f0ee79055409d34f02947e3ca6915f0e71fe9dc1
[pandora-kernel.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6  */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
45
46 #include "entry.h"
47 #include "cpumap.h"
48
49 #define NUM_IVECS       (IMAP_INR + 1)
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55  * non-bypass accesses.  Therefore we access all INO buckets
56  * using bypass accesses only.
57  */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60         unsigned long ret;
61
62         __asm__ __volatile__("ldxa      [%1] %2, %0"
63                              : "=&r" (ret)
64                              : "r" (bucket_pa +
65                                     offsetof(struct ino_bucket,
66                                              __irq_chain_pa)),
67                                "i" (ASI_PHYS_USE_EC));
68
69         return ret;
70 }
71
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74         __asm__ __volatile__("stxa      %%g0, [%0] %1"
75                              : /* no outputs */
76                              : "r" (bucket_pa +
77                                     offsetof(struct ino_bucket,
78                                              __irq_chain_pa)),
79                                "i" (ASI_PHYS_USE_EC));
80 }
81
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84         unsigned int ret;
85
86         __asm__ __volatile__("lduwa     [%1] %2, %0"
87                              : "=&r" (ret)
88                              : "r" (bucket_pa +
89                                     offsetof(struct ino_bucket,
90                                              __virt_irq)),
91                                "i" (ASI_PHYS_USE_EC));
92
93         return ret;
94 }
95
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97                                 unsigned int virt_irq)
98 {
99         __asm__ __volatile__("stwa      %0, [%1] %2"
100                              : /* no outputs */
101                              : "r" (virt_irq),
102                                "r" (bucket_pa +
103                                     offsetof(struct ino_bucket,
104                                              __virt_irq)),
105                                "i" (ASI_PHYS_USE_EC));
106 }
107
108 #define irq_work_pa(__cpu)      &(trap_block[(__cpu)].irq_worklist_pa)
109
110 static struct {
111         unsigned int dev_handle;
112         unsigned int dev_ino;
113         unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118                              unsigned int dev_ino)
119 {
120         unsigned long flags;
121         unsigned char ent;
122
123         BUILD_BUG_ON(NR_IRQS >= 256);
124
125         spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126
127         for (ent = 1; ent < NR_IRQS; ent++) {
128                 if (!virt_irq_table[ent].in_use)
129                         break;
130         }
131         if (ent >= NR_IRQS) {
132                 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133                 ent = 0;
134         } else {
135                 virt_irq_table[ent].dev_handle = dev_handle;
136                 virt_irq_table[ent].dev_ino = dev_ino;
137                 virt_irq_table[ent].in_use = 1;
138         }
139
140         spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141
142         return ent;
143 }
144
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
147 {
148         unsigned long flags;
149
150         if (virt_irq >= NR_IRQS)
151                 return;
152
153         spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154
155         virt_irq_table[virt_irq].in_use = 0;
156
157         spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160
161 /*
162  * /proc/interrupts printing:
163  */
164
165 int show_interrupts(struct seq_file *p, void *v)
166 {
167         int i = *(loff_t *) v, j;
168         struct irqaction * action;
169         unsigned long flags;
170
171         if (i == 0) {
172                 seq_printf(p, "           ");
173                 for_each_online_cpu(j)
174                         seq_printf(p, "CPU%d       ",j);
175                 seq_putc(p, '\n');
176         }
177
178         if (i < NR_IRQS) {
179                 spin_lock_irqsave(&irq_desc[i].lock, flags);
180                 action = irq_desc[i].action;
181                 if (!action)
182                         goto skip;
183                 seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185                 seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187                 for_each_online_cpu(j)
188                         seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190                 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191                 seq_printf(p, "  %s", action->name);
192
193                 for (action=action->next; action; action = action->next)
194                         seq_printf(p, ", %s", action->name);
195
196                 seq_putc(p, '\n');
197 skip:
198                 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199         } else if (i == NR_IRQS) {
200                 seq_printf(p, "NMI: ");
201                 for_each_online_cpu(j)
202                         seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203                 seq_printf(p, "     Non-maskable interrupts\n");
204         }
205         return 0;
206 }
207
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210         unsigned int tid;
211
212         if (this_is_starfire) {
213                 tid = starfire_translate(imap, cpuid);
214                 tid <<= IMAP_TID_SHIFT;
215                 tid &= IMAP_TID_UPA;
216         } else {
217                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218                         unsigned long ver;
219
220                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221                         if ((ver >> 32UL) == __JALAPENO_ID ||
222                             (ver >> 32UL) == __SERRANO_ID) {
223                                 tid = cpuid << IMAP_TID_SHIFT;
224                                 tid &= IMAP_TID_JBUS;
225                         } else {
226                                 unsigned int a = cpuid & 0x1f;
227                                 unsigned int n = (cpuid >> 5) & 0x1f;
228
229                                 tid = ((a << IMAP_AID_SHIFT) |
230                                        (n << IMAP_NID_SHIFT));
231                                 tid &= (IMAP_AID_SAFARI |
232                                         IMAP_NID_SAFARI);;
233                         }
234                 } else {
235                         tid = cpuid << IMAP_TID_SHIFT;
236                         tid &= IMAP_TID_UPA;
237                 }
238         }
239
240         return tid;
241 }
242
243 struct irq_handler_data {
244         unsigned long   iclr;
245         unsigned long   imap;
246
247         void            (*pre_handler)(unsigned int, void *, void *);
248         void            *arg1;
249         void            *arg2;
250 };
251
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq)
254 {
255         cpumask_t mask;
256         int cpuid;
257
258         cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259         if (cpus_equal(mask, cpu_online_map)) {
260                 cpuid = map_to_cpu(virt_irq);
261         } else {
262                 cpumask_t tmp;
263
264                 cpus_and(tmp, cpu_online_map, mask);
265                 cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
266         }
267
268         return cpuid;
269 }
270 #else
271 static int irq_choose_cpu(unsigned int virt_irq)
272 {
273         return real_hard_smp_processor_id();
274 }
275 #endif
276
277 static void sun4u_irq_enable(unsigned int virt_irq)
278 {
279         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
280
281         if (likely(data)) {
282                 unsigned long cpuid, imap, val;
283                 unsigned int tid;
284
285                 cpuid = irq_choose_cpu(virt_irq);
286                 imap = data->imap;
287
288                 tid = sun4u_compute_tid(imap, cpuid);
289
290                 val = upa_readq(imap);
291                 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
292                          IMAP_AID_SAFARI | IMAP_NID_SAFARI);
293                 val |= tid | IMAP_VALID;
294                 upa_writeq(val, imap);
295                 upa_writeq(ICLR_IDLE, data->iclr);
296         }
297 }
298
299 static int sun4u_set_affinity(unsigned int virt_irq,
300                                const struct cpumask *mask)
301 {
302         sun4u_irq_enable(virt_irq);
303
304         return 0;
305 }
306
307 /* Don't do anything.  The desc->status check for IRQ_DISABLED in
308  * handler_irq() will skip the handler call and that will leave the
309  * interrupt in the sent state.  The next ->enable() call will hit the
310  * ICLR register to reset the state machine.
311  *
312  * This scheme is necessary, instead of clearing the Valid bit in the
313  * IMAP register, to handle the case of IMAP registers being shared by
314  * multiple INOs (and thus ICLR registers).  Since we use a different
315  * virtual IRQ for each shared IMAP instance, the generic code thinks
316  * there is only one user so it prematurely calls ->disable() on
317  * free_irq().
318  *
319  * We have to provide an explicit ->disable() method instead of using
320  * NULL to get the default.  The reason is that if the generic code
321  * sees that, it also hooks up a default ->shutdown method which
322  * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
323  */
324 static void sun4u_irq_disable(unsigned int virt_irq)
325 {
326 }
327
328 static void sun4u_irq_eoi(unsigned int virt_irq)
329 {
330         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
331         struct irq_desc *desc = irq_desc + virt_irq;
332
333         if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
334                 return;
335
336         if (likely(data))
337                 upa_writeq(ICLR_IDLE, data->iclr);
338 }
339
340 static void sun4v_irq_enable(unsigned int virt_irq)
341 {
342         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
343         unsigned long cpuid = irq_choose_cpu(virt_irq);
344         int err;
345
346         err = sun4v_intr_settarget(ino, cpuid);
347         if (err != HV_EOK)
348                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349                        "err(%d)\n", ino, cpuid, err);
350         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
351         if (err != HV_EOK)
352                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
353                        "err(%d)\n", ino, err);
354         err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
355         if (err != HV_EOK)
356                 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
357                        ino, err);
358 }
359
360 static int sun4v_set_affinity(unsigned int virt_irq,
361                                const struct cpumask *mask)
362 {
363         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
364         unsigned long cpuid = irq_choose_cpu(virt_irq);
365         int err;
366
367         err = sun4v_intr_settarget(ino, cpuid);
368         if (err != HV_EOK)
369                 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
370                        "err(%d)\n", ino, cpuid, err);
371
372         return 0;
373 }
374
375 static void sun4v_irq_disable(unsigned int virt_irq)
376 {
377         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
378         int err;
379
380         err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
381         if (err != HV_EOK)
382                 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
383                        "err(%d)\n", ino, err);
384 }
385
386 static void sun4v_irq_eoi(unsigned int virt_irq)
387 {
388         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
389         struct irq_desc *desc = irq_desc + virt_irq;
390         int err;
391
392         if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
393                 return;
394
395         err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
396         if (err != HV_EOK)
397                 printk(KERN_ERR "sun4v_intr_setstate(%x): "
398                        "err(%d)\n", ino, err);
399 }
400
401 static void sun4v_virq_enable(unsigned int virt_irq)
402 {
403         unsigned long cpuid, dev_handle, dev_ino;
404         int err;
405
406         cpuid = irq_choose_cpu(virt_irq);
407
408         dev_handle = virt_irq_table[virt_irq].dev_handle;
409         dev_ino = virt_irq_table[virt_irq].dev_ino;
410
411         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
412         if (err != HV_EOK)
413                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
414                        "err(%d)\n",
415                        dev_handle, dev_ino, cpuid, err);
416         err = sun4v_vintr_set_state(dev_handle, dev_ino,
417                                     HV_INTR_STATE_IDLE);
418         if (err != HV_EOK)
419                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
420                        "HV_INTR_STATE_IDLE): err(%d)\n",
421                        dev_handle, dev_ino, err);
422         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
423                                     HV_INTR_ENABLED);
424         if (err != HV_EOK)
425                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
426                        "HV_INTR_ENABLED): err(%d)\n",
427                        dev_handle, dev_ino, err);
428 }
429
430 static int sun4v_virt_set_affinity(unsigned int virt_irq,
431                                     const struct cpumask *mask)
432 {
433         unsigned long cpuid, dev_handle, dev_ino;
434         int err;
435
436         cpuid = irq_choose_cpu(virt_irq);
437
438         dev_handle = virt_irq_table[virt_irq].dev_handle;
439         dev_ino = virt_irq_table[virt_irq].dev_ino;
440
441         err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
442         if (err != HV_EOK)
443                 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
444                        "err(%d)\n",
445                        dev_handle, dev_ino, cpuid, err);
446
447         return 0;
448 }
449
450 static void sun4v_virq_disable(unsigned int virt_irq)
451 {
452         unsigned long dev_handle, dev_ino;
453         int err;
454
455         dev_handle = virt_irq_table[virt_irq].dev_handle;
456         dev_ino = virt_irq_table[virt_irq].dev_ino;
457
458         err = sun4v_vintr_set_valid(dev_handle, dev_ino,
459                                     HV_INTR_DISABLED);
460         if (err != HV_EOK)
461                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
462                        "HV_INTR_DISABLED): err(%d)\n",
463                        dev_handle, dev_ino, err);
464 }
465
466 static void sun4v_virq_eoi(unsigned int virt_irq)
467 {
468         struct irq_desc *desc = irq_desc + virt_irq;
469         unsigned long dev_handle, dev_ino;
470         int err;
471
472         if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
473                 return;
474
475         dev_handle = virt_irq_table[virt_irq].dev_handle;
476         dev_ino = virt_irq_table[virt_irq].dev_ino;
477
478         err = sun4v_vintr_set_state(dev_handle, dev_ino,
479                                     HV_INTR_STATE_IDLE);
480         if (err != HV_EOK)
481                 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
482                        "HV_INTR_STATE_IDLE): err(%d)\n",
483                        dev_handle, dev_ino, err);
484 }
485
486 static struct irq_chip sun4u_irq = {
487         .typename       = "sun4u",
488         .enable         = sun4u_irq_enable,
489         .disable        = sun4u_irq_disable,
490         .eoi            = sun4u_irq_eoi,
491         .set_affinity   = sun4u_set_affinity,
492 };
493
494 static struct irq_chip sun4v_irq = {
495         .typename       = "sun4v",
496         .enable         = sun4v_irq_enable,
497         .disable        = sun4v_irq_disable,
498         .eoi            = sun4v_irq_eoi,
499         .set_affinity   = sun4v_set_affinity,
500 };
501
502 static struct irq_chip sun4v_virq = {
503         .typename       = "vsun4v",
504         .enable         = sun4v_virq_enable,
505         .disable        = sun4v_virq_disable,
506         .eoi            = sun4v_virq_eoi,
507         .set_affinity   = sun4v_virt_set_affinity,
508 };
509
510 static void pre_flow_handler(unsigned int virt_irq,
511                                       struct irq_desc *desc)
512 {
513         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
514         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
515
516         data->pre_handler(ino, data->arg1, data->arg2);
517
518         handle_fasteoi_irq(virt_irq, desc);
519 }
520
521 void irq_install_pre_handler(int virt_irq,
522                              void (*func)(unsigned int, void *, void *),
523                              void *arg1, void *arg2)
524 {
525         struct irq_handler_data *data = get_irq_chip_data(virt_irq);
526         struct irq_desc *desc = irq_desc + virt_irq;
527
528         data->pre_handler = func;
529         data->arg1 = arg1;
530         data->arg2 = arg2;
531
532         desc->handle_irq = pre_flow_handler;
533 }
534
535 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
536 {
537         struct ino_bucket *bucket;
538         struct irq_handler_data *data;
539         unsigned int virt_irq;
540         int ino;
541
542         BUG_ON(tlb_type == hypervisor);
543
544         ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
545         bucket = &ivector_table[ino];
546         virt_irq = bucket_get_virt_irq(__pa(bucket));
547         if (!virt_irq) {
548                 virt_irq = virt_irq_alloc(0, ino);
549                 bucket_set_virt_irq(__pa(bucket), virt_irq);
550                 set_irq_chip_and_handler_name(virt_irq,
551                                               &sun4u_irq,
552                                               handle_fasteoi_irq,
553                                               "IVEC");
554         }
555
556         data = get_irq_chip_data(virt_irq);
557         if (unlikely(data))
558                 goto out;
559
560         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
561         if (unlikely(!data)) {
562                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
563                 prom_halt();
564         }
565         set_irq_chip_data(virt_irq, data);
566
567         data->imap  = imap;
568         data->iclr  = iclr;
569
570 out:
571         return virt_irq;
572 }
573
574 static unsigned int sun4v_build_common(unsigned long sysino,
575                                        struct irq_chip *chip)
576 {
577         struct ino_bucket *bucket;
578         struct irq_handler_data *data;
579         unsigned int virt_irq;
580
581         BUG_ON(tlb_type != hypervisor);
582
583         bucket = &ivector_table[sysino];
584         virt_irq = bucket_get_virt_irq(__pa(bucket));
585         if (!virt_irq) {
586                 virt_irq = virt_irq_alloc(0, sysino);
587                 bucket_set_virt_irq(__pa(bucket), virt_irq);
588                 set_irq_chip_and_handler_name(virt_irq, chip,
589                                               handle_fasteoi_irq,
590                                               "IVEC");
591         }
592
593         data = get_irq_chip_data(virt_irq);
594         if (unlikely(data))
595                 goto out;
596
597         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
598         if (unlikely(!data)) {
599                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
600                 prom_halt();
601         }
602         set_irq_chip_data(virt_irq, data);
603
604         /* Catch accidental accesses to these things.  IMAP/ICLR handling
605          * is done by hypervisor calls on sun4v platforms, not by direct
606          * register accesses.
607          */
608         data->imap = ~0UL;
609         data->iclr = ~0UL;
610
611 out:
612         return virt_irq;
613 }
614
615 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
616 {
617         unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
618
619         return sun4v_build_common(sysino, &sun4v_irq);
620 }
621
622 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
623 {
624         struct irq_handler_data *data;
625         unsigned long hv_err, cookie;
626         struct ino_bucket *bucket;
627         struct irq_desc *desc;
628         unsigned int virt_irq;
629
630         bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
631         if (unlikely(!bucket))
632                 return 0;
633         __flush_dcache_range((unsigned long) bucket,
634                              ((unsigned long) bucket +
635                               sizeof(struct ino_bucket)));
636
637         virt_irq = virt_irq_alloc(devhandle, devino);
638         bucket_set_virt_irq(__pa(bucket), virt_irq);
639
640         set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
641                                       handle_fasteoi_irq,
642                                       "IVEC");
643
644         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
645         if (unlikely(!data))
646                 return 0;
647
648         /* In order to make the LDC channel startup sequence easier,
649          * especially wrt. locking, we do not let request_irq() enable
650          * the interrupt.
651          */
652         desc = irq_desc + virt_irq;
653         desc->status |= IRQ_NOAUTOEN;
654
655         set_irq_chip_data(virt_irq, data);
656
657         /* Catch accidental accesses to these things.  IMAP/ICLR handling
658          * is done by hypervisor calls on sun4v platforms, not by direct
659          * register accesses.
660          */
661         data->imap = ~0UL;
662         data->iclr = ~0UL;
663
664         cookie = ~__pa(bucket);
665         hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
666         if (hv_err) {
667                 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
668                             "err=%lu\n", devhandle, devino, hv_err);
669                 prom_halt();
670         }
671
672         return virt_irq;
673 }
674
675 void ack_bad_irq(unsigned int virt_irq)
676 {
677         unsigned int ino = virt_irq_table[virt_irq].dev_ino;
678
679         if (!ino)
680                 ino = 0xdeadbeef;
681
682         printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
683                ino, virt_irq);
684 }
685
686 void *hardirq_stack[NR_CPUS];
687 void *softirq_stack[NR_CPUS];
688
689 static __attribute__((always_inline)) void *set_hardirq_stack(void)
690 {
691         void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
692
693         __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
694         if (orig_sp < sp ||
695             orig_sp > (sp + THREAD_SIZE)) {
696                 sp += THREAD_SIZE - 192 - STACK_BIAS;
697                 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
698         }
699
700         return orig_sp;
701 }
702 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
703 {
704         __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
705 }
706
707 void handler_irq(int irq, struct pt_regs *regs)
708 {
709         unsigned long pstate, bucket_pa;
710         struct pt_regs *old_regs;
711         void *orig_sp;
712
713         clear_softint(1 << irq);
714
715         old_regs = set_irq_regs(regs);
716         irq_enter();
717
718         /* Grab an atomic snapshot of the pending IVECs.  */
719         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
720                              "wrpr      %0, %3, %%pstate\n\t"
721                              "ldx       [%2], %1\n\t"
722                              "stx       %%g0, [%2]\n\t"
723                              "wrpr      %0, 0x0, %%pstate\n\t"
724                              : "=&r" (pstate), "=&r" (bucket_pa)
725                              : "r" (irq_work_pa(smp_processor_id())),
726                                "i" (PSTATE_IE)
727                              : "memory");
728
729         orig_sp = set_hardirq_stack();
730
731         while (bucket_pa) {
732                 struct irq_desc *desc;
733                 unsigned long next_pa;
734                 unsigned int virt_irq;
735
736                 next_pa = bucket_get_chain_pa(bucket_pa);
737                 virt_irq = bucket_get_virt_irq(bucket_pa);
738                 bucket_clear_chain_pa(bucket_pa);
739
740                 desc = irq_desc + virt_irq;
741
742                 if (!(desc->status & IRQ_DISABLED))
743                         desc->handle_irq(virt_irq, desc);
744
745                 bucket_pa = next_pa;
746         }
747
748         restore_hardirq_stack(orig_sp);
749
750         irq_exit();
751         set_irq_regs(old_regs);
752 }
753
754 void do_softirq(void)
755 {
756         unsigned long flags;
757
758         if (in_interrupt())
759                 return;
760
761         local_irq_save(flags);
762
763         if (local_softirq_pending()) {
764                 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
765
766                 sp += THREAD_SIZE - 192 - STACK_BIAS;
767
768                 __asm__ __volatile__("mov %%sp, %0\n\t"
769                                      "mov %1, %%sp"
770                                      : "=&r" (orig_sp)
771                                      : "r" (sp));
772                 __do_softirq();
773                 __asm__ __volatile__("mov %0, %%sp"
774                                      : : "r" (orig_sp));
775         }
776
777         local_irq_restore(flags);
778 }
779
780 #ifdef CONFIG_HOTPLUG_CPU
781 void fixup_irqs(void)
782 {
783         unsigned int irq;
784
785         for (irq = 0; irq < NR_IRQS; irq++) {
786                 unsigned long flags;
787
788                 spin_lock_irqsave(&irq_desc[irq].lock, flags);
789                 if (irq_desc[irq].action &&
790                     !(irq_desc[irq].status & IRQ_PER_CPU)) {
791                         if (irq_desc[irq].chip->set_affinity)
792                                 irq_desc[irq].chip->set_affinity(irq,
793                                         irq_desc[irq].affinity);
794                 }
795                 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
796         }
797
798         tick_ops->disable_irq();
799 }
800 #endif
801
802 struct sun5_timer {
803         u64     count0;
804         u64     limit0;
805         u64     count1;
806         u64     limit1;
807 };
808
809 static struct sun5_timer *prom_timers;
810 static u64 prom_limit0, prom_limit1;
811
812 static void map_prom_timers(void)
813 {
814         struct device_node *dp;
815         const unsigned int *addr;
816
817         /* PROM timer node hangs out in the top level of device siblings... */
818         dp = of_find_node_by_path("/");
819         dp = dp->child;
820         while (dp) {
821                 if (!strcmp(dp->name, "counter-timer"))
822                         break;
823                 dp = dp->sibling;
824         }
825
826         /* Assume if node is not present, PROM uses different tick mechanism
827          * which we should not care about.
828          */
829         if (!dp) {
830                 prom_timers = (struct sun5_timer *) 0;
831                 return;
832         }
833
834         /* If PROM is really using this, it must be mapped by him. */
835         addr = of_get_property(dp, "address", NULL);
836         if (!addr) {
837                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
838                 prom_timers = (struct sun5_timer *) 0;
839                 return;
840         }
841         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
842 }
843
844 static void kill_prom_timer(void)
845 {
846         if (!prom_timers)
847                 return;
848
849         /* Save them away for later. */
850         prom_limit0 = prom_timers->limit0;
851         prom_limit1 = prom_timers->limit1;
852
853         /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
854          * We turn both off here just to be paranoid.
855          */
856         prom_timers->limit0 = 0;
857         prom_timers->limit1 = 0;
858
859         /* Wheee, eat the interrupt packet too... */
860         __asm__ __volatile__(
861 "       mov     0x40, %%g2\n"
862 "       ldxa    [%%g0] %0, %%g1\n"
863 "       ldxa    [%%g2] %1, %%g1\n"
864 "       stxa    %%g0, [%%g0] %0\n"
865 "       membar  #Sync\n"
866         : /* no outputs */
867         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
868         : "g1", "g2");
869 }
870
871 void notrace init_irqwork_curcpu(void)
872 {
873         int cpu = hard_smp_processor_id();
874
875         trap_block[cpu].irq_worklist_pa = 0UL;
876 }
877
878 /* Please be very careful with register_one_mondo() and
879  * sun4v_register_mondo_queues().
880  *
881  * On SMP this gets invoked from the CPU trampoline before
882  * the cpu has fully taken over the trap table from OBP,
883  * and it's kernel stack + %g6 thread register state is
884  * not fully cooked yet.
885  *
886  * Therefore you cannot make any OBP calls, not even prom_printf,
887  * from these two routines.
888  */
889 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
890 {
891         unsigned long num_entries = (qmask + 1) / 64;
892         unsigned long status;
893
894         status = sun4v_cpu_qconf(type, paddr, num_entries);
895         if (status != HV_EOK) {
896                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
897                             "err %lu\n", type, paddr, num_entries, status);
898                 prom_halt();
899         }
900 }
901
902 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
903 {
904         struct trap_per_cpu *tb = &trap_block[this_cpu];
905
906         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
907                            tb->cpu_mondo_qmask);
908         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
909                            tb->dev_mondo_qmask);
910         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
911                            tb->resum_qmask);
912         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
913                            tb->nonresum_qmask);
914 }
915
916 /* Each queue region must be a power of 2 multiple of 64 bytes in
917  * size.  The base real address must be aligned to the size of the
918  * region.  Thus, an 8KB queue must be 8KB aligned, for example.
919  */
920 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
921 {
922         unsigned long size = PAGE_ALIGN(qmask + 1);
923         unsigned long order = get_order(size);
924         unsigned long p;
925
926         p = __get_free_pages(GFP_KERNEL, order);
927         if (!p) {
928                 prom_printf("SUN4V: Error, cannot allocate queue.\n");
929                 prom_halt();
930         }
931
932         *pa_ptr = __pa(p);
933 }
934
935 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
936 {
937 #ifdef CONFIG_SMP
938         unsigned long page;
939
940         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
941
942         page = get_zeroed_page(GFP_KERNEL);
943         if (!page) {
944                 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
945                 prom_halt();
946         }
947
948         tb->cpu_mondo_block_pa = __pa(page);
949         tb->cpu_list_pa = __pa(page + 64);
950 #endif
951 }
952
953 /* Allocate mondo and error queues for all possible cpus.  */
954 static void __init sun4v_init_mondo_queues(void)
955 {
956         int cpu;
957
958         for_each_possible_cpu(cpu) {
959                 struct trap_per_cpu *tb = &trap_block[cpu];
960
961                 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
962                 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
963                 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
964                 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
965                 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
966                 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
967                                 tb->nonresum_qmask);
968         }
969 }
970
971 static void __init init_send_mondo_info(void)
972 {
973         int cpu;
974
975         for_each_possible_cpu(cpu) {
976                 struct trap_per_cpu *tb = &trap_block[cpu];
977
978                 init_cpu_send_mondo_info(tb);
979         }
980 }
981
982 static struct irqaction timer_irq_action = {
983         .name = "timer",
984 };
985
986 /* Only invoked on boot processor. */
987 void __init init_IRQ(void)
988 {
989         unsigned long size;
990
991         map_prom_timers();
992         kill_prom_timer();
993
994         size = sizeof(struct ino_bucket) * NUM_IVECS;
995         ivector_table = kzalloc(size, GFP_KERNEL);
996         if (!ivector_table) {
997                 prom_printf("Fatal error, cannot allocate ivector_table\n");
998                 prom_halt();
999         }
1000         __flush_dcache_range((unsigned long) ivector_table,
1001                              ((unsigned long) ivector_table) + size);
1002
1003         ivector_table_pa = __pa(ivector_table);
1004
1005         if (tlb_type == hypervisor)
1006                 sun4v_init_mondo_queues();
1007
1008         init_send_mondo_info();
1009
1010         if (tlb_type == hypervisor) {
1011                 /* Load up the boot cpu's entries.  */
1012                 sun4v_register_mondo_queues(hard_smp_processor_id());
1013         }
1014
1015         /* We need to clear any IRQ's pending in the soft interrupt
1016          * registers, a spurious one could be left around from the
1017          * PROM timer which we just disabled.
1018          */
1019         clear_softint(get_softint());
1020
1021         /* Now that ivector table is initialized, it is safe
1022          * to receive IRQ vector traps.  We will normally take
1023          * one or two right now, in case some device PROM used
1024          * to boot us wants to speak to us.  We just ignore them.
1025          */
1026         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
1027                              "or        %%g1, %0, %%g1\n\t"
1028                              "wrpr      %%g1, 0x0, %%pstate"
1029                              : /* No outputs */
1030                              : "i" (PSTATE_IE)
1031                              : "g1");
1032
1033         irq_desc[0].action = &timer_irq_action;
1034 }