Merge branch 'fix/soundcore' into for-linus
[pandora-kernel.git] / arch / sparc / kernel / cpumap.c
1 /* cpumap.c: used for optimizing CPU assignment
2  *
3  * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 #include <linux/cpumask.h>
10 #include <linux/spinlock.h>
11 #include <asm/cpudata.h>
12 #include "cpumap.h"
13
14
15 enum {
16         CPUINFO_LVL_ROOT = 0,
17         CPUINFO_LVL_NODE,
18         CPUINFO_LVL_CORE,
19         CPUINFO_LVL_PROC,
20         CPUINFO_LVL_MAX,
21 };
22
23 enum {
24         ROVER_NO_OP              = 0,
25         /* Increment rover every time level is visited */
26         ROVER_INC_ON_VISIT       = 1 << 0,
27         /* Increment parent's rover every time rover wraps around */
28         ROVER_INC_PARENT_ON_LOOP = 1 << 1,
29 };
30
31 struct cpuinfo_node {
32         int id;
33         int level;
34         int num_cpus;    /* Number of CPUs in this hierarchy */
35         int parent_index;
36         int child_start; /* Array index of the first child node */
37         int child_end;   /* Array index of the last child node */
38         int rover;       /* Child node iterator */
39 };
40
41 struct cpuinfo_level {
42         int start_index; /* Index of first node of a level in a cpuinfo tree */
43         int end_index;   /* Index of last node of a level in a cpuinfo tree */
44         int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */
45 };
46
47 struct cpuinfo_tree {
48         int total_nodes;
49
50         /* Offsets into nodes[] for each level of the tree */
51         struct cpuinfo_level level[CPUINFO_LVL_MAX];
52         struct cpuinfo_node  nodes[0];
53 };
54
55
56 static struct cpuinfo_tree *cpuinfo_tree;
57
58 static u16 cpu_distribution_map[NR_CPUS];
59 static DEFINE_SPINLOCK(cpu_map_lock);
60
61
62 /* Niagara optimized cpuinfo tree traversal. */
63 static const int niagara_iterate_method[] = {
64         [CPUINFO_LVL_ROOT] = ROVER_NO_OP,
65
66         /* Strands (or virtual CPUs) within a core may not run concurrently
67          * on the Niagara, as instruction pipeline(s) are shared.  Distribute
68          * work to strands in different cores first for better concurrency.
69          * Go to next NUMA node when all cores are used.
70          */
71         [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
72
73         /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
74          * a proc_id represents an instruction pipeline.  Distribute work to
75          * strands in different proc_id groups if the core has multiple
76          * instruction pipelines (e.g. the Niagara 2/2+ has two).
77          */
78         [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
79
80         /* Pick the next strand in the proc_id group. */
81         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
82 };
83
84 /* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA
85  * nodes.
86  */
87 static const int generic_iterate_method[] = {
88         [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
89         [CPUINFO_LVL_NODE] = ROVER_NO_OP,
90         [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
91         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
92 };
93
94
95 static int cpuinfo_id(int cpu, int level)
96 {
97         int id;
98
99         switch (level) {
100         case CPUINFO_LVL_ROOT:
101                 id = 0;
102                 break;
103         case CPUINFO_LVL_NODE:
104                 id = cpu_to_node(cpu);
105                 break;
106         case CPUINFO_LVL_CORE:
107                 id = cpu_data(cpu).core_id;
108                 break;
109         case CPUINFO_LVL_PROC:
110                 id = cpu_data(cpu).proc_id;
111                 break;
112         default:
113                 id = -EINVAL;
114         }
115         return id;
116 }
117
118 /*
119  * Enumerate the CPU information in __cpu_data to determine the start index,
120  * end index, and number of nodes for each level in the cpuinfo tree.  The
121  * total number of cpuinfo nodes required to build the tree is returned.
122  */
123 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
124 {
125         int prev_id[CPUINFO_LVL_MAX];
126         int i, n, num_nodes;
127
128         for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
129                 struct cpuinfo_level *lv = &tree_level[i];
130
131                 prev_id[i] = -1;
132                 lv->start_index = lv->end_index = lv->num_nodes = 0;
133         }
134
135         num_nodes = 1; /* Include the root node */
136
137         for (i = 0; i < num_possible_cpus(); i++) {
138                 if (!cpu_online(i))
139                         continue;
140
141                 n = cpuinfo_id(i, CPUINFO_LVL_NODE);
142                 if (n > prev_id[CPUINFO_LVL_NODE]) {
143                         tree_level[CPUINFO_LVL_NODE].num_nodes++;
144                         prev_id[CPUINFO_LVL_NODE] = n;
145                         num_nodes++;
146                 }
147                 n = cpuinfo_id(i, CPUINFO_LVL_CORE);
148                 if (n > prev_id[CPUINFO_LVL_CORE]) {
149                         tree_level[CPUINFO_LVL_CORE].num_nodes++;
150                         prev_id[CPUINFO_LVL_CORE] = n;
151                         num_nodes++;
152                 }
153                 n = cpuinfo_id(i, CPUINFO_LVL_PROC);
154                 if (n > prev_id[CPUINFO_LVL_PROC]) {
155                         tree_level[CPUINFO_LVL_PROC].num_nodes++;
156                         prev_id[CPUINFO_LVL_PROC] = n;
157                         num_nodes++;
158                 }
159         }
160
161         tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
162
163         n = tree_level[CPUINFO_LVL_NODE].num_nodes;
164         tree_level[CPUINFO_LVL_NODE].start_index = 1;
165         tree_level[CPUINFO_LVL_NODE].end_index   = n;
166
167         n++;
168         tree_level[CPUINFO_LVL_CORE].start_index = n;
169         n += tree_level[CPUINFO_LVL_CORE].num_nodes;
170         tree_level[CPUINFO_LVL_CORE].end_index   = n - 1;
171
172         tree_level[CPUINFO_LVL_PROC].start_index = n;
173         n += tree_level[CPUINFO_LVL_PROC].num_nodes;
174         tree_level[CPUINFO_LVL_PROC].end_index   = n - 1;
175
176         return num_nodes;
177 }
178
179 /* Build a tree representation of the CPU hierarchy using the per CPU
180  * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are
181  * assumed to be sorted in ascending order based on node, core_id, and
182  * proc_id (in order of significance).
183  */
184 static struct cpuinfo_tree *build_cpuinfo_tree(void)
185 {
186         struct cpuinfo_tree *new_tree;
187         struct cpuinfo_node *node;
188         struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
189         int num_cpus[CPUINFO_LVL_MAX];
190         int level_rover[CPUINFO_LVL_MAX];
191         int prev_id[CPUINFO_LVL_MAX];
192         int n, id, cpu, prev_cpu, last_cpu, level;
193
194         n = enumerate_cpuinfo_nodes(tmp_level);
195
196         new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
197                            (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
198         if (!new_tree)
199                 return NULL;
200
201         new_tree->total_nodes = n;
202         memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
203
204         prev_cpu = cpu = first_cpu(cpu_online_map);
205
206         /* Initialize all levels in the tree with the first CPU */
207         for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
208                 n = new_tree->level[level].start_index;
209
210                 level_rover[level] = n;
211                 node = &new_tree->nodes[n];
212
213                 id = cpuinfo_id(cpu, level);
214                 if (unlikely(id < 0)) {
215                         kfree(new_tree);
216                         return NULL;
217                 }
218                 node->id = id;
219                 node->level = level;
220                 node->num_cpus = 1;
221
222                 node->parent_index = (level > CPUINFO_LVL_ROOT)
223                     ? new_tree->level[level - 1].start_index : -1;
224
225                 node->child_start = node->child_end = node->rover =
226                     (level == CPUINFO_LVL_PROC)
227                     ? cpu : new_tree->level[level + 1].start_index;
228
229                 prev_id[level] = node->id;
230                 num_cpus[level] = 1;
231         }
232
233         for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
234                 if (cpu_online(last_cpu))
235                         break;
236         }
237
238         while (++cpu <= last_cpu) {
239                 if (!cpu_online(cpu))
240                         continue;
241
242                 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
243                      level--) {
244                         id = cpuinfo_id(cpu, level);
245                         if (unlikely(id < 0)) {
246                                 kfree(new_tree);
247                                 return NULL;
248                         }
249
250                         if ((id != prev_id[level]) || (cpu == last_cpu)) {
251                                 prev_id[level] = id;
252                                 node = &new_tree->nodes[level_rover[level]];
253                                 node->num_cpus = num_cpus[level];
254                                 num_cpus[level] = 1;
255
256                                 if (cpu == last_cpu)
257                                         node->num_cpus++;
258
259                                 /* Connect tree node to parent */
260                                 if (level == CPUINFO_LVL_ROOT)
261                                         node->parent_index = -1;
262                                 else
263                                         node->parent_index =
264                                             level_rover[level - 1];
265
266                                 if (level == CPUINFO_LVL_PROC) {
267                                         node->child_end =
268                                             (cpu == last_cpu) ? cpu : prev_cpu;
269                                 } else {
270                                         node->child_end =
271                                             level_rover[level + 1] - 1;
272                                 }
273
274                                 /* Initialize the next node in the same level */
275                                 n = ++level_rover[level];
276                                 if (n <= new_tree->level[level].end_index) {
277                                         node = &new_tree->nodes[n];
278                                         node->id = id;
279                                         node->level = level;
280
281                                         /* Connect node to child */
282                                         node->child_start = node->child_end =
283                                         node->rover =
284                                             (level == CPUINFO_LVL_PROC)
285                                             ? cpu : level_rover[level + 1];
286                                 }
287                         } else
288                                 num_cpus[level]++;
289                 }
290                 prev_cpu = cpu;
291         }
292
293         return new_tree;
294 }
295
296 static void increment_rover(struct cpuinfo_tree *t, int node_index,
297                             int root_index, const int *rover_inc_table)
298 {
299         struct cpuinfo_node *node = &t->nodes[node_index];
300         int top_level, level;
301
302         top_level = t->nodes[root_index].level;
303         for (level = node->level; level >= top_level; level--) {
304                 node->rover++;
305                 if (node->rover <= node->child_end)
306                         return;
307
308                 node->rover = node->child_start;
309                 /* If parent's rover does not need to be adjusted, stop here. */
310                 if ((level == top_level) ||
311                     !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
312                         return;
313
314                 node = &t->nodes[node->parent_index];
315         }
316 }
317
318 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
319 {
320         const int *rover_inc_table;
321         int level, new_index, index = root_index;
322
323         switch (sun4v_chip_type) {
324         case SUN4V_CHIP_NIAGARA1:
325         case SUN4V_CHIP_NIAGARA2:
326                 rover_inc_table = niagara_iterate_method;
327                 break;
328         default:
329                 rover_inc_table = generic_iterate_method;
330         }
331
332         for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
333              level++) {
334                 new_index = t->nodes[index].rover;
335                 if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
336                         increment_rover(t, index, root_index, rover_inc_table);
337
338                 index = new_index;
339         }
340         return index;
341 }
342
343 static void _cpu_map_rebuild(void)
344 {
345         int i;
346
347         if (cpuinfo_tree) {
348                 kfree(cpuinfo_tree);
349                 cpuinfo_tree = NULL;
350         }
351
352         cpuinfo_tree = build_cpuinfo_tree();
353         if (!cpuinfo_tree)
354                 return;
355
356         /* Build CPU distribution map that spans all online CPUs.  No need
357          * to check if the CPU is online, as that is done when the cpuinfo
358          * tree is being built.
359          */
360         for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
361                 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
362 }
363
364 /* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear
365  * round robin.
366  */
367 static int simple_map_to_cpu(unsigned int index)
368 {
369         int i, end, cpu_rover;
370
371         cpu_rover = 0;
372         end = index % num_online_cpus();
373         for (i = 0; i < num_possible_cpus(); i++) {
374                 if (cpu_online(cpu_rover)) {
375                         if (cpu_rover >= end)
376                                 return cpu_rover;
377
378                         cpu_rover++;
379                 }
380         }
381
382         /* Impossible, since num_online_cpus() <= num_possible_cpus() */
383         return first_cpu(cpu_online_map);
384 }
385
386 static int _map_to_cpu(unsigned int index)
387 {
388         struct cpuinfo_node *root_node;
389
390         if (unlikely(!cpuinfo_tree)) {
391                 _cpu_map_rebuild();
392                 if (!cpuinfo_tree)
393                         return simple_map_to_cpu(index);
394         }
395
396         root_node = &cpuinfo_tree->nodes[0];
397 #ifdef CONFIG_HOTPLUG_CPU
398         if (unlikely(root_node->num_cpus != num_online_cpus())) {
399                 _cpu_map_rebuild();
400                 if (!cpuinfo_tree)
401                         return simple_map_to_cpu(index);
402         }
403 #endif
404         return cpu_distribution_map[index % root_node->num_cpus];
405 }
406
407 int map_to_cpu(unsigned int index)
408 {
409         int mapped_cpu;
410         unsigned long flag;
411
412         spin_lock_irqsave(&cpu_map_lock, flag);
413         mapped_cpu = _map_to_cpu(index);
414
415 #ifdef CONFIG_HOTPLUG_CPU
416         while (unlikely(!cpu_online(mapped_cpu)))
417                 mapped_cpu = _map_to_cpu(index);
418 #endif
419         spin_unlock_irqrestore(&cpu_map_lock, flag);
420         return mapped_cpu;
421 }
422 EXPORT_SYMBOL(map_to_cpu);
423
424 void cpu_map_rebuild(void)
425 {
426         unsigned long flag;
427
428         spin_lock_irqsave(&cpu_map_lock, flag);
429         _cpu_map_rebuild();
430         spin_unlock_irqrestore(&cpu_map_lock, flag);
431 }