Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[pandora-kernel.git] / arch / tile / kernel / pci.c
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/capability.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25 #include <linux/io.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/processor.h>
29 #include <asm/sections.h>
30 #include <asm/byteorder.h>
31 #include <asm/hv_driver.h>
32 #include <hv/drv_pcie_rc_intf.h>
33
34
35 /*
36  * Initialization flow and process
37  * -------------------------------
38  *
39  * This files contains the routines to search for PCI buses,
40  * enumerate the buses, and configure any attached devices.
41  *
42  * There are two entry points here:
43  * 1) tile_pci_init
44  *    This sets up the pci_controller structs, and opens the
45  *    FDs to the hypervisor.  This is called from setup_arch() early
46  *    in the boot process.
47  * 2) pcibios_init
48  *    This probes the PCI bus(es) for any attached hardware.  It's
49  *    called by subsys_initcall.  All of the real work is done by the
50  *    generic Linux PCI layer.
51  *
52  */
53
54 /*
55  * This flag tells if the platform is TILEmpower that needs
56  * special configuration for the PLX switch chip.
57  */
58 int __write_once tile_plx_gen1;
59
60 static struct pci_controller controllers[TILE_NUM_PCIE];
61 static int num_controllers;
62 static int pci_scan_flags[TILE_NUM_PCIE];
63
64 static struct pci_ops tile_cfg_ops;
65
66
67 /*
68  * We don't need to worry about the alignment of resources.
69  */
70 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
71                             resource_size_t size, resource_size_t align)
72 {
73         return res->start;
74 }
75 EXPORT_SYMBOL(pcibios_align_resource);
76
77 /*
78  * Open a FD to the hypervisor PCI device.
79  *
80  * controller_id is the controller number, config type is 0 or 1 for
81  * config0 or config1 operations.
82  */
83 static int __devinit tile_pcie_open(int controller_id, int config_type)
84 {
85         char filename[32];
86         int fd;
87
88         sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
89
90         fd = hv_dev_open((HV_VirtAddr)filename, 0);
91
92         return fd;
93 }
94
95
96 /*
97  * Get the IRQ numbers from the HV and set up the handlers for them.
98  */
99 static int __devinit tile_init_irqs(int controller_id,
100                                  struct pci_controller *controller)
101 {
102         char filename[32];
103         int fd;
104         int ret;
105         int x;
106         struct pcie_rc_config rc_config;
107
108         sprintf(filename, "pcie/%d/ctl", controller_id);
109         fd = hv_dev_open((HV_VirtAddr)filename, 0);
110         if (fd < 0) {
111                 pr_err("PCI: hv_dev_open(%s) failed\n", filename);
112                 return -1;
113         }
114         ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
115                            sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
116         hv_dev_close(fd);
117         if (ret != sizeof(rc_config)) {
118                 pr_err("PCI: wanted %zd bytes, got %d\n",
119                        sizeof(rc_config), ret);
120                 return -1;
121         }
122         /* Record irq_base so that we can map INTx to IRQ # later. */
123         controller->irq_base = rc_config.intr;
124
125         for (x = 0; x < 4; x++)
126                 tile_irq_activate(rc_config.intr + x,
127                                   TILE_IRQ_HW_CLEAR);
128
129         if (rc_config.plx_gen1)
130                 controller->plx_gen1 = 1;
131
132         return 0;
133 }
134
135 /*
136  * First initialization entry point, called from setup_arch().
137  *
138  * Find valid controllers and fill in pci_controller structs for each
139  * of them.
140  *
141  * Returns the number of controllers discovered.
142  */
143 int __devinit tile_pci_init(void)
144 {
145         int i;
146
147         pr_info("PCI: Searching for controllers...\n");
148
149         /* Re-init number of PCIe controllers to support hot-plug feature. */
150         num_controllers = 0;
151
152         /* Do any configuration we need before using the PCIe */
153
154         for (i = 0; i < TILE_NUM_PCIE; i++) {
155                 /*
156                  * To see whether we need a real config op based on
157                  * the results of pcibios_init(), to support PCIe hot-plug.
158                  */
159                 if (pci_scan_flags[i] == 0) {
160                         int hv_cfg_fd0 = -1;
161                         int hv_cfg_fd1 = -1;
162                         int hv_mem_fd = -1;
163                         char name[32];
164                         struct pci_controller *controller;
165
166                         /*
167                          * Open the fd to the HV.  If it fails then this
168                          * device doesn't exist.
169                          */
170                         hv_cfg_fd0 = tile_pcie_open(i, 0);
171                         if (hv_cfg_fd0 < 0)
172                                 continue;
173                         hv_cfg_fd1 = tile_pcie_open(i, 1);
174                         if (hv_cfg_fd1 < 0) {
175                                 pr_err("PCI: Couldn't open config fd to HV "
176                                     "for controller %d\n", i);
177                                 goto err_cont;
178                         }
179
180                         sprintf(name, "pcie/%d/mem", i);
181                         hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
182                         if (hv_mem_fd < 0) {
183                                 pr_err("PCI: Could not open mem fd to HV!\n");
184                                 goto err_cont;
185                         }
186
187                         pr_info("PCI: Found PCI controller #%d\n", i);
188
189                         controller = &controllers[i];
190
191                         controller->index = i;
192                         controller->hv_cfg_fd[0] = hv_cfg_fd0;
193                         controller->hv_cfg_fd[1] = hv_cfg_fd1;
194                         controller->hv_mem_fd = hv_mem_fd;
195                         controller->first_busno = 0;
196                         controller->last_busno = 0xff;
197                         controller->ops = &tile_cfg_ops;
198
199                         num_controllers++;
200                         continue;
201
202 err_cont:
203                         if (hv_cfg_fd0 >= 0)
204                                 hv_dev_close(hv_cfg_fd0);
205                         if (hv_cfg_fd1 >= 0)
206                                 hv_dev_close(hv_cfg_fd1);
207                         if (hv_mem_fd >= 0)
208                                 hv_dev_close(hv_mem_fd);
209                         continue;
210                 }
211         }
212
213         /*
214          * Before using the PCIe, see if we need to do any platform-specific
215          * configuration, such as the PLX switch Gen 1 issue on TILEmpower.
216          */
217         for (i = 0; i < num_controllers; i++) {
218                 struct pci_controller *controller = &controllers[i];
219
220                 if (controller->plx_gen1)
221                         tile_plx_gen1 = 1;
222         }
223
224         return num_controllers;
225 }
226
227 /*
228  * (pin - 1) converts from the PCI standard's [1:4] convention to
229  * a normal [0:3] range.
230  */
231 static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
232 {
233         struct pci_controller *controller =
234                 (struct pci_controller *)dev->sysdata;
235         return (pin - 1) + controller->irq_base;
236 }
237
238
239 static void __devinit fixup_read_and_payload_sizes(void)
240 {
241         struct pci_dev *dev = NULL;
242         int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
243         int max_read_size = 0x2; /* Limit to 512 byte reads. */
244         u16 new_values;
245
246         /* Scan for the smallest maximum payload size. */
247         while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
248                 int pcie_caps_offset;
249                 u32 devcap;
250                 int max_payload;
251
252                 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
253                 if (pcie_caps_offset == 0)
254                         continue;
255
256                 pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
257                                       &devcap);
258                 max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
259                 if (max_payload < smallest_max_payload)
260                         smallest_max_payload = max_payload;
261         }
262
263         /* Now, set the max_payload_size for all devices to that value. */
264         new_values = (max_read_size << 12) | (smallest_max_payload << 5);
265         while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
266                 int pcie_caps_offset;
267                 u16 devctl;
268
269                 pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
270                 if (pcie_caps_offset == 0)
271                         continue;
272
273                 pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
274                                      &devctl);
275                 devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
276                 devctl |= new_values;
277                 pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
278                                       devctl);
279         }
280 }
281
282
283 /*
284  * Second PCI initialization entry point, called by subsys_initcall.
285  *
286  * The controllers have been set up by the time we get here, by a call to
287  * tile_pci_init.
288  */
289 int __devinit pcibios_init(void)
290 {
291         int i;
292
293         pr_info("PCI: Probing PCI hardware\n");
294
295         /*
296          * Delay a bit in case devices aren't ready.  Some devices are
297          * known to require at least 20ms here, but we use a more
298          * conservative value.
299          */
300         mdelay(250);
301
302         /* Scan all of the recorded PCI controllers.  */
303         for (i = 0; i < TILE_NUM_PCIE; i++) {
304                 /*
305                  * Do real pcibios init ops if the controller is initialized
306                  * by tile_pci_init() successfully and not initialized by
307                  * pcibios_init() yet to support PCIe hot-plug.
308                  */
309                 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
310                         struct pci_controller *controller = &controllers[i];
311                         struct pci_bus *bus;
312
313                         if (tile_init_irqs(i, controller)) {
314                                 pr_err("PCI: Could not initialize IRQs\n");
315                                 continue;
316                         }
317
318                         pr_info("PCI: initializing controller #%d\n", i);
319
320                         /*
321                          * This comes from the generic Linux PCI driver.
322                          *
323                          * It reads the PCI tree for this bus into the Linux
324                          * data structures.
325                          *
326                          * This is inlined in linux/pci.h and calls into
327                          * pci_scan_bus_parented() in probe.c.
328                          */
329                         bus = pci_scan_bus(0, controller->ops, controller);
330                         controller->root_bus = bus;
331                         controller->last_busno = bus->subordinate;
332                 }
333         }
334
335         /* Do machine dependent PCI interrupt routing */
336         pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
337
338         /*
339          * This comes from the generic Linux PCI driver.
340          *
341          * It allocates all of the resources (I/O memory, etc)
342          * associated with the devices read in above.
343          */
344         pci_assign_unassigned_resources();
345
346         /* Configure the max_read_size and max_payload_size values. */
347         fixup_read_and_payload_sizes();
348
349         /* Record the I/O resources in the PCI controller structure. */
350         for (i = 0; i < TILE_NUM_PCIE; i++) {
351                 /*
352                  * Do real pcibios init ops if the controller is initialized
353                  * by tile_pci_init() successfully and not initialized by
354                  * pcibios_init() yet to support PCIe hot-plug.
355                  */
356                 if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) {
357                         struct pci_bus *root_bus = controllers[i].root_bus;
358                         struct pci_bus *next_bus;
359                         struct pci_dev *dev;
360
361                         list_for_each_entry(dev, &root_bus->devices, bus_list) {
362                                 /*
363                                  * Find the PCI host controller, ie. the 1st
364                                  * bridge.
365                                  */
366                                 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
367                                         (PCI_SLOT(dev->devfn) == 0)) {
368                                         next_bus = dev->subordinate;
369                                         controllers[i].mem_resources[0] =
370                                                 *next_bus->resource[0];
371                                         controllers[i].mem_resources[1] =
372                                                  *next_bus->resource[1];
373                                         controllers[i].mem_resources[2] =
374                                                  *next_bus->resource[2];
375
376                                         /* Setup flags. */
377                                         pci_scan_flags[i] = 1;
378
379                                         break;
380                                 }
381                         }
382                 }
383         }
384
385         return 0;
386 }
387 subsys_initcall(pcibios_init);
388
389 /*
390  * No bus fixups needed.
391  */
392 void __devinit pcibios_fixup_bus(struct pci_bus *bus)
393 {
394         /* Nothing needs to be done. */
395 }
396
397 /*
398  * This can be called from the generic PCI layer, but doesn't need to
399  * do anything.
400  */
401 char __devinit *pcibios_setup(char *str)
402 {
403         /* Nothing needs to be done. */
404         return str;
405 }
406
407 /*
408  * This is called from the generic Linux layer.
409  */
410 void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
411 {
412         pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
413 }
414
415 /*
416  * Enable memory and/or address decoding, as appropriate, for the
417  * device described by the 'dev' struct.
418  *
419  * This is called from the generic PCI layer, and can be called
420  * for bridges or endpoints.
421  */
422 int pcibios_enable_device(struct pci_dev *dev, int mask)
423 {
424         u16 cmd, old_cmd;
425         u8 header_type;
426         int i;
427         struct resource *r;
428
429         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
430
431         pci_read_config_word(dev, PCI_COMMAND, &cmd);
432         old_cmd = cmd;
433         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
434                 /*
435                  * For bridges, we enable both memory and I/O decoding
436                  * in call cases.
437                  */
438                 cmd |= PCI_COMMAND_IO;
439                 cmd |= PCI_COMMAND_MEMORY;
440         } else {
441                 /*
442                  * For endpoints, we enable memory and/or I/O decoding
443                  * only if they have a memory resource of that type.
444                  */
445                 for (i = 0; i < 6; i++) {
446                         r = &dev->resource[i];
447                         if (r->flags & IORESOURCE_UNSET) {
448                                 pr_err("PCI: Device %s not available "
449                                        "because of resource collisions\n",
450                                        pci_name(dev));
451                                 return -EINVAL;
452                         }
453                         if (r->flags & IORESOURCE_IO)
454                                 cmd |= PCI_COMMAND_IO;
455                         if (r->flags & IORESOURCE_MEM)
456                                 cmd |= PCI_COMMAND_MEMORY;
457                 }
458         }
459
460         /*
461          * We only write the command if it changed.
462          */
463         if (cmd != old_cmd)
464                 pci_write_config_word(dev, PCI_COMMAND, cmd);
465         return 0;
466 }
467
468 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
469 {
470         unsigned long start = pci_resource_start(dev, bar);
471         unsigned long len = pci_resource_len(dev, bar);
472         unsigned long flags = pci_resource_flags(dev, bar);
473
474         if (!len)
475                 return NULL;
476         if (max && len > max)
477                 len = max;
478
479         if (!(flags & IORESOURCE_MEM)) {
480                 pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
481                 start = 0;
482         }
483
484         return (void __iomem *)start;
485 }
486 EXPORT_SYMBOL(pci_iomap);
487
488
489 /****************************************************************
490  *
491  * Tile PCI config space read/write routines
492  *
493  ****************************************************************/
494
495 /*
496  * These are the normal read and write ops
497  * These are expanded with macros from  pci_bus_read_config_byte() etc.
498  *
499  * devfn is the combined PCI slot & function.
500  *
501  * offset is in bytes, from the start of config space for the
502  * specified bus & slot.
503  */
504
505 static int __devinit tile_cfg_read(struct pci_bus *bus,
506                                    unsigned int devfn,
507                                    int offset,
508                                    int size,
509                                    u32 *val)
510 {
511         struct pci_controller *controller = bus->sysdata;
512         int busnum = bus->number & 0xff;
513         int slot = (devfn >> 3) & 0x1f;
514         int function = devfn & 0x7;
515         u32 addr;
516         int config_mode = 1;
517
518         /*
519          * There is no bridge between the Tile and bus 0, so we
520          * use config0 to talk to bus 0.
521          *
522          * If we're talking to a bus other than zero then we
523          * must have found a bridge.
524          */
525         if (busnum == 0) {
526                 /*
527                  * We fake an empty slot for (busnum == 0) && (slot > 0),
528                  * since there is only one slot on bus 0.
529                  */
530                 if (slot) {
531                         *val = 0xFFFFFFFF;
532                         return 0;
533                 }
534                 config_mode = 0;
535         }
536
537         addr = busnum << 20;            /* Bus in 27:20 */
538         addr |= slot << 15;             /* Slot (device) in 19:15 */
539         addr |= function << 12;         /* Function is in 14:12 */
540         addr |= (offset & 0xFFF);       /* byte address in 0:11 */
541
542         return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
543                             (HV_VirtAddr)(val), size, addr);
544 }
545
546
547 /*
548  * See tile_cfg_read() for relevant comments.
549  * Note that "val" is the value to write, not a pointer to that value.
550  */
551 static int __devinit tile_cfg_write(struct pci_bus *bus,
552                                     unsigned int devfn,
553                                     int offset,
554                                     int size,
555                                     u32 val)
556 {
557         struct pci_controller *controller = bus->sysdata;
558         int busnum = bus->number & 0xff;
559         int slot = (devfn >> 3) & 0x1f;
560         int function = devfn & 0x7;
561         u32 addr;
562         int config_mode = 1;
563         HV_VirtAddr valp = (HV_VirtAddr)&val;
564
565         /*
566          * For bus 0 slot 0 we use config 0 accesses.
567          */
568         if (busnum == 0) {
569                 /*
570                  * We fake an empty slot for (busnum == 0) && (slot > 0),
571                  * since there is only one slot on bus 0.
572                  */
573                 if (slot)
574                         return 0;
575                 config_mode = 0;
576         }
577
578         addr = busnum << 20;            /* Bus in 27:20 */
579         addr |= slot << 15;             /* Slot (device) in 19:15 */
580         addr |= function << 12;         /* Function is in 14:12 */
581         addr |= (offset & 0xFFF);       /* byte address in 0:11 */
582
583 #ifdef __BIG_ENDIAN
584         /* Point to the correct part of the 32-bit "val". */
585         valp += 4 - size;
586 #endif
587
588         return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
589                              valp, size, addr);
590 }
591
592
593 static struct pci_ops tile_cfg_ops = {
594         .read =         tile_cfg_read,
595         .write =        tile_cfg_write,
596 };
597
598
599 /*
600  * In the following, each PCI controller's mem_resources[1]
601  * represents its (non-prefetchable) PCI memory resource.
602  * mem_resources[0] and mem_resources[2] refer to its PCI I/O and
603  * prefetchable PCI memory resources, respectively.
604  * For more details, see pci_setup_bridge() in setup-bus.c.
605  * By comparing the target PCI memory address against the
606  * end address of controller 0, we can determine the controller
607  * that should accept the PCI memory access.
608  */
609 #define TILE_READ(size, type)                                           \
610 type _tile_read##size(unsigned long addr)                               \
611 {                                                                       \
612         type val;                                                       \
613         int idx = 0;                                                    \
614         if (addr > controllers[0].mem_resources[1].end &&               \
615             addr > controllers[0].mem_resources[2].end)                 \
616                 idx = 1;                                                \
617         if (hv_dev_pread(controllers[idx].hv_mem_fd, 0,                 \
618                          (HV_VirtAddr)(&val), sizeof(type), addr))      \
619                 pr_err("PCI: read %zd bytes at 0x%lX failed\n",         \
620                        sizeof(type), addr);                             \
621         return val;                                                     \
622 }                                                                       \
623 EXPORT_SYMBOL(_tile_read##size)
624
625 TILE_READ(b, u8);
626 TILE_READ(w, u16);
627 TILE_READ(l, u32);
628 TILE_READ(q, u64);
629
630 #define TILE_WRITE(size, type)                                          \
631 void _tile_write##size(type val, unsigned long addr)                    \
632 {                                                                       \
633         int idx = 0;                                                    \
634         if (addr > controllers[0].mem_resources[1].end &&               \
635             addr > controllers[0].mem_resources[2].end)                 \
636                 idx = 1;                                                \
637         if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0,                \
638                           (HV_VirtAddr)(&val), sizeof(type), addr))     \
639                 pr_err("PCI: write %zd bytes at 0x%lX failed\n",        \
640                        sizeof(type), addr);                             \
641 }                                                                       \
642 EXPORT_SYMBOL(_tile_write##size)
643
644 TILE_WRITE(b, u8);
645 TILE_WRITE(w, u16);
646 TILE_WRITE(l, u32);
647 TILE_WRITE(q, u64);