Merge branch 'release-2.6.27' of git://git.kernel.org/pub/scm/linux/kernel/git/ak...
[pandora-kernel.git] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/bootmem.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/kdebug.h>
22
23 #include <asm/bitext.h>
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/vaddrs.h>
29 #include <asm/traps.h>
30 #include <asm/smp.h>
31 #include <asm/mbus.h>
32 #include <asm/cache.h>
33 #include <asm/oplib.h>
34 #include <asm/sbus.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49
50 #include <asm/btfixup.h>
51
52 enum mbus_module srmmu_modtype;
53 static unsigned int hwbug_bitmask;
54 int vac_cache_size;
55 int vac_line_size;
56
57 extern struct resource sparc_iomap;
58
59 extern unsigned long last_valid_pfn;
60
61 extern unsigned long page_kernel;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 #ifdef CONFIG_SMP
66 #define FLUSH_BEGIN(mm)
67 #define FLUSH_END
68 #else
69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70 #define FLUSH_END       }
71 #endif
72
73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75
76 int flush_page_for_dma_global = 1;
77
78 #ifdef CONFIG_SMP
79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81 #endif
82
83 char *srmmu_name;
84
85 ctxd_t *srmmu_ctx_table_phys;
86 static ctxd_t *srmmu_context_table;
87
88 int viking_mxcc_present;
89 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90
91 static int is_hypersparc;
92
93 /*
94  * In general all page table modifications should use the V8 atomic
95  * swap instruction.  This insures the mmu and the cpu are in sync
96  * with respect to ref/mod bits in the page tables.
97  */
98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99 {
100         __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101         return value;
102 }
103
104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105 {
106         srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107 }
108
109 /* The very generic SRMMU page table operations. */
110 static inline int srmmu_device_memory(unsigned long x)
111 {
112         return ((x & 0xF0000000) != 0);
113 }
114
115 static int srmmu_cache_pagetables;
116
117 /* these will be initialized in srmmu_nocache_calcsize() */
118 static unsigned long srmmu_nocache_size;
119 static unsigned long srmmu_nocache_end;
120
121 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123
124 /* The context table is a nocache user with the biggest alignment needs. */
125 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126
127 void *srmmu_nocache_pool;
128 void *srmmu_nocache_bitmap;
129 static struct bit_map srmmu_nocache_map;
130
131 static unsigned long srmmu_pte_pfn(pte_t pte)
132 {
133         if (srmmu_device_memory(pte_val(pte))) {
134                 /* Just return something that will cause
135                  * pfn_valid() to return false.  This makes
136                  * copy_one_pte() to just directly copy to
137                  * PTE over.
138                  */
139                 return ~0UL;
140         }
141         return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
142 }
143
144 static struct page *srmmu_pmd_page(pmd_t pmd)
145 {
146
147         if (srmmu_device_memory(pmd_val(pmd)))
148                 BUG();
149         return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
150 }
151
152 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
154
155
156 static inline int srmmu_pte_none(pte_t pte)
157 { return !(pte_val(pte) & 0xFFFFFFF); }
158
159 static inline int srmmu_pte_present(pte_t pte)
160 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161
162 static inline void srmmu_pte_clear(pte_t *ptep)
163 { srmmu_set_pte(ptep, __pte(0)); }
164
165 static inline int srmmu_pmd_none(pmd_t pmd)
166 { return !(pmd_val(pmd) & 0xFFFFFFF); }
167
168 static inline int srmmu_pmd_bad(pmd_t pmd)
169 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170
171 static inline int srmmu_pmd_present(pmd_t pmd)
172 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173
174 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175         int i;
176         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
178 }
179
180 static inline int srmmu_pgd_none(pgd_t pgd)          
181 { return !(pgd_val(pgd) & 0xFFFFFFF); }
182
183 static inline int srmmu_pgd_bad(pgd_t pgd)
184 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185
186 static inline int srmmu_pgd_present(pgd_t pgd)
187 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188
189 static inline void srmmu_pgd_clear(pgd_t * pgdp)
190 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191
192 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194
195 static inline pte_t srmmu_pte_mkclean(pte_t pte)
196 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197
198 static inline pte_t srmmu_pte_mkold(pte_t pte)
199 { return __pte(pte_val(pte) & ~SRMMU_REF);}
200
201 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202 { return __pte(pte_val(pte) | SRMMU_WRITE);}
203
204 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
206
207 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208 { return __pte(pte_val(pte) | SRMMU_REF);}
209
210 /*
211  * Conversion functions: convert a page and protection to a page entry,
212  * and a page entry and page directory to the page they refer to.
213  */
214 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215 { return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216
217 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219
220 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222
223 /* XXX should we hyper_flush_whole_icache here - Anton */
224 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226
227 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229
230 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231 {
232         unsigned long ptp;      /* Physical address, shifted right by 4 */
233         int i;
234
235         ptp = __nocache_pa((unsigned long) ptep) >> 4;
236         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239         }
240 }
241
242 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243 {
244         unsigned long ptp;      /* Physical address, shifted right by 4 */
245         int i;
246
247         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
248         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251         }
252 }
253
254 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256
257 /* to find an entry in a top-level page table... */
258 static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
259 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260
261 /* Find an entry in the second-level page table.. */
262 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263 {
264         return (pmd_t *) srmmu_pgd_page(*dir) +
265             ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266 }
267
268 /* Find an entry in the third-level page table.. */ 
269 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270 {
271         void *pte;
272
273         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274         return (pte_t *) pte +
275             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276 }
277
278 static unsigned long srmmu_swp_type(swp_entry_t entry)
279 {
280         return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281 }
282
283 static unsigned long srmmu_swp_offset(swp_entry_t entry)
284 {
285         return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286 }
287
288 static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289 {
290         return (swp_entry_t) {
291                   (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292                 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293 }
294
295 /*
296  * size: bytes to allocate in the nocache area.
297  * align: bytes, number to align at.
298  * Returns the virtual address of the allocated area.
299  */
300 static unsigned long __srmmu_get_nocache(int size, int align)
301 {
302         int offset;
303
304         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305                 printk("Size 0x%x too small for nocache request\n", size);
306                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
307         }
308         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309                 printk("Size 0x%x unaligned int nocache request\n", size);
310                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311         }
312         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313
314         offset = bit_map_string_get(&srmmu_nocache_map,
315                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317         if (offset == -1) {
318                 printk("srmmu: out of nocache %d: %d/%d\n",
319                     size, (int) srmmu_nocache_size,
320                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321                 return 0;
322         }
323
324         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325 }
326
327 static unsigned long srmmu_get_nocache(int size, int align)
328 {
329         unsigned long tmp;
330
331         tmp = __srmmu_get_nocache(size, align);
332
333         if (tmp)
334                 memset((void *)tmp, 0, size);
335
336         return tmp;
337 }
338
339 static void srmmu_free_nocache(unsigned long vaddr, int size)
340 {
341         int offset;
342
343         if (vaddr < SRMMU_NOCACHE_VADDR) {
344                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346                 BUG();
347         }
348         if (vaddr+size > srmmu_nocache_end) {
349                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350                     vaddr, srmmu_nocache_end);
351                 BUG();
352         }
353         if (size & (size-1)) {
354                 printk("Size 0x%x is not a power of 2\n", size);
355                 BUG();
356         }
357         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358                 printk("Size 0x%x is too small\n", size);
359                 BUG();
360         }
361         if (vaddr & (size-1)) {
362                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363                 BUG();
364         }
365
366         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368
369         bit_map_clear(&srmmu_nocache_map, offset, size);
370 }
371
372 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373                                                  unsigned long end);
374
375 extern unsigned long probe_memory(void);        /* in fault.c */
376
377 /*
378  * Reserve nocache dynamically proportionally to the amount of
379  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380  */
381 static void srmmu_nocache_calcsize(void)
382 {
383         unsigned long sysmemavail = probe_memory() / 1024;
384         int srmmu_nocache_npages;
385
386         srmmu_nocache_npages =
387                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388
389  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393
394         /* anything above 1280 blows up */
395         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397
398         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400 }
401
402 static void __init srmmu_nocache_init(void)
403 {
404         unsigned int bitmap_bits;
405         pgd_t *pgd;
406         pmd_t *pmd;
407         pte_t *pte;
408         unsigned long paddr, vaddr;
409         unsigned long pteval;
410
411         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412
413         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416
417         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419
420         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422         init_mm.pgd = srmmu_swapper_pg_dir;
423
424         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425
426         paddr = __pa((unsigned long)srmmu_nocache_pool);
427         vaddr = SRMMU_NOCACHE_VADDR;
428
429         while (vaddr < srmmu_nocache_end) {
430                 pgd = pgd_offset_k(vaddr);
431                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433
434                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435
436                 if (srmmu_cache_pagetables)
437                         pteval |= SRMMU_CACHE;
438
439                 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440
441                 vaddr += PAGE_SIZE;
442                 paddr += PAGE_SIZE;
443         }
444
445         flush_cache_all();
446         flush_tlb_all();
447 }
448
449 static inline pgd_t *srmmu_get_pgd_fast(void)
450 {
451         pgd_t *pgd = NULL;
452
453         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454         if (pgd) {
455                 pgd_t *init = pgd_offset_k(0);
456                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459         }
460
461         return pgd;
462 }
463
464 static void srmmu_free_pgd_fast(pgd_t *pgd)
465 {
466         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467 }
468
469 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470 {
471         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472 }
473
474 static void srmmu_pmd_free(pmd_t * pmd)
475 {
476         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477 }
478
479 /*
480  * Hardware needs alignment to 256 only, but we align to whole page size
481  * to reduce fragmentation problems due to the buddy principle.
482  * XXX Provide actual fragmentation statistics in /proc.
483  *
484  * Alignments up to the page size are the same for physical and virtual
485  * addresses of the nocache area.
486  */
487 static pte_t *
488 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489 {
490         return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491 }
492
493 static pgtable_t
494 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495 {
496         unsigned long pte;
497         struct page *page;
498
499         if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
500                 return NULL;
501         page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
502         pgtable_page_ctor(page);
503         return page;
504 }
505
506 static void srmmu_free_pte_fast(pte_t *pte)
507 {
508         srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
509 }
510
511 static void srmmu_pte_free(pgtable_t pte)
512 {
513         unsigned long p;
514
515         pgtable_page_dtor(pte);
516         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
517         if (p == 0)
518                 BUG();
519         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
520         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
521         srmmu_free_nocache(p, PTE_SIZE);
522 }
523
524 /*
525  */
526 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527 {
528         struct ctx_list *ctxp;
529
530         ctxp = ctx_free.next;
531         if(ctxp != &ctx_free) {
532                 remove_from_ctx_list(ctxp);
533                 add_to_used_ctxlist(ctxp);
534                 mm->context = ctxp->ctx_number;
535                 ctxp->ctx_mm = mm;
536                 return;
537         }
538         ctxp = ctx_used.next;
539         if(ctxp->ctx_mm == old_mm)
540                 ctxp = ctxp->next;
541         if(ctxp == &ctx_used)
542                 panic("out of mmu contexts");
543         flush_cache_mm(ctxp->ctx_mm);
544         flush_tlb_mm(ctxp->ctx_mm);
545         remove_from_ctx_list(ctxp);
546         add_to_used_ctxlist(ctxp);
547         ctxp->ctx_mm->context = NO_CONTEXT;
548         ctxp->ctx_mm = mm;
549         mm->context = ctxp->ctx_number;
550 }
551
552 static inline void free_context(int context)
553 {
554         struct ctx_list *ctx_old;
555
556         ctx_old = ctx_list_pool + context;
557         remove_from_ctx_list(ctx_old);
558         add_to_free_ctxlist(ctx_old);
559 }
560
561
562 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563     struct task_struct *tsk, int cpu)
564 {
565         if(mm->context == NO_CONTEXT) {
566                 spin_lock(&srmmu_context_spinlock);
567                 alloc_context(old_mm, mm);
568                 spin_unlock(&srmmu_context_spinlock);
569                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
570         }
571
572         if (is_hypersparc)
573                 hyper_flush_whole_icache();
574
575         srmmu_set_context(mm->context);
576 }
577
578 /* Low level IO area allocation on the SRMMU. */
579 static inline void srmmu_mapioaddr(unsigned long physaddr,
580     unsigned long virt_addr, int bus_type)
581 {
582         pgd_t *pgdp;
583         pmd_t *pmdp;
584         pte_t *ptep;
585         unsigned long tmp;
586
587         physaddr &= PAGE_MASK;
588         pgdp = pgd_offset_k(virt_addr);
589         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590         ptep = srmmu_pte_offset(pmdp, virt_addr);
591         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
592
593         /*
594          * I need to test whether this is consistent over all
595          * sun4m's.  The bus_type represents the upper 4 bits of
596          * 36-bit physical address on the I/O space lines...
597          */
598         tmp |= (bus_type << 28);
599         tmp |= SRMMU_PRIV;
600         __flush_page_to_ram(virt_addr);
601         srmmu_set_pte(ptep, __pte(tmp));
602 }
603
604 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605     unsigned long xva, unsigned int len)
606 {
607         while (len != 0) {
608                 len -= PAGE_SIZE;
609                 srmmu_mapioaddr(xpa, xva, bus);
610                 xva += PAGE_SIZE;
611                 xpa += PAGE_SIZE;
612         }
613         flush_tlb_all();
614 }
615
616 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617 {
618         pgd_t *pgdp;
619         pmd_t *pmdp;
620         pte_t *ptep;
621
622         pgdp = pgd_offset_k(virt_addr);
623         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624         ptep = srmmu_pte_offset(pmdp, virt_addr);
625
626         /* No need to flush uncacheable page. */
627         srmmu_pte_clear(ptep);
628 }
629
630 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631 {
632         while (len != 0) {
633                 len -= PAGE_SIZE;
634                 srmmu_unmapioaddr(virt_addr);
635                 virt_addr += PAGE_SIZE;
636         }
637         flush_tlb_all();
638 }
639
640 /*
641  * On the SRMMU we do not have the problems with limited tlb entries
642  * for mapping kernel pages, so we just take things from the free page
643  * pool.  As a side effect we are putting a little too much pressure
644  * on the gfp() subsystem.  This setup also makes the logic of the
645  * iommu mapping code a lot easier as we can transparently handle
646  * mappings on the kernel stack without any special code as we did
647  * need on the sun4c.
648  */
649 static struct thread_info *srmmu_alloc_thread_info(void)
650 {
651         struct thread_info *ret;
652
653         ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654                                                      THREAD_INFO_ORDER);
655 #ifdef CONFIG_DEBUG_STACK_USAGE
656         if (ret)
657                 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658 #endif /* DEBUG_STACK_USAGE */
659
660         return ret;
661 }
662
663 static void srmmu_free_thread_info(struct thread_info *ti)
664 {
665         free_pages((unsigned long)ti, THREAD_INFO_ORDER);
666 }
667
668 /* tsunami.S */
669 extern void tsunami_flush_cache_all(void);
670 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673 extern void tsunami_flush_page_to_ram(unsigned long page);
674 extern void tsunami_flush_page_for_dma(unsigned long page);
675 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676 extern void tsunami_flush_tlb_all(void);
677 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680 extern void tsunami_setup_blockops(void);
681
682 /*
683  * Workaround, until we find what's going on with Swift. When low on memory,
684  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685  * out it is already in page tables/ fault again on the same instruction.
686  * I really don't understand it, have checked it and contexts
687  * are right, flush_tlb_all is done as well, and it faults again...
688  * Strange. -jj
689  *
690  * The following code is a deadwood that may be necessary when
691  * we start to make precise page flushes again. --zaitcev
692  */
693 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694 {
695 #if 0
696         static unsigned long last;
697         unsigned int val;
698         /* unsigned int n; */
699
700         if (address == last) {
701                 val = srmmu_hwprobe(address);
702                 if (val != 0 && pte_val(pte) != val) {
703                         printk("swift_update_mmu_cache: "
704                             "addr %lx put %08x probed %08x from %p\n",
705                             address, pte_val(pte), val,
706                             __builtin_return_address(0));
707                         srmmu_flush_whole_tlb();
708                 }
709         }
710         last = address;
711 #endif
712 }
713
714 /* swift.S */
715 extern void swift_flush_cache_all(void);
716 extern void swift_flush_cache_mm(struct mm_struct *mm);
717 extern void swift_flush_cache_range(struct vm_area_struct *vma,
718                                     unsigned long start, unsigned long end);
719 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720 extern void swift_flush_page_to_ram(unsigned long page);
721 extern void swift_flush_page_for_dma(unsigned long page);
722 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723 extern void swift_flush_tlb_all(void);
724 extern void swift_flush_tlb_mm(struct mm_struct *mm);
725 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726                                   unsigned long start, unsigned long end);
727 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728
729 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
730 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731 {
732         int cctx, ctx1;
733
734         page &= PAGE_MASK;
735         if ((ctx1 = vma->vm_mm->context) != -1) {
736                 cctx = srmmu_get_context();
737 /* Is context # ever different from current context? P3 */
738                 if (cctx != ctx1) {
739                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740                         srmmu_set_context(ctx1);
741                         swift_flush_page(page);
742                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
744                         srmmu_set_context(cctx);
745                 } else {
746                          /* Rm. prot. bits from virt. c. */
747                         /* swift_flush_cache_all(); */
748                         /* swift_flush_cache_page(vma, page); */
749                         swift_flush_page(page);
750
751                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
753                         /* same as above: srmmu_flush_tlb_page() */
754                 }
755         }
756 }
757 #endif
758
759 /*
760  * The following are all MBUS based SRMMU modules, and therefore could
761  * be found in a multiprocessor configuration.  On the whole, these
762  * chips seems to be much more touchy about DVMA and page tables
763  * with respect to cache coherency.
764  */
765
766 /* Cypress flushes. */
767 static void cypress_flush_cache_all(void)
768 {
769         volatile unsigned long cypress_sucks;
770         unsigned long faddr, tagval;
771
772         flush_user_windows();
773         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775                                      "=r" (tagval) :
776                                      "r" (faddr), "r" (0x40000),
777                                      "i" (ASI_M_DATAC_TAG));
778
779                 /* If modified and valid, kick it. */
780                 if((tagval & 0x60) == 0x60)
781                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
782         }
783 }
784
785 static void cypress_flush_cache_mm(struct mm_struct *mm)
786 {
787         register unsigned long a, b, c, d, e, f, g;
788         unsigned long flags, faddr;
789         int octx;
790
791         FLUSH_BEGIN(mm)
792         flush_user_windows();
793         local_irq_save(flags);
794         octx = srmmu_get_context();
795         srmmu_set_context(mm->context);
796         a = 0x20; b = 0x40; c = 0x60;
797         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798
799         faddr = (0x10000 - 0x100);
800         goto inside;
801         do {
802                 faddr -= 0x100;
803         inside:
804                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805                                      "sta %%g0, [%0 + %2] %1\n\t"
806                                      "sta %%g0, [%0 + %3] %1\n\t"
807                                      "sta %%g0, [%0 + %4] %1\n\t"
808                                      "sta %%g0, [%0 + %5] %1\n\t"
809                                      "sta %%g0, [%0 + %6] %1\n\t"
810                                      "sta %%g0, [%0 + %7] %1\n\t"
811                                      "sta %%g0, [%0 + %8] %1\n\t" : :
812                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813                                      "r" (a), "r" (b), "r" (c), "r" (d),
814                                      "r" (e), "r" (f), "r" (g));
815         } while(faddr);
816         srmmu_set_context(octx);
817         local_irq_restore(flags);
818         FLUSH_END
819 }
820
821 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822 {
823         struct mm_struct *mm = vma->vm_mm;
824         register unsigned long a, b, c, d, e, f, g;
825         unsigned long flags, faddr;
826         int octx;
827
828         FLUSH_BEGIN(mm)
829         flush_user_windows();
830         local_irq_save(flags);
831         octx = srmmu_get_context();
832         srmmu_set_context(mm->context);
833         a = 0x20; b = 0x40; c = 0x60;
834         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835
836         start &= SRMMU_REAL_PMD_MASK;
837         while(start < end) {
838                 faddr = (start + (0x10000 - 0x100));
839                 goto inside;
840                 do {
841                         faddr -= 0x100;
842                 inside:
843                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844                                              "sta %%g0, [%0 + %2] %1\n\t"
845                                              "sta %%g0, [%0 + %3] %1\n\t"
846                                              "sta %%g0, [%0 + %4] %1\n\t"
847                                              "sta %%g0, [%0 + %5] %1\n\t"
848                                              "sta %%g0, [%0 + %6] %1\n\t"
849                                              "sta %%g0, [%0 + %7] %1\n\t"
850                                              "sta %%g0, [%0 + %8] %1\n\t" : :
851                                              "r" (faddr),
852                                              "i" (ASI_M_FLUSH_SEG),
853                                              "r" (a), "r" (b), "r" (c), "r" (d),
854                                              "r" (e), "r" (f), "r" (g));
855                 } while (faddr != start);
856                 start += SRMMU_REAL_PMD_SIZE;
857         }
858         srmmu_set_context(octx);
859         local_irq_restore(flags);
860         FLUSH_END
861 }
862
863 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864 {
865         register unsigned long a, b, c, d, e, f, g;
866         struct mm_struct *mm = vma->vm_mm;
867         unsigned long flags, line;
868         int octx;
869
870         FLUSH_BEGIN(mm)
871         flush_user_windows();
872         local_irq_save(flags);
873         octx = srmmu_get_context();
874         srmmu_set_context(mm->context);
875         a = 0x20; b = 0x40; c = 0x60;
876         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877
878         page &= PAGE_MASK;
879         line = (page + PAGE_SIZE) - 0x100;
880         goto inside;
881         do {
882                 line -= 0x100;
883         inside:
884                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885                                              "sta %%g0, [%0 + %2] %1\n\t"
886                                              "sta %%g0, [%0 + %3] %1\n\t"
887                                              "sta %%g0, [%0 + %4] %1\n\t"
888                                              "sta %%g0, [%0 + %5] %1\n\t"
889                                              "sta %%g0, [%0 + %6] %1\n\t"
890                                              "sta %%g0, [%0 + %7] %1\n\t"
891                                              "sta %%g0, [%0 + %8] %1\n\t" : :
892                                              "r" (line),
893                                              "i" (ASI_M_FLUSH_PAGE),
894                                              "r" (a), "r" (b), "r" (c), "r" (d),
895                                              "r" (e), "r" (f), "r" (g));
896         } while(line != page);
897         srmmu_set_context(octx);
898         local_irq_restore(flags);
899         FLUSH_END
900 }
901
902 /* Cypress is copy-back, at least that is how we configure it. */
903 static void cypress_flush_page_to_ram(unsigned long page)
904 {
905         register unsigned long a, b, c, d, e, f, g;
906         unsigned long line;
907
908         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909         page &= PAGE_MASK;
910         line = (page + PAGE_SIZE) - 0x100;
911         goto inside;
912         do {
913                 line -= 0x100;
914         inside:
915                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916                                      "sta %%g0, [%0 + %2] %1\n\t"
917                                      "sta %%g0, [%0 + %3] %1\n\t"
918                                      "sta %%g0, [%0 + %4] %1\n\t"
919                                      "sta %%g0, [%0 + %5] %1\n\t"
920                                      "sta %%g0, [%0 + %6] %1\n\t"
921                                      "sta %%g0, [%0 + %7] %1\n\t"
922                                      "sta %%g0, [%0 + %8] %1\n\t" : :
923                                      "r" (line),
924                                      "i" (ASI_M_FLUSH_PAGE),
925                                      "r" (a), "r" (b), "r" (c), "r" (d),
926                                      "r" (e), "r" (f), "r" (g));
927         } while(line != page);
928 }
929
930 /* Cypress is also IO cache coherent. */
931 static void cypress_flush_page_for_dma(unsigned long page)
932 {
933 }
934
935 /* Cypress has unified L2 VIPT, from which both instructions and data
936  * are stored.  It does not have an onboard icache of any sort, therefore
937  * no flush is necessary.
938  */
939 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
940 {
941 }
942
943 static void cypress_flush_tlb_all(void)
944 {
945         srmmu_flush_whole_tlb();
946 }
947
948 static void cypress_flush_tlb_mm(struct mm_struct *mm)
949 {
950         FLUSH_BEGIN(mm)
951         __asm__ __volatile__(
952         "lda    [%0] %3, %%g5\n\t"
953         "sta    %2, [%0] %3\n\t"
954         "sta    %%g0, [%1] %4\n\t"
955         "sta    %%g5, [%0] %3\n"
956         : /* no outputs */
957         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959         : "g5");
960         FLUSH_END
961 }
962
963 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964 {
965         struct mm_struct *mm = vma->vm_mm;
966         unsigned long size;
967
968         FLUSH_BEGIN(mm)
969         start &= SRMMU_PGDIR_MASK;
970         size = SRMMU_PGDIR_ALIGN(end) - start;
971         __asm__ __volatile__(
972                 "lda    [%0] %5, %%g5\n\t"
973                 "sta    %1, [%0] %5\n"
974                 "1:\n\t"
975                 "subcc  %3, %4, %3\n\t"
976                 "bne    1b\n\t"
977                 " sta   %%g0, [%2 + %3] %6\n\t"
978                 "sta    %%g5, [%0] %5\n"
979         : /* no outputs */
980         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982           "i" (ASI_M_FLUSH_PROBE)
983         : "g5", "cc");
984         FLUSH_END
985 }
986
987 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988 {
989         struct mm_struct *mm = vma->vm_mm;
990
991         FLUSH_BEGIN(mm)
992         __asm__ __volatile__(
993         "lda    [%0] %3, %%g5\n\t"
994         "sta    %1, [%0] %3\n\t"
995         "sta    %%g0, [%2] %4\n\t"
996         "sta    %%g5, [%0] %3\n"
997         : /* no outputs */
998         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000         : "g5");
1001         FLUSH_END
1002 }
1003
1004 /* viking.S */
1005 extern void viking_flush_cache_all(void);
1006 extern void viking_flush_cache_mm(struct mm_struct *mm);
1007 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008                                      unsigned long end);
1009 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010 extern void viking_flush_page_to_ram(unsigned long page);
1011 extern void viking_flush_page_for_dma(unsigned long page);
1012 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013 extern void viking_flush_page(unsigned long page);
1014 extern void viking_mxcc_flush_page(unsigned long page);
1015 extern void viking_flush_tlb_all(void);
1016 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018                                    unsigned long end);
1019 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020                                   unsigned long page);
1021 extern void sun4dsmp_flush_tlb_all(void);
1022 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024                                    unsigned long end);
1025 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026                                   unsigned long page);
1027
1028 /* hypersparc.S */
1029 extern void hypersparc_flush_cache_all(void);
1030 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033 extern void hypersparc_flush_page_to_ram(unsigned long page);
1034 extern void hypersparc_flush_page_for_dma(unsigned long page);
1035 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036 extern void hypersparc_flush_tlb_all(void);
1037 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040 extern void hypersparc_setup_blockops(void);
1041
1042 /*
1043  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044  *       kernel mappings are done with one single contiguous chunk of
1045  *       ram.  On small ram machines (classics mainly) we only get
1046  *       around 8mb mapped for us.
1047  */
1048
1049 static void __init early_pgtable_allocfail(char *type)
1050 {
1051         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052         prom_halt();
1053 }
1054
1055 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1056                                                         unsigned long end)
1057 {
1058         pgd_t *pgdp;
1059         pmd_t *pmdp;
1060         pte_t *ptep;
1061
1062         while(start < end) {
1063                 pgdp = pgd_offset_k(start);
1064                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1065                         pmdp = (pmd_t *) __srmmu_get_nocache(
1066                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1067                         if (pmdp == NULL)
1068                                 early_pgtable_allocfail("pmd");
1069                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1070                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1071                 }
1072                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1073                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1074                         ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1075                         if (ptep == NULL)
1076                                 early_pgtable_allocfail("pte");
1077                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1078                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1079                 }
1080                 if (start > (0xffffffffUL - PMD_SIZE))
1081                         break;
1082                 start = (start + PMD_SIZE) & PMD_MASK;
1083         }
1084 }
1085
1086 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1087                                                   unsigned long end)
1088 {
1089         pgd_t *pgdp;
1090         pmd_t *pmdp;
1091         pte_t *ptep;
1092
1093         while(start < end) {
1094                 pgdp = pgd_offset_k(start);
1095                 if(srmmu_pgd_none(*pgdp)) {
1096                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1097                         if (pmdp == NULL)
1098                                 early_pgtable_allocfail("pmd");
1099                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1100                         srmmu_pgd_set(pgdp, pmdp);
1101                 }
1102                 pmdp = srmmu_pmd_offset(pgdp, start);
1103                 if(srmmu_pmd_none(*pmdp)) {
1104                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1105                                                              PTE_SIZE);
1106                         if (ptep == NULL)
1107                                 early_pgtable_allocfail("pte");
1108                         memset(ptep, 0, PTE_SIZE);
1109                         srmmu_pmd_set(pmdp, ptep);
1110                 }
1111                 if (start > (0xffffffffUL - PMD_SIZE))
1112                         break;
1113                 start = (start + PMD_SIZE) & PMD_MASK;
1114         }
1115 }
1116
1117 /*
1118  * This is much cleaner than poking around physical address space
1119  * looking at the prom's page table directly which is what most
1120  * other OS's do.  Yuck... this is much better.
1121  */
1122 static void __init srmmu_inherit_prom_mappings(unsigned long start,
1123                                                unsigned long end)
1124 {
1125         pgd_t *pgdp;
1126         pmd_t *pmdp;
1127         pte_t *ptep;
1128         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1129         unsigned long prompte;
1130
1131         while(start <= end) {
1132                 if (start == 0)
1133                         break; /* probably wrap around */
1134                 if(start == 0xfef00000)
1135                         start = KADB_DEBUGGER_BEGVM;
1136                 if(!(prompte = srmmu_hwprobe(start))) {
1137                         start += PAGE_SIZE;
1138                         continue;
1139                 }
1140     
1141                 /* A red snapper, see what it really is. */
1142                 what = 0;
1143     
1144                 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1145                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1146                                 what = 1;
1147                 }
1148     
1149                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1150                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1151                            prompte)
1152                                 what = 2;
1153                 }
1154     
1155                 pgdp = pgd_offset_k(start);
1156                 if(what == 2) {
1157                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1158                         start += SRMMU_PGDIR_SIZE;
1159                         continue;
1160                 }
1161                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1162                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163                         if (pmdp == NULL)
1164                                 early_pgtable_allocfail("pmd");
1165                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1166                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1167                 }
1168                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1169                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1170                         ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1171                                                              PTE_SIZE);
1172                         if (ptep == NULL)
1173                                 early_pgtable_allocfail("pte");
1174                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
1175                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1176                 }
1177                 if(what == 1) {
1178                         /*
1179                          * We bend the rule where all 16 PTPs in a pmd_t point
1180                          * inside the same PTE page, and we leak a perfectly
1181                          * good hardware PTE piece. Alternatives seem worse.
1182                          */
1183                         unsigned int x; /* Index of HW PMD in soft cluster */
1184                         x = (start >> PMD_SHIFT) & 15;
1185                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1186                         start += SRMMU_REAL_PMD_SIZE;
1187                         continue;
1188                 }
1189                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1190                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1191                 start += PAGE_SIZE;
1192         }
1193 }
1194
1195 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1196
1197 /* Create a third-level SRMMU 16MB page mapping. */
1198 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1199 {
1200         pgd_t *pgdp = pgd_offset_k(vaddr);
1201         unsigned long big_pte;
1202
1203         big_pte = KERNEL_PTE(phys_base >> 4);
1204         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1205 }
1206
1207 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1208 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1209 {
1210         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1211         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1212         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1213         /* Map "low" memory only */
1214         const unsigned long min_vaddr = PAGE_OFFSET;
1215         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1216
1217         if (vstart < min_vaddr || vstart >= max_vaddr)
1218                 return vstart;
1219         
1220         if (vend > max_vaddr || vend < min_vaddr)
1221                 vend = max_vaddr;
1222
1223         while(vstart < vend) {
1224                 do_large_mapping(vstart, pstart);
1225                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1226         }
1227         return vstart;
1228 }
1229
1230 static inline void memprobe_error(char *msg)
1231 {
1232         prom_printf(msg);
1233         prom_printf("Halting now...\n");
1234         prom_halt();
1235 }
1236
1237 static inline void map_kernel(void)
1238 {
1239         int i;
1240
1241         if (phys_base > 0) {
1242                 do_large_mapping(PAGE_OFFSET, phys_base);
1243         }
1244
1245         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1246                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1247         }
1248
1249         BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1250 }
1251
1252 /* Paging initialization on the Sparc Reference MMU. */
1253 extern void sparc_context_init(int);
1254
1255 void (*poke_srmmu)(void) __initdata = NULL;
1256
1257 extern unsigned long bootmem_init(unsigned long *pages_avail);
1258
1259 void __init srmmu_paging_init(void)
1260 {
1261         int i, cpunode;
1262         char node_str[128];
1263         pgd_t *pgd;
1264         pmd_t *pmd;
1265         pte_t *pte;
1266         unsigned long pages_avail;
1267
1268         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1269
1270         if (sparc_cpu_model == sun4d)
1271                 num_contexts = 65536; /* We know it is Viking */
1272         else {
1273                 /* Find the number of contexts on the srmmu. */
1274                 cpunode = prom_getchild(prom_root_node);
1275                 num_contexts = 0;
1276                 while(cpunode != 0) {
1277                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1278                         if(!strcmp(node_str, "cpu")) {
1279                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1280                                 break;
1281                         }
1282                         cpunode = prom_getsibling(cpunode);
1283                 }
1284         }
1285
1286         if(!num_contexts) {
1287                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1288                 prom_halt();
1289         }
1290
1291         pages_avail = 0;
1292         last_valid_pfn = bootmem_init(&pages_avail);
1293
1294         srmmu_nocache_calcsize();
1295         srmmu_nocache_init();
1296         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1297         map_kernel();
1298
1299         /* ctx table has to be physically aligned to its size */
1300         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1301         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1302
1303         for(i = 0; i < num_contexts; i++)
1304                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1305
1306         flush_cache_all();
1307         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1308 #ifdef CONFIG_SMP
1309         /* Stop from hanging here... */
1310         local_flush_tlb_all();
1311 #else
1312         flush_tlb_all();
1313 #endif
1314         poke_srmmu();
1315
1316 #ifdef CONFIG_SUN_IO
1317         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1318         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1319 #endif
1320
1321         srmmu_allocate_ptable_skeleton(
1322                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1323         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1324
1325         pgd = pgd_offset_k(PKMAP_BASE);
1326         pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1327         pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1328         pkmap_page_table = pte;
1329
1330         flush_cache_all();
1331         flush_tlb_all();
1332
1333         sparc_context_init(num_contexts);
1334
1335         kmap_init();
1336
1337         {
1338                 unsigned long zones_size[MAX_NR_ZONES];
1339                 unsigned long zholes_size[MAX_NR_ZONES];
1340                 unsigned long npages;
1341                 int znum;
1342
1343                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1344                         zones_size[znum] = zholes_size[znum] = 0;
1345
1346                 npages = max_low_pfn - pfn_base;
1347
1348                 zones_size[ZONE_DMA] = npages;
1349                 zholes_size[ZONE_DMA] = npages - pages_avail;
1350
1351                 npages = highend_pfn - max_low_pfn;
1352                 zones_size[ZONE_HIGHMEM] = npages;
1353                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1354
1355                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1356         }
1357 }
1358
1359 static void srmmu_mmu_info(struct seq_file *m)
1360 {
1361         seq_printf(m, 
1362                    "MMU type\t: %s\n"
1363                    "contexts\t: %d\n"
1364                    "nocache total\t: %ld\n"
1365                    "nocache used\t: %d\n",
1366                    srmmu_name,
1367                    num_contexts,
1368                    srmmu_nocache_size,
1369                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1370 }
1371
1372 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1373 {
1374 }
1375
1376 static void srmmu_destroy_context(struct mm_struct *mm)
1377 {
1378
1379         if(mm->context != NO_CONTEXT) {
1380                 flush_cache_mm(mm);
1381                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1382                 flush_tlb_mm(mm);
1383                 spin_lock(&srmmu_context_spinlock);
1384                 free_context(mm->context);
1385                 spin_unlock(&srmmu_context_spinlock);
1386                 mm->context = NO_CONTEXT;
1387         }
1388 }
1389
1390 /* Init various srmmu chip types. */
1391 static void __init srmmu_is_bad(void)
1392 {
1393         prom_printf("Could not determine SRMMU chip type.\n");
1394         prom_halt();
1395 }
1396
1397 static void __init init_vac_layout(void)
1398 {
1399         int nd, cache_lines;
1400         char node_str[128];
1401 #ifdef CONFIG_SMP
1402         int cpu = 0;
1403         unsigned long max_size = 0;
1404         unsigned long min_line_size = 0x10000000;
1405 #endif
1406
1407         nd = prom_getchild(prom_root_node);
1408         while((nd = prom_getsibling(nd)) != 0) {
1409                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1410                 if(!strcmp(node_str, "cpu")) {
1411                         vac_line_size = prom_getint(nd, "cache-line-size");
1412                         if (vac_line_size == -1) {
1413                                 prom_printf("can't determine cache-line-size, "
1414                                             "halting.\n");
1415                                 prom_halt();
1416                         }
1417                         cache_lines = prom_getint(nd, "cache-nlines");
1418                         if (cache_lines == -1) {
1419                                 prom_printf("can't determine cache-nlines, halting.\n");
1420                                 prom_halt();
1421                         }
1422
1423                         vac_cache_size = cache_lines * vac_line_size;
1424 #ifdef CONFIG_SMP
1425                         if(vac_cache_size > max_size)
1426                                 max_size = vac_cache_size;
1427                         if(vac_line_size < min_line_size)
1428                                 min_line_size = vac_line_size;
1429                         //FIXME: cpus not contiguous!!
1430                         cpu++;
1431                         if (cpu >= NR_CPUS || !cpu_online(cpu))
1432                                 break;
1433 #else
1434                         break;
1435 #endif
1436                 }
1437         }
1438         if(nd == 0) {
1439                 prom_printf("No CPU nodes found, halting.\n");
1440                 prom_halt();
1441         }
1442 #ifdef CONFIG_SMP
1443         vac_cache_size = max_size;
1444         vac_line_size = min_line_size;
1445 #endif
1446         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1447                (int)vac_cache_size, (int)vac_line_size);
1448 }
1449
1450 static void __init poke_hypersparc(void)
1451 {
1452         volatile unsigned long clear;
1453         unsigned long mreg = srmmu_get_mmureg();
1454
1455         hyper_flush_unconditional_combined();
1456
1457         mreg &= ~(HYPERSPARC_CWENABLE);
1458         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1459         mreg |= (HYPERSPARC_CMODE);
1460
1461         srmmu_set_mmureg(mreg);
1462
1463 #if 0 /* XXX I think this is bad news... -DaveM */
1464         hyper_clear_all_tags();
1465 #endif
1466
1467         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1468         hyper_flush_whole_icache();
1469         clear = srmmu_get_faddr();
1470         clear = srmmu_get_fstatus();
1471 }
1472
1473 static void __init init_hypersparc(void)
1474 {
1475         srmmu_name = "ROSS HyperSparc";
1476         srmmu_modtype = HyperSparc;
1477
1478         init_vac_layout();
1479
1480         is_hypersparc = 1;
1481
1482         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1483         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1484         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1485         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1486         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1487         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1488         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1489
1490         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1491         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1492         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1493         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1494
1495         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1496         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1497         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1498
1499
1500         poke_srmmu = poke_hypersparc;
1501
1502         hypersparc_setup_blockops();
1503 }
1504
1505 static void __init poke_cypress(void)
1506 {
1507         unsigned long mreg = srmmu_get_mmureg();
1508         unsigned long faddr, tagval;
1509         volatile unsigned long cypress_sucks;
1510         volatile unsigned long clear;
1511
1512         clear = srmmu_get_faddr();
1513         clear = srmmu_get_fstatus();
1514
1515         if (!(mreg & CYPRESS_CENABLE)) {
1516                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1517                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1518                                              "sta %%g0, [%0] %2\n\t" : :
1519                                              "r" (faddr), "r" (0x40000),
1520                                              "i" (ASI_M_DATAC_TAG));
1521                 }
1522         } else {
1523                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1524                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1525                                              "=r" (tagval) :
1526                                              "r" (faddr), "r" (0x40000),
1527                                              "i" (ASI_M_DATAC_TAG));
1528
1529                         /* If modified and valid, kick it. */
1530                         if((tagval & 0x60) == 0x60)
1531                                 cypress_sucks = *(unsigned long *)
1532                                                         (0xf0020000 + faddr);
1533                 }
1534         }
1535
1536         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1537         clear = srmmu_get_faddr();
1538         clear = srmmu_get_fstatus();
1539
1540         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1541         srmmu_set_mmureg(mreg);
1542 }
1543
1544 static void __init init_cypress_common(void)
1545 {
1546         init_vac_layout();
1547
1548         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1549         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1550         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1551         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1552         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1553         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1554         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1555
1556         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1557         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1558         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1559         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1560
1561
1562         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1563         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1564         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1565
1566         poke_srmmu = poke_cypress;
1567 }
1568
1569 static void __init init_cypress_604(void)
1570 {
1571         srmmu_name = "ROSS Cypress-604(UP)";
1572         srmmu_modtype = Cypress;
1573         init_cypress_common();
1574 }
1575
1576 static void __init init_cypress_605(unsigned long mrev)
1577 {
1578         srmmu_name = "ROSS Cypress-605(MP)";
1579         if(mrev == 0xe) {
1580                 srmmu_modtype = Cypress_vE;
1581                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1582         } else {
1583                 if(mrev == 0xd) {
1584                         srmmu_modtype = Cypress_vD;
1585                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1586                 } else {
1587                         srmmu_modtype = Cypress;
1588                 }
1589         }
1590         init_cypress_common();
1591 }
1592
1593 static void __init poke_swift(void)
1594 {
1595         unsigned long mreg;
1596
1597         /* Clear any crap from the cache or else... */
1598         swift_flush_cache_all();
1599
1600         /* Enable I & D caches */
1601         mreg = srmmu_get_mmureg();
1602         mreg |= (SWIFT_IE | SWIFT_DE);
1603         /*
1604          * The Swift branch folding logic is completely broken.  At
1605          * trap time, if things are just right, if can mistakenly
1606          * think that a trap is coming from kernel mode when in fact
1607          * it is coming from user mode (it mis-executes the branch in
1608          * the trap code).  So you see things like crashme completely
1609          * hosing your machine which is completely unacceptable.  Turn
1610          * this shit off... nice job Fujitsu.
1611          */
1612         mreg &= ~(SWIFT_BF);
1613         srmmu_set_mmureg(mreg);
1614 }
1615
1616 #define SWIFT_MASKID_ADDR  0x10003018
1617 static void __init init_swift(void)
1618 {
1619         unsigned long swift_rev;
1620
1621         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1622                              "srl %0, 0x18, %0\n\t" :
1623                              "=r" (swift_rev) :
1624                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1625         srmmu_name = "Fujitsu Swift";
1626         switch(swift_rev) {
1627         case 0x11:
1628         case 0x20:
1629         case 0x23:
1630         case 0x30:
1631                 srmmu_modtype = Swift_lots_o_bugs;
1632                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1633                 /*
1634                  * Gee george, I wonder why Sun is so hush hush about
1635                  * this hardware bug... really braindamage stuff going
1636                  * on here.  However I think we can find a way to avoid
1637                  * all of the workaround overhead under Linux.  Basically,
1638                  * any page fault can cause kernel pages to become user
1639                  * accessible (the mmu gets confused and clears some of
1640                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1641                  * horrible eh?  But wait, after extensive testing it appears
1642                  * that if you use pgd_t level large kernel pte's (like the
1643                  * 4MB pages on the Pentium) the bug does not get tripped
1644                  * at all.  This avoids almost all of the major overhead.
1645                  * Welcome to a world where your vendor tells you to,
1646                  * "apply this kernel patch" instead of "sorry for the
1647                  * broken hardware, send it back and we'll give you
1648                  * properly functioning parts"
1649                  */
1650                 break;
1651         case 0x25:
1652         case 0x31:
1653                 srmmu_modtype = Swift_bad_c;
1654                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1655                 /*
1656                  * You see Sun allude to this hardware bug but never
1657                  * admit things directly, they'll say things like,
1658                  * "the Swift chip cache problems" or similar.
1659                  */
1660                 break;
1661         default:
1662                 srmmu_modtype = Swift_ok;
1663                 break;
1664         };
1665
1666         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1667         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1668         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1669         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1670
1671
1672         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1673         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1674         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1675         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1676
1677         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1678         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1679         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1680
1681         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1682
1683         flush_page_for_dma_global = 0;
1684
1685         /*
1686          * Are you now convinced that the Swift is one of the
1687          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1688          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1689          * you examined the microcode of the Swift you'd find
1690          * XXX's all over the place.
1691          */
1692         poke_srmmu = poke_swift;
1693 }
1694
1695 static void turbosparc_flush_cache_all(void)
1696 {
1697         flush_user_windows();
1698         turbosparc_idflash_clear();
1699 }
1700
1701 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1702 {
1703         FLUSH_BEGIN(mm)
1704         flush_user_windows();
1705         turbosparc_idflash_clear();
1706         FLUSH_END
1707 }
1708
1709 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1710 {
1711         FLUSH_BEGIN(vma->vm_mm)
1712         flush_user_windows();
1713         turbosparc_idflash_clear();
1714         FLUSH_END
1715 }
1716
1717 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718 {
1719         FLUSH_BEGIN(vma->vm_mm)
1720         flush_user_windows();
1721         if (vma->vm_flags & VM_EXEC)
1722                 turbosparc_flush_icache();
1723         turbosparc_flush_dcache();
1724         FLUSH_END
1725 }
1726
1727 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1728 static void turbosparc_flush_page_to_ram(unsigned long page)
1729 {
1730 #ifdef TURBOSPARC_WRITEBACK
1731         volatile unsigned long clear;
1732
1733         if (srmmu_hwprobe(page))
1734                 turbosparc_flush_page_cache(page);
1735         clear = srmmu_get_fstatus();
1736 #endif
1737 }
1738
1739 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1740 {
1741 }
1742
1743 static void turbosparc_flush_page_for_dma(unsigned long page)
1744 {
1745         turbosparc_flush_dcache();
1746 }
1747
1748 static void turbosparc_flush_tlb_all(void)
1749 {
1750         srmmu_flush_whole_tlb();
1751 }
1752
1753 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1754 {
1755         FLUSH_BEGIN(mm)
1756         srmmu_flush_whole_tlb();
1757         FLUSH_END
1758 }
1759
1760 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1761 {
1762         FLUSH_BEGIN(vma->vm_mm)
1763         srmmu_flush_whole_tlb();
1764         FLUSH_END
1765 }
1766
1767 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1768 {
1769         FLUSH_BEGIN(vma->vm_mm)
1770         srmmu_flush_whole_tlb();
1771         FLUSH_END
1772 }
1773
1774
1775 static void __init poke_turbosparc(void)
1776 {
1777         unsigned long mreg = srmmu_get_mmureg();
1778         unsigned long ccreg;
1779
1780         /* Clear any crap from the cache or else... */
1781         turbosparc_flush_cache_all();
1782         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1783         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1784         srmmu_set_mmureg(mreg);
1785         
1786         ccreg = turbosparc_get_ccreg();
1787
1788 #ifdef TURBOSPARC_WRITEBACK
1789         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1790         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1791                         /* Write-back D-cache, emulate VLSI
1792                          * abortion number three, not number one */
1793 #else
1794         /* For now let's play safe, optimize later */
1795         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1796                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1797         ccreg &= ~(TURBOSPARC_uS2);
1798                         /* Emulate VLSI abortion number three, not number one */
1799 #endif
1800
1801         switch (ccreg & 7) {
1802         case 0: /* No SE cache */
1803         case 7: /* Test mode */
1804                 break;
1805         default:
1806                 ccreg |= (TURBOSPARC_SCENABLE);
1807         }
1808         turbosparc_set_ccreg (ccreg);
1809
1810         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1811         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1812         srmmu_set_mmureg(mreg);
1813 }
1814
1815 static void __init init_turbosparc(void)
1816 {
1817         srmmu_name = "Fujitsu TurboSparc";
1818         srmmu_modtype = TurboSparc;
1819
1820         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1821         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1822         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1823         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1824
1825         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1826         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1827         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1828         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1829
1830         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1831
1832         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1833         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1834
1835         poke_srmmu = poke_turbosparc;
1836 }
1837
1838 static void __init poke_tsunami(void)
1839 {
1840         unsigned long mreg = srmmu_get_mmureg();
1841
1842         tsunami_flush_icache();
1843         tsunami_flush_dcache();
1844         mreg &= ~TSUNAMI_ITD;
1845         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1846         srmmu_set_mmureg(mreg);
1847 }
1848
1849 static void __init init_tsunami(void)
1850 {
1851         /*
1852          * Tsunami's pretty sane, Sun and TI actually got it
1853          * somewhat right this time.  Fujitsu should have
1854          * taken some lessons from them.
1855          */
1856
1857         srmmu_name = "TI Tsunami";
1858         srmmu_modtype = Tsunami;
1859
1860         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1861         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1862         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1863         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1864
1865
1866         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1867         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1868         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1869         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1870
1871         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1872         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1873         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1874
1875         poke_srmmu = poke_tsunami;
1876
1877         tsunami_setup_blockops();
1878 }
1879
1880 static void __init poke_viking(void)
1881 {
1882         unsigned long mreg = srmmu_get_mmureg();
1883         static int smp_catch;
1884
1885         if(viking_mxcc_present) {
1886                 unsigned long mxcc_control = mxcc_get_creg();
1887
1888                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1889                 mxcc_control &= ~(MXCC_CTL_RRC);
1890                 mxcc_set_creg(mxcc_control);
1891
1892                 /*
1893                  * We don't need memory parity checks.
1894                  * XXX This is a mess, have to dig out later. ecd.
1895                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1896                  */
1897
1898                 /* We do cache ptables on MXCC. */
1899                 mreg |= VIKING_TCENABLE;
1900         } else {
1901                 unsigned long bpreg;
1902
1903                 mreg &= ~(VIKING_TCENABLE);
1904                 if(smp_catch++) {
1905                         /* Must disable mixed-cmd mode here for other cpu's. */
1906                         bpreg = viking_get_bpreg();
1907                         bpreg &= ~(VIKING_ACTION_MIX);
1908                         viking_set_bpreg(bpreg);
1909
1910                         /* Just in case PROM does something funny. */
1911                         msi_set_sync();
1912                 }
1913         }
1914
1915         mreg |= VIKING_SPENABLE;
1916         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1917         mreg |= VIKING_SBENABLE;
1918         mreg &= ~(VIKING_ACENABLE);
1919         srmmu_set_mmureg(mreg);
1920
1921 #ifdef CONFIG_SMP
1922         /* Avoid unnecessary cross calls. */
1923         BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1924         BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1925         BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1926         BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1927         BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1928         BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1929         BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1930         btfixup();
1931 #endif
1932 }
1933
1934 static void __init init_viking(void)
1935 {
1936         unsigned long mreg = srmmu_get_mmureg();
1937
1938         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1939         if(mreg & VIKING_MMODE) {
1940                 srmmu_name = "TI Viking";
1941                 viking_mxcc_present = 0;
1942                 msi_set_sync();
1943
1944                 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1945                 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1946                 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1947
1948                 /*
1949                  * We need this to make sure old viking takes no hits
1950                  * on it's cache for dma snoops to workaround the
1951                  * "load from non-cacheable memory" interrupt bug.
1952                  * This is only necessary because of the new way in
1953                  * which we use the IOMMU.
1954                  */
1955                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1956
1957                 flush_page_for_dma_global = 0;
1958         } else {
1959                 srmmu_name = "TI Viking/MXCC";
1960                 viking_mxcc_present = 1;
1961
1962                 srmmu_cache_pagetables = 1;
1963
1964                 /* MXCC vikings lack the DMA snooping bug. */
1965                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1966         }
1967
1968         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1969         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1970         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1971         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1972
1973 #ifdef CONFIG_SMP
1974         if (sparc_cpu_model == sun4d) {
1975                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1976                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1977                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1978                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1979         } else
1980 #endif
1981         {
1982                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1983                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1984                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1985                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1986         }
1987
1988         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1989         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1990
1991         poke_srmmu = poke_viking;
1992 }
1993
1994 /* Probe for the srmmu chip version. */
1995 static void __init get_srmmu_type(void)
1996 {
1997         unsigned long mreg, psr;
1998         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1999
2000         srmmu_modtype = SRMMU_INVAL_MOD;
2001         hwbug_bitmask = 0;
2002
2003         mreg = srmmu_get_mmureg(); psr = get_psr();
2004         mod_typ = (mreg & 0xf0000000) >> 28;
2005         mod_rev = (mreg & 0x0f000000) >> 24;
2006         psr_typ = (psr >> 28) & 0xf;
2007         psr_vers = (psr >> 24) & 0xf;
2008
2009         /* First, check for HyperSparc or Cypress. */
2010         if(mod_typ == 1) {
2011                 switch(mod_rev) {
2012                 case 7:
2013                         /* UP or MP Hypersparc */
2014                         init_hypersparc();
2015                         break;
2016                 case 0:
2017                 case 2:
2018                         /* Uniprocessor Cypress */
2019                         init_cypress_604();
2020                         break;
2021                 case 10:
2022                 case 11:
2023                 case 12:
2024                         /* _REALLY OLD_ Cypress MP chips... */
2025                 case 13:
2026                 case 14:
2027                 case 15:
2028                         /* MP Cypress mmu/cache-controller */
2029                         init_cypress_605(mod_rev);
2030                         break;
2031                 default:
2032                         /* Some other Cypress revision, assume a 605. */
2033                         init_cypress_605(mod_rev);
2034                         break;
2035                 };
2036                 return;
2037         }
2038         
2039         /*
2040          * Now Fujitsu TurboSparc. It might happen that it is
2041          * in Swift emulation mode, so we will check later...
2042          */
2043         if (psr_typ == 0 && psr_vers == 5) {
2044                 init_turbosparc();
2045                 return;
2046         }
2047
2048         /* Next check for Fujitsu Swift. */
2049         if(psr_typ == 0 && psr_vers == 4) {
2050                 int cpunode;
2051                 char node_str[128];
2052
2053                 /* Look if it is not a TurboSparc emulating Swift... */
2054                 cpunode = prom_getchild(prom_root_node);
2055                 while((cpunode = prom_getsibling(cpunode)) != 0) {
2056                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2057                         if(!strcmp(node_str, "cpu")) {
2058                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2059                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2060                                         init_turbosparc();
2061                                         return;
2062                                 }
2063                                 break;
2064                         }
2065                 }
2066                 
2067                 init_swift();
2068                 return;
2069         }
2070
2071         /* Now the Viking family of srmmu. */
2072         if(psr_typ == 4 &&
2073            ((psr_vers == 0) ||
2074             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2075                 init_viking();
2076                 return;
2077         }
2078
2079         /* Finally the Tsunami. */
2080         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2081                 init_tsunami();
2082                 return;
2083         }
2084
2085         /* Oh well */
2086         srmmu_is_bad();
2087 }
2088
2089 /* don't laugh, static pagetables */
2090 static void srmmu_check_pgt_cache(int low, int high)
2091 {
2092 }
2093
2094 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2095         tsetup_mmu_patchme, rtrap_mmu_patchme;
2096
2097 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2098         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2099
2100 extern unsigned long srmmu_fault;
2101
2102 #define PATCH_BRANCH(insn, dest) do { \
2103                 iaddr = &(insn); \
2104                 daddr = &(dest); \
2105                 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2106         } while(0)
2107
2108 static void __init patch_window_trap_handlers(void)
2109 {
2110         unsigned long *iaddr, *daddr;
2111         
2112         PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2113         PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2114         PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2115         PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2116         PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2117         PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2118         PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2119 }
2120
2121 #ifdef CONFIG_SMP
2122 /* Local cross-calls. */
2123 static void smp_flush_page_for_dma(unsigned long page)
2124 {
2125         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2126         local_flush_page_for_dma(page);
2127 }
2128
2129 #endif
2130
2131 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2132 {
2133         return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2134 }
2135
2136 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2137 {
2138         return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2139 }
2140
2141 static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2142 {
2143         prot &= ~__pgprot(SRMMU_CACHE);
2144
2145         return prot;
2146 }
2147
2148 /* Load up routines and constants for sun4m and sun4d mmu */
2149 void __init ld_mmu_srmmu(void)
2150 {
2151         extern void ld_mmu_iommu(void);
2152         extern void ld_mmu_iounit(void);
2153         extern void ___xchg32_sun4md(void);
2154
2155         BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2156         BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2157         BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2158
2159         BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2160         BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2161
2162         BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2163         PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
2164         BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2165         BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2166         BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2167         page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2168
2169         /* Functions */
2170         BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
2171 #ifndef CONFIG_SMP      
2172         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2173 #endif
2174         BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2175
2176         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2177         BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2178
2179         BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2180         BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2181         BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
2182
2183         BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2184
2185         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2186         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2187
2188         BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2189         BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2190         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2191
2192         BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2193         BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2194         BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2195         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2196
2197         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2198         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2199         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2200         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2201         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2202         BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2203         
2204         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2205         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2206         BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2207
2208         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2209         BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2210         BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2211         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2212         BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2213         BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2214         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2215         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2216
2217         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2218         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2219         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2220         BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2221         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2222         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2223         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2224         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2225         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2226         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2227         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2228         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2229
2230         BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2231         BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2232
2233         BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2234         BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2235         BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2236
2237         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2238
2239         BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2240         BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2241
2242         BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2243         BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2244
2245         get_srmmu_type();
2246         patch_window_trap_handlers();
2247
2248 #ifdef CONFIG_SMP
2249         /* El switcheroo... */
2250
2251         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2252         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2253         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2254         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2255         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2256         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2257         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2258         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2259         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2260         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2261         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2262
2263         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2264         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2265         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2266         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2267         if (sparc_cpu_model != sun4d) {
2268                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2269                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2270                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2271                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2272         }
2273         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2274         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2275         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2276 #endif
2277
2278         if (sparc_cpu_model == sun4d)
2279                 ld_mmu_iounit();
2280         else
2281                 ld_mmu_iommu();
2282 #ifdef CONFIG_SMP
2283         if (sparc_cpu_model == sun4d)
2284                 sun4d_init_smp();
2285         else
2286                 sun4m_init_smp();
2287 #endif
2288 }