Merge ../linus
[pandora-kernel.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42 #include <asm/prom.h>
43
44 extern void calibrate_delay(void);
45
46 /* Please don't make this stuff initdata!!!  --DaveM */
47 static unsigned char boot_cpu_id;
48
49 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
50 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
52         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
53 static cpumask_t smp_commenced_mask;
54 static cpumask_t cpu_callout_map;
55
56 void smp_info(struct seq_file *m)
57 {
58         int i;
59         
60         seq_printf(m, "State:\n");
61         for_each_online_cpu(i)
62                 seq_printf(m, "CPU%d:\t\tonline\n", i);
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67         int i;
68         
69         for_each_online_cpu(i)
70                 seq_printf(m,
71                            "Cpu%dBogo\t: %lu.%02lu\n"
72                            "Cpu%dClkTck\t: %016lx\n",
73                            i, cpu_data(i).udelay_val / (500000/HZ),
74                            (cpu_data(i).udelay_val / (5000/HZ)) % 100,
75                            i, cpu_data(i).clock_tick);
76 }
77
78 void __init smp_store_cpu_info(int id)
79 {
80         struct device_node *dp;
81         int def;
82
83         /* multiplier and counter set by
84            smp_setup_percpu_timer()  */
85         cpu_data(id).udelay_val                 = loops_per_jiffy;
86
87         cpu_find_by_mid(id, &dp);
88         cpu_data(id).clock_tick =
89                 of_getintprop_default(dp, "clock-frequency", 0);
90
91         def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
92         cpu_data(id).dcache_size =
93                 of_getintprop_default(dp, "dcache-size", def);
94
95         def = 32;
96         cpu_data(id).dcache_line_size =
97                 of_getintprop_default(dp, "dcache-line-size", def);
98
99         def = 16 * 1024;
100         cpu_data(id).icache_size =
101                 of_getintprop_default(dp, "icache-size", def);
102
103         def = 32;
104         cpu_data(id).icache_line_size =
105                 of_getintprop_default(dp, "icache-line-size", def);
106
107         def = ((tlb_type == hypervisor) ?
108                (3 * 1024 * 1024) :
109                (4 * 1024 * 1024));
110         cpu_data(id).ecache_size =
111                 of_getintprop_default(dp, "ecache-size", def);
112
113         def = 64;
114         cpu_data(id).ecache_line_size =
115                 of_getintprop_default(dp, "ecache-line-size", def);
116
117         printk("CPU[%d]: Caches "
118                "D[sz(%d):line_sz(%d)] "
119                "I[sz(%d):line_sz(%d)] "
120                "E[sz(%d):line_sz(%d)]\n",
121                id,
122                cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
123                cpu_data(id).icache_size, cpu_data(id).icache_line_size,
124                cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
125 }
126
127 static void smp_setup_percpu_timer(void);
128
129 static volatile unsigned long callin_flag = 0;
130
131 void __init smp_callin(void)
132 {
133         int cpuid = hard_smp_processor_id();
134
135         __local_per_cpu_offset = __per_cpu_offset(cpuid);
136
137         if (tlb_type == hypervisor)
138                 sun4v_ktsb_register();
139
140         __flush_tlb_all();
141
142         smp_setup_percpu_timer();
143
144         if (cheetah_pcache_forced_on)
145                 cheetah_enable_pcache();
146
147         local_irq_enable();
148
149         calibrate_delay();
150         smp_store_cpu_info(cpuid);
151         callin_flag = 1;
152         __asm__ __volatile__("membar #Sync\n\t"
153                              "flush  %%g6" : : : "memory");
154
155         /* Clear this or we will die instantly when we
156          * schedule back to this idler...
157          */
158         current_thread_info()->new_child = 0;
159
160         /* Attach to the address space of init_task. */
161         atomic_inc(&init_mm.mm_count);
162         current->active_mm = &init_mm;
163
164         while (!cpu_isset(cpuid, smp_commenced_mask))
165                 rmb();
166
167         cpu_set(cpuid, cpu_online_map);
168
169         /* idle thread is expected to have preempt disabled */
170         preempt_disable();
171 }
172
173 void cpu_panic(void)
174 {
175         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
176         panic("SMP bolixed\n");
177 }
178
179 static unsigned long current_tick_offset __read_mostly;
180
181 /* This tick register synchronization scheme is taken entirely from
182  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
183  *
184  * The only change I've made is to rework it so that the master
185  * initiates the synchonization instead of the slave. -DaveM
186  */
187
188 #define MASTER  0
189 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
190
191 #define NUM_ROUNDS      64      /* magic value */
192 #define NUM_ITERS       5       /* likewise */
193
194 static DEFINE_SPINLOCK(itc_sync_lock);
195 static unsigned long go[SLAVE + 1];
196
197 #define DEBUG_TICK_SYNC 0
198
199 static inline long get_delta (long *rt, long *master)
200 {
201         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
202         unsigned long tcenter, t0, t1, tm;
203         unsigned long i;
204
205         for (i = 0; i < NUM_ITERS; i++) {
206                 t0 = tick_ops->get_tick();
207                 go[MASTER] = 1;
208                 membar_storeload();
209                 while (!(tm = go[SLAVE]))
210                         rmb();
211                 go[SLAVE] = 0;
212                 wmb();
213                 t1 = tick_ops->get_tick();
214
215                 if (t1 - t0 < best_t1 - best_t0)
216                         best_t0 = t0, best_t1 = t1, best_tm = tm;
217         }
218
219         *rt = best_t1 - best_t0;
220         *master = best_tm - best_t0;
221
222         /* average best_t0 and best_t1 without overflow: */
223         tcenter = (best_t0/2 + best_t1/2);
224         if (best_t0 % 2 + best_t1 % 2 == 2)
225                 tcenter++;
226         return tcenter - best_tm;
227 }
228
229 void smp_synchronize_tick_client(void)
230 {
231         long i, delta, adj, adjust_latency = 0, done = 0;
232         unsigned long flags, rt, master_time_stamp, bound;
233 #if DEBUG_TICK_SYNC
234         struct {
235                 long rt;        /* roundtrip time */
236                 long master;    /* master's timestamp */
237                 long diff;      /* difference between midpoint and master's timestamp */
238                 long lat;       /* estimate of itc adjustment latency */
239         } t[NUM_ROUNDS];
240 #endif
241
242         go[MASTER] = 1;
243
244         while (go[MASTER])
245                 rmb();
246
247         local_irq_save(flags);
248         {
249                 for (i = 0; i < NUM_ROUNDS; i++) {
250                         delta = get_delta(&rt, &master_time_stamp);
251                         if (delta == 0) {
252                                 done = 1;       /* let's lock on to this... */
253                                 bound = rt;
254                         }
255
256                         if (!done) {
257                                 if (i > 0) {
258                                         adjust_latency += -delta;
259                                         adj = -delta + adjust_latency/4;
260                                 } else
261                                         adj = -delta;
262
263                                 tick_ops->add_tick(adj, current_tick_offset);
264                         }
265 #if DEBUG_TICK_SYNC
266                         t[i].rt = rt;
267                         t[i].master = master_time_stamp;
268                         t[i].diff = delta;
269                         t[i].lat = adjust_latency/4;
270 #endif
271                 }
272         }
273         local_irq_restore(flags);
274
275 #if DEBUG_TICK_SYNC
276         for (i = 0; i < NUM_ROUNDS; i++)
277                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
278                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
279 #endif
280
281         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
282                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
283 }
284
285 static void smp_start_sync_tick_client(int cpu);
286
287 static void smp_synchronize_one_tick(int cpu)
288 {
289         unsigned long flags, i;
290
291         go[MASTER] = 0;
292
293         smp_start_sync_tick_client(cpu);
294
295         /* wait for client to be ready */
296         while (!go[MASTER])
297                 rmb();
298
299         /* now let the client proceed into his loop */
300         go[MASTER] = 0;
301         membar_storeload();
302
303         spin_lock_irqsave(&itc_sync_lock, flags);
304         {
305                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306                         while (!go[MASTER])
307                                 rmb();
308                         go[MASTER] = 0;
309                         wmb();
310                         go[SLAVE] = tick_ops->get_tick();
311                         membar_storeload();
312                 }
313         }
314         spin_unlock_irqrestore(&itc_sync_lock, flags);
315 }
316
317 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
318
319 extern unsigned long sparc64_cpu_startup;
320
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322  * 32-bits (I think) so to be safe we have it read the pointer
323  * contained here so we work on >4GB machines. -DaveM
324  */
325 static struct thread_info *cpu_new_thread = NULL;
326
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
328 {
329         unsigned long entry =
330                 (unsigned long)(&sparc64_cpu_startup);
331         unsigned long cookie =
332                 (unsigned long)(&cpu_new_thread);
333         struct task_struct *p;
334         int timeout, ret;
335
336         p = fork_idle(cpu);
337         callin_flag = 0;
338         cpu_new_thread = task_thread_info(p);
339         cpu_set(cpu, cpu_callout_map);
340
341         if (tlb_type == hypervisor) {
342                 /* Alloc the mondo queues, cpu will load them.  */
343                 sun4v_init_mondo_queues(0, cpu, 1, 0);
344
345                 prom_startcpu_cpuid(cpu, entry, cookie);
346         } else {
347                 struct device_node *dp;
348
349                 cpu_find_by_mid(cpu, &dp);
350                 prom_startcpu(dp->node, entry, cookie);
351         }
352
353         for (timeout = 0; timeout < 5000000; timeout++) {
354                 if (callin_flag)
355                         break;
356                 udelay(100);
357         }
358
359         if (callin_flag) {
360                 ret = 0;
361         } else {
362                 printk("Processor %d is stuck.\n", cpu);
363                 cpu_clear(cpu, cpu_callout_map);
364                 ret = -ENODEV;
365         }
366         cpu_new_thread = NULL;
367
368         return ret;
369 }
370
371 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
372 {
373         u64 result, target;
374         int stuck, tmp;
375
376         if (this_is_starfire) {
377                 /* map to real upaid */
378                 cpu = (((cpu & 0x3c) << 1) |
379                         ((cpu & 0x40) >> 4) |
380                         (cpu & 0x3));
381         }
382
383         target = (cpu << 14) | 0x70;
384 again:
385         /* Ok, this is the real Spitfire Errata #54.
386          * One must read back from a UDB internal register
387          * after writes to the UDB interrupt dispatch, but
388          * before the membar Sync for that write.
389          * So we use the high UDB control register (ASI 0x7f,
390          * ADDR 0x20) for the dummy read. -DaveM
391          */
392         tmp = 0x40;
393         __asm__ __volatile__(
394         "wrpr   %1, %2, %%pstate\n\t"
395         "stxa   %4, [%0] %3\n\t"
396         "stxa   %5, [%0+%8] %3\n\t"
397         "add    %0, %8, %0\n\t"
398         "stxa   %6, [%0+%8] %3\n\t"
399         "membar #Sync\n\t"
400         "stxa   %%g0, [%7] %3\n\t"
401         "membar #Sync\n\t"
402         "mov    0x20, %%g1\n\t"
403         "ldxa   [%%g1] 0x7f, %%g0\n\t"
404         "membar #Sync"
405         : "=r" (tmp)
406         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
407           "r" (data0), "r" (data1), "r" (data2), "r" (target),
408           "r" (0x10), "0" (tmp)
409         : "g1");
410
411         /* NOTE: PSTATE_IE is still clear. */
412         stuck = 100000;
413         do {
414                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
415                         : "=r" (result)
416                         : "i" (ASI_INTR_DISPATCH_STAT));
417                 if (result == 0) {
418                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
419                                              : : "r" (pstate));
420                         return;
421                 }
422                 stuck -= 1;
423                 if (stuck == 0)
424                         break;
425         } while (result & 0x1);
426         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
427                              : : "r" (pstate));
428         if (stuck == 0) {
429                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
430                        smp_processor_id(), result);
431         } else {
432                 udelay(2);
433                 goto again;
434         }
435 }
436
437 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
438 {
439         u64 pstate;
440         int i;
441
442         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
443         for_each_cpu_mask(i, mask)
444                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
445 }
446
447 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
448  * packet, but we have no use for that.  However we do take advantage of
449  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
450  */
451 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
452 {
453         u64 pstate, ver;
454         int nack_busy_id, is_jbus;
455
456         if (cpus_empty(mask))
457                 return;
458
459         /* Unfortunately, someone at Sun had the brilliant idea to make the
460          * busy/nack fields hard-coded by ITID number for this Ultra-III
461          * derivative processor.
462          */
463         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
464         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
465                    (ver >> 32) == __SERRANO_ID);
466
467         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468
469 retry:
470         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
471                              : : "r" (pstate), "i" (PSTATE_IE));
472
473         /* Setup the dispatch data registers. */
474         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
475                              "stxa      %1, [%4] %6\n\t"
476                              "stxa      %2, [%5] %6\n\t"
477                              "membar    #Sync\n\t"
478                              : /* no outputs */
479                              : "r" (data0), "r" (data1), "r" (data2),
480                                "r" (0x40), "r" (0x50), "r" (0x60),
481                                "i" (ASI_INTR_W));
482
483         nack_busy_id = 0;
484         {
485                 int i;
486
487                 for_each_cpu_mask(i, mask) {
488                         u64 target = (i << 14) | 0x70;
489
490                         if (!is_jbus)
491                                 target |= (nack_busy_id << 24);
492                         __asm__ __volatile__(
493                                 "stxa   %%g0, [%0] %1\n\t"
494                                 "membar #Sync\n\t"
495                                 : /* no outputs */
496                                 : "r" (target), "i" (ASI_INTR_W));
497                         nack_busy_id++;
498                 }
499         }
500
501         /* Now, poll for completion. */
502         {
503                 u64 dispatch_stat;
504                 long stuck;
505
506                 stuck = 100000 * nack_busy_id;
507                 do {
508                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
509                                              : "=r" (dispatch_stat)
510                                              : "i" (ASI_INTR_DISPATCH_STAT));
511                         if (dispatch_stat == 0UL) {
512                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513                                                      : : "r" (pstate));
514                                 return;
515                         }
516                         if (!--stuck)
517                                 break;
518                 } while (dispatch_stat & 0x5555555555555555UL);
519
520                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
521                                      : : "r" (pstate));
522
523                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
524                         /* Busy bits will not clear, continue instead
525                          * of freezing up on this cpu.
526                          */
527                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
528                                smp_processor_id(), dispatch_stat);
529                 } else {
530                         int i, this_busy_nack = 0;
531
532                         /* Delay some random time with interrupts enabled
533                          * to prevent deadlock.
534                          */
535                         udelay(2 * nack_busy_id);
536
537                         /* Clear out the mask bits for cpus which did not
538                          * NACK us.
539                          */
540                         for_each_cpu_mask(i, mask) {
541                                 u64 check_mask;
542
543                                 if (is_jbus)
544                                         check_mask = (0x2UL << (2*i));
545                                 else
546                                         check_mask = (0x2UL <<
547                                                       this_busy_nack);
548                                 if ((dispatch_stat & check_mask) == 0)
549                                         cpu_clear(i, mask);
550                                 this_busy_nack += 2;
551                         }
552
553                         goto retry;
554                 }
555         }
556 }
557
558 /* Multi-cpu list version.  */
559 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
560 {
561         struct trap_per_cpu *tb;
562         u16 *cpu_list;
563         u64 *mondo;
564         cpumask_t error_mask;
565         unsigned long flags, status;
566         int cnt, retries, this_cpu, prev_sent, i;
567
568         /* We have to do this whole thing with interrupts fully disabled.
569          * Otherwise if we send an xcall from interrupt context it will
570          * corrupt both our mondo block and cpu list state.
571          *
572          * One consequence of this is that we cannot use timeout mechanisms
573          * that depend upon interrupts being delivered locally.  So, for
574          * example, we cannot sample jiffies and expect it to advance.
575          *
576          * Fortunately, udelay() uses %stick/%tick so we can use that.
577          */
578         local_irq_save(flags);
579
580         this_cpu = smp_processor_id();
581         tb = &trap_block[this_cpu];
582
583         mondo = __va(tb->cpu_mondo_block_pa);
584         mondo[0] = data0;
585         mondo[1] = data1;
586         mondo[2] = data2;
587         wmb();
588
589         cpu_list = __va(tb->cpu_list_pa);
590
591         /* Setup the initial cpu list.  */
592         cnt = 0;
593         for_each_cpu_mask(i, mask)
594                 cpu_list[cnt++] = i;
595
596         cpus_clear(error_mask);
597         retries = 0;
598         prev_sent = 0;
599         do {
600                 int forward_progress, n_sent;
601
602                 status = sun4v_cpu_mondo_send(cnt,
603                                               tb->cpu_list_pa,
604                                               tb->cpu_mondo_block_pa);
605
606                 /* HV_EOK means all cpus received the xcall, we're done.  */
607                 if (likely(status == HV_EOK))
608                         break;
609
610                 /* First, see if we made any forward progress.
611                  *
612                  * The hypervisor indicates successful sends by setting
613                  * cpu list entries to the value 0xffff.
614                  */
615                 n_sent = 0;
616                 for (i = 0; i < cnt; i++) {
617                         if (likely(cpu_list[i] == 0xffff))
618                                 n_sent++;
619                 }
620
621                 forward_progress = 0;
622                 if (n_sent > prev_sent)
623                         forward_progress = 1;
624
625                 prev_sent = n_sent;
626
627                 /* If we get a HV_ECPUERROR, then one or more of the cpus
628                  * in the list are in error state.  Use the cpu_state()
629                  * hypervisor call to find out which cpus are in error state.
630                  */
631                 if (unlikely(status == HV_ECPUERROR)) {
632                         for (i = 0; i < cnt; i++) {
633                                 long err;
634                                 u16 cpu;
635
636                                 cpu = cpu_list[i];
637                                 if (cpu == 0xffff)
638                                         continue;
639
640                                 err = sun4v_cpu_state(cpu);
641                                 if (err >= 0 &&
642                                     err == HV_CPU_STATE_ERROR) {
643                                         cpu_list[i] = 0xffff;
644                                         cpu_set(cpu, error_mask);
645                                 }
646                         }
647                 } else if (unlikely(status != HV_EWOULDBLOCK))
648                         goto fatal_mondo_error;
649
650                 /* Don't bother rewriting the CPU list, just leave the
651                  * 0xffff and non-0xffff entries in there and the
652                  * hypervisor will do the right thing.
653                  *
654                  * Only advance timeout state if we didn't make any
655                  * forward progress.
656                  */
657                 if (unlikely(!forward_progress)) {
658                         if (unlikely(++retries > 10000))
659                                 goto fatal_mondo_timeout;
660
661                         /* Delay a little bit to let other cpus catch up
662                          * on their cpu mondo queue work.
663                          */
664                         udelay(2 * cnt);
665                 }
666         } while (1);
667
668         local_irq_restore(flags);
669
670         if (unlikely(!cpus_empty(error_mask)))
671                 goto fatal_mondo_cpu_error;
672
673         return;
674
675 fatal_mondo_cpu_error:
676         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
677                "were in error state\n",
678                this_cpu);
679         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
680         for_each_cpu_mask(i, error_mask)
681                 printk("%d ", i);
682         printk("]\n");
683         return;
684
685 fatal_mondo_timeout:
686         local_irq_restore(flags);
687         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
688                " progress after %d retries.\n",
689                this_cpu, retries);
690         goto dump_cpu_list_and_out;
691
692 fatal_mondo_error:
693         local_irq_restore(flags);
694         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
695                this_cpu, status);
696         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
697                "mondo_block_pa(%lx)\n",
698                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
699
700 dump_cpu_list_and_out:
701         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
702         for (i = 0; i < cnt; i++)
703                 printk("%u ", cpu_list[i]);
704         printk("]\n");
705 }
706
707 /* Send cross call to all processors mentioned in MASK
708  * except self.
709  */
710 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
711 {
712         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
713         int this_cpu = get_cpu();
714
715         cpus_and(mask, mask, cpu_online_map);
716         cpu_clear(this_cpu, mask);
717
718         if (tlb_type == spitfire)
719                 spitfire_xcall_deliver(data0, data1, data2, mask);
720         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
721                 cheetah_xcall_deliver(data0, data1, data2, mask);
722         else
723                 hypervisor_xcall_deliver(data0, data1, data2, mask);
724         /* NOTE: Caller runs local copy on master. */
725
726         put_cpu();
727 }
728
729 extern unsigned long xcall_sync_tick;
730
731 static void smp_start_sync_tick_client(int cpu)
732 {
733         cpumask_t mask = cpumask_of_cpu(cpu);
734
735         smp_cross_call_masked(&xcall_sync_tick,
736                               0, 0, 0, mask);
737 }
738
739 /* Send cross call to all processors except self. */
740 #define smp_cross_call(func, ctx, data1, data2) \
741         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
742
743 struct call_data_struct {
744         void (*func) (void *info);
745         void *info;
746         atomic_t finished;
747         int wait;
748 };
749
750 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
751 static struct call_data_struct *call_data;
752
753 extern unsigned long xcall_call_function;
754
755 /**
756  * smp_call_function(): Run a function on all other CPUs.
757  * @func: The function to run. This must be fast and non-blocking.
758  * @info: An arbitrary pointer to pass to the function.
759  * @nonatomic: currently unused.
760  * @wait: If true, wait (atomically) until function has completed on other CPUs.
761  *
762  * Returns 0 on success, else a negative status code. Does not return until
763  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
764  *
765  * You must not call this function with disabled interrupts or from a
766  * hardware interrupt handler or from a bottom half handler.
767  */
768 static int smp_call_function_mask(void (*func)(void *info), void *info,
769                                   int nonatomic, int wait, cpumask_t mask)
770 {
771         struct call_data_struct data;
772         int cpus;
773
774         /* Can deadlock when called with interrupts disabled */
775         WARN_ON(irqs_disabled());
776
777         data.func = func;
778         data.info = info;
779         atomic_set(&data.finished, 0);
780         data.wait = wait;
781
782         spin_lock(&call_lock);
783
784         cpu_clear(smp_processor_id(), mask);
785         cpus = cpus_weight(mask);
786         if (!cpus)
787                 goto out_unlock;
788
789         call_data = &data;
790         mb();
791
792         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
793
794         /* Wait for response */
795         while (atomic_read(&data.finished) != cpus)
796                 cpu_relax();
797
798 out_unlock:
799         spin_unlock(&call_lock);
800
801         return 0;
802 }
803
804 int smp_call_function(void (*func)(void *info), void *info,
805                       int nonatomic, int wait)
806 {
807         return smp_call_function_mask(func, info, nonatomic, wait,
808                                       cpu_online_map);
809 }
810
811 void smp_call_function_client(int irq, struct pt_regs *regs)
812 {
813         void (*func) (void *info) = call_data->func;
814         void *info = call_data->info;
815
816         clear_softint(1 << irq);
817         if (call_data->wait) {
818                 /* let initiator proceed only after completion */
819                 func(info);
820                 atomic_inc(&call_data->finished);
821         } else {
822                 /* let initiator proceed after getting data */
823                 atomic_inc(&call_data->finished);
824                 func(info);
825         }
826 }
827
828 static void tsb_sync(void *info)
829 {
830         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
831         struct mm_struct *mm = info;
832
833         /* It is not valid to test "currrent->active_mm == mm" here.
834          *
835          * The value of "current" is not changed atomically with
836          * switch_mm().  But that's OK, we just need to check the
837          * current cpu's trap block PGD physical address.
838          */
839         if (tp->pgd_paddr == __pa(mm->pgd))
840                 tsb_context_switch(mm);
841 }
842
843 void smp_tsb_sync(struct mm_struct *mm)
844 {
845         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
846 }
847
848 extern unsigned long xcall_flush_tlb_mm;
849 extern unsigned long xcall_flush_tlb_pending;
850 extern unsigned long xcall_flush_tlb_kernel_range;
851 extern unsigned long xcall_report_regs;
852 extern unsigned long xcall_receive_signal;
853 extern unsigned long xcall_new_mmu_context_version;
854
855 #ifdef DCACHE_ALIASING_POSSIBLE
856 extern unsigned long xcall_flush_dcache_page_cheetah;
857 #endif
858 extern unsigned long xcall_flush_dcache_page_spitfire;
859
860 #ifdef CONFIG_DEBUG_DCFLUSH
861 extern atomic_t dcpage_flushes;
862 extern atomic_t dcpage_flushes_xcall;
863 #endif
864
865 static __inline__ void __local_flush_dcache_page(struct page *page)
866 {
867 #ifdef DCACHE_ALIASING_POSSIBLE
868         __flush_dcache_page(page_address(page),
869                             ((tlb_type == spitfire) &&
870                              page_mapping(page) != NULL));
871 #else
872         if (page_mapping(page) != NULL &&
873             tlb_type == spitfire)
874                 __flush_icache_page(__pa(page_address(page)));
875 #endif
876 }
877
878 void smp_flush_dcache_page_impl(struct page *page, int cpu)
879 {
880         cpumask_t mask = cpumask_of_cpu(cpu);
881         int this_cpu;
882
883         if (tlb_type == hypervisor)
884                 return;
885
886 #ifdef CONFIG_DEBUG_DCFLUSH
887         atomic_inc(&dcpage_flushes);
888 #endif
889
890         this_cpu = get_cpu();
891
892         if (cpu == this_cpu) {
893                 __local_flush_dcache_page(page);
894         } else if (cpu_online(cpu)) {
895                 void *pg_addr = page_address(page);
896                 u64 data0;
897
898                 if (tlb_type == spitfire) {
899                         data0 =
900                                 ((u64)&xcall_flush_dcache_page_spitfire);
901                         if (page_mapping(page) != NULL)
902                                 data0 |= ((u64)1 << 32);
903                         spitfire_xcall_deliver(data0,
904                                                __pa(pg_addr),
905                                                (u64) pg_addr,
906                                                mask);
907                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
909                         data0 =
910                                 ((u64)&xcall_flush_dcache_page_cheetah);
911                         cheetah_xcall_deliver(data0,
912                                               __pa(pg_addr),
913                                               0, mask);
914 #endif
915                 }
916 #ifdef CONFIG_DEBUG_DCFLUSH
917                 atomic_inc(&dcpage_flushes_xcall);
918 #endif
919         }
920
921         put_cpu();
922 }
923
924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925 {
926         void *pg_addr = page_address(page);
927         cpumask_t mask = cpu_online_map;
928         u64 data0;
929         int this_cpu;
930
931         if (tlb_type == hypervisor)
932                 return;
933
934         this_cpu = get_cpu();
935
936         cpu_clear(this_cpu, mask);
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939         atomic_inc(&dcpage_flushes);
940 #endif
941         if (cpus_empty(mask))
942                 goto flush_self;
943         if (tlb_type == spitfire) {
944                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945                 if (page_mapping(page) != NULL)
946                         data0 |= ((u64)1 << 32);
947                 spitfire_xcall_deliver(data0,
948                                        __pa(pg_addr),
949                                        (u64) pg_addr,
950                                        mask);
951         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
952 #ifdef DCACHE_ALIASING_POSSIBLE
953                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
954                 cheetah_xcall_deliver(data0,
955                                       __pa(pg_addr),
956                                       0, mask);
957 #endif
958         }
959 #ifdef CONFIG_DEBUG_DCFLUSH
960         atomic_inc(&dcpage_flushes_xcall);
961 #endif
962  flush_self:
963         __local_flush_dcache_page(page);
964
965         put_cpu();
966 }
967
968 static void __smp_receive_signal_mask(cpumask_t mask)
969 {
970         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
971 }
972
973 void smp_receive_signal(int cpu)
974 {
975         cpumask_t mask = cpumask_of_cpu(cpu);
976
977         if (cpu_online(cpu))
978                 __smp_receive_signal_mask(mask);
979 }
980
981 void smp_receive_signal_client(int irq, struct pt_regs *regs)
982 {
983         clear_softint(1 << irq);
984 }
985
986 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
987 {
988         struct mm_struct *mm;
989         unsigned long flags;
990
991         clear_softint(1 << irq);
992
993         /* See if we need to allocate a new TLB context because
994          * the version of the one we are using is now out of date.
995          */
996         mm = current->active_mm;
997         if (unlikely(!mm || (mm == &init_mm)))
998                 return;
999
1000         spin_lock_irqsave(&mm->context.lock, flags);
1001
1002         if (unlikely(!CTX_VALID(mm->context)))
1003                 get_new_mmu_context(mm);
1004
1005         spin_unlock_irqrestore(&mm->context.lock, flags);
1006
1007         load_secondary_context(mm);
1008         __flush_tlb_mm(CTX_HWBITS(mm->context),
1009                        SECONDARY_CONTEXT);
1010 }
1011
1012 void smp_new_mmu_context_version(void)
1013 {
1014         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1015 }
1016
1017 void smp_report_regs(void)
1018 {
1019         smp_cross_call(&xcall_report_regs, 0, 0, 0);
1020 }
1021
1022 /* We know that the window frames of the user have been flushed
1023  * to the stack before we get here because all callers of us
1024  * are flush_tlb_*() routines, and these run after flush_cache_*()
1025  * which performs the flushw.
1026  *
1027  * The SMP TLB coherency scheme we use works as follows:
1028  *
1029  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1030  *    space has (potentially) executed on, this is the heuristic
1031  *    we use to avoid doing cross calls.
1032  *
1033  *    Also, for flushing from kswapd and also for clones, we
1034  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1035  *
1036  * 2) TLB context numbers are shared globally across all processors
1037  *    in the system, this allows us to play several games to avoid
1038  *    cross calls.
1039  *
1040  *    One invariant is that when a cpu switches to a process, and
1041  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1042  *    current cpu's bit set, that tlb context is flushed locally.
1043  *
1044  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1045  *    cross calls when we want to flush the currently running process's
1046  *    tlb state.  This is done by clearing all cpu bits except the current
1047  *    processor's in current->active_mm->cpu_vm_mask and performing the
1048  *    flush locally only.  This will force any subsequent cpus which run
1049  *    this task to flush the context from the local tlb if the process
1050  *    migrates to another cpu (again).
1051  *
1052  * 3) For shared address spaces (threads) and swapping we bite the
1053  *    bullet for most cases and perform the cross call (but only to
1054  *    the cpus listed in cpu_vm_mask).
1055  *
1056  *    The performance gain from "optimizing" away the cross call for threads is
1057  *    questionable (in theory the big win for threads is the massive sharing of
1058  *    address space state across processors).
1059  */
1060
1061 /* This currently is only used by the hugetlb arch pre-fault
1062  * hook on UltraSPARC-III+ and later when changing the pagesize
1063  * bits of the context register for an address space.
1064  */
1065 void smp_flush_tlb_mm(struct mm_struct *mm)
1066 {
1067         u32 ctx = CTX_HWBITS(mm->context);
1068         int cpu = get_cpu();
1069
1070         if (atomic_read(&mm->mm_users) == 1) {
1071                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1072                 goto local_flush_and_out;
1073         }
1074
1075         smp_cross_call_masked(&xcall_flush_tlb_mm,
1076                               ctx, 0, 0,
1077                               mm->cpu_vm_mask);
1078
1079 local_flush_and_out:
1080         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1081
1082         put_cpu();
1083 }
1084
1085 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1086 {
1087         u32 ctx = CTX_HWBITS(mm->context);
1088         int cpu = get_cpu();
1089
1090         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1091                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1092         else
1093                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1094                                       ctx, nr, (unsigned long) vaddrs,
1095                                       mm->cpu_vm_mask);
1096
1097         __flush_tlb_pending(ctx, nr, vaddrs);
1098
1099         put_cpu();
1100 }
1101
1102 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1103 {
1104         start &= PAGE_MASK;
1105         end    = PAGE_ALIGN(end);
1106         if (start != end) {
1107                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1108                                0, start, end);
1109
1110                 __flush_tlb_kernel_range(start, end);
1111         }
1112 }
1113
1114 /* CPU capture. */
1115 /* #define CAPTURE_DEBUG */
1116 extern unsigned long xcall_capture;
1117
1118 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1119 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1120 static unsigned long penguins_are_doing_time;
1121
1122 void smp_capture(void)
1123 {
1124         int result = atomic_add_ret(1, &smp_capture_depth);
1125
1126         if (result == 1) {
1127                 int ncpus = num_online_cpus();
1128
1129 #ifdef CAPTURE_DEBUG
1130                 printk("CPU[%d]: Sending penguins to jail...",
1131                        smp_processor_id());
1132 #endif
1133                 penguins_are_doing_time = 1;
1134                 membar_storestore_loadstore();
1135                 atomic_inc(&smp_capture_registry);
1136                 smp_cross_call(&xcall_capture, 0, 0, 0);
1137                 while (atomic_read(&smp_capture_registry) != ncpus)
1138                         rmb();
1139 #ifdef CAPTURE_DEBUG
1140                 printk("done\n");
1141 #endif
1142         }
1143 }
1144
1145 void smp_release(void)
1146 {
1147         if (atomic_dec_and_test(&smp_capture_depth)) {
1148 #ifdef CAPTURE_DEBUG
1149                 printk("CPU[%d]: Giving pardon to "
1150                        "imprisoned penguins\n",
1151                        smp_processor_id());
1152 #endif
1153                 penguins_are_doing_time = 0;
1154                 membar_storeload_storestore();
1155                 atomic_dec(&smp_capture_registry);
1156         }
1157 }
1158
1159 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1160  * can service tlb flush xcalls...
1161  */
1162 extern void prom_world(int);
1163
1164 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1165 {
1166         clear_softint(1 << irq);
1167
1168         preempt_disable();
1169
1170         __asm__ __volatile__("flushw");
1171         prom_world(1);
1172         atomic_inc(&smp_capture_registry);
1173         membar_storeload_storestore();
1174         while (penguins_are_doing_time)
1175                 rmb();
1176         atomic_dec(&smp_capture_registry);
1177         prom_world(0);
1178
1179         preempt_enable();
1180 }
1181
1182 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1183 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1184
1185 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1186 {
1187         unsigned long compare, tick, pstate;
1188         int cpu = smp_processor_id();
1189         int user = user_mode(regs);
1190
1191         /*
1192          * Check for level 14 softint.
1193          */
1194         {
1195                 unsigned long tick_mask = tick_ops->softint_mask;
1196
1197                 if (!(get_softint() & tick_mask)) {
1198                         extern void handler_irq(int, struct pt_regs *);
1199
1200                         handler_irq(14, regs);
1201                         return;
1202                 }
1203                 clear_softint(tick_mask);
1204         }
1205
1206         do {
1207                 profile_tick(CPU_PROFILING, regs);
1208                 if (!--prof_counter(cpu)) {
1209                         irq_enter();
1210
1211                         if (cpu == boot_cpu_id) {
1212                                 kstat_this_cpu.irqs[0]++;
1213                                 timer_tick_interrupt(regs);
1214                         }
1215
1216                         update_process_times(user);
1217
1218                         irq_exit();
1219
1220                         prof_counter(cpu) = prof_multiplier(cpu);
1221                 }
1222
1223                 /* Guarantee that the following sequences execute
1224                  * uninterrupted.
1225                  */
1226                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1227                                      "wrpr      %0, %1, %%pstate"
1228                                      : "=r" (pstate)
1229                                      : "i" (PSTATE_IE));
1230
1231                 compare = tick_ops->add_compare(current_tick_offset);
1232                 tick = tick_ops->get_tick();
1233
1234                 /* Restore PSTATE_IE. */
1235                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1236                                      : /* no outputs */
1237                                      : "r" (pstate));
1238         } while (time_after_eq(tick, compare));
1239 }
1240
1241 static void __init smp_setup_percpu_timer(void)
1242 {
1243         int cpu = smp_processor_id();
1244         unsigned long pstate;
1245
1246         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1247
1248         /* Guarantee that the following sequences execute
1249          * uninterrupted.
1250          */
1251         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1252                              "wrpr      %0, %1, %%pstate"
1253                              : "=r" (pstate)
1254                              : "i" (PSTATE_IE));
1255
1256         tick_ops->init_tick(current_tick_offset);
1257
1258         /* Restore PSTATE_IE. */
1259         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1260                              : /* no outputs */
1261                              : "r" (pstate));
1262 }
1263
1264 void __init smp_tick_init(void)
1265 {
1266         boot_cpu_id = hard_smp_processor_id();
1267         current_tick_offset = timer_tick_offset;
1268
1269         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1270 }
1271
1272 /* /proc/profile writes can call this, don't __init it please. */
1273 static DEFINE_SPINLOCK(prof_setup_lock);
1274
1275 int setup_profiling_timer(unsigned int multiplier)
1276 {
1277         unsigned long flags;
1278         int i;
1279
1280         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1281                 return -EINVAL;
1282
1283         spin_lock_irqsave(&prof_setup_lock, flags);
1284         for_each_possible_cpu(i)
1285                 prof_multiplier(i) = multiplier;
1286         current_tick_offset = (timer_tick_offset / multiplier);
1287         spin_unlock_irqrestore(&prof_setup_lock, flags);
1288
1289         return 0;
1290 }
1291
1292 static void __init smp_tune_scheduling(void)
1293 {
1294         struct device_node *dp;
1295         int instance;
1296         unsigned int def, smallest = ~0U;
1297
1298         def = ((tlb_type == hypervisor) ?
1299                (3 * 1024 * 1024) :
1300                (4 * 1024 * 1024));
1301
1302         instance = 0;
1303         while (!cpu_find_by_instance(instance, &dp, NULL)) {
1304                 unsigned int val;
1305
1306                 val = of_getintprop_default(dp, "ecache-size", def);
1307                 if (val < smallest)
1308                         smallest = val;
1309
1310                 instance++;
1311         }
1312
1313         /* Any value less than 256K is nonsense.  */
1314         if (smallest < (256U * 1024U))
1315                 smallest = 256 * 1024;
1316
1317         max_cache_size = smallest;
1318
1319         if (smallest < 1U * 1024U * 1024U)
1320                 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1321                        smallest / 1024U);
1322         else
1323                 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1324                        smallest / 1024U / 1024U);
1325 }
1326
1327 /* Constrain the number of cpus to max_cpus.  */
1328 void __init smp_prepare_cpus(unsigned int max_cpus)
1329 {
1330         int i;
1331
1332         if (num_possible_cpus() > max_cpus) {
1333                 int instance, mid;
1334
1335                 instance = 0;
1336                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1337                         if (mid != boot_cpu_id) {
1338                                 cpu_clear(mid, phys_cpu_present_map);
1339                                 cpu_clear(mid, cpu_present_map);
1340                                 if (num_possible_cpus() <= max_cpus)
1341                                         break;
1342                         }
1343                         instance++;
1344                 }
1345         }
1346
1347         for_each_possible_cpu(i) {
1348                 if (tlb_type == hypervisor) {
1349                         int j;
1350
1351                         /* XXX get this mapping from machine description */
1352                         for_each_possible_cpu(j) {
1353                                 if ((j >> 2) == (i >> 2))
1354                                         cpu_set(j, cpu_sibling_map[i]);
1355                         }
1356                 } else {
1357                         cpu_set(i, cpu_sibling_map[i]);
1358                 }
1359         }
1360
1361         smp_store_cpu_info(boot_cpu_id);
1362         smp_tune_scheduling();
1363 }
1364
1365 /* Set this up early so that things like the scheduler can init
1366  * properly.  We use the same cpu mask for both the present and
1367  * possible cpu map.
1368  */
1369 void __init smp_setup_cpu_possible_map(void)
1370 {
1371         int instance, mid;
1372
1373         instance = 0;
1374         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1375                 if (mid < NR_CPUS) {
1376                         cpu_set(mid, phys_cpu_present_map);
1377                         cpu_set(mid, cpu_present_map);
1378                 }
1379                 instance++;
1380         }
1381 }
1382
1383 void __devinit smp_prepare_boot_cpu(void)
1384 {
1385 }
1386
1387 int __devinit __cpu_up(unsigned int cpu)
1388 {
1389         int ret = smp_boot_one_cpu(cpu);
1390
1391         if (!ret) {
1392                 cpu_set(cpu, smp_commenced_mask);
1393                 while (!cpu_isset(cpu, cpu_online_map))
1394                         mb();
1395                 if (!cpu_isset(cpu, cpu_online_map)) {
1396                         ret = -ENODEV;
1397                 } else {
1398                         /* On SUN4V, writes to %tick and %stick are
1399                          * not allowed.
1400                          */
1401                         if (tlb_type != hypervisor)
1402                                 smp_synchronize_one_tick(cpu);
1403                 }
1404         }
1405         return ret;
1406 }
1407
1408 void __init smp_cpus_done(unsigned int max_cpus)
1409 {
1410         unsigned long bogosum = 0;
1411         int i;
1412
1413         for_each_online_cpu(i)
1414                 bogosum += cpu_data(i).udelay_val;
1415         printk("Total of %ld processors activated "
1416                "(%lu.%02lu BogoMIPS).\n",
1417                (long) num_online_cpus(),
1418                bogosum/(500000/HZ),
1419                (bogosum/(5000/HZ))%100);
1420 }
1421
1422 void smp_send_reschedule(int cpu)
1423 {
1424         smp_receive_signal(cpu);
1425 }
1426
1427 /* This is a nop because we capture all other cpus
1428  * anyways when making the PROM active.
1429  */
1430 void smp_send_stop(void)
1431 {
1432 }
1433
1434 unsigned long __per_cpu_base __read_mostly;
1435 unsigned long __per_cpu_shift __read_mostly;
1436
1437 EXPORT_SYMBOL(__per_cpu_base);
1438 EXPORT_SYMBOL(__per_cpu_shift);
1439
1440 void __init setup_per_cpu_areas(void)
1441 {
1442         unsigned long goal, size, i;
1443         char *ptr;
1444
1445         /* Copy section for each CPU (we discard the original) */
1446         goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1447 #ifdef CONFIG_MODULES
1448         if (goal < PERCPU_ENOUGH_ROOM)
1449                 goal = PERCPU_ENOUGH_ROOM;
1450 #endif
1451         __per_cpu_shift = 0;
1452         for (size = 1UL; size < goal; size <<= 1UL)
1453                 __per_cpu_shift++;
1454
1455         ptr = alloc_bootmem(size * NR_CPUS);
1456
1457         __per_cpu_base = ptr - __per_cpu_start;
1458
1459         for (i = 0; i < NR_CPUS; i++, ptr += size)
1460                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1461
1462         /* Setup %g5 for the boot cpu.  */
1463         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1464 }