Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <asm/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
67 void smp_info(struct seq_file *m)
68 {
69         int i;
70         
71         seq_printf(m, "State:\n");
72         for_each_online_cpu(i)
73                 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
76 void smp_bogo(struct seq_file *m)
77 {
78         int i;
79         
80         for_each_online_cpu(i)
81                 seq_printf(m,
82                            "Cpu%dClkTck\t: %016lx\n",
83                            i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void __cpuinit smp_callin(void)
91 {
92         int cpuid = hard_smp_processor_id();
93
94         __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96         if (tlb_type == hypervisor)
97                 sun4v_ktsb_register();
98
99         __flush_tlb_all();
100
101         setup_sparc64_timer();
102
103         if (cheetah_pcache_forced_on)
104                 cheetah_enable_pcache();
105
106         local_irq_enable();
107
108         callin_flag = 1;
109         __asm__ __volatile__("membar #Sync\n\t"
110                              "flush  %%g6" : : : "memory");
111
112         /* Clear this or we will die instantly when we
113          * schedule back to this idler...
114          */
115         current_thread_info()->new_child = 0;
116
117         /* Attach to the address space of init_task. */
118         atomic_inc(&init_mm.mm_count);
119         current->active_mm = &init_mm;
120
121         /* inform the notifiers about the new cpu */
122         notify_cpu_starting(cpuid);
123
124         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
125                 rmb();
126
127         ipi_call_lock_irq();
128         set_cpu_online(cpuid, true);
129         ipi_call_unlock_irq();
130
131         /* idle thread is expected to have preempt disabled */
132         preempt_disable();
133 }
134
135 void cpu_panic(void)
136 {
137         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138         panic("SMP bolixed\n");
139 }
140
141 /* This tick register synchronization scheme is taken entirely from
142  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143  *
144  * The only change I've made is to rework it so that the master
145  * initiates the synchonization instead of the slave. -DaveM
146  */
147
148 #define MASTER  0
149 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
150
151 #define NUM_ROUNDS      64      /* magic value */
152 #define NUM_ITERS       5       /* likewise */
153
154 static DEFINE_SPINLOCK(itc_sync_lock);
155 static unsigned long go[SLAVE + 1];
156
157 #define DEBUG_TICK_SYNC 0
158
159 static inline long get_delta (long *rt, long *master)
160 {
161         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162         unsigned long tcenter, t0, t1, tm;
163         unsigned long i;
164
165         for (i = 0; i < NUM_ITERS; i++) {
166                 t0 = tick_ops->get_tick();
167                 go[MASTER] = 1;
168                 membar_safe("#StoreLoad");
169                 while (!(tm = go[SLAVE]))
170                         rmb();
171                 go[SLAVE] = 0;
172                 wmb();
173                 t1 = tick_ops->get_tick();
174
175                 if (t1 - t0 < best_t1 - best_t0)
176                         best_t0 = t0, best_t1 = t1, best_tm = tm;
177         }
178
179         *rt = best_t1 - best_t0;
180         *master = best_tm - best_t0;
181
182         /* average best_t0 and best_t1 without overflow: */
183         tcenter = (best_t0/2 + best_t1/2);
184         if (best_t0 % 2 + best_t1 % 2 == 2)
185                 tcenter++;
186         return tcenter - best_tm;
187 }
188
189 void smp_synchronize_tick_client(void)
190 {
191         long i, delta, adj, adjust_latency = 0, done = 0;
192         unsigned long flags, rt, master_time_stamp;
193 #if DEBUG_TICK_SYNC
194         struct {
195                 long rt;        /* roundtrip time */
196                 long master;    /* master's timestamp */
197                 long diff;      /* difference between midpoint and master's timestamp */
198                 long lat;       /* estimate of itc adjustment latency */
199         } t[NUM_ROUNDS];
200 #endif
201
202         go[MASTER] = 1;
203
204         while (go[MASTER])
205                 rmb();
206
207         local_irq_save(flags);
208         {
209                 for (i = 0; i < NUM_ROUNDS; i++) {
210                         delta = get_delta(&rt, &master_time_stamp);
211                         if (delta == 0)
212                                 done = 1;       /* let's lock on to this... */
213
214                         if (!done) {
215                                 if (i > 0) {
216                                         adjust_latency += -delta;
217                                         adj = -delta + adjust_latency/4;
218                                 } else
219                                         adj = -delta;
220
221                                 tick_ops->add_tick(adj);
222                         }
223 #if DEBUG_TICK_SYNC
224                         t[i].rt = rt;
225                         t[i].master = master_time_stamp;
226                         t[i].diff = delta;
227                         t[i].lat = adjust_latency/4;
228 #endif
229                 }
230         }
231         local_irq_restore(flags);
232
233 #if DEBUG_TICK_SYNC
234         for (i = 0; i < NUM_ROUNDS; i++)
235                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238
239         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240                "(last diff %ld cycles, maxerr %lu cycles)\n",
241                smp_processor_id(), delta, rt);
242 }
243
244 static void smp_start_sync_tick_client(int cpu);
245
246 static void smp_synchronize_one_tick(int cpu)
247 {
248         unsigned long flags, i;
249
250         go[MASTER] = 0;
251
252         smp_start_sync_tick_client(cpu);
253
254         /* wait for client to be ready */
255         while (!go[MASTER])
256                 rmb();
257
258         /* now let the client proceed into his loop */
259         go[MASTER] = 0;
260         membar_safe("#StoreLoad");
261
262         spin_lock_irqsave(&itc_sync_lock, flags);
263         {
264                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265                         while (!go[MASTER])
266                                 rmb();
267                         go[MASTER] = 0;
268                         wmb();
269                         go[SLAVE] = tick_ops->get_tick();
270                         membar_safe("#StoreLoad");
271                 }
272         }
273         spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280         unsigned long val = (unsigned long) p;
281
282         return kern_base + (val - KERNBASE);
283 }
284
285 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
286 {
287         extern unsigned long sparc64_ttable_tl0;
288         extern unsigned long kern_locked_tte_data;
289         struct hvtramp_descr *hdesc;
290         unsigned long trampoline_ra;
291         struct trap_per_cpu *tb;
292         u64 tte_vaddr, tte_data;
293         unsigned long hv_err;
294         int i;
295
296         hdesc = kzalloc(sizeof(*hdesc) +
297                         (sizeof(struct hvtramp_mapping) *
298                          num_kernel_image_mappings - 1),
299                         GFP_KERNEL);
300         if (!hdesc) {
301                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302                        "hvtramp_descr.\n");
303                 return;
304         }
305         *descrp = hdesc;
306
307         hdesc->cpu = cpu;
308         hdesc->num_mappings = num_kernel_image_mappings;
309
310         tb = &trap_block[cpu];
311
312         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314
315         hdesc->thread_reg = thread_reg;
316
317         tte_vaddr = (unsigned long) KERNBASE;
318         tte_data = kern_locked_tte_data;
319
320         for (i = 0; i < hdesc->num_mappings; i++) {
321                 hdesc->maps[i].vaddr = tte_vaddr;
322                 hdesc->maps[i].tte   = tte_data;
323                 tte_vaddr += 0x400000;
324                 tte_data  += 0x400000;
325         }
326
327         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328
329         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
331                                  __pa(hdesc));
332         if (hv_err)
333                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334                        "gives error %lu\n", hv_err);
335 }
336 #endif
337
338 extern unsigned long sparc64_cpu_startup;
339
340 /* The OBP cpu startup callback truncates the 3rd arg cookie to
341  * 32-bits (I think) so to be safe we have it read the pointer
342  * contained here so we work on >4GB machines. -DaveM
343  */
344 static struct thread_info *cpu_new_thread = NULL;
345
346 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
347 {
348         unsigned long entry =
349                 (unsigned long)(&sparc64_cpu_startup);
350         unsigned long cookie =
351                 (unsigned long)(&cpu_new_thread);
352         struct task_struct *p;
353         void *descr = NULL;
354         int timeout, ret;
355
356         p = fork_idle(cpu);
357         if (IS_ERR(p))
358                 return PTR_ERR(p);
359         callin_flag = 0;
360         cpu_new_thread = task_thread_info(p);
361
362         if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364                 if (ldom_domaining_enabled)
365                         ldom_startcpu_cpuid(cpu,
366                                             (unsigned long) cpu_new_thread,
367                                             &descr);
368                 else
369 #endif
370                         prom_startcpu_cpuid(cpu, entry, cookie);
371         } else {
372                 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374                 prom_startcpu(dp->phandle, entry, cookie);
375         }
376
377         for (timeout = 0; timeout < 50000; timeout++) {
378                 if (callin_flag)
379                         break;
380                 udelay(100);
381         }
382
383         if (callin_flag) {
384                 ret = 0;
385         } else {
386                 printk("Processor %d is stuck.\n", cpu);
387                 ret = -ENODEV;
388         }
389         cpu_new_thread = NULL;
390
391         kfree(descr);
392
393         return ret;
394 }
395
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398         u64 result, target;
399         int stuck, tmp;
400
401         if (this_is_starfire) {
402                 /* map to real upaid */
403                 cpu = (((cpu & 0x3c) << 1) |
404                         ((cpu & 0x40) >> 4) |
405                         (cpu & 0x3));
406         }
407
408         target = (cpu << 14) | 0x70;
409 again:
410         /* Ok, this is the real Spitfire Errata #54.
411          * One must read back from a UDB internal register
412          * after writes to the UDB interrupt dispatch, but
413          * before the membar Sync for that write.
414          * So we use the high UDB control register (ASI 0x7f,
415          * ADDR 0x20) for the dummy read. -DaveM
416          */
417         tmp = 0x40;
418         __asm__ __volatile__(
419         "wrpr   %1, %2, %%pstate\n\t"
420         "stxa   %4, [%0] %3\n\t"
421         "stxa   %5, [%0+%8] %3\n\t"
422         "add    %0, %8, %0\n\t"
423         "stxa   %6, [%0+%8] %3\n\t"
424         "membar #Sync\n\t"
425         "stxa   %%g0, [%7] %3\n\t"
426         "membar #Sync\n\t"
427         "mov    0x20, %%g1\n\t"
428         "ldxa   [%%g1] 0x7f, %%g0\n\t"
429         "membar #Sync"
430         : "=r" (tmp)
431         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432           "r" (data0), "r" (data1), "r" (data2), "r" (target),
433           "r" (0x10), "0" (tmp)
434         : "g1");
435
436         /* NOTE: PSTATE_IE is still clear. */
437         stuck = 100000;
438         do {
439                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440                         : "=r" (result)
441                         : "i" (ASI_INTR_DISPATCH_STAT));
442                 if (result == 0) {
443                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444                                              : : "r" (pstate));
445                         return;
446                 }
447                 stuck -= 1;
448                 if (stuck == 0)
449                         break;
450         } while (result & 0x1);
451         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452                              : : "r" (pstate));
453         if (stuck == 0) {
454                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455                        smp_processor_id(), result);
456         } else {
457                 udelay(2);
458                 goto again;
459         }
460 }
461
462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 {
464         u64 *mondo, data0, data1, data2;
465         u16 *cpu_list;
466         u64 pstate;
467         int i;
468
469         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470         cpu_list = __va(tb->cpu_list_pa);
471         mondo = __va(tb->cpu_mondo_block_pa);
472         data0 = mondo[0];
473         data1 = mondo[1];
474         data2 = mondo[2];
475         for (i = 0; i < cnt; i++)
476                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480  * packet, but we have no use for that.  However we do take advantage of
481  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482  */
483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 {
485         int nack_busy_id, is_jbus, need_more;
486         u64 *mondo, pstate, ver, busy_mask;
487         u16 *cpu_list;
488
489         cpu_list = __va(tb->cpu_list_pa);
490         mondo = __va(tb->cpu_mondo_block_pa);
491
492         /* Unfortunately, someone at Sun had the brilliant idea to make the
493          * busy/nack fields hard-coded by ITID number for this Ultra-III
494          * derivative processor.
495          */
496         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498                    (ver >> 32) == __SERRANO_ID);
499
500         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502 retry:
503         need_more = 0;
504         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505                              : : "r" (pstate), "i" (PSTATE_IE));
506
507         /* Setup the dispatch data registers. */
508         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
509                              "stxa      %1, [%4] %6\n\t"
510                              "stxa      %2, [%5] %6\n\t"
511                              "membar    #Sync\n\t"
512                              : /* no outputs */
513                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514                                "r" (0x40), "r" (0x50), "r" (0x60),
515                                "i" (ASI_INTR_W));
516
517         nack_busy_id = 0;
518         busy_mask = 0;
519         {
520                 int i;
521
522                 for (i = 0; i < cnt; i++) {
523                         u64 target, nr;
524
525                         nr = cpu_list[i];
526                         if (nr == 0xffff)
527                                 continue;
528
529                         target = (nr << 14) | 0x70;
530                         if (is_jbus) {
531                                 busy_mask |= (0x1UL << (nr * 2));
532                         } else {
533                                 target |= (nack_busy_id << 24);
534                                 busy_mask |= (0x1UL <<
535                                               (nack_busy_id * 2));
536                         }
537                         __asm__ __volatile__(
538                                 "stxa   %%g0, [%0] %1\n\t"
539                                 "membar #Sync\n\t"
540                                 : /* no outputs */
541                                 : "r" (target), "i" (ASI_INTR_W));
542                         nack_busy_id++;
543                         if (nack_busy_id == 32) {
544                                 need_more = 1;
545                                 break;
546                         }
547                 }
548         }
549
550         /* Now, poll for completion. */
551         {
552                 u64 dispatch_stat, nack_mask;
553                 long stuck;
554
555                 stuck = 100000 * nack_busy_id;
556                 nack_mask = busy_mask << 1;
557                 do {
558                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
559                                              : "=r" (dispatch_stat)
560                                              : "i" (ASI_INTR_DISPATCH_STAT));
561                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
562                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563                                                      : : "r" (pstate));
564                                 if (unlikely(need_more)) {
565                                         int i, this_cnt = 0;
566                                         for (i = 0; i < cnt; i++) {
567                                                 if (cpu_list[i] == 0xffff)
568                                                         continue;
569                                                 cpu_list[i] = 0xffff;
570                                                 this_cnt++;
571                                                 if (this_cnt == 32)
572                                                         break;
573                                         }
574                                         goto retry;
575                                 }
576                                 return;
577                         }
578                         if (!--stuck)
579                                 break;
580                 } while (dispatch_stat & busy_mask);
581
582                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583                                      : : "r" (pstate));
584
585                 if (dispatch_stat & busy_mask) {
586                         /* Busy bits will not clear, continue instead
587                          * of freezing up on this cpu.
588                          */
589                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590                                smp_processor_id(), dispatch_stat);
591                 } else {
592                         int i, this_busy_nack = 0;
593
594                         /* Delay some random time with interrupts enabled
595                          * to prevent deadlock.
596                          */
597                         udelay(2 * nack_busy_id);
598
599                         /* Clear out the mask bits for cpus which did not
600                          * NACK us.
601                          */
602                         for (i = 0; i < cnt; i++) {
603                                 u64 check_mask, nr;
604
605                                 nr = cpu_list[i];
606                                 if (nr == 0xffff)
607                                         continue;
608
609                                 if (is_jbus)
610                                         check_mask = (0x2UL << (2*nr));
611                                 else
612                                         check_mask = (0x2UL <<
613                                                       this_busy_nack);
614                                 if ((dispatch_stat & check_mask) == 0)
615                                         cpu_list[i] = 0xffff;
616                                 this_busy_nack += 2;
617                                 if (this_busy_nack == 64)
618                                         break;
619                         }
620
621                         goto retry;
622                 }
623         }
624 }
625
626 /* Multi-cpu list version.  */
627 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
628 {
629         int retries, this_cpu, prev_sent, i, saw_cpu_error;
630         unsigned long status;
631         u16 *cpu_list;
632
633         this_cpu = smp_processor_id();
634
635         cpu_list = __va(tb->cpu_list_pa);
636
637         saw_cpu_error = 0;
638         retries = 0;
639         prev_sent = 0;
640         do {
641                 int forward_progress, n_sent;
642
643                 status = sun4v_cpu_mondo_send(cnt,
644                                               tb->cpu_list_pa,
645                                               tb->cpu_mondo_block_pa);
646
647                 /* HV_EOK means all cpus received the xcall, we're done.  */
648                 if (likely(status == HV_EOK))
649                         break;
650
651                 /* First, see if we made any forward progress.
652                  *
653                  * The hypervisor indicates successful sends by setting
654                  * cpu list entries to the value 0xffff.
655                  */
656                 n_sent = 0;
657                 for (i = 0; i < cnt; i++) {
658                         if (likely(cpu_list[i] == 0xffff))
659                                 n_sent++;
660                 }
661
662                 forward_progress = 0;
663                 if (n_sent > prev_sent)
664                         forward_progress = 1;
665
666                 prev_sent = n_sent;
667
668                 /* If we get a HV_ECPUERROR, then one or more of the cpus
669                  * in the list are in error state.  Use the cpu_state()
670                  * hypervisor call to find out which cpus are in error state.
671                  */
672                 if (unlikely(status == HV_ECPUERROR)) {
673                         for (i = 0; i < cnt; i++) {
674                                 long err;
675                                 u16 cpu;
676
677                                 cpu = cpu_list[i];
678                                 if (cpu == 0xffff)
679                                         continue;
680
681                                 err = sun4v_cpu_state(cpu);
682                                 if (err == HV_CPU_STATE_ERROR) {
683                                         saw_cpu_error = (cpu + 1);
684                                         cpu_list[i] = 0xffff;
685                                 }
686                         }
687                 } else if (unlikely(status != HV_EWOULDBLOCK))
688                         goto fatal_mondo_error;
689
690                 /* Don't bother rewriting the CPU list, just leave the
691                  * 0xffff and non-0xffff entries in there and the
692                  * hypervisor will do the right thing.
693                  *
694                  * Only advance timeout state if we didn't make any
695                  * forward progress.
696                  */
697                 if (unlikely(!forward_progress)) {
698                         if (unlikely(++retries > 10000))
699                                 goto fatal_mondo_timeout;
700
701                         /* Delay a little bit to let other cpus catch up
702                          * on their cpu mondo queue work.
703                          */
704                         udelay(2 * cnt);
705                 }
706         } while (1);
707
708         if (unlikely(saw_cpu_error))
709                 goto fatal_mondo_cpu_error;
710
711         return;
712
713 fatal_mondo_cpu_error:
714         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
715                "(including %d) were in error state\n",
716                this_cpu, saw_cpu_error - 1);
717         return;
718
719 fatal_mondo_timeout:
720         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
721                " progress after %d retries.\n",
722                this_cpu, retries);
723         goto dump_cpu_list_and_out;
724
725 fatal_mondo_error:
726         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
727                this_cpu, status);
728         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
729                "mondo_block_pa(%lx)\n",
730                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
731
732 dump_cpu_list_and_out:
733         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
734         for (i = 0; i < cnt; i++)
735                 printk("%u ", cpu_list[i]);
736         printk("]\n");
737 }
738
739 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
740
741 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
742 {
743         struct trap_per_cpu *tb;
744         int this_cpu, i, cnt;
745         unsigned long flags;
746         u16 *cpu_list;
747         u64 *mondo;
748
749         /* We have to do this whole thing with interrupts fully disabled.
750          * Otherwise if we send an xcall from interrupt context it will
751          * corrupt both our mondo block and cpu list state.
752          *
753          * One consequence of this is that we cannot use timeout mechanisms
754          * that depend upon interrupts being delivered locally.  So, for
755          * example, we cannot sample jiffies and expect it to advance.
756          *
757          * Fortunately, udelay() uses %stick/%tick so we can use that.
758          */
759         local_irq_save(flags);
760
761         this_cpu = smp_processor_id();
762         tb = &trap_block[this_cpu];
763
764         mondo = __va(tb->cpu_mondo_block_pa);
765         mondo[0] = data0;
766         mondo[1] = data1;
767         mondo[2] = data2;
768         wmb();
769
770         cpu_list = __va(tb->cpu_list_pa);
771
772         /* Setup the initial cpu list.  */
773         cnt = 0;
774         for_each_cpu(i, mask) {
775                 if (i == this_cpu || !cpu_online(i))
776                         continue;
777                 cpu_list[cnt++] = i;
778         }
779
780         if (cnt)
781                 xcall_deliver_impl(tb, cnt);
782
783         local_irq_restore(flags);
784 }
785
786 /* Send cross call to all processors mentioned in MASK_P
787  * except self.  Really, there are only two cases currently,
788  * "cpu_online_mask" and "mm_cpumask(mm)".
789  */
790 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
791 {
792         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
793
794         xcall_deliver(data0, data1, data2, mask);
795 }
796
797 /* Send cross call to all processors except self. */
798 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
799 {
800         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
801 }
802
803 extern unsigned long xcall_sync_tick;
804
805 static void smp_start_sync_tick_client(int cpu)
806 {
807         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
808                       cpumask_of(cpu));
809 }
810
811 extern unsigned long xcall_call_function;
812
813 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
814 {
815         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
816 }
817
818 extern unsigned long xcall_call_function_single;
819
820 void arch_send_call_function_single_ipi(int cpu)
821 {
822         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
823                       cpumask_of(cpu));
824 }
825
826 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
827 {
828         clear_softint(1 << irq);
829         generic_smp_call_function_interrupt();
830 }
831
832 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
833 {
834         clear_softint(1 << irq);
835         generic_smp_call_function_single_interrupt();
836 }
837
838 static void tsb_sync(void *info)
839 {
840         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
841         struct mm_struct *mm = info;
842
843         /* It is not valid to test "currrent->active_mm == mm" here.
844          *
845          * The value of "current" is not changed atomically with
846          * switch_mm().  But that's OK, we just need to check the
847          * current cpu's trap block PGD physical address.
848          */
849         if (tp->pgd_paddr == __pa(mm->pgd))
850                 tsb_context_switch(mm);
851 }
852
853 void smp_tsb_sync(struct mm_struct *mm)
854 {
855         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
856 }
857
858 extern unsigned long xcall_flush_tlb_mm;
859 extern unsigned long xcall_flush_tlb_pending;
860 extern unsigned long xcall_flush_tlb_kernel_range;
861 extern unsigned long xcall_fetch_glob_regs;
862 extern unsigned long xcall_receive_signal;
863 extern unsigned long xcall_new_mmu_context_version;
864 #ifdef CONFIG_KGDB
865 extern unsigned long xcall_kgdb_capture;
866 #endif
867
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 extern unsigned long xcall_flush_dcache_page_cheetah;
870 #endif
871 extern unsigned long xcall_flush_dcache_page_spitfire;
872
873 #ifdef CONFIG_DEBUG_DCFLUSH
874 extern atomic_t dcpage_flushes;
875 extern atomic_t dcpage_flushes_xcall;
876 #endif
877
878 static inline void __local_flush_dcache_page(struct page *page)
879 {
880 #ifdef DCACHE_ALIASING_POSSIBLE
881         __flush_dcache_page(page_address(page),
882                             ((tlb_type == spitfire) &&
883                              page_mapping(page) != NULL));
884 #else
885         if (page_mapping(page) != NULL &&
886             tlb_type == spitfire)
887                 __flush_icache_page(__pa(page_address(page)));
888 #endif
889 }
890
891 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 {
893         int this_cpu;
894
895         if (tlb_type == hypervisor)
896                 return;
897
898 #ifdef CONFIG_DEBUG_DCFLUSH
899         atomic_inc(&dcpage_flushes);
900 #endif
901
902         this_cpu = get_cpu();
903
904         if (cpu == this_cpu) {
905                 __local_flush_dcache_page(page);
906         } else if (cpu_online(cpu)) {
907                 void *pg_addr = page_address(page);
908                 u64 data0 = 0;
909
910                 if (tlb_type == spitfire) {
911                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
912                         if (page_mapping(page) != NULL)
913                                 data0 |= ((u64)1 << 32);
914                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
915 #ifdef DCACHE_ALIASING_POSSIBLE
916                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
917 #endif
918                 }
919                 if (data0) {
920                         xcall_deliver(data0, __pa(pg_addr),
921                                       (u64) pg_addr, cpumask_of(cpu));
922 #ifdef CONFIG_DEBUG_DCFLUSH
923                         atomic_inc(&dcpage_flushes_xcall);
924 #endif
925                 }
926         }
927
928         put_cpu();
929 }
930
931 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 {
933         void *pg_addr;
934         u64 data0;
935
936         if (tlb_type == hypervisor)
937                 return;
938
939         preempt_disable();
940
941 #ifdef CONFIG_DEBUG_DCFLUSH
942         atomic_inc(&dcpage_flushes);
943 #endif
944         data0 = 0;
945         pg_addr = page_address(page);
946         if (tlb_type == spitfire) {
947                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948                 if (page_mapping(page) != NULL)
949                         data0 |= ((u64)1 << 32);
950         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951 #ifdef DCACHE_ALIASING_POSSIBLE
952                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 #endif
954         }
955         if (data0) {
956                 xcall_deliver(data0, __pa(pg_addr),
957                               (u64) pg_addr, cpu_online_mask);
958 #ifdef CONFIG_DEBUG_DCFLUSH
959                 atomic_inc(&dcpage_flushes_xcall);
960 #endif
961         }
962         __local_flush_dcache_page(page);
963
964         preempt_enable();
965 }
966
967 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968 {
969         struct mm_struct *mm;
970         unsigned long flags;
971
972         clear_softint(1 << irq);
973
974         /* See if we need to allocate a new TLB context because
975          * the version of the one we are using is now out of date.
976          */
977         mm = current->active_mm;
978         if (unlikely(!mm || (mm == &init_mm)))
979                 return;
980
981         spin_lock_irqsave(&mm->context.lock, flags);
982
983         if (unlikely(!CTX_VALID(mm->context)))
984                 get_new_mmu_context(mm);
985
986         spin_unlock_irqrestore(&mm->context.lock, flags);
987
988         load_secondary_context(mm);
989         __flush_tlb_mm(CTX_HWBITS(mm->context),
990                        SECONDARY_CONTEXT);
991 }
992
993 void smp_new_mmu_context_version(void)
994 {
995         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
996 }
997
998 #ifdef CONFIG_KGDB
999 void kgdb_roundup_cpus(unsigned long flags)
1000 {
1001         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002 }
1003 #endif
1004
1005 void smp_fetch_global_regs(void)
1006 {
1007         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008 }
1009
1010 /* We know that the window frames of the user have been flushed
1011  * to the stack before we get here because all callers of us
1012  * are flush_tlb_*() routines, and these run after flush_cache_*()
1013  * which performs the flushw.
1014  *
1015  * The SMP TLB coherency scheme we use works as follows:
1016  *
1017  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018  *    space has (potentially) executed on, this is the heuristic
1019  *    we use to avoid doing cross calls.
1020  *
1021  *    Also, for flushing from kswapd and also for clones, we
1022  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1023  *
1024  * 2) TLB context numbers are shared globally across all processors
1025  *    in the system, this allows us to play several games to avoid
1026  *    cross calls.
1027  *
1028  *    One invariant is that when a cpu switches to a process, and
1029  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1030  *    current cpu's bit set, that tlb context is flushed locally.
1031  *
1032  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1033  *    cross calls when we want to flush the currently running process's
1034  *    tlb state.  This is done by clearing all cpu bits except the current
1035  *    processor's in current->mm->cpu_vm_mask and performing the
1036  *    flush locally only.  This will force any subsequent cpus which run
1037  *    this task to flush the context from the local tlb if the process
1038  *    migrates to another cpu (again).
1039  *
1040  * 3) For shared address spaces (threads) and swapping we bite the
1041  *    bullet for most cases and perform the cross call (but only to
1042  *    the cpus listed in cpu_vm_mask).
1043  *
1044  *    The performance gain from "optimizing" away the cross call for threads is
1045  *    questionable (in theory the big win for threads is the massive sharing of
1046  *    address space state across processors).
1047  */
1048
1049 /* This currently is only used by the hugetlb arch pre-fault
1050  * hook on UltraSPARC-III+ and later when changing the pagesize
1051  * bits of the context register for an address space.
1052  */
1053 void smp_flush_tlb_mm(struct mm_struct *mm)
1054 {
1055         u32 ctx = CTX_HWBITS(mm->context);
1056         int cpu = get_cpu();
1057
1058         if (atomic_read(&mm->mm_users) == 1) {
1059                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060                 goto local_flush_and_out;
1061         }
1062
1063         smp_cross_call_masked(&xcall_flush_tlb_mm,
1064                               ctx, 0, 0,
1065                               mm_cpumask(mm));
1066
1067 local_flush_and_out:
1068         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070         put_cpu();
1071 }
1072
1073 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074 {
1075         u32 ctx = CTX_HWBITS(mm->context);
1076         int cpu = get_cpu();
1077
1078         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080         else
1081                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1082                                       ctx, nr, (unsigned long) vaddrs,
1083                                       mm_cpumask(mm));
1084
1085         __flush_tlb_pending(ctx, nr, vaddrs);
1086
1087         put_cpu();
1088 }
1089
1090 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091 {
1092         start &= PAGE_MASK;
1093         end    = PAGE_ALIGN(end);
1094         if (start != end) {
1095                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1096                                0, start, end);
1097
1098                 __flush_tlb_kernel_range(start, end);
1099         }
1100 }
1101
1102 /* CPU capture. */
1103 /* #define CAPTURE_DEBUG */
1104 extern unsigned long xcall_capture;
1105
1106 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108 static unsigned long penguins_are_doing_time;
1109
1110 void smp_capture(void)
1111 {
1112         int result = atomic_add_ret(1, &smp_capture_depth);
1113
1114         if (result == 1) {
1115                 int ncpus = num_online_cpus();
1116
1117 #ifdef CAPTURE_DEBUG
1118                 printk("CPU[%d]: Sending penguins to jail...",
1119                        smp_processor_id());
1120 #endif
1121                 penguins_are_doing_time = 1;
1122                 atomic_inc(&smp_capture_registry);
1123                 smp_cross_call(&xcall_capture, 0, 0, 0);
1124                 while (atomic_read(&smp_capture_registry) != ncpus)
1125                         rmb();
1126 #ifdef CAPTURE_DEBUG
1127                 printk("done\n");
1128 #endif
1129         }
1130 }
1131
1132 void smp_release(void)
1133 {
1134         if (atomic_dec_and_test(&smp_capture_depth)) {
1135 #ifdef CAPTURE_DEBUG
1136                 printk("CPU[%d]: Giving pardon to "
1137                        "imprisoned penguins\n",
1138                        smp_processor_id());
1139 #endif
1140                 penguins_are_doing_time = 0;
1141                 membar_safe("#StoreLoad");
1142                 atomic_dec(&smp_capture_registry);
1143         }
1144 }
1145
1146 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147  * set, so they can service tlb flush xcalls...
1148  */
1149 extern void prom_world(int);
1150
1151 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152 {
1153         clear_softint(1 << irq);
1154
1155         preempt_disable();
1156
1157         __asm__ __volatile__("flushw");
1158         prom_world(1);
1159         atomic_inc(&smp_capture_registry);
1160         membar_safe("#StoreLoad");
1161         while (penguins_are_doing_time)
1162                 rmb();
1163         atomic_dec(&smp_capture_registry);
1164         prom_world(0);
1165
1166         preempt_enable();
1167 }
1168
1169 /* /proc/profile writes can call this, don't __init it please. */
1170 int setup_profiling_timer(unsigned int multiplier)
1171 {
1172         return -EINVAL;
1173 }
1174
1175 void __init smp_prepare_cpus(unsigned int max_cpus)
1176 {
1177 }
1178
1179 void __devinit smp_prepare_boot_cpu(void)
1180 {
1181 }
1182
1183 void __init smp_setup_processor_id(void)
1184 {
1185         if (tlb_type == spitfire)
1186                 xcall_deliver_impl = spitfire_xcall_deliver;
1187         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188                 xcall_deliver_impl = cheetah_xcall_deliver;
1189         else
1190                 xcall_deliver_impl = hypervisor_xcall_deliver;
1191 }
1192
1193 void __devinit smp_fill_in_sib_core_maps(void)
1194 {
1195         unsigned int i;
1196
1197         for_each_present_cpu(i) {
1198                 unsigned int j;
1199
1200                 cpumask_clear(&cpu_core_map[i]);
1201                 if (cpu_data(i).core_id == 0) {
1202                         cpumask_set_cpu(i, &cpu_core_map[i]);
1203                         continue;
1204                 }
1205
1206                 for_each_present_cpu(j) {
1207                         if (cpu_data(i).core_id ==
1208                             cpu_data(j).core_id)
1209                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1210                 }
1211         }
1212
1213         for_each_present_cpu(i) {
1214                 unsigned int j;
1215
1216                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1217                 if (cpu_data(i).proc_id == -1) {
1218                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1219                         continue;
1220                 }
1221
1222                 for_each_present_cpu(j) {
1223                         if (cpu_data(i).proc_id ==
1224                             cpu_data(j).proc_id)
1225                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1226                 }
1227         }
1228 }
1229
1230 int __cpuinit __cpu_up(unsigned int cpu)
1231 {
1232         int ret = smp_boot_one_cpu(cpu);
1233
1234         if (!ret) {
1235                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1236                 while (!cpu_online(cpu))
1237                         mb();
1238                 if (!cpu_online(cpu)) {
1239                         ret = -ENODEV;
1240                 } else {
1241                         /* On SUN4V, writes to %tick and %stick are
1242                          * not allowed.
1243                          */
1244                         if (tlb_type != hypervisor)
1245                                 smp_synchronize_one_tick(cpu);
1246                 }
1247         }
1248         return ret;
1249 }
1250
1251 #ifdef CONFIG_HOTPLUG_CPU
1252 void cpu_play_dead(void)
1253 {
1254         int cpu = smp_processor_id();
1255         unsigned long pstate;
1256
1257         idle_task_exit();
1258
1259         if (tlb_type == hypervisor) {
1260                 struct trap_per_cpu *tb = &trap_block[cpu];
1261
1262                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263                                 tb->cpu_mondo_pa, 0);
1264                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265                                 tb->dev_mondo_pa, 0);
1266                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267                                 tb->resum_mondo_pa, 0);
1268                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269                                 tb->nonresum_mondo_pa, 0);
1270         }
1271
1272         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1273         membar_safe("#Sync");
1274
1275         local_irq_disable();
1276
1277         __asm__ __volatile__(
1278                 "rdpr   %%pstate, %0\n\t"
1279                 "wrpr   %0, %1, %%pstate"
1280                 : "=r" (pstate)
1281                 : "i" (PSTATE_IE));
1282
1283         while (1)
1284                 barrier();
1285 }
1286
1287 int __cpu_disable(void)
1288 {
1289         int cpu = smp_processor_id();
1290         cpuinfo_sparc *c;
1291         int i;
1292
1293         for_each_cpu(i, &cpu_core_map[cpu])
1294                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1295         cpumask_clear(&cpu_core_map[cpu]);
1296
1297         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1298                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1299         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1300
1301         c = &cpu_data(cpu);
1302
1303         c->core_id = 0;
1304         c->proc_id = -1;
1305
1306         smp_wmb();
1307
1308         /* Make sure no interrupts point to this cpu.  */
1309         fixup_irqs();
1310
1311         local_irq_enable();
1312         mdelay(1);
1313         local_irq_disable();
1314
1315         ipi_call_lock();
1316         set_cpu_online(cpu, false);
1317         ipi_call_unlock();
1318
1319         cpu_map_rebuild();
1320
1321         return 0;
1322 }
1323
1324 void __cpu_die(unsigned int cpu)
1325 {
1326         int i;
1327
1328         for (i = 0; i < 100; i++) {
1329                 smp_rmb();
1330                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1331                         break;
1332                 msleep(100);
1333         }
1334         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1335                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336         } else {
1337 #if defined(CONFIG_SUN_LDOMS)
1338                 unsigned long hv_err;
1339                 int limit = 100;
1340
1341                 do {
1342                         hv_err = sun4v_cpu_stop(cpu);
1343                         if (hv_err == HV_EOK) {
1344                                 set_cpu_present(cpu, false);
1345                                 break;
1346                         }
1347                 } while (--limit > 0);
1348                 if (limit <= 0) {
1349                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350                                hv_err);
1351                 }
1352 #endif
1353         }
1354 }
1355 #endif
1356
1357 void __init smp_cpus_done(unsigned int max_cpus)
1358 {
1359         pcr_arch_init();
1360 }
1361
1362 void smp_send_reschedule(int cpu)
1363 {
1364         xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1365                       cpumask_of(cpu));
1366 }
1367
1368 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1369 {
1370         clear_softint(1 << irq);
1371         scheduler_ipi();
1372 }
1373
1374 /* This is a nop because we capture all other cpus
1375  * anyways when making the PROM active.
1376  */
1377 void smp_send_stop(void)
1378 {
1379 }
1380
1381 /**
1382  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383  * @cpu: cpu to allocate for
1384  * @size: size allocation in bytes
1385  * @align: alignment
1386  *
1387  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1388  * does the right thing for NUMA regardless of the current
1389  * configuration.
1390  *
1391  * RETURNS:
1392  * Pointer to the allocated area on success, NULL on failure.
1393  */
1394 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1395                                         size_t align)
1396 {
1397         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1398 #ifdef CONFIG_NEED_MULTIPLE_NODES
1399         int node = cpu_to_node(cpu);
1400         void *ptr;
1401
1402         if (!node_online(node) || !NODE_DATA(node)) {
1403                 ptr = __alloc_bootmem(size, align, goal);
1404                 pr_info("cpu %d has no node %d or node-local memory\n",
1405                         cpu, node);
1406                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407                          cpu, size, __pa(ptr));
1408         } else {
1409                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1410                                            size, align, goal);
1411                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412                          "%016lx\n", cpu, size, node, __pa(ptr));
1413         }
1414         return ptr;
1415 #else
1416         return __alloc_bootmem(size, align, goal);
1417 #endif
1418 }
1419
1420 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1421 {
1422         free_bootmem(__pa(ptr), size);
1423 }
1424
1425 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1426 {
1427         if (cpu_to_node(from) == cpu_to_node(to))
1428                 return LOCAL_DISTANCE;
1429         else
1430                 return REMOTE_DISTANCE;
1431 }
1432
1433 static void __init pcpu_populate_pte(unsigned long addr)
1434 {
1435         pgd_t *pgd = pgd_offset_k(addr);
1436         pud_t *pud;
1437         pmd_t *pmd;
1438
1439         pud = pud_offset(pgd, addr);
1440         if (pud_none(*pud)) {
1441                 pmd_t *new;
1442
1443                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1444                 pud_populate(&init_mm, pud, new);
1445         }
1446
1447         pmd = pmd_offset(pud, addr);
1448         if (!pmd_present(*pmd)) {
1449                 pte_t *new;
1450
1451                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1452                 pmd_populate_kernel(&init_mm, pmd, new);
1453         }
1454 }
1455
1456 void __init setup_per_cpu_areas(void)
1457 {
1458         unsigned long delta;
1459         unsigned int cpu;
1460         int rc = -EINVAL;
1461
1462         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1463                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1464                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1465                                             pcpu_cpu_distance,
1466                                             pcpu_alloc_bootmem,
1467                                             pcpu_free_bootmem);
1468                 if (rc)
1469                         pr_warning("PERCPU: %s allocator failed (%d), "
1470                                    "falling back to page size\n",
1471                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1472         }
1473         if (rc < 0)
1474                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1475                                            pcpu_alloc_bootmem,
1476                                            pcpu_free_bootmem,
1477                                            pcpu_populate_pte);
1478         if (rc < 0)
1479                 panic("cannot initialize percpu area (err=%d)", rc);
1480
1481         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482         for_each_possible_cpu(cpu)
1483                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1484
1485         /* Setup %g5 for the boot cpu.  */
1486         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1487
1488         of_fill_in_cpu_data();
1489         if (tlb_type == hypervisor)
1490                 mdesc_fill_in_cpu_data(cpu_all_mask);
1491 }