Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[pandora-kernel.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28
29 #include "kstack.h"
30
31 /* Sparc64 chips have two performance counters, 32-bits each, with
32  * overflow interrupts generated on transition from 0xffffffff to 0.
33  * The counters are accessed in one go using a 64-bit register.
34  *
35  * Both counters are controlled using a single control register.  The
36  * only way to stop all sampling is to clear all of the context (user,
37  * supervisor, hypervisor) sampling enable bits.  But these bits apply
38  * to both counters, thus the two counters can't be enabled/disabled
39  * individually.
40  *
41  * The control register has two event fields, one for each of the two
42  * counters.  It's thus nearly impossible to have one counter going
43  * while keeping the other one stopped.  Therefore it is possible to
44  * get overflow interrupts for counters not currently "in use" and
45  * that condition must be checked in the overflow interrupt handler.
46  *
47  * So we use a hack, in that we program inactive counters with the
48  * "sw_count0" and "sw_count1" events.  These count how many times
49  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
50  * unusual way to encode a NOP and therefore will not trigger in
51  * normal code.
52  */
53
54 #define MAX_HWEVENTS                    2
55 #define MAX_PERIOD                      ((1UL << 32) - 1)
56
57 #define PIC_UPPER_INDEX                 0
58 #define PIC_LOWER_INDEX                 1
59 #define PIC_NO_INDEX                    -1
60
61 struct cpu_hw_events {
62         /* Number of events currently scheduled onto this cpu.
63          * This tells how many entries in the arrays below
64          * are valid.
65          */
66         int                     n_events;
67
68         /* Number of new events added since the last hw_perf_disable().
69          * This works because the perf event layer always adds new
70          * events inside of a perf_{disable,enable}() sequence.
71          */
72         int                     n_added;
73
74         /* Array of events current scheduled on this cpu.  */
75         struct perf_event       *event[MAX_HWEVENTS];
76
77         /* Array of encoded longs, specifying the %pcr register
78          * encoding and the mask of PIC counters this even can
79          * be scheduled on.  See perf_event_encode() et al.
80          */
81         unsigned long           events[MAX_HWEVENTS];
82
83         /* The current counter index assigned to an event.  When the
84          * event hasn't been programmed into the cpu yet, this will
85          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
86          * we ought to schedule the event.
87          */
88         int                     current_idx[MAX_HWEVENTS];
89
90         /* Software copy of %pcr register on this cpu.  */
91         u64                     pcr;
92
93         /* Enabled/disable state.  */
94         int                     enabled;
95
96         unsigned int            group_flag;
97 };
98 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
99
100 /* An event map describes the characteristics of a performance
101  * counter event.  In particular it gives the encoding as well as
102  * a mask telling which counters the event can be measured on.
103  */
104 struct perf_event_map {
105         u16     encoding;
106         u8      pic_mask;
107 #define PIC_NONE        0x00
108 #define PIC_UPPER       0x01
109 #define PIC_LOWER       0x02
110 };
111
112 /* Encode a perf_event_map entry into a long.  */
113 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
114 {
115         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
116 }
117
118 static u8 perf_event_get_msk(unsigned long val)
119 {
120         return val & 0xff;
121 }
122
123 static u64 perf_event_get_enc(unsigned long val)
124 {
125         return val >> 16;
126 }
127
128 #define C(x) PERF_COUNT_HW_CACHE_##x
129
130 #define CACHE_OP_UNSUPPORTED    0xfffe
131 #define CACHE_OP_NONSENSE       0xffff
132
133 typedef struct perf_event_map cache_map_t
134                                 [PERF_COUNT_HW_CACHE_MAX]
135                                 [PERF_COUNT_HW_CACHE_OP_MAX]
136                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
137
138 struct sparc_pmu {
139         const struct perf_event_map     *(*event_map)(int);
140         const cache_map_t               *cache_map;
141         int                             max_events;
142         int                             upper_shift;
143         int                             lower_shift;
144         int                             event_mask;
145         int                             hv_bit;
146         int                             irq_bit;
147         int                             upper_nop;
148         int                             lower_nop;
149 };
150
151 static const struct perf_event_map ultra3_perfmon_event_map[] = {
152         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
153         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
154         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
155         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
156 };
157
158 static const struct perf_event_map *ultra3_event_map(int event_id)
159 {
160         return &ultra3_perfmon_event_map[event_id];
161 }
162
163 static const cache_map_t ultra3_cache_map = {
164 [C(L1D)] = {
165         [C(OP_READ)] = {
166                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
167                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
168         },
169         [C(OP_WRITE)] = {
170                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
171                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
172         },
173         [C(OP_PREFETCH)] = {
174                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
175                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
176         },
177 },
178 [C(L1I)] = {
179         [C(OP_READ)] = {
180                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
181                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
182         },
183         [ C(OP_WRITE) ] = {
184                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
185                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
186         },
187         [ C(OP_PREFETCH) ] = {
188                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
189                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
190         },
191 },
192 [C(LL)] = {
193         [C(OP_READ)] = {
194                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
195                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
196         },
197         [C(OP_WRITE)] = {
198                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
199                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
200         },
201         [C(OP_PREFETCH)] = {
202                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
203                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
204         },
205 },
206 [C(DTLB)] = {
207         [C(OP_READ)] = {
208                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
209                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
210         },
211         [ C(OP_WRITE) ] = {
212                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
213                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
214         },
215         [ C(OP_PREFETCH) ] = {
216                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
217                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
218         },
219 },
220 [C(ITLB)] = {
221         [C(OP_READ)] = {
222                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
223                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
224         },
225         [ C(OP_WRITE) ] = {
226                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
227                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
228         },
229         [ C(OP_PREFETCH) ] = {
230                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
231                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
232         },
233 },
234 [C(BPU)] = {
235         [C(OP_READ)] = {
236                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
237                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
238         },
239         [ C(OP_WRITE) ] = {
240                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
241                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
242         },
243         [ C(OP_PREFETCH) ] = {
244                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
245                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
246         },
247 },
248 };
249
250 static const struct sparc_pmu ultra3_pmu = {
251         .event_map      = ultra3_event_map,
252         .cache_map      = &ultra3_cache_map,
253         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
254         .upper_shift    = 11,
255         .lower_shift    = 4,
256         .event_mask     = 0x3f,
257         .upper_nop      = 0x1c,
258         .lower_nop      = 0x14,
259 };
260
261 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
262  * only instructions, so it is free running which creates all kinds of
263  * problems.  Some hardware designs make one wonder if the creator
264  * even looked at how this stuff gets used by software.
265  */
266 static const struct perf_event_map niagara1_perfmon_event_map[] = {
267         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
268         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
269         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
270         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
271 };
272
273 static const struct perf_event_map *niagara1_event_map(int event_id)
274 {
275         return &niagara1_perfmon_event_map[event_id];
276 }
277
278 static const cache_map_t niagara1_cache_map = {
279 [C(L1D)] = {
280         [C(OP_READ)] = {
281                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
282                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
283         },
284         [C(OP_WRITE)] = {
285                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
286                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
287         },
288         [C(OP_PREFETCH)] = {
289                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
290                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
291         },
292 },
293 [C(L1I)] = {
294         [C(OP_READ)] = {
295                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
296                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
297         },
298         [ C(OP_WRITE) ] = {
299                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
300                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
301         },
302         [ C(OP_PREFETCH) ] = {
303                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
304                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
305         },
306 },
307 [C(LL)] = {
308         [C(OP_READ)] = {
309                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
310                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
311         },
312         [C(OP_WRITE)] = {
313                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
314                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
315         },
316         [C(OP_PREFETCH)] = {
317                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
318                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
319         },
320 },
321 [C(DTLB)] = {
322         [C(OP_READ)] = {
323                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
324                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
325         },
326         [ C(OP_WRITE) ] = {
327                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
328                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
329         },
330         [ C(OP_PREFETCH) ] = {
331                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
332                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
333         },
334 },
335 [C(ITLB)] = {
336         [C(OP_READ)] = {
337                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
338                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
339         },
340         [ C(OP_WRITE) ] = {
341                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
342                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
343         },
344         [ C(OP_PREFETCH) ] = {
345                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
346                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
347         },
348 },
349 [C(BPU)] = {
350         [C(OP_READ)] = {
351                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
352                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
353         },
354         [ C(OP_WRITE) ] = {
355                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
356                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
357         },
358         [ C(OP_PREFETCH) ] = {
359                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
360                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
361         },
362 },
363 };
364
365 static const struct sparc_pmu niagara1_pmu = {
366         .event_map      = niagara1_event_map,
367         .cache_map      = &niagara1_cache_map,
368         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
369         .upper_shift    = 0,
370         .lower_shift    = 4,
371         .event_mask     = 0x7,
372         .upper_nop      = 0x0,
373         .lower_nop      = 0x0,
374 };
375
376 static const struct perf_event_map niagara2_perfmon_event_map[] = {
377         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
378         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
380         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
381         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
382         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
383 };
384
385 static const struct perf_event_map *niagara2_event_map(int event_id)
386 {
387         return &niagara2_perfmon_event_map[event_id];
388 }
389
390 static const cache_map_t niagara2_cache_map = {
391 [C(L1D)] = {
392         [C(OP_READ)] = {
393                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
394                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
395         },
396         [C(OP_WRITE)] = {
397                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
398                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
399         },
400         [C(OP_PREFETCH)] = {
401                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
403         },
404 },
405 [C(L1I)] = {
406         [C(OP_READ)] = {
407                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
408                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
409         },
410         [ C(OP_WRITE) ] = {
411                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
412                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
413         },
414         [ C(OP_PREFETCH) ] = {
415                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
416                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
417         },
418 },
419 [C(LL)] = {
420         [C(OP_READ)] = {
421                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
422                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
423         },
424         [C(OP_WRITE)] = {
425                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
426                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
427         },
428         [C(OP_PREFETCH)] = {
429                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431         },
432 },
433 [C(DTLB)] = {
434         [C(OP_READ)] = {
435                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
436                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
437         },
438         [ C(OP_WRITE) ] = {
439                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
441         },
442         [ C(OP_PREFETCH) ] = {
443                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
444                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
445         },
446 },
447 [C(ITLB)] = {
448         [C(OP_READ)] = {
449                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
450                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
451         },
452         [ C(OP_WRITE) ] = {
453                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
455         },
456         [ C(OP_PREFETCH) ] = {
457                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
458                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
459         },
460 },
461 [C(BPU)] = {
462         [C(OP_READ)] = {
463                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
464                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
465         },
466         [ C(OP_WRITE) ] = {
467                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
468                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
469         },
470         [ C(OP_PREFETCH) ] = {
471                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
472                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
473         },
474 },
475 };
476
477 static const struct sparc_pmu niagara2_pmu = {
478         .event_map      = niagara2_event_map,
479         .cache_map      = &niagara2_cache_map,
480         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
481         .upper_shift    = 19,
482         .lower_shift    = 6,
483         .event_mask     = 0xfff,
484         .hv_bit         = 0x8,
485         .irq_bit        = 0x30,
486         .upper_nop      = 0x220,
487         .lower_nop      = 0x220,
488 };
489
490 static const struct sparc_pmu *sparc_pmu __read_mostly;
491
492 static u64 event_encoding(u64 event_id, int idx)
493 {
494         if (idx == PIC_UPPER_INDEX)
495                 event_id <<= sparc_pmu->upper_shift;
496         else
497                 event_id <<= sparc_pmu->lower_shift;
498         return event_id;
499 }
500
501 static u64 mask_for_index(int idx)
502 {
503         return event_encoding(sparc_pmu->event_mask, idx);
504 }
505
506 static u64 nop_for_index(int idx)
507 {
508         return event_encoding(idx == PIC_UPPER_INDEX ?
509                               sparc_pmu->upper_nop :
510                               sparc_pmu->lower_nop, idx);
511 }
512
513 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
514 {
515         u64 val, mask = mask_for_index(idx);
516
517         val = cpuc->pcr;
518         val &= ~mask;
519         val |= hwc->config;
520         cpuc->pcr = val;
521
522         pcr_ops->write(cpuc->pcr);
523 }
524
525 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
526 {
527         u64 mask = mask_for_index(idx);
528         u64 nop = nop_for_index(idx);
529         u64 val;
530
531         val = cpuc->pcr;
532         val &= ~mask;
533         val |= nop;
534         cpuc->pcr = val;
535
536         pcr_ops->write(cpuc->pcr);
537 }
538
539 static u32 read_pmc(int idx)
540 {
541         u64 val;
542
543         read_pic(val);
544         if (idx == PIC_UPPER_INDEX)
545                 val >>= 32;
546
547         return val & 0xffffffff;
548 }
549
550 static void write_pmc(int idx, u64 val)
551 {
552         u64 shift, mask, pic;
553
554         shift = 0;
555         if (idx == PIC_UPPER_INDEX)
556                 shift = 32;
557
558         mask = ((u64) 0xffffffff) << shift;
559         val <<= shift;
560
561         read_pic(pic);
562         pic &= ~mask;
563         pic |= val;
564         write_pic(pic);
565 }
566
567 static u64 sparc_perf_event_update(struct perf_event *event,
568                                    struct hw_perf_event *hwc, int idx)
569 {
570         int shift = 64 - 32;
571         u64 prev_raw_count, new_raw_count;
572         s64 delta;
573
574 again:
575         prev_raw_count = atomic64_read(&hwc->prev_count);
576         new_raw_count = read_pmc(idx);
577
578         if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
579                              new_raw_count) != prev_raw_count)
580                 goto again;
581
582         delta = (new_raw_count << shift) - (prev_raw_count << shift);
583         delta >>= shift;
584
585         atomic64_add(delta, &event->count);
586         atomic64_sub(delta, &hwc->period_left);
587
588         return new_raw_count;
589 }
590
591 static int sparc_perf_event_set_period(struct perf_event *event,
592                                        struct hw_perf_event *hwc, int idx)
593 {
594         s64 left = atomic64_read(&hwc->period_left);
595         s64 period = hwc->sample_period;
596         int ret = 0;
597
598         if (unlikely(left <= -period)) {
599                 left = period;
600                 atomic64_set(&hwc->period_left, left);
601                 hwc->last_period = period;
602                 ret = 1;
603         }
604
605         if (unlikely(left <= 0)) {
606                 left += period;
607                 atomic64_set(&hwc->period_left, left);
608                 hwc->last_period = period;
609                 ret = 1;
610         }
611         if (left > MAX_PERIOD)
612                 left = MAX_PERIOD;
613
614         atomic64_set(&hwc->prev_count, (u64)-left);
615
616         write_pmc(idx, (u64)(-left) & 0xffffffff);
617
618         perf_event_update_userpage(event);
619
620         return ret;
621 }
622
623 /* If performance event entries have been added, move existing
624  * events around (if necessary) and then assign new entries to
625  * counters.
626  */
627 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
628 {
629         int i;
630
631         if (!cpuc->n_added)
632                 goto out;
633
634         /* Read in the counters which are moving.  */
635         for (i = 0; i < cpuc->n_events; i++) {
636                 struct perf_event *cp = cpuc->event[i];
637
638                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
639                     cpuc->current_idx[i] != cp->hw.idx) {
640                         sparc_perf_event_update(cp, &cp->hw,
641                                                 cpuc->current_idx[i]);
642                         cpuc->current_idx[i] = PIC_NO_INDEX;
643                 }
644         }
645
646         /* Assign to counters all unassigned events.  */
647         for (i = 0; i < cpuc->n_events; i++) {
648                 struct perf_event *cp = cpuc->event[i];
649                 struct hw_perf_event *hwc = &cp->hw;
650                 int idx = hwc->idx;
651                 u64 enc;
652
653                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
654                         continue;
655
656                 sparc_perf_event_set_period(cp, hwc, idx);
657                 cpuc->current_idx[i] = idx;
658
659                 enc = perf_event_get_enc(cpuc->events[i]);
660                 pcr |= event_encoding(enc, idx);
661         }
662 out:
663         return pcr;
664 }
665
666 void hw_perf_enable(void)
667 {
668         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
669         u64 pcr;
670
671         if (cpuc->enabled)
672                 return;
673
674         cpuc->enabled = 1;
675         barrier();
676
677         pcr = cpuc->pcr;
678         if (!cpuc->n_events) {
679                 pcr = 0;
680         } else {
681                 pcr = maybe_change_configuration(cpuc, pcr);
682
683                 /* We require that all of the events have the same
684                  * configuration, so just fetch the settings from the
685                  * first entry.
686                  */
687                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
688         }
689
690         pcr_ops->write(cpuc->pcr);
691 }
692
693 void hw_perf_disable(void)
694 {
695         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
696         u64 val;
697
698         if (!cpuc->enabled)
699                 return;
700
701         cpuc->enabled = 0;
702         cpuc->n_added = 0;
703
704         val = cpuc->pcr;
705         val &= ~(PCR_UTRACE | PCR_STRACE |
706                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
707         cpuc->pcr = val;
708
709         pcr_ops->write(cpuc->pcr);
710 }
711
712 static void sparc_pmu_disable(struct perf_event *event)
713 {
714         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
715         struct hw_perf_event *hwc = &event->hw;
716         unsigned long flags;
717         int i;
718
719         local_irq_save(flags);
720         perf_disable();
721
722         for (i = 0; i < cpuc->n_events; i++) {
723                 if (event == cpuc->event[i]) {
724                         int idx = cpuc->current_idx[i];
725
726                         /* Shift remaining entries down into
727                          * the existing slot.
728                          */
729                         while (++i < cpuc->n_events) {
730                                 cpuc->event[i - 1] = cpuc->event[i];
731                                 cpuc->events[i - 1] = cpuc->events[i];
732                                 cpuc->current_idx[i - 1] =
733                                         cpuc->current_idx[i];
734                         }
735
736                         /* Absorb the final count and turn off the
737                          * event.
738                          */
739                         sparc_pmu_disable_event(cpuc, hwc, idx);
740                         barrier();
741                         sparc_perf_event_update(event, hwc, idx);
742
743                         perf_event_update_userpage(event);
744
745                         cpuc->n_events--;
746                         break;
747                 }
748         }
749
750         perf_enable();
751         local_irq_restore(flags);
752 }
753
754 static int active_event_index(struct cpu_hw_events *cpuc,
755                               struct perf_event *event)
756 {
757         int i;
758
759         for (i = 0; i < cpuc->n_events; i++) {
760                 if (cpuc->event[i] == event)
761                         break;
762         }
763         BUG_ON(i == cpuc->n_events);
764         return cpuc->current_idx[i];
765 }
766
767 static void sparc_pmu_read(struct perf_event *event)
768 {
769         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
770         int idx = active_event_index(cpuc, event);
771         struct hw_perf_event *hwc = &event->hw;
772
773         sparc_perf_event_update(event, hwc, idx);
774 }
775
776 static void sparc_pmu_unthrottle(struct perf_event *event)
777 {
778         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
779         int idx = active_event_index(cpuc, event);
780         struct hw_perf_event *hwc = &event->hw;
781
782         sparc_pmu_enable_event(cpuc, hwc, idx);
783 }
784
785 static atomic_t active_events = ATOMIC_INIT(0);
786 static DEFINE_MUTEX(pmc_grab_mutex);
787
788 static void perf_stop_nmi_watchdog(void *unused)
789 {
790         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
791
792         stop_nmi_watchdog(NULL);
793         cpuc->pcr = pcr_ops->read();
794 }
795
796 void perf_event_grab_pmc(void)
797 {
798         if (atomic_inc_not_zero(&active_events))
799                 return;
800
801         mutex_lock(&pmc_grab_mutex);
802         if (atomic_read(&active_events) == 0) {
803                 if (atomic_read(&nmi_active) > 0) {
804                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
805                         BUG_ON(atomic_read(&nmi_active) != 0);
806                 }
807                 atomic_inc(&active_events);
808         }
809         mutex_unlock(&pmc_grab_mutex);
810 }
811
812 void perf_event_release_pmc(void)
813 {
814         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
815                 if (atomic_read(&nmi_active) == 0)
816                         on_each_cpu(start_nmi_watchdog, NULL, 1);
817                 mutex_unlock(&pmc_grab_mutex);
818         }
819 }
820
821 static const struct perf_event_map *sparc_map_cache_event(u64 config)
822 {
823         unsigned int cache_type, cache_op, cache_result;
824         const struct perf_event_map *pmap;
825
826         if (!sparc_pmu->cache_map)
827                 return ERR_PTR(-ENOENT);
828
829         cache_type = (config >>  0) & 0xff;
830         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
831                 return ERR_PTR(-EINVAL);
832
833         cache_op = (config >>  8) & 0xff;
834         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
835                 return ERR_PTR(-EINVAL);
836
837         cache_result = (config >> 16) & 0xff;
838         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
839                 return ERR_PTR(-EINVAL);
840
841         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
842
843         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
844                 return ERR_PTR(-ENOENT);
845
846         if (pmap->encoding == CACHE_OP_NONSENSE)
847                 return ERR_PTR(-EINVAL);
848
849         return pmap;
850 }
851
852 static void hw_perf_event_destroy(struct perf_event *event)
853 {
854         perf_event_release_pmc();
855 }
856
857 /* Make sure all events can be scheduled into the hardware at
858  * the same time.  This is simplified by the fact that we only
859  * need to support 2 simultaneous HW events.
860  *
861  * As a side effect, the evts[]->hw.idx values will be assigned
862  * on success.  These are pending indexes.  When the events are
863  * actually programmed into the chip, these values will propagate
864  * to the per-cpu cpuc->current_idx[] slots, see the code in
865  * maybe_change_configuration() for details.
866  */
867 static int sparc_check_constraints(struct perf_event **evts,
868                                    unsigned long *events, int n_ev)
869 {
870         u8 msk0 = 0, msk1 = 0;
871         int idx0 = 0;
872
873         /* This case is possible when we are invoked from
874          * hw_perf_group_sched_in().
875          */
876         if (!n_ev)
877                 return 0;
878
879         if (n_ev > perf_max_events)
880                 return -1;
881
882         msk0 = perf_event_get_msk(events[0]);
883         if (n_ev == 1) {
884                 if (msk0 & PIC_LOWER)
885                         idx0 = 1;
886                 goto success;
887         }
888         BUG_ON(n_ev != 2);
889         msk1 = perf_event_get_msk(events[1]);
890
891         /* If both events can go on any counter, OK.  */
892         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
893             msk1 == (PIC_UPPER | PIC_LOWER))
894                 goto success;
895
896         /* If one event is limited to a specific counter,
897          * and the other can go on both, OK.
898          */
899         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
900             msk1 == (PIC_UPPER | PIC_LOWER)) {
901                 if (msk0 & PIC_LOWER)
902                         idx0 = 1;
903                 goto success;
904         }
905
906         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
907             msk0 == (PIC_UPPER | PIC_LOWER)) {
908                 if (msk1 & PIC_UPPER)
909                         idx0 = 1;
910                 goto success;
911         }
912
913         /* If the events are fixed to different counters, OK.  */
914         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
915             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
916                 if (msk0 & PIC_LOWER)
917                         idx0 = 1;
918                 goto success;
919         }
920
921         /* Otherwise, there is a conflict.  */
922         return -1;
923
924 success:
925         evts[0]->hw.idx = idx0;
926         if (n_ev == 2)
927                 evts[1]->hw.idx = idx0 ^ 1;
928         return 0;
929 }
930
931 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
932 {
933         int eu = 0, ek = 0, eh = 0;
934         struct perf_event *event;
935         int i, n, first;
936
937         n = n_prev + n_new;
938         if (n <= 1)
939                 return 0;
940
941         first = 1;
942         for (i = 0; i < n; i++) {
943                 event = evts[i];
944                 if (first) {
945                         eu = event->attr.exclude_user;
946                         ek = event->attr.exclude_kernel;
947                         eh = event->attr.exclude_hv;
948                         first = 0;
949                 } else if (event->attr.exclude_user != eu ||
950                            event->attr.exclude_kernel != ek ||
951                            event->attr.exclude_hv != eh) {
952                         return -EAGAIN;
953                 }
954         }
955
956         return 0;
957 }
958
959 static int collect_events(struct perf_event *group, int max_count,
960                           struct perf_event *evts[], unsigned long *events,
961                           int *current_idx)
962 {
963         struct perf_event *event;
964         int n = 0;
965
966         if (!is_software_event(group)) {
967                 if (n >= max_count)
968                         return -1;
969                 evts[n] = group;
970                 events[n] = group->hw.event_base;
971                 current_idx[n++] = PIC_NO_INDEX;
972         }
973         list_for_each_entry(event, &group->sibling_list, group_entry) {
974                 if (!is_software_event(event) &&
975                     event->state != PERF_EVENT_STATE_OFF) {
976                         if (n >= max_count)
977                                 return -1;
978                         evts[n] = event;
979                         events[n] = event->hw.event_base;
980                         current_idx[n++] = PIC_NO_INDEX;
981                 }
982         }
983         return n;
984 }
985
986 static int sparc_pmu_enable(struct perf_event *event)
987 {
988         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
989         int n0, ret = -EAGAIN;
990         unsigned long flags;
991
992         local_irq_save(flags);
993         perf_disable();
994
995         n0 = cpuc->n_events;
996         if (n0 >= perf_max_events)
997                 goto out;
998
999         cpuc->event[n0] = event;
1000         cpuc->events[n0] = event->hw.event_base;
1001         cpuc->current_idx[n0] = PIC_NO_INDEX;
1002
1003         /*
1004          * If group events scheduling transaction was started,
1005          * skip the schedulability test here, it will be peformed
1006          * at commit time(->commit_txn) as a whole
1007          */
1008         if (cpuc->group_flag & PERF_EVENT_TXN_STARTED)
1009                 goto nocheck;
1010
1011         if (check_excludes(cpuc->event, n0, 1))
1012                 goto out;
1013         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1014                 goto out;
1015
1016 nocheck:
1017         cpuc->n_events++;
1018         cpuc->n_added++;
1019
1020         ret = 0;
1021 out:
1022         perf_enable();
1023         local_irq_restore(flags);
1024         return ret;
1025 }
1026
1027 static int __hw_perf_event_init(struct perf_event *event)
1028 {
1029         struct perf_event_attr *attr = &event->attr;
1030         struct perf_event *evts[MAX_HWEVENTS];
1031         struct hw_perf_event *hwc = &event->hw;
1032         unsigned long events[MAX_HWEVENTS];
1033         int current_idx_dmy[MAX_HWEVENTS];
1034         const struct perf_event_map *pmap;
1035         int n;
1036
1037         if (atomic_read(&nmi_active) < 0)
1038                 return -ENODEV;
1039
1040         if (attr->type == PERF_TYPE_HARDWARE) {
1041                 if (attr->config >= sparc_pmu->max_events)
1042                         return -EINVAL;
1043                 pmap = sparc_pmu->event_map(attr->config);
1044         } else if (attr->type == PERF_TYPE_HW_CACHE) {
1045                 pmap = sparc_map_cache_event(attr->config);
1046                 if (IS_ERR(pmap))
1047                         return PTR_ERR(pmap);
1048         } else
1049                 return -EOPNOTSUPP;
1050
1051         /* We save the enable bits in the config_base.  */
1052         hwc->config_base = sparc_pmu->irq_bit;
1053         if (!attr->exclude_user)
1054                 hwc->config_base |= PCR_UTRACE;
1055         if (!attr->exclude_kernel)
1056                 hwc->config_base |= PCR_STRACE;
1057         if (!attr->exclude_hv)
1058                 hwc->config_base |= sparc_pmu->hv_bit;
1059
1060         hwc->event_base = perf_event_encode(pmap);
1061
1062         n = 0;
1063         if (event->group_leader != event) {
1064                 n = collect_events(event->group_leader,
1065                                    perf_max_events - 1,
1066                                    evts, events, current_idx_dmy);
1067                 if (n < 0)
1068                         return -EINVAL;
1069         }
1070         events[n] = hwc->event_base;
1071         evts[n] = event;
1072
1073         if (check_excludes(evts, n, 1))
1074                 return -EINVAL;
1075
1076         if (sparc_check_constraints(evts, events, n + 1))
1077                 return -EINVAL;
1078
1079         hwc->idx = PIC_NO_INDEX;
1080
1081         /* Try to do all error checking before this point, as unwinding
1082          * state after grabbing the PMC is difficult.
1083          */
1084         perf_event_grab_pmc();
1085         event->destroy = hw_perf_event_destroy;
1086
1087         if (!hwc->sample_period) {
1088                 hwc->sample_period = MAX_PERIOD;
1089                 hwc->last_period = hwc->sample_period;
1090                 atomic64_set(&hwc->period_left, hwc->sample_period);
1091         }
1092
1093         return 0;
1094 }
1095
1096 /*
1097  * Start group events scheduling transaction
1098  * Set the flag to make pmu::enable() not perform the
1099  * schedulability test, it will be performed at commit time
1100  */
1101 static void sparc_pmu_start_txn(const struct pmu *pmu)
1102 {
1103         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1104
1105         cpuhw->group_flag |= PERF_EVENT_TXN_STARTED;
1106 }
1107
1108 /*
1109  * Stop group events scheduling transaction
1110  * Clear the flag and pmu::enable() will perform the
1111  * schedulability test.
1112  */
1113 static void sparc_pmu_cancel_txn(const struct pmu *pmu)
1114 {
1115         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1116
1117         cpuhw->group_flag &= ~PERF_EVENT_TXN_STARTED;
1118 }
1119
1120 /*
1121  * Commit group events scheduling transaction
1122  * Perform the group schedulability test as a whole
1123  * Return 0 if success
1124  */
1125 static int sparc_pmu_commit_txn(const struct pmu *pmu)
1126 {
1127         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1128         int n;
1129
1130         if (!sparc_pmu)
1131                 return -EINVAL;
1132
1133         cpuc = &__get_cpu_var(cpu_hw_events);
1134         n = cpuc->n_events;
1135         if (check_excludes(cpuc->event, 0, n))
1136                 return -EINVAL;
1137         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1138                 return -EAGAIN;
1139
1140         return 0;
1141 }
1142
1143 static const struct pmu pmu = {
1144         .enable         = sparc_pmu_enable,
1145         .disable        = sparc_pmu_disable,
1146         .read           = sparc_pmu_read,
1147         .unthrottle     = sparc_pmu_unthrottle,
1148         .start_txn      = sparc_pmu_start_txn,
1149         .cancel_txn     = sparc_pmu_cancel_txn,
1150         .commit_txn     = sparc_pmu_commit_txn,
1151 };
1152
1153 const struct pmu *hw_perf_event_init(struct perf_event *event)
1154 {
1155         int err = __hw_perf_event_init(event);
1156
1157         if (err)
1158                 return ERR_PTR(err);
1159         return &pmu;
1160 }
1161
1162 void perf_event_print_debug(void)
1163 {
1164         unsigned long flags;
1165         u64 pcr, pic;
1166         int cpu;
1167
1168         if (!sparc_pmu)
1169                 return;
1170
1171         local_irq_save(flags);
1172
1173         cpu = smp_processor_id();
1174
1175         pcr = pcr_ops->read();
1176         read_pic(pic);
1177
1178         pr_info("\n");
1179         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1180                 cpu, pcr, pic);
1181
1182         local_irq_restore(flags);
1183 }
1184
1185 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1186                                             unsigned long cmd, void *__args)
1187 {
1188         struct die_args *args = __args;
1189         struct perf_sample_data data;
1190         struct cpu_hw_events *cpuc;
1191         struct pt_regs *regs;
1192         int i;
1193
1194         if (!atomic_read(&active_events))
1195                 return NOTIFY_DONE;
1196
1197         switch (cmd) {
1198         case DIE_NMI:
1199                 break;
1200
1201         default:
1202                 return NOTIFY_DONE;
1203         }
1204
1205         regs = args->regs;
1206
1207         perf_sample_data_init(&data, 0);
1208
1209         cpuc = &__get_cpu_var(cpu_hw_events);
1210
1211         /* If the PMU has the TOE IRQ enable bits, we need to do a
1212          * dummy write to the %pcr to clear the overflow bits and thus
1213          * the interrupt.
1214          *
1215          * Do this before we peek at the counters to determine
1216          * overflow so we don't lose any events.
1217          */
1218         if (sparc_pmu->irq_bit)
1219                 pcr_ops->write(cpuc->pcr);
1220
1221         for (i = 0; i < cpuc->n_events; i++) {
1222                 struct perf_event *event = cpuc->event[i];
1223                 int idx = cpuc->current_idx[i];
1224                 struct hw_perf_event *hwc;
1225                 u64 val;
1226
1227                 hwc = &event->hw;
1228                 val = sparc_perf_event_update(event, hwc, idx);
1229                 if (val & (1ULL << 31))
1230                         continue;
1231
1232                 data.period = event->hw.last_period;
1233                 if (!sparc_perf_event_set_period(event, hwc, idx))
1234                         continue;
1235
1236                 if (perf_event_overflow(event, 1, &data, regs))
1237                         sparc_pmu_disable_event(cpuc, hwc, idx);
1238         }
1239
1240         return NOTIFY_STOP;
1241 }
1242
1243 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1244         .notifier_call          = perf_event_nmi_handler,
1245 };
1246
1247 static bool __init supported_pmu(void)
1248 {
1249         if (!strcmp(sparc_pmu_type, "ultra3") ||
1250             !strcmp(sparc_pmu_type, "ultra3+") ||
1251             !strcmp(sparc_pmu_type, "ultra3i") ||
1252             !strcmp(sparc_pmu_type, "ultra4+")) {
1253                 sparc_pmu = &ultra3_pmu;
1254                 return true;
1255         }
1256         if (!strcmp(sparc_pmu_type, "niagara")) {
1257                 sparc_pmu = &niagara1_pmu;
1258                 return true;
1259         }
1260         if (!strcmp(sparc_pmu_type, "niagara2")) {
1261                 sparc_pmu = &niagara2_pmu;
1262                 return true;
1263         }
1264         return false;
1265 }
1266
1267 void __init init_hw_perf_events(void)
1268 {
1269         pr_info("Performance events: ");
1270
1271         if (!supported_pmu()) {
1272                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1273                 return;
1274         }
1275
1276         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1277
1278         /* All sparc64 PMUs currently have 2 events.  */
1279         perf_max_events = 2;
1280
1281         register_die_notifier(&perf_event_nmi_notifier);
1282 }
1283
1284 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1285 {
1286         if (entry->nr < PERF_MAX_STACK_DEPTH)
1287                 entry->ip[entry->nr++] = ip;
1288 }
1289
1290 static void perf_callchain_kernel(struct pt_regs *regs,
1291                                   struct perf_callchain_entry *entry)
1292 {
1293         unsigned long ksp, fp;
1294 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1295         int graph = 0;
1296 #endif
1297
1298         callchain_store(entry, PERF_CONTEXT_KERNEL);
1299         callchain_store(entry, regs->tpc);
1300
1301         ksp = regs->u_regs[UREG_I6];
1302         fp = ksp + STACK_BIAS;
1303         do {
1304                 struct sparc_stackf *sf;
1305                 struct pt_regs *regs;
1306                 unsigned long pc;
1307
1308                 if (!kstack_valid(current_thread_info(), fp))
1309                         break;
1310
1311                 sf = (struct sparc_stackf *) fp;
1312                 regs = (struct pt_regs *) (sf + 1);
1313
1314                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1315                         if (user_mode(regs))
1316                                 break;
1317                         pc = regs->tpc;
1318                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1319                 } else {
1320                         pc = sf->callers_pc;
1321                         fp = (unsigned long)sf->fp + STACK_BIAS;
1322                 }
1323                 callchain_store(entry, pc);
1324 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1325                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1326                         int index = current->curr_ret_stack;
1327                         if (current->ret_stack && index >= graph) {
1328                                 pc = current->ret_stack[index - graph].ret;
1329                                 callchain_store(entry, pc);
1330                                 graph++;
1331                         }
1332                 }
1333 #endif
1334         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1335 }
1336
1337 static void perf_callchain_user_64(struct pt_regs *regs,
1338                                    struct perf_callchain_entry *entry)
1339 {
1340         unsigned long ufp;
1341
1342         callchain_store(entry, PERF_CONTEXT_USER);
1343         callchain_store(entry, regs->tpc);
1344
1345         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1346         do {
1347                 struct sparc_stackf *usf, sf;
1348                 unsigned long pc;
1349
1350                 usf = (struct sparc_stackf *) ufp;
1351                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1352                         break;
1353
1354                 pc = sf.callers_pc;
1355                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1356                 callchain_store(entry, pc);
1357         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1358 }
1359
1360 static void perf_callchain_user_32(struct pt_regs *regs,
1361                                    struct perf_callchain_entry *entry)
1362 {
1363         unsigned long ufp;
1364
1365         callchain_store(entry, PERF_CONTEXT_USER);
1366         callchain_store(entry, regs->tpc);
1367
1368         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1369         do {
1370                 struct sparc_stackf32 *usf, sf;
1371                 unsigned long pc;
1372
1373                 usf = (struct sparc_stackf32 *) ufp;
1374                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1375                         break;
1376
1377                 pc = sf.callers_pc;
1378                 ufp = (unsigned long)sf.fp;
1379                 callchain_store(entry, pc);
1380         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1381 }
1382
1383 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1384  * so no need for separate NMI and IRQ chains as on x86.
1385  */
1386 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1387
1388 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1389 {
1390         struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1391
1392         entry->nr = 0;
1393         if (!user_mode(regs)) {
1394                 stack_trace_flush();
1395                 perf_callchain_kernel(regs, entry);
1396                 if (current->mm)
1397                         regs = task_pt_regs(current);
1398                 else
1399                         regs = NULL;
1400         }
1401         if (regs) {
1402                 flushw_user();
1403                 if (test_thread_flag(TIF_32BIT))
1404                         perf_callchain_user_32(regs, entry);
1405                 else
1406                         perf_callchain_user_64(regs, entry);
1407         }
1408         return entry;
1409 }