Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
20
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
25 #include <asm/nmi.h>
26 #include <asm/pcr.h>
27
28 #include "kstack.h"
29
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31  * overflow interrupts generated on transition from 0xffffffff to 0.
32  * The counters are accessed in one go using a 64-bit register.
33  *
34  * Both counters are controlled using a single control register.  The
35  * only way to stop all sampling is to clear all of the context (user,
36  * supervisor, hypervisor) sampling enable bits.  But these bits apply
37  * to both counters, thus the two counters can't be enabled/disabled
38  * individually.
39  *
40  * The control register has two event fields, one for each of the two
41  * counters.  It's thus nearly impossible to have one counter going
42  * while keeping the other one stopped.  Therefore it is possible to
43  * get overflow interrupts for counters not currently "in use" and
44  * that condition must be checked in the overflow interrupt handler.
45  *
46  * So we use a hack, in that we program inactive counters with the
47  * "sw_count0" and "sw_count1" events.  These count how many times
48  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
49  * unusual way to encode a NOP and therefore will not trigger in
50  * normal code.
51  */
52
53 #define MAX_HWEVENTS                    2
54 #define MAX_PERIOD                      ((1UL << 32) - 1)
55
56 #define PIC_UPPER_INDEX                 0
57 #define PIC_LOWER_INDEX                 1
58 #define PIC_NO_INDEX                    -1
59
60 struct cpu_hw_events {
61         /* Number of events currently scheduled onto this cpu.
62          * This tells how many entries in the arrays below
63          * are valid.
64          */
65         int                     n_events;
66
67         /* Number of new events added since the last hw_perf_disable().
68          * This works because the perf event layer always adds new
69          * events inside of a perf_{disable,enable}() sequence.
70          */
71         int                     n_added;
72
73         /* Array of events current scheduled on this cpu.  */
74         struct perf_event       *event[MAX_HWEVENTS];
75
76         /* Array of encoded longs, specifying the %pcr register
77          * encoding and the mask of PIC counters this even can
78          * be scheduled on.  See perf_event_encode() et al.
79          */
80         unsigned long           events[MAX_HWEVENTS];
81
82         /* The current counter index assigned to an event.  When the
83          * event hasn't been programmed into the cpu yet, this will
84          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
85          * we ought to schedule the event.
86          */
87         int                     current_idx[MAX_HWEVENTS];
88
89         /* Software copy of %pcr register on this cpu.  */
90         u64                     pcr;
91
92         /* Enabled/disable state.  */
93         int                     enabled;
94 };
95 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
96
97 /* An event map describes the characteristics of a performance
98  * counter event.  In particular it gives the encoding as well as
99  * a mask telling which counters the event can be measured on.
100  */
101 struct perf_event_map {
102         u16     encoding;
103         u8      pic_mask;
104 #define PIC_NONE        0x00
105 #define PIC_UPPER       0x01
106 #define PIC_LOWER       0x02
107 };
108
109 /* Encode a perf_event_map entry into a long.  */
110 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
111 {
112         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
113 }
114
115 static u8 perf_event_get_msk(unsigned long val)
116 {
117         return val & 0xff;
118 }
119
120 static u64 perf_event_get_enc(unsigned long val)
121 {
122         return val >> 16;
123 }
124
125 #define C(x) PERF_COUNT_HW_CACHE_##x
126
127 #define CACHE_OP_UNSUPPORTED    0xfffe
128 #define CACHE_OP_NONSENSE       0xffff
129
130 typedef struct perf_event_map cache_map_t
131                                 [PERF_COUNT_HW_CACHE_MAX]
132                                 [PERF_COUNT_HW_CACHE_OP_MAX]
133                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
134
135 struct sparc_pmu {
136         const struct perf_event_map     *(*event_map)(int);
137         const cache_map_t               *cache_map;
138         int                             max_events;
139         int                             upper_shift;
140         int                             lower_shift;
141         int                             event_mask;
142         int                             hv_bit;
143         int                             irq_bit;
144         int                             upper_nop;
145         int                             lower_nop;
146 };
147
148 static const struct perf_event_map ultra3_perfmon_event_map[] = {
149         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
150         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
151         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
152         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
153 };
154
155 static const struct perf_event_map *ultra3_event_map(int event_id)
156 {
157         return &ultra3_perfmon_event_map[event_id];
158 }
159
160 static const cache_map_t ultra3_cache_map = {
161 [C(L1D)] = {
162         [C(OP_READ)] = {
163                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
164                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
165         },
166         [C(OP_WRITE)] = {
167                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
168                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
169         },
170         [C(OP_PREFETCH)] = {
171                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
172                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
173         },
174 },
175 [C(L1I)] = {
176         [C(OP_READ)] = {
177                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
178                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
179         },
180         [ C(OP_WRITE) ] = {
181                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
182                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
183         },
184         [ C(OP_PREFETCH) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
187         },
188 },
189 [C(LL)] = {
190         [C(OP_READ)] = {
191                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
192                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
193         },
194         [C(OP_WRITE)] = {
195                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
196                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
197         },
198         [C(OP_PREFETCH)] = {
199                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
200                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
201         },
202 },
203 [C(DTLB)] = {
204         [C(OP_READ)] = {
205                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
206                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
207         },
208         [ C(OP_WRITE) ] = {
209                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
210                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
211         },
212         [ C(OP_PREFETCH) ] = {
213                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215         },
216 },
217 [C(ITLB)] = {
218         [C(OP_READ)] = {
219                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
220                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
221         },
222         [ C(OP_WRITE) ] = {
223                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
224                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
225         },
226         [ C(OP_PREFETCH) ] = {
227                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229         },
230 },
231 [C(BPU)] = {
232         [C(OP_READ)] = {
233                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
234                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
235         },
236         [ C(OP_WRITE) ] = {
237                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
238                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
239         },
240         [ C(OP_PREFETCH) ] = {
241                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243         },
244 },
245 };
246
247 static const struct sparc_pmu ultra3_pmu = {
248         .event_map      = ultra3_event_map,
249         .cache_map      = &ultra3_cache_map,
250         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
251         .upper_shift    = 11,
252         .lower_shift    = 4,
253         .event_mask     = 0x3f,
254         .upper_nop      = 0x1c,
255         .lower_nop      = 0x14,
256 };
257
258 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
259  * only instructions, so it is free running which creates all kinds of
260  * problems.  Some hardware designs make one wonder if the creator
261  * even looked at how this stuff gets used by software.
262  */
263 static const struct perf_event_map niagara1_perfmon_event_map[] = {
264         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
265         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
266         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
267         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
268 };
269
270 static const struct perf_event_map *niagara1_event_map(int event_id)
271 {
272         return &niagara1_perfmon_event_map[event_id];
273 }
274
275 static const cache_map_t niagara1_cache_map = {
276 [C(L1D)] = {
277         [C(OP_READ)] = {
278                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
279                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
280         },
281         [C(OP_WRITE)] = {
282                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284         },
285         [C(OP_PREFETCH)] = {
286                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
288         },
289 },
290 [C(L1I)] = {
291         [C(OP_READ)] = {
292                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
293                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
294         },
295         [ C(OP_WRITE) ] = {
296                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
297                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
298         },
299         [ C(OP_PREFETCH) ] = {
300                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
302         },
303 },
304 [C(LL)] = {
305         [C(OP_READ)] = {
306                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
307                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
308         },
309         [C(OP_WRITE)] = {
310                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312         },
313         [C(OP_PREFETCH)] = {
314                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
316         },
317 },
318 [C(DTLB)] = {
319         [C(OP_READ)] = {
320                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
321                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
322         },
323         [ C(OP_WRITE) ] = {
324                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
325                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
326         },
327         [ C(OP_PREFETCH) ] = {
328                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
330         },
331 },
332 [C(ITLB)] = {
333         [C(OP_READ)] = {
334                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
335                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
336         },
337         [ C(OP_WRITE) ] = {
338                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
339                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
340         },
341         [ C(OP_PREFETCH) ] = {
342                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344         },
345 },
346 [C(BPU)] = {
347         [C(OP_READ)] = {
348                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
349                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
350         },
351         [ C(OP_WRITE) ] = {
352                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
353                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
354         },
355         [ C(OP_PREFETCH) ] = {
356                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358         },
359 },
360 };
361
362 static const struct sparc_pmu niagara1_pmu = {
363         .event_map      = niagara1_event_map,
364         .cache_map      = &niagara1_cache_map,
365         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
366         .upper_shift    = 0,
367         .lower_shift    = 4,
368         .event_mask     = 0x7,
369         .upper_nop      = 0x0,
370         .lower_nop      = 0x0,
371 };
372
373 static const struct perf_event_map niagara2_perfmon_event_map[] = {
374         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
375         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
376         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
377         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
378         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
379         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
380 };
381
382 static const struct perf_event_map *niagara2_event_map(int event_id)
383 {
384         return &niagara2_perfmon_event_map[event_id];
385 }
386
387 static const cache_map_t niagara2_cache_map = {
388 [C(L1D)] = {
389         [C(OP_READ)] = {
390                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
391                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
392         },
393         [C(OP_WRITE)] = {
394                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
395                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396         },
397         [C(OP_PREFETCH)] = {
398                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
399                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
400         },
401 },
402 [C(L1I)] = {
403         [C(OP_READ)] = {
404                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
405                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
406         },
407         [ C(OP_WRITE) ] = {
408                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
409                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
410         },
411         [ C(OP_PREFETCH) ] = {
412                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
414         },
415 },
416 [C(LL)] = {
417         [C(OP_READ)] = {
418                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
419                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
420         },
421         [C(OP_WRITE)] = {
422                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
423                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
424         },
425         [C(OP_PREFETCH)] = {
426                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
427                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
428         },
429 },
430 [C(DTLB)] = {
431         [C(OP_READ)] = {
432                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
433                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
434         },
435         [ C(OP_WRITE) ] = {
436                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
437                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
438         },
439         [ C(OP_PREFETCH) ] = {
440                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
442         },
443 },
444 [C(ITLB)] = {
445         [C(OP_READ)] = {
446                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
447                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
448         },
449         [ C(OP_WRITE) ] = {
450                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
451                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
452         },
453         [ C(OP_PREFETCH) ] = {
454                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
456         },
457 },
458 [C(BPU)] = {
459         [C(OP_READ)] = {
460                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
461                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
462         },
463         [ C(OP_WRITE) ] = {
464                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
465                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
466         },
467         [ C(OP_PREFETCH) ] = {
468                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470         },
471 },
472 };
473
474 static const struct sparc_pmu niagara2_pmu = {
475         .event_map      = niagara2_event_map,
476         .cache_map      = &niagara2_cache_map,
477         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
478         .upper_shift    = 19,
479         .lower_shift    = 6,
480         .event_mask     = 0xfff,
481         .hv_bit         = 0x8,
482         .irq_bit        = 0x30,
483         .upper_nop      = 0x220,
484         .lower_nop      = 0x220,
485 };
486
487 static const struct sparc_pmu *sparc_pmu __read_mostly;
488
489 static u64 event_encoding(u64 event_id, int idx)
490 {
491         if (idx == PIC_UPPER_INDEX)
492                 event_id <<= sparc_pmu->upper_shift;
493         else
494                 event_id <<= sparc_pmu->lower_shift;
495         return event_id;
496 }
497
498 static u64 mask_for_index(int idx)
499 {
500         return event_encoding(sparc_pmu->event_mask, idx);
501 }
502
503 static u64 nop_for_index(int idx)
504 {
505         return event_encoding(idx == PIC_UPPER_INDEX ?
506                               sparc_pmu->upper_nop :
507                               sparc_pmu->lower_nop, idx);
508 }
509
510 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
511 {
512         u64 val, mask = mask_for_index(idx);
513
514         val = cpuc->pcr;
515         val &= ~mask;
516         val |= hwc->config;
517         cpuc->pcr = val;
518
519         pcr_ops->write(cpuc->pcr);
520 }
521
522 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
523 {
524         u64 mask = mask_for_index(idx);
525         u64 nop = nop_for_index(idx);
526         u64 val;
527
528         val = cpuc->pcr;
529         val &= ~mask;
530         val |= nop;
531         cpuc->pcr = val;
532
533         pcr_ops->write(cpuc->pcr);
534 }
535
536 static u32 read_pmc(int idx)
537 {
538         u64 val;
539
540         read_pic(val);
541         if (idx == PIC_UPPER_INDEX)
542                 val >>= 32;
543
544         return val & 0xffffffff;
545 }
546
547 static void write_pmc(int idx, u64 val)
548 {
549         u64 shift, mask, pic;
550
551         shift = 0;
552         if (idx == PIC_UPPER_INDEX)
553                 shift = 32;
554
555         mask = ((u64) 0xffffffff) << shift;
556         val <<= shift;
557
558         read_pic(pic);
559         pic &= ~mask;
560         pic |= val;
561         write_pic(pic);
562 }
563
564 static u64 sparc_perf_event_update(struct perf_event *event,
565                                    struct hw_perf_event *hwc, int idx)
566 {
567         int shift = 64 - 32;
568         u64 prev_raw_count, new_raw_count;
569         s64 delta;
570
571 again:
572         prev_raw_count = atomic64_read(&hwc->prev_count);
573         new_raw_count = read_pmc(idx);
574
575         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
576                              new_raw_count) != prev_raw_count)
577                 goto again;
578
579         delta = (new_raw_count << shift) - (prev_raw_count << shift);
580         delta >>= shift;
581
582         atomic64_add(delta, &event->count);
583         atomic64_sub(delta, &hwc->period_left);
584
585         return new_raw_count;
586 }
587
588 static int sparc_perf_event_set_period(struct perf_event *event,
589                                        struct hw_perf_event *hwc, int idx)
590 {
591         s64 left = atomic64_read(&hwc->period_left);
592         s64 period = hwc->sample_period;
593         int ret = 0;
594
595         if (unlikely(left <= -period)) {
596                 left = period;
597                 atomic64_set(&hwc->period_left, left);
598                 hwc->last_period = period;
599                 ret = 1;
600         }
601
602         if (unlikely(left <= 0)) {
603                 left += period;
604                 atomic64_set(&hwc->period_left, left);
605                 hwc->last_period = period;
606                 ret = 1;
607         }
608         if (left > MAX_PERIOD)
609                 left = MAX_PERIOD;
610
611         atomic64_set(&hwc->prev_count, (u64)-left);
612
613         write_pmc(idx, (u64)(-left) & 0xffffffff);
614
615         perf_event_update_userpage(event);
616
617         return ret;
618 }
619
620 /* If performance event entries have been added, move existing
621  * events around (if necessary) and then assign new entries to
622  * counters.
623  */
624 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
625 {
626         int i;
627
628         if (!cpuc->n_added)
629                 goto out;
630
631         /* Read in the counters which are moving.  */
632         for (i = 0; i < cpuc->n_events; i++) {
633                 struct perf_event *cp = cpuc->event[i];
634
635                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
636                     cpuc->current_idx[i] != cp->hw.idx) {
637                         sparc_perf_event_update(cp, &cp->hw,
638                                                 cpuc->current_idx[i]);
639                         cpuc->current_idx[i] = PIC_NO_INDEX;
640                 }
641         }
642
643         /* Assign to counters all unassigned events.  */
644         for (i = 0; i < cpuc->n_events; i++) {
645                 struct perf_event *cp = cpuc->event[i];
646                 struct hw_perf_event *hwc = &cp->hw;
647                 int idx = hwc->idx;
648                 u64 enc;
649
650                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
651                         continue;
652
653                 sparc_perf_event_set_period(cp, hwc, idx);
654                 cpuc->current_idx[i] = idx;
655
656                 enc = perf_event_get_enc(cpuc->events[i]);
657                 pcr |= event_encoding(enc, idx);
658         }
659 out:
660         return pcr;
661 }
662
663 void hw_perf_enable(void)
664 {
665         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
666         u64 pcr;
667
668         if (cpuc->enabled)
669                 return;
670
671         cpuc->enabled = 1;
672         barrier();
673
674         pcr = cpuc->pcr;
675         if (!cpuc->n_events) {
676                 pcr = 0;
677         } else {
678                 pcr = maybe_change_configuration(cpuc, pcr);
679
680                 /* We require that all of the events have the same
681                  * configuration, so just fetch the settings from the
682                  * first entry.
683                  */
684                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
685         }
686
687         pcr_ops->write(cpuc->pcr);
688 }
689
690 void hw_perf_disable(void)
691 {
692         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
693         u64 val;
694
695         if (!cpuc->enabled)
696                 return;
697
698         cpuc->enabled = 0;
699         cpuc->n_added = 0;
700
701         val = cpuc->pcr;
702         val &= ~(PCR_UTRACE | PCR_STRACE |
703                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
704         cpuc->pcr = val;
705
706         pcr_ops->write(cpuc->pcr);
707 }
708
709 static void sparc_pmu_disable(struct perf_event *event)
710 {
711         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
712         struct hw_perf_event *hwc = &event->hw;
713         unsigned long flags;
714         int i;
715
716         local_irq_save(flags);
717         perf_disable();
718
719         for (i = 0; i < cpuc->n_events; i++) {
720                 if (event == cpuc->event[i]) {
721                         int idx = cpuc->current_idx[i];
722
723                         /* Shift remaining entries down into
724                          * the existing slot.
725                          */
726                         while (++i < cpuc->n_events) {
727                                 cpuc->event[i - 1] = cpuc->event[i];
728                                 cpuc->events[i - 1] = cpuc->events[i];
729                                 cpuc->current_idx[i - 1] =
730                                         cpuc->current_idx[i];
731                         }
732
733                         /* Absorb the final count and turn off the
734                          * event.
735                          */
736                         sparc_pmu_disable_event(cpuc, hwc, idx);
737                         barrier();
738                         sparc_perf_event_update(event, hwc, idx);
739
740                         perf_event_update_userpage(event);
741
742                         cpuc->n_events--;
743                         break;
744                 }
745         }
746
747         perf_enable();
748         local_irq_restore(flags);
749 }
750
751 static int active_event_index(struct cpu_hw_events *cpuc,
752                               struct perf_event *event)
753 {
754         int i;
755
756         for (i = 0; i < cpuc->n_events; i++) {
757                 if (cpuc->event[i] == event)
758                         break;
759         }
760         BUG_ON(i == cpuc->n_events);
761         return cpuc->current_idx[i];
762 }
763
764 static void sparc_pmu_read(struct perf_event *event)
765 {
766         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
767         int idx = active_event_index(cpuc, event);
768         struct hw_perf_event *hwc = &event->hw;
769
770         sparc_perf_event_update(event, hwc, idx);
771 }
772
773 static void sparc_pmu_unthrottle(struct perf_event *event)
774 {
775         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
776         int idx = active_event_index(cpuc, event);
777         struct hw_perf_event *hwc = &event->hw;
778
779         sparc_pmu_enable_event(cpuc, hwc, idx);
780 }
781
782 static atomic_t active_events = ATOMIC_INIT(0);
783 static DEFINE_MUTEX(pmc_grab_mutex);
784
785 static void perf_stop_nmi_watchdog(void *unused)
786 {
787         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
788
789         stop_nmi_watchdog(NULL);
790         cpuc->pcr = pcr_ops->read();
791 }
792
793 void perf_event_grab_pmc(void)
794 {
795         if (atomic_inc_not_zero(&active_events))
796                 return;
797
798         mutex_lock(&pmc_grab_mutex);
799         if (atomic_read(&active_events) == 0) {
800                 if (atomic_read(&nmi_active) > 0) {
801                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
802                         BUG_ON(atomic_read(&nmi_active) != 0);
803                 }
804                 atomic_inc(&active_events);
805         }
806         mutex_unlock(&pmc_grab_mutex);
807 }
808
809 void perf_event_release_pmc(void)
810 {
811         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
812                 if (atomic_read(&nmi_active) == 0)
813                         on_each_cpu(start_nmi_watchdog, NULL, 1);
814                 mutex_unlock(&pmc_grab_mutex);
815         }
816 }
817
818 static const struct perf_event_map *sparc_map_cache_event(u64 config)
819 {
820         unsigned int cache_type, cache_op, cache_result;
821         const struct perf_event_map *pmap;
822
823         if (!sparc_pmu->cache_map)
824                 return ERR_PTR(-ENOENT);
825
826         cache_type = (config >>  0) & 0xff;
827         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
828                 return ERR_PTR(-EINVAL);
829
830         cache_op = (config >>  8) & 0xff;
831         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
832                 return ERR_PTR(-EINVAL);
833
834         cache_result = (config >> 16) & 0xff;
835         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
836                 return ERR_PTR(-EINVAL);
837
838         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
839
840         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
841                 return ERR_PTR(-ENOENT);
842
843         if (pmap->encoding == CACHE_OP_NONSENSE)
844                 return ERR_PTR(-EINVAL);
845
846         return pmap;
847 }
848
849 static void hw_perf_event_destroy(struct perf_event *event)
850 {
851         perf_event_release_pmc();
852 }
853
854 /* Make sure all events can be scheduled into the hardware at
855  * the same time.  This is simplified by the fact that we only
856  * need to support 2 simultaneous HW events.
857  *
858  * As a side effect, the evts[]->hw.idx values will be assigned
859  * on success.  These are pending indexes.  When the events are
860  * actually programmed into the chip, these values will propagate
861  * to the per-cpu cpuc->current_idx[] slots, see the code in
862  * maybe_change_configuration() for details.
863  */
864 static int sparc_check_constraints(struct perf_event **evts,
865                                    unsigned long *events, int n_ev)
866 {
867         u8 msk0 = 0, msk1 = 0;
868         int idx0 = 0;
869
870         /* This case is possible when we are invoked from
871          * hw_perf_group_sched_in().
872          */
873         if (!n_ev)
874                 return 0;
875
876         if (n_ev > perf_max_events)
877                 return -1;
878
879         msk0 = perf_event_get_msk(events[0]);
880         if (n_ev == 1) {
881                 if (msk0 & PIC_LOWER)
882                         idx0 = 1;
883                 goto success;
884         }
885         BUG_ON(n_ev != 2);
886         msk1 = perf_event_get_msk(events[1]);
887
888         /* If both events can go on any counter, OK.  */
889         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
890             msk1 == (PIC_UPPER | PIC_LOWER))
891                 goto success;
892
893         /* If one event is limited to a specific counter,
894          * and the other can go on both, OK.
895          */
896         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
897             msk1 == (PIC_UPPER | PIC_LOWER)) {
898                 if (msk0 & PIC_LOWER)
899                         idx0 = 1;
900                 goto success;
901         }
902
903         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
904             msk0 == (PIC_UPPER | PIC_LOWER)) {
905                 if (msk1 & PIC_UPPER)
906                         idx0 = 1;
907                 goto success;
908         }
909
910         /* If the events are fixed to different counters, OK.  */
911         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
912             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
913                 if (msk0 & PIC_LOWER)
914                         idx0 = 1;
915                 goto success;
916         }
917
918         /* Otherwise, there is a conflict.  */
919         return -1;
920
921 success:
922         evts[0]->hw.idx = idx0;
923         if (n_ev == 2)
924                 evts[1]->hw.idx = idx0 ^ 1;
925         return 0;
926 }
927
928 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
929 {
930         int eu = 0, ek = 0, eh = 0;
931         struct perf_event *event;
932         int i, n, first;
933
934         n = n_prev + n_new;
935         if (n <= 1)
936                 return 0;
937
938         first = 1;
939         for (i = 0; i < n; i++) {
940                 event = evts[i];
941                 if (first) {
942                         eu = event->attr.exclude_user;
943                         ek = event->attr.exclude_kernel;
944                         eh = event->attr.exclude_hv;
945                         first = 0;
946                 } else if (event->attr.exclude_user != eu ||
947                            event->attr.exclude_kernel != ek ||
948                            event->attr.exclude_hv != eh) {
949                         return -EAGAIN;
950                 }
951         }
952
953         return 0;
954 }
955
956 static int collect_events(struct perf_event *group, int max_count,
957                           struct perf_event *evts[], unsigned long *events,
958                           int *current_idx)
959 {
960         struct perf_event *event;
961         int n = 0;
962
963         if (!is_software_event(group)) {
964                 if (n >= max_count)
965                         return -1;
966                 evts[n] = group;
967                 events[n] = group->hw.event_base;
968                 current_idx[n++] = PIC_NO_INDEX;
969         }
970         list_for_each_entry(event, &group->sibling_list, group_entry) {
971                 if (!is_software_event(event) &&
972                     event->state != PERF_EVENT_STATE_OFF) {
973                         if (n >= max_count)
974                                 return -1;
975                         evts[n] = event;
976                         events[n] = event->hw.event_base;
977                         current_idx[n++] = PIC_NO_INDEX;
978                 }
979         }
980         return n;
981 }
982
983 static void event_sched_in(struct perf_event *event)
984 {
985         event->state = PERF_EVENT_STATE_ACTIVE;
986         event->oncpu = smp_processor_id();
987         event->tstamp_running += event->ctx->time - event->tstamp_stopped;
988         if (is_software_event(event))
989                 event->pmu->enable(event);
990 }
991
992 int hw_perf_group_sched_in(struct perf_event *group_leader,
993                            struct perf_cpu_context *cpuctx,
994                            struct perf_event_context *ctx)
995 {
996         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
997         struct perf_event *sub;
998         int n0, n;
999
1000         if (!sparc_pmu)
1001                 return 0;
1002
1003         n0 = cpuc->n_events;
1004         n = collect_events(group_leader, perf_max_events - n0,
1005                            &cpuc->event[n0], &cpuc->events[n0],
1006                            &cpuc->current_idx[n0]);
1007         if (n < 0)
1008                 return -EAGAIN;
1009         if (check_excludes(cpuc->event, n0, n))
1010                 return -EINVAL;
1011         if (sparc_check_constraints(cpuc->event, cpuc->events, n + n0))
1012                 return -EAGAIN;
1013         cpuc->n_events = n0 + n;
1014         cpuc->n_added += n;
1015
1016         cpuctx->active_oncpu += n;
1017         n = 1;
1018         event_sched_in(group_leader);
1019         list_for_each_entry(sub, &group_leader->sibling_list, group_entry) {
1020                 if (sub->state != PERF_EVENT_STATE_OFF) {
1021                         event_sched_in(sub);
1022                         n++;
1023                 }
1024         }
1025         ctx->nr_active += n;
1026
1027         return 1;
1028 }
1029
1030 static int sparc_pmu_enable(struct perf_event *event)
1031 {
1032         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1033         int n0, ret = -EAGAIN;
1034         unsigned long flags;
1035
1036         local_irq_save(flags);
1037         perf_disable();
1038
1039         n0 = cpuc->n_events;
1040         if (n0 >= perf_max_events)
1041                 goto out;
1042
1043         cpuc->event[n0] = event;
1044         cpuc->events[n0] = event->hw.event_base;
1045         cpuc->current_idx[n0] = PIC_NO_INDEX;
1046
1047         if (check_excludes(cpuc->event, n0, 1))
1048                 goto out;
1049         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1050                 goto out;
1051
1052         cpuc->n_events++;
1053         cpuc->n_added++;
1054
1055         ret = 0;
1056 out:
1057         perf_enable();
1058         local_irq_restore(flags);
1059         return ret;
1060 }
1061
1062 static int __hw_perf_event_init(struct perf_event *event)
1063 {
1064         struct perf_event_attr *attr = &event->attr;
1065         struct perf_event *evts[MAX_HWEVENTS];
1066         struct hw_perf_event *hwc = &event->hw;
1067         unsigned long events[MAX_HWEVENTS];
1068         int current_idx_dmy[MAX_HWEVENTS];
1069         const struct perf_event_map *pmap;
1070         int n;
1071
1072         if (atomic_read(&nmi_active) < 0)
1073                 return -ENODEV;
1074
1075         if (attr->type == PERF_TYPE_HARDWARE) {
1076                 if (attr->config >= sparc_pmu->max_events)
1077                         return -EINVAL;
1078                 pmap = sparc_pmu->event_map(attr->config);
1079         } else if (attr->type == PERF_TYPE_HW_CACHE) {
1080                 pmap = sparc_map_cache_event(attr->config);
1081                 if (IS_ERR(pmap))
1082                         return PTR_ERR(pmap);
1083         } else
1084                 return -EOPNOTSUPP;
1085
1086         /* We save the enable bits in the config_base.  */
1087         hwc->config_base = sparc_pmu->irq_bit;
1088         if (!attr->exclude_user)
1089                 hwc->config_base |= PCR_UTRACE;
1090         if (!attr->exclude_kernel)
1091                 hwc->config_base |= PCR_STRACE;
1092         if (!attr->exclude_hv)
1093                 hwc->config_base |= sparc_pmu->hv_bit;
1094
1095         hwc->event_base = perf_event_encode(pmap);
1096
1097         n = 0;
1098         if (event->group_leader != event) {
1099                 n = collect_events(event->group_leader,
1100                                    perf_max_events - 1,
1101                                    evts, events, current_idx_dmy);
1102                 if (n < 0)
1103                         return -EINVAL;
1104         }
1105         events[n] = hwc->event_base;
1106         evts[n] = event;
1107
1108         if (check_excludes(evts, n, 1))
1109                 return -EINVAL;
1110
1111         if (sparc_check_constraints(evts, events, n + 1))
1112                 return -EINVAL;
1113
1114         hwc->idx = PIC_NO_INDEX;
1115
1116         /* Try to do all error checking before this point, as unwinding
1117          * state after grabbing the PMC is difficult.
1118          */
1119         perf_event_grab_pmc();
1120         event->destroy = hw_perf_event_destroy;
1121
1122         if (!hwc->sample_period) {
1123                 hwc->sample_period = MAX_PERIOD;
1124                 hwc->last_period = hwc->sample_period;
1125                 atomic64_set(&hwc->period_left, hwc->sample_period);
1126         }
1127
1128         return 0;
1129 }
1130
1131 static const struct pmu pmu = {
1132         .enable         = sparc_pmu_enable,
1133         .disable        = sparc_pmu_disable,
1134         .read           = sparc_pmu_read,
1135         .unthrottle     = sparc_pmu_unthrottle,
1136 };
1137
1138 const struct pmu *hw_perf_event_init(struct perf_event *event)
1139 {
1140         int err = __hw_perf_event_init(event);
1141
1142         if (err)
1143                 return ERR_PTR(err);
1144         return &pmu;
1145 }
1146
1147 void perf_event_print_debug(void)
1148 {
1149         unsigned long flags;
1150         u64 pcr, pic;
1151         int cpu;
1152
1153         if (!sparc_pmu)
1154                 return;
1155
1156         local_irq_save(flags);
1157
1158         cpu = smp_processor_id();
1159
1160         pcr = pcr_ops->read();
1161         read_pic(pic);
1162
1163         pr_info("\n");
1164         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1165                 cpu, pcr, pic);
1166
1167         local_irq_restore(flags);
1168 }
1169
1170 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1171                                             unsigned long cmd, void *__args)
1172 {
1173         struct die_args *args = __args;
1174         struct perf_sample_data data;
1175         struct cpu_hw_events *cpuc;
1176         struct pt_regs *regs;
1177         int i;
1178
1179         if (!atomic_read(&active_events))
1180                 return NOTIFY_DONE;
1181
1182         switch (cmd) {
1183         case DIE_NMI:
1184                 break;
1185
1186         default:
1187                 return NOTIFY_DONE;
1188         }
1189
1190         regs = args->regs;
1191
1192         perf_sample_data_init(&data, 0);
1193
1194         cpuc = &__get_cpu_var(cpu_hw_events);
1195
1196         /* If the PMU has the TOE IRQ enable bits, we need to do a
1197          * dummy write to the %pcr to clear the overflow bits and thus
1198          * the interrupt.
1199          *
1200          * Do this before we peek at the counters to determine
1201          * overflow so we don't lose any events.
1202          */
1203         if (sparc_pmu->irq_bit)
1204                 pcr_ops->write(cpuc->pcr);
1205
1206         for (i = 0; i < cpuc->n_events; i++) {
1207                 struct perf_event *event = cpuc->event[i];
1208                 int idx = cpuc->current_idx[i];
1209                 struct hw_perf_event *hwc;
1210                 u64 val;
1211
1212                 hwc = &event->hw;
1213                 val = sparc_perf_event_update(event, hwc, idx);
1214                 if (val & (1ULL << 31))
1215                         continue;
1216
1217                 data.period = event->hw.last_period;
1218                 if (!sparc_perf_event_set_period(event, hwc, idx))
1219                         continue;
1220
1221                 if (perf_event_overflow(event, 1, &data, regs))
1222                         sparc_pmu_disable_event(cpuc, hwc, idx);
1223         }
1224
1225         return NOTIFY_STOP;
1226 }
1227
1228 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1229         .notifier_call          = perf_event_nmi_handler,
1230 };
1231
1232 static bool __init supported_pmu(void)
1233 {
1234         if (!strcmp(sparc_pmu_type, "ultra3") ||
1235             !strcmp(sparc_pmu_type, "ultra3+") ||
1236             !strcmp(sparc_pmu_type, "ultra3i") ||
1237             !strcmp(sparc_pmu_type, "ultra4+")) {
1238                 sparc_pmu = &ultra3_pmu;
1239                 return true;
1240         }
1241         if (!strcmp(sparc_pmu_type, "niagara")) {
1242                 sparc_pmu = &niagara1_pmu;
1243                 return true;
1244         }
1245         if (!strcmp(sparc_pmu_type, "niagara2")) {
1246                 sparc_pmu = &niagara2_pmu;
1247                 return true;
1248         }
1249         return false;
1250 }
1251
1252 void __init init_hw_perf_events(void)
1253 {
1254         pr_info("Performance events: ");
1255
1256         if (!supported_pmu()) {
1257                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1258                 return;
1259         }
1260
1261         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1262
1263         /* All sparc64 PMUs currently have 2 events.  */
1264         perf_max_events = 2;
1265
1266         register_die_notifier(&perf_event_nmi_notifier);
1267 }
1268
1269 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1270 {
1271         if (entry->nr < PERF_MAX_STACK_DEPTH)
1272                 entry->ip[entry->nr++] = ip;
1273 }
1274
1275 static void perf_callchain_kernel(struct pt_regs *regs,
1276                                   struct perf_callchain_entry *entry)
1277 {
1278         unsigned long ksp, fp;
1279
1280         callchain_store(entry, PERF_CONTEXT_KERNEL);
1281         callchain_store(entry, regs->tpc);
1282
1283         ksp = regs->u_regs[UREG_I6];
1284         fp = ksp + STACK_BIAS;
1285         do {
1286                 struct sparc_stackf *sf;
1287                 struct pt_regs *regs;
1288                 unsigned long pc;
1289
1290                 if (!kstack_valid(current_thread_info(), fp))
1291                         break;
1292
1293                 sf = (struct sparc_stackf *) fp;
1294                 regs = (struct pt_regs *) (sf + 1);
1295
1296                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1297                         if (user_mode(regs))
1298                                 break;
1299                         pc = regs->tpc;
1300                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1301                 } else {
1302                         pc = sf->callers_pc;
1303                         fp = (unsigned long)sf->fp + STACK_BIAS;
1304                 }
1305                 callchain_store(entry, pc);
1306         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1307 }
1308
1309 static void perf_callchain_user_64(struct pt_regs *regs,
1310                                    struct perf_callchain_entry *entry)
1311 {
1312         unsigned long ufp;
1313
1314         callchain_store(entry, PERF_CONTEXT_USER);
1315         callchain_store(entry, regs->tpc);
1316
1317         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1318         do {
1319                 struct sparc_stackf *usf, sf;
1320                 unsigned long pc;
1321
1322                 usf = (struct sparc_stackf *) ufp;
1323                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1324                         break;
1325
1326                 pc = sf.callers_pc;
1327                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1328                 callchain_store(entry, pc);
1329         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1330 }
1331
1332 static void perf_callchain_user_32(struct pt_regs *regs,
1333                                    struct perf_callchain_entry *entry)
1334 {
1335         unsigned long ufp;
1336
1337         callchain_store(entry, PERF_CONTEXT_USER);
1338         callchain_store(entry, regs->tpc);
1339
1340         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1341         do {
1342                 struct sparc_stackf32 *usf, sf;
1343                 unsigned long pc;
1344
1345                 usf = (struct sparc_stackf32 *) ufp;
1346                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1347                         break;
1348
1349                 pc = sf.callers_pc;
1350                 ufp = (unsigned long)sf.fp;
1351                 callchain_store(entry, pc);
1352         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1353 }
1354
1355 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1356  * so no need for separate NMI and IRQ chains as on x86.
1357  */
1358 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1359
1360 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1361 {
1362         struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1363
1364         entry->nr = 0;
1365         if (!user_mode(regs)) {
1366                 stack_trace_flush();
1367                 perf_callchain_kernel(regs, entry);
1368                 if (current->mm)
1369                         regs = task_pt_regs(current);
1370                 else
1371                         regs = NULL;
1372         }
1373         if (regs) {
1374                 flushw_user();
1375                 if (test_thread_flag(TIF_32BIT))
1376                         perf_callchain_user_32(regs, entry);
1377                 else
1378                         perf_callchain_user_64(regs, entry);
1379         }
1380         return entry;
1381 }