Merge branch 'gpio/merge' of git://git.secretlab.ca/git/linux-2.6
[pandora-kernel.git] / arch / sparc / kernel / smp_32.c
1 /* smp.c: Sparc SMP support.
2  *
3  * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4  * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5  * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6  */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36
37 #include "irq.h"
38
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40
41 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42
43 /* The only guaranteed locking primitive available on all Sparc
44  * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45  * places the current byte at the effective address into dest_reg and
46  * places 0xff there afterwards.  Pretty lame locking primitive
47  * compared to the Alpha and the Intel no?  Most Sparcs have 'swap'
48  * instruction which is much better...
49  */
50
51 void __cpuinit smp_store_cpu_info(int id)
52 {
53         int cpu_node;
54         int mid;
55
56         cpu_data(id).udelay_val = loops_per_jiffy;
57
58         cpu_find_by_mid(id, &cpu_node);
59         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60                                                      "clock-frequency", 0);
61         cpu_data(id).prom_node = cpu_node;
62         mid = cpu_get_hwmid(cpu_node);
63
64         if (mid < 0) {
65                 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
66                 mid = 0;
67         }
68         cpu_data(id).mid = mid;
69 }
70
71 void __init smp_cpus_done(unsigned int max_cpus)
72 {
73         extern void smp4m_smp_done(void);
74         extern void smp4d_smp_done(void);
75         unsigned long bogosum = 0;
76         int cpu, num = 0;
77
78         for_each_online_cpu(cpu) {
79                 num++;
80                 bogosum += cpu_data(cpu).udelay_val;
81         }
82
83         printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84                 num, bogosum/(500000/HZ),
85                 (bogosum/(5000/HZ))%100);
86
87         switch(sparc_cpu_model) {
88         case sun4:
89                 printk("SUN4\n");
90                 BUG();
91                 break;
92         case sun4c:
93                 printk("SUN4C\n");
94                 BUG();
95                 break;
96         case sun4m:
97                 smp4m_smp_done();
98                 break;
99         case sun4d:
100                 smp4d_smp_done();
101                 break;
102         case sparc_leon:
103                 leon_smp_done();
104                 break;
105         case sun4e:
106                 printk("SUN4E\n");
107                 BUG();
108                 break;
109         case sun4u:
110                 printk("SUN4U\n");
111                 BUG();
112                 break;
113         default:
114                 printk("UNKNOWN!\n");
115                 BUG();
116                 break;
117         }
118 }
119
120 void cpu_panic(void)
121 {
122         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123         panic("SMP bolixed\n");
124 }
125
126 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127
128 void smp_send_reschedule(int cpu)
129 {
130         /*
131          * CPU model dependent way of implementing IPI generation targeting
132          * a single CPU. The trap handler needs only to do trap entry/return
133          * to call schedule.
134          */
135         BTFIXUP_CALL(smp_ipi_resched)(cpu);
136 }
137
138 void smp_send_stop(void)
139 {
140 }
141
142 void arch_send_call_function_single_ipi(int cpu)
143 {
144         /* trigger one IPI single call on one CPU */
145         BTFIXUP_CALL(smp_ipi_single)(cpu);
146 }
147
148 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149 {
150         int cpu;
151
152         /* trigger IPI mask call on each CPU */
153         for_each_cpu(cpu, mask)
154                 BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155 }
156
157 void smp_resched_interrupt(void)
158 {
159         irq_enter();
160         scheduler_ipi();
161         local_cpu_data().irq_resched_count++;
162         irq_exit();
163         /* re-schedule routine called by interrupt return code. */
164 }
165
166 void smp_call_function_single_interrupt(void)
167 {
168         irq_enter();
169         generic_smp_call_function_single_interrupt();
170         local_cpu_data().irq_call_count++;
171         irq_exit();
172 }
173
174 void smp_call_function_interrupt(void)
175 {
176         irq_enter();
177         generic_smp_call_function_interrupt();
178         local_cpu_data().irq_call_count++;
179         irq_exit();
180 }
181
182 void smp_flush_cache_all(void)
183 {
184         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185         local_flush_cache_all();
186 }
187
188 void smp_flush_tlb_all(void)
189 {
190         xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191         local_flush_tlb_all();
192 }
193
194 void smp_flush_cache_mm(struct mm_struct *mm)
195 {
196         if(mm->context != NO_CONTEXT) {
197                 cpumask_t cpu_mask;
198                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
199                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200                 if (!cpumask_empty(&cpu_mask))
201                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202                 local_flush_cache_mm(mm);
203         }
204 }
205
206 void smp_flush_tlb_mm(struct mm_struct *mm)
207 {
208         if(mm->context != NO_CONTEXT) {
209                 cpumask_t cpu_mask;
210                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
211                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212                 if (!cpumask_empty(&cpu_mask)) {
213                         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214                         if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215                                 cpumask_copy(mm_cpumask(mm),
216                                              cpumask_of(smp_processor_id()));
217                 }
218                 local_flush_tlb_mm(mm);
219         }
220 }
221
222 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223                            unsigned long end)
224 {
225         struct mm_struct *mm = vma->vm_mm;
226
227         if (mm->context != NO_CONTEXT) {
228                 cpumask_t cpu_mask;
229                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
230                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231                 if (!cpumask_empty(&cpu_mask))
232                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233                 local_flush_cache_range(vma, start, end);
234         }
235 }
236
237 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238                          unsigned long end)
239 {
240         struct mm_struct *mm = vma->vm_mm;
241
242         if (mm->context != NO_CONTEXT) {
243                 cpumask_t cpu_mask;
244                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
245                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246                 if (!cpumask_empty(&cpu_mask))
247                         xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248                 local_flush_tlb_range(vma, start, end);
249         }
250 }
251
252 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253 {
254         struct mm_struct *mm = vma->vm_mm;
255
256         if(mm->context != NO_CONTEXT) {
257                 cpumask_t cpu_mask;
258                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
259                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260                 if (!cpumask_empty(&cpu_mask))
261                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262                 local_flush_cache_page(vma, page);
263         }
264 }
265
266 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267 {
268         struct mm_struct *mm = vma->vm_mm;
269
270         if(mm->context != NO_CONTEXT) {
271                 cpumask_t cpu_mask;
272                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
273                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274                 if (!cpumask_empty(&cpu_mask))
275                         xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276                 local_flush_tlb_page(vma, page);
277         }
278 }
279
280 void smp_flush_page_to_ram(unsigned long page)
281 {
282         /* Current theory is that those who call this are the one's
283          * who have just dirtied their cache with the pages contents
284          * in kernel space, therefore we only run this on local cpu.
285          *
286          * XXX This experiment failed, research further... -DaveM
287          */
288 #if 1
289         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290 #endif
291         local_flush_page_to_ram(page);
292 }
293
294 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295 {
296         cpumask_t cpu_mask;
297         cpumask_copy(&cpu_mask, mm_cpumask(mm));
298         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299         if (!cpumask_empty(&cpu_mask))
300                 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301         local_flush_sig_insns(mm, insn_addr);
302 }
303
304 extern unsigned int lvl14_resolution;
305
306 /* /proc/profile writes can call this, don't __init it please. */
307 static DEFINE_SPINLOCK(prof_setup_lock);
308
309 int setup_profiling_timer(unsigned int multiplier)
310 {
311         int i;
312         unsigned long flags;
313
314         /* Prevent level14 ticker IRQ flooding. */
315         if((!multiplier) || (lvl14_resolution / multiplier) < 500)
316                 return -EINVAL;
317
318         spin_lock_irqsave(&prof_setup_lock, flags);
319         for_each_possible_cpu(i) {
320                 load_profile_irq(i, lvl14_resolution / multiplier);
321                 prof_multiplier(i) = multiplier;
322         }
323         spin_unlock_irqrestore(&prof_setup_lock, flags);
324
325         return 0;
326 }
327
328 void __init smp_prepare_cpus(unsigned int max_cpus)
329 {
330         extern void __init smp4m_boot_cpus(void);
331         extern void __init smp4d_boot_cpus(void);
332         int i, cpuid, extra;
333
334         printk("Entering SMP Mode...\n");
335
336         extra = 0;
337         for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
338                 if (cpuid >= NR_CPUS)
339                         extra++;
340         }
341         /* i = number of cpus */
342         if (extra && max_cpus > i - extra)
343                 printk("Warning: NR_CPUS is too low to start all cpus\n");
344
345         smp_store_cpu_info(boot_cpu_id);
346
347         switch(sparc_cpu_model) {
348         case sun4:
349                 printk("SUN4\n");
350                 BUG();
351                 break;
352         case sun4c:
353                 printk("SUN4C\n");
354                 BUG();
355                 break;
356         case sun4m:
357                 smp4m_boot_cpus();
358                 break;
359         case sun4d:
360                 smp4d_boot_cpus();
361                 break;
362         case sparc_leon:
363                 leon_boot_cpus();
364                 break;
365         case sun4e:
366                 printk("SUN4E\n");
367                 BUG();
368                 break;
369         case sun4u:
370                 printk("SUN4U\n");
371                 BUG();
372                 break;
373         default:
374                 printk("UNKNOWN!\n");
375                 BUG();
376                 break;
377         }
378 }
379
380 /* Set this up early so that things like the scheduler can init
381  * properly.  We use the same cpu mask for both the present and
382  * possible cpu map.
383  */
384 void __init smp_setup_cpu_possible_map(void)
385 {
386         int instance, mid;
387
388         instance = 0;
389         while (!cpu_find_by_instance(instance, NULL, &mid)) {
390                 if (mid < NR_CPUS) {
391                         set_cpu_possible(mid, true);
392                         set_cpu_present(mid, true);
393                 }
394                 instance++;
395         }
396 }
397
398 void __init smp_prepare_boot_cpu(void)
399 {
400         int cpuid = hard_smp_processor_id();
401
402         if (cpuid >= NR_CPUS) {
403                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
404                 prom_halt();
405         }
406         if (cpuid != 0)
407                 printk("boot cpu id != 0, this could work but is untested\n");
408
409         current_thread_info()->cpu = cpuid;
410         set_cpu_online(cpuid, true);
411         set_cpu_possible(cpuid, true);
412 }
413
414 int __cpuinit __cpu_up(unsigned int cpu)
415 {
416         extern int __cpuinit smp4m_boot_one_cpu(int);
417         extern int __cpuinit smp4d_boot_one_cpu(int);
418         int ret=0;
419
420         switch(sparc_cpu_model) {
421         case sun4:
422                 printk("SUN4\n");
423                 BUG();
424                 break;
425         case sun4c:
426                 printk("SUN4C\n");
427                 BUG();
428                 break;
429         case sun4m:
430                 ret = smp4m_boot_one_cpu(cpu);
431                 break;
432         case sun4d:
433                 ret = smp4d_boot_one_cpu(cpu);
434                 break;
435         case sparc_leon:
436                 ret = leon_boot_one_cpu(cpu);
437                 break;
438         case sun4e:
439                 printk("SUN4E\n");
440                 BUG();
441                 break;
442         case sun4u:
443                 printk("SUN4U\n");
444                 BUG();
445                 break;
446         default:
447                 printk("UNKNOWN!\n");
448                 BUG();
449                 break;
450         }
451
452         if (!ret) {
453                 cpumask_set_cpu(cpu, &smp_commenced_mask);
454                 while (!cpu_online(cpu))
455                         mb();
456         }
457         return ret;
458 }
459
460 void smp_bogo(struct seq_file *m)
461 {
462         int i;
463         
464         for_each_online_cpu(i) {
465                 seq_printf(m,
466                            "Cpu%dBogo\t: %lu.%02lu\n",
467                            i,
468                            cpu_data(i).udelay_val/(500000/HZ),
469                            (cpu_data(i).udelay_val/(5000/HZ))%100);
470         }
471 }
472
473 void smp_info(struct seq_file *m)
474 {
475         int i;
476
477         seq_printf(m, "State:\n");
478         for_each_online_cpu(i)
479                 seq_printf(m, "CPU%d\t\t: online\n", i);
480 }