite_load_store_unaligned(state, bundle, regs,
597                                                       mem_op, size, sign_ext);
598                 if (bundle == 0)
599                         return;
600         }
601
602         /* write the bundle to our execution area */
603         buffer = state->buffer;
604         err = __put_user(bundle, buffer++);
605
606         /*
607          * If we're really single-stepping, we take an INT_ILL after.
608          * If we're just handling an unaligned access, we can just
609          * jump directly back to where we were in user code.
610          */
611         if (is_single_step) {
612                 err |= __put_user(__single_step_ill_insn, buffer++);
613                 err |= __put_user(__single_step_ill_insn, buffer++);
614         } else {
615                 long delta;
616
617                 if (state->update) {
618                         /* We have some state to update; do it inline */
619                         int ha16;
620                         bundle = __single_step_addli_insn;
621                         bundle |= create_Dest_X1(state->update_reg);
622                         bundle |= create_Imm16_X1(state->update_value);
623                         err |= __put_user(bundle, buffer++);
624                         bundle = __single_step_auli_insn;
625                         bundle |= create_Dest_X1(state->update_reg);
626                         bundle |= create_SrcA_X1(state->update_reg);
627                         ha16 = (state->update_value + 0x8000) >> 16;
628                         bundle |= create_Imm16_X1(ha16);
629                         err |= __put_user(bundle, buffer++);
630                         state->update = 0;
631                 }
632
633                 /* End with a jump back to the next instruction */
634                 delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) -
635                         (unsigned long)buffer) >>
636                         TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
637                 bundle = __single_step_j_insn;
638                 bundle |= create_JOffLong_X1(delta);
639                 err |= __put_user(bundle, buffer++);
640         }
641
642         if (err) {
643                 pr_err("Fault when writing to single-step buffer\n");
644                 return;
645         }
646
647         /*
648          * Flush the buffer.
649          * We do a local flush only, since this is a thread-specific buffer.
650          */
651         __flush_icache_range((unsigned long)state->buffer,
652                              (unsigned long)buffer);
653
654         /* Indicate enabled */
655         state->is_enabled = is_single_step;
656         regs->pc = (unsigned long)state->buffer;
657
658         /* Fault immediately if we are coming back from a syscall. */
659         if (regs->faultnum == INT_SWINT_1)
660                 regs->pc += 8;
661 }
662
663 #else
664 #include <linux/smp.h>
665 #include <linux/ptrace.h>
666 #include <arch/spr_def.h>
667
668 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
669
670
671 /*
672  * Called directly on the occasion of an interrupt.
673  *
674  * If the process doesn't have single step set, then we use this as an
675  * opportunity to turn single step off.
676  *
677  * It has been mentioned that we could conditionally turn off single stepping
678  * on each entry into the kernel and rely on single_step_once to turn it
679  * on for the processes that matter (as we already do), but this
680  * implementation is somewhat more efficient in that we muck with registers
681  * once on a bum interrupt rather than on every entry into the kernel.
682  *
683  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
684  * so we have to run through this process again before we can say that an
685  * instruction has executed.
686  *
687  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
688  * it changes the PC.  If it hasn't changed, then we know that the interrupt
689  * wasn't generated by swint and we'll need to run this process again before
690  * we can say an instruction has executed.
691  *
692  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
693  * on with our lives.
694  */
695
696 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
697 {
698         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
699         struct thread_info *info = (void *)current_thread_info();
700         int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
701         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
702
703         if (is_single_step == 0) {
704                 __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
705
706         } else if ((*ss_pc != regs->pc) ||
707                    (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
708
709                 ptrace_notify(SIGTRAP);
710                 control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
711                 control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
712                 __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
713         }
714 }
715
716
717 /*
718  * Called from need_singlestep.  Set up the control registers and the enable
719  * register, then return back.
720  */
721
722 void single_step_once(struct pt_regs *regs)
723 {
724         unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc);
725         unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
726
727         *ss_pc = regs->pc;
728         control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
729         control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
730         __insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
731         __insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
732 }
733
734 #endif /* !__tilegx__ */