Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / arch / sh / kernel / dwarf.c
1 /*
2  * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * This is an implementation of a DWARF unwinder. Its main purpose is
9  * for generating stacktrace information. Based on the DWARF 3
10  * specification from http://www.dwarfstd.org.
11  *
12  * TODO:
13  *      - DWARF64 doesn't work.
14  *      - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15  */
16
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <asm/dwarf.h>
28 #include <asm/unwinder.h>
29 #include <asm/sections.h>
30 #include <asm/unaligned.h>
31 #include <asm/stacktrace.h>
32
33 /* Reserve enough memory for two stack frames */
34 #define DWARF_FRAME_MIN_REQ     2
35 /* ... with 4 registers per frame. */
36 #define DWARF_REG_MIN_REQ       (DWARF_FRAME_MIN_REQ * 4)
37
38 static struct kmem_cache *dwarf_frame_cachep;
39 static mempool_t *dwarf_frame_pool;
40
41 static struct kmem_cache *dwarf_reg_cachep;
42 static mempool_t *dwarf_reg_pool;
43
44 static struct rb_root cie_root;
45 static DEFINE_SPINLOCK(dwarf_cie_lock);
46
47 static struct rb_root fde_root;
48 static DEFINE_SPINLOCK(dwarf_fde_lock);
49
50 static struct dwarf_cie *cached_cie;
51
52 /**
53  *      dwarf_frame_alloc_reg - allocate memory for a DWARF register
54  *      @frame: the DWARF frame whose list of registers we insert on
55  *      @reg_num: the register number
56  *
57  *      Allocate space for, and initialise, a dwarf reg from
58  *      dwarf_reg_pool and insert it onto the (unsorted) linked-list of
59  *      dwarf registers for @frame.
60  *
61  *      Return the initialised DWARF reg.
62  */
63 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
64                                                unsigned int reg_num)
65 {
66         struct dwarf_reg *reg;
67
68         reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
69         if (!reg) {
70                 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
71                 /*
72                  * Let's just bomb hard here, we have no way to
73                  * gracefully recover.
74                  */
75                 UNWINDER_BUG();
76         }
77
78         reg->number = reg_num;
79         reg->addr = 0;
80         reg->flags = 0;
81
82         list_add(&reg->link, &frame->reg_list);
83
84         return reg;
85 }
86
87 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
88 {
89         struct dwarf_reg *reg, *n;
90
91         list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
92                 list_del(&reg->link);
93                 mempool_free(reg, dwarf_reg_pool);
94         }
95 }
96
97 /**
98  *      dwarf_frame_reg - return a DWARF register
99  *      @frame: the DWARF frame to search in for @reg_num
100  *      @reg_num: the register number to search for
101  *
102  *      Lookup and return the dwarf reg @reg_num for this frame. Return
103  *      NULL if @reg_num is an register invalid number.
104  */
105 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
106                                          unsigned int reg_num)
107 {
108         struct dwarf_reg *reg;
109
110         list_for_each_entry(reg, &frame->reg_list, link) {
111                 if (reg->number == reg_num)
112                         return reg;
113         }
114
115         return NULL;
116 }
117
118 /**
119  *      dwarf_read_addr - read dwarf data
120  *      @src: source address of data
121  *      @dst: destination address to store the data to
122  *
123  *      Read 'n' bytes from @src, where 'n' is the size of an address on
124  *      the native machine. We return the number of bytes read, which
125  *      should always be 'n'. We also have to be careful when reading
126  *      from @src and writing to @dst, because they can be arbitrarily
127  *      aligned. Return 'n' - the number of bytes read.
128  */
129 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
130 {
131         u32 val = get_unaligned(src);
132         put_unaligned(val, dst);
133         return sizeof(unsigned long *);
134 }
135
136 /**
137  *      dwarf_read_uleb128 - read unsigned LEB128 data
138  *      @addr: the address where the ULEB128 data is stored
139  *      @ret: address to store the result
140  *
141  *      Decode an unsigned LEB128 encoded datum. The algorithm is taken
142  *      from Appendix C of the DWARF 3 spec. For information on the
143  *      encodings refer to section "7.6 - Variable Length Data". Return
144  *      the number of bytes read.
145  */
146 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
147 {
148         unsigned int result;
149         unsigned char byte;
150         int shift, count;
151
152         result = 0;
153         shift = 0;
154         count = 0;
155
156         while (1) {
157                 byte = __raw_readb(addr);
158                 addr++;
159                 count++;
160
161                 result |= (byte & 0x7f) << shift;
162                 shift += 7;
163
164                 if (!(byte & 0x80))
165                         break;
166         }
167
168         *ret = result;
169
170         return count;
171 }
172
173 /**
174  *      dwarf_read_leb128 - read signed LEB128 data
175  *      @addr: the address of the LEB128 encoded data
176  *      @ret: address to store the result
177  *
178  *      Decode signed LEB128 data. The algorithm is taken from Appendix
179  *      C of the DWARF 3 spec. Return the number of bytes read.
180  */
181 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
182 {
183         unsigned char byte;
184         int result, shift;
185         int num_bits;
186         int count;
187
188         result = 0;
189         shift = 0;
190         count = 0;
191
192         while (1) {
193                 byte = __raw_readb(addr);
194                 addr++;
195                 result |= (byte & 0x7f) << shift;
196                 shift += 7;
197                 count++;
198
199                 if (!(byte & 0x80))
200                         break;
201         }
202
203         /* The number of bits in a signed integer. */
204         num_bits = 8 * sizeof(result);
205
206         if ((shift < num_bits) && (byte & 0x40))
207                 result |= (-1 << shift);
208
209         *ret = result;
210
211         return count;
212 }
213
214 /**
215  *      dwarf_read_encoded_value - return the decoded value at @addr
216  *      @addr: the address of the encoded value
217  *      @val: where to write the decoded value
218  *      @encoding: the encoding with which we can decode @addr
219  *
220  *      GCC emits encoded address in the .eh_frame FDE entries. Decode
221  *      the value at @addr using @encoding. The decoded value is written
222  *      to @val and the number of bytes read is returned.
223  */
224 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
225                                     char encoding)
226 {
227         unsigned long decoded_addr = 0;
228         int count = 0;
229
230         switch (encoding & 0x70) {
231         case DW_EH_PE_absptr:
232                 break;
233         case DW_EH_PE_pcrel:
234                 decoded_addr = (unsigned long)addr;
235                 break;
236         default:
237                 pr_debug("encoding=0x%x\n", (encoding & 0x70));
238                 UNWINDER_BUG();
239         }
240
241         if ((encoding & 0x07) == 0x00)
242                 encoding |= DW_EH_PE_udata4;
243
244         switch (encoding & 0x0f) {
245         case DW_EH_PE_sdata4:
246         case DW_EH_PE_udata4:
247                 count += 4;
248                 decoded_addr += get_unaligned((u32 *)addr);
249                 __raw_writel(decoded_addr, val);
250                 break;
251         default:
252                 pr_debug("encoding=0x%x\n", encoding);
253                 UNWINDER_BUG();
254         }
255
256         return count;
257 }
258
259 /**
260  *      dwarf_entry_len - return the length of an FDE or CIE
261  *      @addr: the address of the entry
262  *      @len: the length of the entry
263  *
264  *      Read the initial_length field of the entry and store the size of
265  *      the entry in @len. We return the number of bytes read. Return a
266  *      count of 0 on error.
267  */
268 static inline int dwarf_entry_len(char *addr, unsigned long *len)
269 {
270         u32 initial_len;
271         int count;
272
273         initial_len = get_unaligned((u32 *)addr);
274         count = 4;
275
276         /*
277          * An initial length field value in the range DW_LEN_EXT_LO -
278          * DW_LEN_EXT_HI indicates an extension, and should not be
279          * interpreted as a length. The only extension that we currently
280          * understand is the use of DWARF64 addresses.
281          */
282         if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
283                 /*
284                  * The 64-bit length field immediately follows the
285                  * compulsory 32-bit length field.
286                  */
287                 if (initial_len == DW_EXT_DWARF64) {
288                         *len = get_unaligned((u64 *)addr + 4);
289                         count = 12;
290                 } else {
291                         printk(KERN_WARNING "Unknown DWARF extension\n");
292                         count = 0;
293                 }
294         } else
295                 *len = initial_len;
296
297         return count;
298 }
299
300 /**
301  *      dwarf_lookup_cie - locate the cie
302  *      @cie_ptr: pointer to help with lookup
303  */
304 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
305 {
306         struct rb_node **rb_node = &cie_root.rb_node;
307         struct dwarf_cie *cie = NULL;
308         unsigned long flags;
309
310         spin_lock_irqsave(&dwarf_cie_lock, flags);
311
312         /*
313          * We've cached the last CIE we looked up because chances are
314          * that the FDE wants this CIE.
315          */
316         if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
317                 cie = cached_cie;
318                 goto out;
319         }
320
321         while (*rb_node) {
322                 struct dwarf_cie *cie_tmp;
323
324                 cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
325                 BUG_ON(!cie_tmp);
326
327                 if (cie_ptr == cie_tmp->cie_pointer) {
328                         cie = cie_tmp;
329                         cached_cie = cie_tmp;
330                         goto out;
331                 } else {
332                         if (cie_ptr < cie_tmp->cie_pointer)
333                                 rb_node = &(*rb_node)->rb_left;
334                         else
335                                 rb_node = &(*rb_node)->rb_right;
336                 }
337         }
338
339 out:
340         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
341         return cie;
342 }
343
344 /**
345  *      dwarf_lookup_fde - locate the FDE that covers pc
346  *      @pc: the program counter
347  */
348 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
349 {
350         struct rb_node **rb_node = &fde_root.rb_node;
351         struct dwarf_fde *fde = NULL;
352         unsigned long flags;
353
354         spin_lock_irqsave(&dwarf_fde_lock, flags);
355
356         while (*rb_node) {
357                 struct dwarf_fde *fde_tmp;
358                 unsigned long tmp_start, tmp_end;
359
360                 fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
361                 BUG_ON(!fde_tmp);
362
363                 tmp_start = fde_tmp->initial_location;
364                 tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
365
366                 if (pc < tmp_start) {
367                         rb_node = &(*rb_node)->rb_left;
368                 } else {
369                         if (pc < tmp_end) {
370                                 fde = fde_tmp;
371                                 goto out;
372                         } else
373                                 rb_node = &(*rb_node)->rb_right;
374                 }
375         }
376
377 out:
378         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
379
380         return fde;
381 }
382
383 /**
384  *      dwarf_cfa_execute_insns - execute instructions to calculate a CFA
385  *      @insn_start: address of the first instruction
386  *      @insn_end: address of the last instruction
387  *      @cie: the CIE for this function
388  *      @fde: the FDE for this function
389  *      @frame: the instructions calculate the CFA for this frame
390  *      @pc: the program counter of the address we're interested in
391  *
392  *      Execute the Call Frame instruction sequence starting at
393  *      @insn_start and ending at @insn_end. The instructions describe
394  *      how to calculate the Canonical Frame Address of a stackframe.
395  *      Store the results in @frame.
396  */
397 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
398                                    unsigned char *insn_end,
399                                    struct dwarf_cie *cie,
400                                    struct dwarf_fde *fde,
401                                    struct dwarf_frame *frame,
402                                    unsigned long pc)
403 {
404         unsigned char insn;
405         unsigned char *current_insn;
406         unsigned int count, delta, reg, expr_len, offset;
407         struct dwarf_reg *regp;
408
409         current_insn = insn_start;
410
411         while (current_insn < insn_end && frame->pc <= pc) {
412                 insn = __raw_readb(current_insn++);
413
414                 /*
415                  * Firstly, handle the opcodes that embed their operands
416                  * in the instructions.
417                  */
418                 switch (DW_CFA_opcode(insn)) {
419                 case DW_CFA_advance_loc:
420                         delta = DW_CFA_operand(insn);
421                         delta *= cie->code_alignment_factor;
422                         frame->pc += delta;
423                         continue;
424                         /* NOTREACHED */
425                 case DW_CFA_offset:
426                         reg = DW_CFA_operand(insn);
427                         count = dwarf_read_uleb128(current_insn, &offset);
428                         current_insn += count;
429                         offset *= cie->data_alignment_factor;
430                         regp = dwarf_frame_alloc_reg(frame, reg);
431                         regp->addr = offset;
432                         regp->flags |= DWARF_REG_OFFSET;
433                         continue;
434                         /* NOTREACHED */
435                 case DW_CFA_restore:
436                         reg = DW_CFA_operand(insn);
437                         continue;
438                         /* NOTREACHED */
439                 }
440
441                 /*
442                  * Secondly, handle the opcodes that don't embed their
443                  * operands in the instruction.
444                  */
445                 switch (insn) {
446                 case DW_CFA_nop:
447                         continue;
448                 case DW_CFA_advance_loc1:
449                         delta = *current_insn++;
450                         frame->pc += delta * cie->code_alignment_factor;
451                         break;
452                 case DW_CFA_advance_loc2:
453                         delta = get_unaligned((u16 *)current_insn);
454                         current_insn += 2;
455                         frame->pc += delta * cie->code_alignment_factor;
456                         break;
457                 case DW_CFA_advance_loc4:
458                         delta = get_unaligned((u32 *)current_insn);
459                         current_insn += 4;
460                         frame->pc += delta * cie->code_alignment_factor;
461                         break;
462                 case DW_CFA_offset_extended:
463                         count = dwarf_read_uleb128(current_insn, &reg);
464                         current_insn += count;
465                         count = dwarf_read_uleb128(current_insn, &offset);
466                         current_insn += count;
467                         offset *= cie->data_alignment_factor;
468                         break;
469                 case DW_CFA_restore_extended:
470                         count = dwarf_read_uleb128(current_insn, &reg);
471                         current_insn += count;
472                         break;
473                 case DW_CFA_undefined:
474                         count = dwarf_read_uleb128(current_insn, &reg);
475                         current_insn += count;
476                         regp = dwarf_frame_alloc_reg(frame, reg);
477                         regp->flags |= DWARF_UNDEFINED;
478                         break;
479                 case DW_CFA_def_cfa:
480                         count = dwarf_read_uleb128(current_insn,
481                                                    &frame->cfa_register);
482                         current_insn += count;
483                         count = dwarf_read_uleb128(current_insn,
484                                                    &frame->cfa_offset);
485                         current_insn += count;
486
487                         frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
488                         break;
489                 case DW_CFA_def_cfa_register:
490                         count = dwarf_read_uleb128(current_insn,
491                                                    &frame->cfa_register);
492                         current_insn += count;
493                         frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
494                         break;
495                 case DW_CFA_def_cfa_offset:
496                         count = dwarf_read_uleb128(current_insn, &offset);
497                         current_insn += count;
498                         frame->cfa_offset = offset;
499                         break;
500                 case DW_CFA_def_cfa_expression:
501                         count = dwarf_read_uleb128(current_insn, &expr_len);
502                         current_insn += count;
503
504                         frame->cfa_expr = current_insn;
505                         frame->cfa_expr_len = expr_len;
506                         current_insn += expr_len;
507
508                         frame->flags |= DWARF_FRAME_CFA_REG_EXP;
509                         break;
510                 case DW_CFA_offset_extended_sf:
511                         count = dwarf_read_uleb128(current_insn, &reg);
512                         current_insn += count;
513                         count = dwarf_read_leb128(current_insn, &offset);
514                         current_insn += count;
515                         offset *= cie->data_alignment_factor;
516                         regp = dwarf_frame_alloc_reg(frame, reg);
517                         regp->flags |= DWARF_REG_OFFSET;
518                         regp->addr = offset;
519                         break;
520                 case DW_CFA_val_offset:
521                         count = dwarf_read_uleb128(current_insn, &reg);
522                         current_insn += count;
523                         count = dwarf_read_leb128(current_insn, &offset);
524                         offset *= cie->data_alignment_factor;
525                         regp = dwarf_frame_alloc_reg(frame, reg);
526                         regp->flags |= DWARF_VAL_OFFSET;
527                         regp->addr = offset;
528                         break;
529                 case DW_CFA_GNU_args_size:
530                         count = dwarf_read_uleb128(current_insn, &offset);
531                         current_insn += count;
532                         break;
533                 case DW_CFA_GNU_negative_offset_extended:
534                         count = dwarf_read_uleb128(current_insn, &reg);
535                         current_insn += count;
536                         count = dwarf_read_uleb128(current_insn, &offset);
537                         offset *= cie->data_alignment_factor;
538
539                         regp = dwarf_frame_alloc_reg(frame, reg);
540                         regp->flags |= DWARF_REG_OFFSET;
541                         regp->addr = -offset;
542                         break;
543                 default:
544                         pr_debug("unhandled DWARF instruction 0x%x\n", insn);
545                         UNWINDER_BUG();
546                         break;
547                 }
548         }
549
550         return 0;
551 }
552
553 /**
554  *      dwarf_free_frame - free the memory allocated for @frame
555  *      @frame: the frame to free
556  */
557 void dwarf_free_frame(struct dwarf_frame *frame)
558 {
559         dwarf_frame_free_regs(frame);
560         mempool_free(frame, dwarf_frame_pool);
561 }
562
563 extern void ret_from_irq(void);
564
565 /**
566  *      dwarf_unwind_stack - unwind the stack
567  *
568  *      @pc: address of the function to unwind
569  *      @prev: struct dwarf_frame of the previous stackframe on the callstack
570  *
571  *      Return a struct dwarf_frame representing the most recent frame
572  *      on the callstack. Each of the lower (older) stack frames are
573  *      linked via the "prev" member.
574  */
575 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
576                                        struct dwarf_frame *prev)
577 {
578         struct dwarf_frame *frame;
579         struct dwarf_cie *cie;
580         struct dwarf_fde *fde;
581         struct dwarf_reg *reg;
582         unsigned long addr;
583
584         /*
585          * If we're starting at the top of the stack we need get the
586          * contents of a physical register to get the CFA in order to
587          * begin the virtual unwinding of the stack.
588          *
589          * NOTE: the return address is guaranteed to be setup by the
590          * time this function makes its first function call.
591          */
592         if (!pc || !prev)
593                 pc = (unsigned long)current_text_addr();
594
595 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
596         /*
597          * If our stack has been patched by the function graph tracer
598          * then we might see the address of return_to_handler() where we
599          * expected to find the real return address.
600          */
601         if (pc == (unsigned long)&return_to_handler) {
602                 int index = current->curr_ret_stack;
603
604                 /*
605                  * We currently have no way of tracking how many
606                  * return_to_handler()'s we've seen. If there is more
607                  * than one patched return address on our stack,
608                  * complain loudly.
609                  */
610                 WARN_ON(index > 0);
611
612                 pc = current->ret_stack[index].ret;
613         }
614 #endif
615
616         frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
617         if (!frame) {
618                 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
619                 UNWINDER_BUG();
620         }
621
622         INIT_LIST_HEAD(&frame->reg_list);
623         frame->flags = 0;
624         frame->prev = prev;
625         frame->return_addr = 0;
626
627         fde = dwarf_lookup_fde(pc);
628         if (!fde) {
629                 /*
630                  * This is our normal exit path. There are two reasons
631                  * why we might exit here,
632                  *
633                  *      a) pc has no asscociated DWARF frame info and so
634                  *      we don't know how to unwind this frame. This is
635                  *      usually the case when we're trying to unwind a
636                  *      frame that was called from some assembly code
637                  *      that has no DWARF info, e.g. syscalls.
638                  *
639                  *      b) the DEBUG info for pc is bogus. There's
640                  *      really no way to distinguish this case from the
641                  *      case above, which sucks because we could print a
642                  *      warning here.
643                  */
644                 goto bail;
645         }
646
647         cie = dwarf_lookup_cie(fde->cie_pointer);
648
649         frame->pc = fde->initial_location;
650
651         /* CIE initial instructions */
652         dwarf_cfa_execute_insns(cie->initial_instructions,
653                                 cie->instructions_end, cie, fde,
654                                 frame, pc);
655
656         /* FDE instructions */
657         dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
658                                 fde, frame, pc);
659
660         /* Calculate the CFA */
661         switch (frame->flags) {
662         case DWARF_FRAME_CFA_REG_OFFSET:
663                 if (prev) {
664                         reg = dwarf_frame_reg(prev, frame->cfa_register);
665                         UNWINDER_BUG_ON(!reg);
666                         UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
667
668                         addr = prev->cfa + reg->addr;
669                         frame->cfa = __raw_readl(addr);
670
671                 } else {
672                         /*
673                          * Again, we're starting from the top of the
674                          * stack. We need to physically read
675                          * the contents of a register in order to get
676                          * the Canonical Frame Address for this
677                          * function.
678                          */
679                         frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
680                 }
681
682                 frame->cfa += frame->cfa_offset;
683                 break;
684         default:
685                 UNWINDER_BUG();
686         }
687
688         reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
689
690         /*
691          * If we haven't seen the return address register or the return
692          * address column is undefined then we must assume that this is
693          * the end of the callstack.
694          */
695         if (!reg || reg->flags == DWARF_UNDEFINED)
696                 goto bail;
697
698         UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
699
700         addr = frame->cfa + reg->addr;
701         frame->return_addr = __raw_readl(addr);
702
703         /*
704          * Ah, the joys of unwinding through interrupts.
705          *
706          * Interrupts are tricky - the DWARF info needs to be _really_
707          * accurate and unfortunately I'm seeing a lot of bogus DWARF
708          * info. For example, I've seen interrupts occur in epilogues
709          * just after the frame pointer (r14) had been restored. The
710          * problem was that the DWARF info claimed that the CFA could be
711          * reached by using the value of the frame pointer before it was
712          * restored.
713          *
714          * So until the compiler can be trusted to produce reliable
715          * DWARF info when it really matters, let's stop unwinding once
716          * we've calculated the function that was interrupted.
717          */
718         if (prev && prev->pc == (unsigned long)ret_from_irq)
719                 frame->return_addr = 0;
720
721         return frame;
722
723 bail:
724         dwarf_free_frame(frame);
725         return NULL;
726 }
727
728 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
729                            unsigned char *end, struct module *mod)
730 {
731         struct rb_node **rb_node = &cie_root.rb_node;
732         struct rb_node *parent = *rb_node;
733         struct dwarf_cie *cie;
734         unsigned long flags;
735         int count;
736
737         cie = kzalloc(sizeof(*cie), GFP_KERNEL);
738         if (!cie)
739                 return -ENOMEM;
740
741         cie->length = len;
742
743         /*
744          * Record the offset into the .eh_frame section
745          * for this CIE. It allows this CIE to be
746          * quickly and easily looked up from the
747          * corresponding FDE.
748          */
749         cie->cie_pointer = (unsigned long)entry;
750
751         cie->version = *(char *)p++;
752         UNWINDER_BUG_ON(cie->version != 1);
753
754         cie->augmentation = p;
755         p += strlen(cie->augmentation) + 1;
756
757         count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
758         p += count;
759
760         count = dwarf_read_leb128(p, &cie->data_alignment_factor);
761         p += count;
762
763         /*
764          * Which column in the rule table contains the
765          * return address?
766          */
767         if (cie->version == 1) {
768                 cie->return_address_reg = __raw_readb(p);
769                 p++;
770         } else {
771                 count = dwarf_read_uleb128(p, &cie->return_address_reg);
772                 p += count;
773         }
774
775         if (cie->augmentation[0] == 'z') {
776                 unsigned int length, count;
777                 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
778
779                 count = dwarf_read_uleb128(p, &length);
780                 p += count;
781
782                 UNWINDER_BUG_ON((unsigned char *)p > end);
783
784                 cie->initial_instructions = p + length;
785                 cie->augmentation++;
786         }
787
788         while (*cie->augmentation) {
789                 /*
790                  * "L" indicates a byte showing how the
791                  * LSDA pointer is encoded. Skip it.
792                  */
793                 if (*cie->augmentation == 'L') {
794                         p++;
795                         cie->augmentation++;
796                 } else if (*cie->augmentation == 'R') {
797                         /*
798                          * "R" indicates a byte showing
799                          * how FDE addresses are
800                          * encoded.
801                          */
802                         cie->encoding = *(char *)p++;
803                         cie->augmentation++;
804                 } else if (*cie->augmentation == 'P') {
805                         /*
806                          * "R" indicates a personality
807                          * routine in the CIE
808                          * augmentation.
809                          */
810                         UNWINDER_BUG();
811                 } else if (*cie->augmentation == 'S') {
812                         UNWINDER_BUG();
813                 } else {
814                         /*
815                          * Unknown augmentation. Assume
816                          * 'z' augmentation.
817                          */
818                         p = cie->initial_instructions;
819                         UNWINDER_BUG_ON(!p);
820                         break;
821                 }
822         }
823
824         cie->initial_instructions = p;
825         cie->instructions_end = end;
826
827         /* Add to list */
828         spin_lock_irqsave(&dwarf_cie_lock, flags);
829
830         while (*rb_node) {
831                 struct dwarf_cie *cie_tmp;
832
833                 cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
834
835                 parent = *rb_node;
836
837                 if (cie->cie_pointer < cie_tmp->cie_pointer)
838                         rb_node = &parent->rb_left;
839                 else if (cie->cie_pointer >= cie_tmp->cie_pointer)
840                         rb_node = &parent->rb_right;
841                 else
842                         WARN_ON(1);
843         }
844
845         rb_link_node(&cie->node, parent, rb_node);
846         rb_insert_color(&cie->node, &cie_root);
847
848         if (mod != NULL)
849                 list_add_tail(&cie->link, &mod->arch.cie_list);
850
851         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
852
853         return 0;
854 }
855
856 static int dwarf_parse_fde(void *entry, u32 entry_type,
857                            void *start, unsigned long len,
858                            unsigned char *end, struct module *mod)
859 {
860         struct rb_node **rb_node = &fde_root.rb_node;
861         struct rb_node *parent = *rb_node;
862         struct dwarf_fde *fde;
863         struct dwarf_cie *cie;
864         unsigned long flags;
865         int count;
866         void *p = start;
867
868         fde = kzalloc(sizeof(*fde), GFP_KERNEL);
869         if (!fde)
870                 return -ENOMEM;
871
872         fde->length = len;
873
874         /*
875          * In a .eh_frame section the CIE pointer is the
876          * delta between the address within the FDE
877          */
878         fde->cie_pointer = (unsigned long)(p - entry_type - 4);
879
880         cie = dwarf_lookup_cie(fde->cie_pointer);
881         fde->cie = cie;
882
883         if (cie->encoding)
884                 count = dwarf_read_encoded_value(p, &fde->initial_location,
885                                                  cie->encoding);
886         else
887                 count = dwarf_read_addr(p, &fde->initial_location);
888
889         p += count;
890
891         if (cie->encoding)
892                 count = dwarf_read_encoded_value(p, &fde->address_range,
893                                                  cie->encoding & 0x0f);
894         else
895                 count = dwarf_read_addr(p, &fde->address_range);
896
897         p += count;
898
899         if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
900                 unsigned int length;
901                 count = dwarf_read_uleb128(p, &length);
902                 p += count + length;
903         }
904
905         /* Call frame instructions. */
906         fde->instructions = p;
907         fde->end = end;
908
909         /* Add to list. */
910         spin_lock_irqsave(&dwarf_fde_lock, flags);
911
912         while (*rb_node) {
913                 struct dwarf_fde *fde_tmp;
914                 unsigned long tmp_start, tmp_end;
915                 unsigned long start, end;
916
917                 fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
918
919                 start = fde->initial_location;
920                 end = fde->initial_location + fde->address_range;
921
922                 tmp_start = fde_tmp->initial_location;
923                 tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
924
925                 parent = *rb_node;
926
927                 if (start < tmp_start)
928                         rb_node = &parent->rb_left;
929                 else if (start >= tmp_end)
930                         rb_node = &parent->rb_right;
931                 else
932                         WARN_ON(1);
933         }
934
935         rb_link_node(&fde->node, parent, rb_node);
936         rb_insert_color(&fde->node, &fde_root);
937
938         if (mod != NULL)
939                 list_add_tail(&fde->link, &mod->arch.fde_list);
940
941         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
942
943         return 0;
944 }
945
946 static void dwarf_unwinder_dump(struct task_struct *task,
947                                 struct pt_regs *regs,
948                                 unsigned long *sp,
949                                 const struct stacktrace_ops *ops,
950                                 void *data)
951 {
952         struct dwarf_frame *frame, *_frame;
953         unsigned long return_addr;
954
955         _frame = NULL;
956         return_addr = 0;
957
958         while (1) {
959                 frame = dwarf_unwind_stack(return_addr, _frame);
960
961                 if (_frame)
962                         dwarf_free_frame(_frame);
963
964                 _frame = frame;
965
966                 if (!frame || !frame->return_addr)
967                         break;
968
969                 return_addr = frame->return_addr;
970                 ops->address(data, return_addr, 1);
971         }
972
973         if (frame)
974                 dwarf_free_frame(frame);
975 }
976
977 static struct unwinder dwarf_unwinder = {
978         .name = "dwarf-unwinder",
979         .dump = dwarf_unwinder_dump,
980         .rating = 150,
981 };
982
983 static void dwarf_unwinder_cleanup(void)
984 {
985         struct rb_node **fde_rb_node = &fde_root.rb_node;
986         struct rb_node **cie_rb_node = &cie_root.rb_node;
987
988         /*
989          * Deallocate all the memory allocated for the DWARF unwinder.
990          * Traverse all the FDE/CIE lists and remove and free all the
991          * memory associated with those data structures.
992          */
993         while (*fde_rb_node) {
994                 struct dwarf_fde *fde;
995
996                 fde = rb_entry(*fde_rb_node, struct dwarf_fde, node);
997                 rb_erase(*fde_rb_node, &fde_root);
998                 kfree(fde);
999         }
1000
1001         while (*cie_rb_node) {
1002                 struct dwarf_cie *cie;
1003
1004                 cie = rb_entry(*cie_rb_node, struct dwarf_cie, node);
1005                 rb_erase(*cie_rb_node, &cie_root);
1006                 kfree(cie);
1007         }
1008
1009         kmem_cache_destroy(dwarf_reg_cachep);
1010         kmem_cache_destroy(dwarf_frame_cachep);
1011 }
1012
1013 /**
1014  *      dwarf_parse_section - parse DWARF section
1015  *      @eh_frame_start: start address of the .eh_frame section
1016  *      @eh_frame_end: end address of the .eh_frame section
1017  *      @mod: the kernel module containing the .eh_frame section
1018  *
1019  *      Parse the information in a .eh_frame section.
1020  */
1021 static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
1022                                struct module *mod)
1023 {
1024         u32 entry_type;
1025         void *p, *entry;
1026         int count, err = 0;
1027         unsigned long len = 0;
1028         unsigned int c_entries, f_entries;
1029         unsigned char *end;
1030
1031         c_entries = 0;
1032         f_entries = 0;
1033         entry = eh_frame_start;
1034
1035         while ((char *)entry < eh_frame_end) {
1036                 p = entry;
1037
1038                 count = dwarf_entry_len(p, &len);
1039                 if (count == 0) {
1040                         /*
1041                          * We read a bogus length field value. There is
1042                          * nothing we can do here apart from disabling
1043                          * the DWARF unwinder. We can't even skip this
1044                          * entry and move to the next one because 'len'
1045                          * tells us where our next entry is.
1046                          */
1047                         err = -EINVAL;
1048                         goto out;
1049                 } else
1050                         p += count;
1051
1052                 /* initial length does not include itself */
1053                 end = p + len;
1054
1055                 entry_type = get_unaligned((u32 *)p);
1056                 p += 4;
1057
1058                 if (entry_type == DW_EH_FRAME_CIE) {
1059                         err = dwarf_parse_cie(entry, p, len, end, mod);
1060                         if (err < 0)
1061                                 goto out;
1062                         else
1063                                 c_entries++;
1064                 } else {
1065                         err = dwarf_parse_fde(entry, entry_type, p, len,
1066                                               end, mod);
1067                         if (err < 0)
1068                                 goto out;
1069                         else
1070                                 f_entries++;
1071                 }
1072
1073                 entry = (char *)entry + len + 4;
1074         }
1075
1076         printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
1077                c_entries, f_entries);
1078
1079         return 0;
1080
1081 out:
1082         return err;
1083 }
1084
1085 #ifdef CONFIG_MODULES
1086 int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
1087                           struct module *me)
1088 {
1089         unsigned int i, err;
1090         unsigned long start, end;
1091         char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
1092
1093         start = end = 0;
1094
1095         for (i = 1; i < hdr->e_shnum; i++) {
1096                 /* Alloc bit cleared means "ignore it." */
1097                 if ((sechdrs[i].sh_flags & SHF_ALLOC)
1098                     && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
1099                         start = sechdrs[i].sh_addr;
1100                         end = start + sechdrs[i].sh_size;
1101                         break;
1102                 }
1103         }
1104
1105         /* Did we find the .eh_frame section? */
1106         if (i != hdr->e_shnum) {
1107                 INIT_LIST_HEAD(&me->arch.cie_list);
1108                 INIT_LIST_HEAD(&me->arch.fde_list);
1109                 err = dwarf_parse_section((char *)start, (char *)end, me);
1110                 if (err) {
1111                         printk(KERN_WARNING "%s: failed to parse DWARF info\n",
1112                                me->name);
1113                         return err;
1114                 }
1115         }
1116
1117         return 0;
1118 }
1119
1120 /**
1121  *      module_dwarf_cleanup - remove FDE/CIEs associated with @mod
1122  *      @mod: the module that is being unloaded
1123  *
1124  *      Remove any FDEs and CIEs from the global lists that came from
1125  *      @mod's .eh_frame section because @mod is being unloaded.
1126  */
1127 void module_dwarf_cleanup(struct module *mod)
1128 {
1129         struct dwarf_fde *fde, *ftmp;
1130         struct dwarf_cie *cie, *ctmp;
1131         unsigned long flags;
1132
1133         spin_lock_irqsave(&dwarf_cie_lock, flags);
1134
1135         list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
1136                 list_del(&cie->link);
1137                 rb_erase(&cie->node, &cie_root);
1138                 kfree(cie);
1139         }
1140
1141         spin_unlock_irqrestore(&dwarf_cie_lock, flags);
1142
1143         spin_lock_irqsave(&dwarf_fde_lock, flags);
1144
1145         list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
1146                 list_del(&fde->link);
1147                 rb_erase(&fde->node, &fde_root);
1148                 kfree(fde);
1149         }
1150
1151         spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1152 }
1153 #endif /* CONFIG_MODULES */
1154
1155 /**
1156  *      dwarf_unwinder_init - initialise the dwarf unwinder
1157  *
1158  *      Build the data structures describing the .dwarf_frame section to
1159  *      make it easier to lookup CIE and FDE entries. Because the
1160  *      .eh_frame section is packed as tightly as possible it is not
1161  *      easy to lookup the FDE for a given PC, so we build a list of FDE
1162  *      and CIE entries that make it easier.
1163  */
1164 static int __init dwarf_unwinder_init(void)
1165 {
1166         int err;
1167
1168         dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1169                         sizeof(struct dwarf_frame), 0,
1170                         SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1171
1172         dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1173                         sizeof(struct dwarf_reg), 0,
1174                         SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1175
1176         dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1177                                           mempool_alloc_slab,
1178                                           mempool_free_slab,
1179                                           dwarf_frame_cachep);
1180
1181         dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1182                                          mempool_alloc_slab,
1183                                          mempool_free_slab,
1184                                          dwarf_reg_cachep);
1185
1186         err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1187         if (err)
1188                 goto out;
1189
1190         err = unwinder_register(&dwarf_unwinder);
1191         if (err)
1192                 goto out;
1193
1194         return 0;
1195
1196 out:
1197         printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1198         dwarf_unwinder_cleanup();
1199         return -EINVAL;
1200 }
1201 early_initcall(dwarf_unwinder_init);