Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / arch / sparc / kernel / sun4m_smp.c
1 /* sun4m_smp.c: Sparc SUN4M SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <asm/head.h>
7
8 #include <linux/kernel.h>
9 #include <linux/sched.h>
10 #include <linux/threads.h>
11 #include <linux/smp.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm.h>
17 #include <linux/swap.h>
18 #include <linux/profile.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/irq_regs.h>
22
23 #include <asm/ptrace.h>
24 #include <asm/atomic.h>
25
26 #include <asm/delay.h>
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cpudata.h>
33
34 #include "irq.h"
35
36 #define IRQ_RESCHEDULE          13
37 #define IRQ_STOP_CPU            14
38 #define IRQ_CROSS_CALL          15
39
40 extern ctxd_t *srmmu_ctx_table_phys;
41
42 extern void calibrate_delay(void);
43
44 extern volatile unsigned long cpu_callin_map[NR_CPUS];
45 extern unsigned char boot_cpu_id;
46
47 extern cpumask_t smp_commenced_mask;
48
49 extern int __smp4m_processor_id(void);
50
51 /*#define SMP_DEBUG*/
52
53 #ifdef SMP_DEBUG
54 #define SMP_PRINTK(x)   printk x
55 #else
56 #define SMP_PRINTK(x)
57 #endif
58
59 static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
60 {
61         __asm__ __volatile__("swap [%1], %0\n\t" :
62                              "=&r" (val), "=&r" (ptr) :
63                              "0" (val), "1" (ptr));
64         return val;
65 }
66
67 static void smp_setup_percpu_timer(void);
68 extern void cpu_probe(void);
69
70 void __cpuinit smp4m_callin(void)
71 {
72         int cpuid = hard_smp_processor_id();
73
74         local_flush_cache_all();
75         local_flush_tlb_all();
76
77         /* Get our local ticker going. */
78         smp_setup_percpu_timer();
79
80         calibrate_delay();
81         smp_store_cpu_info(cpuid);
82
83         local_flush_cache_all();
84         local_flush_tlb_all();
85
86         /*
87          * Unblock the master CPU _only_ when the scheduler state
88          * of all secondary CPUs will be up-to-date, so after
89          * the SMP initialization the master will be just allowed
90          * to call the scheduler code.
91          */
92         /* Allow master to continue. */
93         swap(&cpu_callin_map[cpuid], 1);
94
95         /* XXX: What's up with all the flushes? */
96         local_flush_cache_all();
97         local_flush_tlb_all();
98         
99         cpu_probe();
100
101         /* Fix idle thread fields. */
102         __asm__ __volatile__("ld [%0], %%g6\n\t"
103                              : : "r" (&current_set[cpuid])
104                              : "memory" /* paranoid */);
105
106         /* Attach to the address space of init_task. */
107         atomic_inc(&init_mm.mm_count);
108         current->active_mm = &init_mm;
109
110         while (!cpu_isset(cpuid, smp_commenced_mask))
111                 mb();
112
113         local_irq_enable();
114
115         cpu_set(cpuid, cpu_online_map);
116 }
117
118 /*
119  *      Cycle through the processors asking the PROM to start each one.
120  */
121  
122 extern struct linux_prom_registers smp_penguin_ctable;
123 extern unsigned long trapbase_cpu1[];
124 extern unsigned long trapbase_cpu2[];
125 extern unsigned long trapbase_cpu3[];
126
127 void __init smp4m_boot_cpus(void)
128 {
129         smp_setup_percpu_timer();
130         local_flush_cache_all();
131 }
132
133 int __cpuinit smp4m_boot_one_cpu(int i)
134 {
135         extern unsigned long sun4m_cpu_startup;
136         unsigned long *entry = &sun4m_cpu_startup;
137         struct task_struct *p;
138         int timeout;
139         int cpu_node;
140
141         cpu_find_by_mid(i, &cpu_node);
142
143         /* Cook up an idler for this guy. */
144         p = fork_idle(i);
145         current_set[i] = task_thread_info(p);
146         /* See trampoline.S for details... */
147         entry += ((i-1) * 3);
148
149         /*
150          * Initialize the contexts table
151          * Since the call to prom_startcpu() trashes the structure,
152          * we need to re-initialize it for each cpu
153          */
154         smp_penguin_ctable.which_io = 0;
155         smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
156         smp_penguin_ctable.reg_size = 0;
157
158         /* whirrr, whirrr, whirrrrrrrrr... */
159         printk("Starting CPU %d at %p\n", i, entry);
160         local_flush_cache_all();
161         prom_startcpu(cpu_node,
162                       &smp_penguin_ctable, 0, (char *)entry);
163
164         /* wheee... it's going... */
165         for(timeout = 0; timeout < 10000; timeout++) {
166                 if(cpu_callin_map[i])
167                         break;
168                 udelay(200);
169         }
170
171         if (!(cpu_callin_map[i])) {
172                 printk("Processor %d is stuck.\n", i);
173                 return -ENODEV;
174         }
175
176         local_flush_cache_all();
177         return 0;
178 }
179
180 void __init smp4m_smp_done(void)
181 {
182         int i, first;
183         int *prev;
184
185         /* setup cpu list for irq rotation */
186         first = 0;
187         prev = &first;
188         for (i = 0; i < NR_CPUS; i++) {
189                 if (cpu_online(i)) {
190                         *prev = i;
191                         prev = &cpu_data(i).next;
192                 }
193         }
194         *prev = first;
195         local_flush_cache_all();
196
197         /* Free unneeded trap tables */
198         if (!cpu_isset(1, cpu_present_map)) {
199                 ClearPageReserved(virt_to_page(trapbase_cpu1));
200                 init_page_count(virt_to_page(trapbase_cpu1));
201                 free_page((unsigned long)trapbase_cpu1);
202                 totalram_pages++;
203                 num_physpages++;
204         }
205         if (!cpu_isset(2, cpu_present_map)) {
206                 ClearPageReserved(virt_to_page(trapbase_cpu2));
207                 init_page_count(virt_to_page(trapbase_cpu2));
208                 free_page((unsigned long)trapbase_cpu2);
209                 totalram_pages++;
210                 num_physpages++;
211         }
212         if (!cpu_isset(3, cpu_present_map)) {
213                 ClearPageReserved(virt_to_page(trapbase_cpu3));
214                 init_page_count(virt_to_page(trapbase_cpu3));
215                 free_page((unsigned long)trapbase_cpu3);
216                 totalram_pages++;
217                 num_physpages++;
218         }
219
220         /* Ok, they are spinning and ready to go. */
221 }
222
223 /* At each hardware IRQ, we get this called to forward IRQ reception
224  * to the next processor.  The caller must disable the IRQ level being
225  * serviced globally so that there are no double interrupts received.
226  *
227  * XXX See sparc64 irq.c.
228  */
229 void smp4m_irq_rotate(int cpu)
230 {
231         int next = cpu_data(cpu).next;
232         if (next != cpu)
233                 set_irq_udt(next);
234 }
235
236 /* Cross calls, in order to work efficiently and atomically do all
237  * the message passing work themselves, only stopcpu and reschedule
238  * messages come through here.
239  */
240 void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
241 {
242         static unsigned long smp_cpu_in_msg[NR_CPUS];
243         cpumask_t mask;
244         int me = smp_processor_id();
245         int irq, i;
246
247         if(msg == MSG_RESCHEDULE) {
248                 irq = IRQ_RESCHEDULE;
249
250                 if(smp_cpu_in_msg[me])
251                         return;
252         } else if(msg == MSG_STOP_CPU) {
253                 irq = IRQ_STOP_CPU;
254         } else {
255                 goto barf;
256         }
257
258         smp_cpu_in_msg[me]++;
259         if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
260                 mask = cpu_online_map;
261                 if(target == MSG_ALL_BUT_SELF)
262                         cpu_clear(me, mask);
263                 for(i = 0; i < 4; i++) {
264                         if (cpu_isset(i, mask))
265                                 set_cpu_int(i, irq);
266                 }
267         } else {
268                 set_cpu_int(target, irq);
269         }
270         smp_cpu_in_msg[me]--;
271
272         return;
273 barf:
274         printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
275         panic("Bogon SMP message pass.");
276 }
277
278 static struct smp_funcall {
279         smpfunc_t func;
280         unsigned long arg1;
281         unsigned long arg2;
282         unsigned long arg3;
283         unsigned long arg4;
284         unsigned long arg5;
285         unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */
286         unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
287 } ccall_info;
288
289 static DEFINE_SPINLOCK(cross_call_lock);
290
291 /* Cross calls must be serialized, at least currently. */
292 void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
293                     unsigned long arg3, unsigned long arg4, unsigned long arg5)
294 {
295                 register int ncpus = SUN4M_NCPUS;
296                 unsigned long flags;
297
298                 spin_lock_irqsave(&cross_call_lock, flags);
299
300                 /* Init function glue. */
301                 ccall_info.func = func;
302                 ccall_info.arg1 = arg1;
303                 ccall_info.arg2 = arg2;
304                 ccall_info.arg3 = arg3;
305                 ccall_info.arg4 = arg4;
306                 ccall_info.arg5 = arg5;
307
308                 /* Init receive/complete mapping, plus fire the IPI's off. */
309                 {
310                         cpumask_t mask = cpu_online_map;
311                         register int i;
312
313                         cpu_clear(smp_processor_id(), mask);
314                         for(i = 0; i < ncpus; i++) {
315                                 if (cpu_isset(i, mask)) {
316                                         ccall_info.processors_in[i] = 0;
317                                         ccall_info.processors_out[i] = 0;
318                                         set_cpu_int(i, IRQ_CROSS_CALL);
319                                 } else {
320                                         ccall_info.processors_in[i] = 1;
321                                         ccall_info.processors_out[i] = 1;
322                                 }
323                         }
324                 }
325
326                 {
327                         register int i;
328
329                         i = 0;
330                         do {
331                                 while(!ccall_info.processors_in[i])
332                                         barrier();
333                         } while(++i < ncpus);
334
335                         i = 0;
336                         do {
337                                 while(!ccall_info.processors_out[i])
338                                         barrier();
339                         } while(++i < ncpus);
340                 }
341
342                 spin_unlock_irqrestore(&cross_call_lock, flags);
343 }
344
345 /* Running cross calls. */
346 void smp4m_cross_call_irq(void)
347 {
348         int i = smp_processor_id();
349
350         ccall_info.processors_in[i] = 1;
351         ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
352                         ccall_info.arg4, ccall_info.arg5);
353         ccall_info.processors_out[i] = 1;
354 }
355
356 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
357 {
358         struct pt_regs *old_regs;
359         int cpu = smp_processor_id();
360
361         old_regs = set_irq_regs(regs);
362
363         clear_profile_irq(cpu);
364
365         profile_tick(CPU_PROFILING);
366
367         if(!--prof_counter(cpu)) {
368                 int user = user_mode(regs);
369
370                 irq_enter();
371                 update_process_times(user);
372                 irq_exit();
373
374                 prof_counter(cpu) = prof_multiplier(cpu);
375         }
376         set_irq_regs(old_regs);
377 }
378
379 extern unsigned int lvl14_resolution;
380
381 static void __init smp_setup_percpu_timer(void)
382 {
383         int cpu = smp_processor_id();
384
385         prof_counter(cpu) = prof_multiplier(cpu) = 1;
386         load_profile_irq(cpu, lvl14_resolution);
387
388         if(cpu == boot_cpu_id)
389                 enable_pil_irq(14);
390 }
391
392 void __init smp4m_blackbox_id(unsigned *addr)
393 {
394         int rd = *addr & 0x3e000000;
395         int rs1 = rd >> 11;
396         
397         addr[0] = 0x81580000 | rd;              /* rd %tbr, reg */
398         addr[1] = 0x8130200c | rd | rs1;        /* srl reg, 0xc, reg */
399         addr[2] = 0x80082003 | rd | rs1;        /* and reg, 3, reg */
400 }
401
402 void __init smp4m_blackbox_current(unsigned *addr)
403 {
404         int rd = *addr & 0x3e000000;
405         int rs1 = rd >> 11;
406         
407         addr[0] = 0x81580000 | rd;              /* rd %tbr, reg */
408         addr[2] = 0x8130200a | rd | rs1;        /* srl reg, 0xa, reg */
409         addr[4] = 0x8008200c | rd | rs1;        /* and reg, 0xc, reg */
410 }
411
412 void __init sun4m_init_smp(void)
413 {
414         BTFIXUPSET_BLACKBOX(hard_smp_processor_id, smp4m_blackbox_id);
415         BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
416         BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
417         BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
418         BTFIXUPSET_CALL(__hard_smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
419 }