Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999,2007
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
47
48 /*
49  * An array with a pointer the lowcore of every CPU.
50  */
51 struct _lowcore *lowcore_ptr[NR_CPUS];
52 EXPORT_SYMBOL(lowcore_ptr);
53
54 cpumask_t cpu_online_map = CPU_MASK_NONE;
55 EXPORT_SYMBOL(cpu_online_map);
56
57 cpumask_t cpu_possible_map = CPU_MASK_ALL;
58 EXPORT_SYMBOL(cpu_possible_map);
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 #ifdef CONFIG_HOTPLUG_CPU
71 static DEFINE_MUTEX(smp_cpu_state_mutex);
72 #endif
73 static int smp_cpu_state[NR_CPUS];
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76 DEFINE_PER_CPU(struct s390_idle_data, s390_idle);
77
78 static void smp_ext_bitcall(int, ec_bit_sig);
79
80 /*
81  * Structure and data for __smp_call_function_map(). This is designed to
82  * minimise static memory requirements. It also looks cleaner.
83  */
84 static DEFINE_SPINLOCK(call_lock);
85
86 struct call_data_struct {
87         void (*func) (void *info);
88         void *info;
89         cpumask_t started;
90         cpumask_t finished;
91         int wait;
92 };
93
94 static struct call_data_struct *call_data;
95
96 /*
97  * 'Call function' interrupt callback
98  */
99 static void do_call_function(void)
100 {
101         void (*func) (void *info) = call_data->func;
102         void *info = call_data->info;
103         int wait = call_data->wait;
104
105         cpu_set(smp_processor_id(), call_data->started);
106         (*func)(info);
107         if (wait)
108                 cpu_set(smp_processor_id(), call_data->finished);;
109 }
110
111 static void __smp_call_function_map(void (*func) (void *info), void *info,
112                                     int nonatomic, int wait, cpumask_t map)
113 {
114         struct call_data_struct data;
115         int cpu, local = 0;
116
117         /*
118          * Can deadlock when interrupts are disabled or if in wrong context.
119          */
120         WARN_ON(irqs_disabled() || in_irq());
121
122         /*
123          * Check for local function call. We have to have the same call order
124          * as in on_each_cpu() because of machine_restart_smp().
125          */
126         if (cpu_isset(smp_processor_id(), map)) {
127                 local = 1;
128                 cpu_clear(smp_processor_id(), map);
129         }
130
131         cpus_and(map, map, cpu_online_map);
132         if (cpus_empty(map))
133                 goto out;
134
135         data.func = func;
136         data.info = info;
137         data.started = CPU_MASK_NONE;
138         data.wait = wait;
139         if (wait)
140                 data.finished = CPU_MASK_NONE;
141
142         spin_lock(&call_lock);
143         call_data = &data;
144
145         for_each_cpu_mask(cpu, map)
146                 smp_ext_bitcall(cpu, ec_call_function);
147
148         /* Wait for response */
149         while (!cpus_equal(map, data.started))
150                 cpu_relax();
151         if (wait)
152                 while (!cpus_equal(map, data.finished))
153                         cpu_relax();
154         spin_unlock(&call_lock);
155 out:
156         if (local) {
157                 local_irq_disable();
158                 func(info);
159                 local_irq_enable();
160         }
161 }
162
163 /*
164  * smp_call_function:
165  * @func: the function to run; this must be fast and non-blocking
166  * @info: an arbitrary pointer to pass to the function
167  * @nonatomic: unused
168  * @wait: if true, wait (atomically) until function has completed on other CPUs
169  *
170  * Run a function on all other CPUs.
171  *
172  * You must not call this function with disabled interrupts, from a
173  * hardware interrupt handler or from a bottom half.
174  */
175 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
176                       int wait)
177 {
178         cpumask_t map;
179
180         preempt_disable();
181         map = cpu_online_map;
182         cpu_clear(smp_processor_id(), map);
183         __smp_call_function_map(func, info, nonatomic, wait, map);
184         preempt_enable();
185         return 0;
186 }
187 EXPORT_SYMBOL(smp_call_function);
188
189 /*
190  * smp_call_function_single:
191  * @cpu: the CPU where func should run
192  * @func: the function to run; this must be fast and non-blocking
193  * @info: an arbitrary pointer to pass to the function
194  * @nonatomic: unused
195  * @wait: if true, wait (atomically) until function has completed on other CPUs
196  *
197  * Run a function on one processor.
198  *
199  * You must not call this function with disabled interrupts, from a
200  * hardware interrupt handler or from a bottom half.
201  */
202 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
203                              int nonatomic, int wait)
204 {
205         preempt_disable();
206         __smp_call_function_map(func, info, nonatomic, wait,
207                                 cpumask_of_cpu(cpu));
208         preempt_enable();
209         return 0;
210 }
211 EXPORT_SYMBOL(smp_call_function_single);
212
213 /**
214  * smp_call_function_mask(): Run a function on a set of other CPUs.
215  * @mask: The set of cpus to run on.  Must not include the current cpu.
216  * @func: The function to run. This must be fast and non-blocking.
217  * @info: An arbitrary pointer to pass to the function.
218  * @wait: If true, wait (atomically) until function has completed on other CPUs.
219  *
220  * Returns 0 on success, else a negative status code.
221  *
222  * If @wait is true, then returns once @func has returned; otherwise
223  * it returns just before the target cpu calls @func.
224  *
225  * You must not call this function with disabled interrupts or from a
226  * hardware interrupt handler or from a bottom half handler.
227  */
228 int
229 smp_call_function_mask(cpumask_t mask,
230                         void (*func)(void *), void *info,
231                         int wait)
232 {
233         preempt_disable();
234         __smp_call_function_map(func, info, 0, wait, mask);
235         preempt_enable();
236         return 0;
237 }
238 EXPORT_SYMBOL(smp_call_function_mask);
239
240 void smp_send_stop(void)
241 {
242         int cpu, rc;
243
244         /* Disable all interrupts/machine checks */
245         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
246
247         /* write magic number to zero page (absolute 0) */
248         lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
249
250         /* stop all processors */
251         for_each_online_cpu(cpu) {
252                 if (cpu == smp_processor_id())
253                         continue;
254                 do {
255                         rc = signal_processor(cpu, sigp_stop);
256                 } while (rc == sigp_busy);
257
258                 while (!smp_cpu_not_running(cpu))
259                         cpu_relax();
260         }
261 }
262
263 /*
264  * This is the main routine where commands issued by other
265  * cpus are handled.
266  */
267
268 static void do_ext_call_interrupt(__u16 code)
269 {
270         unsigned long bits;
271
272         /*
273          * handle bit signal external calls
274          *
275          * For the ec_schedule signal we have to do nothing. All the work
276          * is done automatically when we return from the interrupt.
277          */
278         bits = xchg(&S390_lowcore.ext_call_fast, 0);
279
280         if (test_bit(ec_call_function, &bits))
281                 do_call_function();
282 }
283
284 /*
285  * Send an external call sigp to another cpu and return without waiting
286  * for its completion.
287  */
288 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
289 {
290         /*
291          * Set signaling bit in lowcore of target cpu and kick it
292          */
293         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
294         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
295                 udelay(10);
296 }
297
298 #ifndef CONFIG_64BIT
299 /*
300  * this function sends a 'purge tlb' signal to another CPU.
301  */
302 void smp_ptlb_callback(void *info)
303 {
304         __tlb_flush_local();
305 }
306
307 void smp_ptlb_all(void)
308 {
309         on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
310 }
311 EXPORT_SYMBOL(smp_ptlb_all);
312 #endif /* ! CONFIG_64BIT */
313
314 /*
315  * this function sends a 'reschedule' IPI to another CPU.
316  * it goes straight through and wastes no time serializing
317  * anything. Worst case is that we lose a reschedule ...
318  */
319 void smp_send_reschedule(int cpu)
320 {
321         smp_ext_bitcall(cpu, ec_schedule);
322 }
323
324 /*
325  * parameter area for the set/clear control bit callbacks
326  */
327 struct ec_creg_mask_parms {
328         unsigned long orvals[16];
329         unsigned long andvals[16];
330 };
331
332 /*
333  * callback for setting/clearing control bits
334  */
335 static void smp_ctl_bit_callback(void *info)
336 {
337         struct ec_creg_mask_parms *pp = info;
338         unsigned long cregs[16];
339         int i;
340
341         __ctl_store(cregs, 0, 15);
342         for (i = 0; i <= 15; i++)
343                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
344         __ctl_load(cregs, 0, 15);
345 }
346
347 /*
348  * Set a bit in a control register of all cpus
349  */
350 void smp_ctl_set_bit(int cr, int bit)
351 {
352         struct ec_creg_mask_parms parms;
353
354         memset(&parms.orvals, 0, sizeof(parms.orvals));
355         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
356         parms.orvals[cr] = 1 << bit;
357         on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
358 }
359 EXPORT_SYMBOL(smp_ctl_set_bit);
360
361 /*
362  * Clear a bit in a control register of all cpus
363  */
364 void smp_ctl_clear_bit(int cr, int bit)
365 {
366         struct ec_creg_mask_parms parms;
367
368         memset(&parms.orvals, 0, sizeof(parms.orvals));
369         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
370         parms.andvals[cr] = ~(1L << bit);
371         on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
372 }
373 EXPORT_SYMBOL(smp_ctl_clear_bit);
374
375 /*
376  * In early ipl state a temp. logically cpu number is needed, so the sigp
377  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
378  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
379  */
380 #define CPU_INIT_NO     1
381
382 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
383
384 /*
385  * zfcpdump_prefix_array holds prefix registers for the following scenario:
386  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
387  * save its prefix registers, since they get lost, when switching from 31 bit
388  * to 64 bit.
389  */
390 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
391         __attribute__((__section__(".data")));
392
393 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
394 {
395         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
396                 return;
397         if (cpu >= NR_CPUS) {
398                 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
399                        "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
400                 return;
401         }
402         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
403         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
404         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
405                sigp_busy)
406                 cpu_relax();
407         memcpy(zfcpdump_save_areas[cpu],
408                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
409                SAVE_AREA_SIZE);
410 #ifdef CONFIG_64BIT
411         /* copy original prefix register */
412         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
413 #endif
414 }
415
416 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
417 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
418
419 #else
420
421 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
422
423 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
424
425 static int cpu_stopped(int cpu)
426 {
427         __u32 status;
428
429         /* Check for stopped state */
430         if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
431             sigp_status_stored) {
432                 if (status & 0x40)
433                         return 1;
434         }
435         return 0;
436 }
437
438 static int cpu_known(int cpu_id)
439 {
440         int cpu;
441
442         for_each_present_cpu(cpu) {
443                 if (__cpu_logical_map[cpu] == cpu_id)
444                         return 1;
445         }
446         return 0;
447 }
448
449 static int smp_rescan_cpus_sigp(cpumask_t avail)
450 {
451         int cpu_id, logical_cpu;
452
453         logical_cpu = first_cpu(avail);
454         if (logical_cpu == NR_CPUS)
455                 return 0;
456         for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
457                 if (cpu_known(cpu_id))
458                         continue;
459                 __cpu_logical_map[logical_cpu] = cpu_id;
460                 if (!cpu_stopped(logical_cpu))
461                         continue;
462                 cpu_set(logical_cpu, cpu_present_map);
463                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
464                 logical_cpu = next_cpu(logical_cpu, avail);
465                 if (logical_cpu == NR_CPUS)
466                         break;
467         }
468         return 0;
469 }
470
471 static int smp_rescan_cpus_sclp(cpumask_t avail)
472 {
473         struct sclp_cpu_info *info;
474         int cpu_id, logical_cpu, cpu;
475         int rc;
476
477         logical_cpu = first_cpu(avail);
478         if (logical_cpu == NR_CPUS)
479                 return 0;
480         info = kmalloc(sizeof(*info), GFP_KERNEL);
481         if (!info)
482                 return -ENOMEM;
483         rc = sclp_get_cpu_info(info);
484         if (rc)
485                 goto out;
486         for (cpu = 0; cpu < info->combined; cpu++) {
487                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
488                         continue;
489                 cpu_id = info->cpu[cpu].address;
490                 if (cpu_known(cpu_id))
491                         continue;
492                 __cpu_logical_map[logical_cpu] = cpu_id;
493                 cpu_set(logical_cpu, cpu_present_map);
494                 if (cpu >= info->configured)
495                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
496                 else
497                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
498                 logical_cpu = next_cpu(logical_cpu, avail);
499                 if (logical_cpu == NR_CPUS)
500                         break;
501         }
502 out:
503         kfree(info);
504         return rc;
505 }
506
507 static int smp_rescan_cpus(void)
508 {
509         cpumask_t avail;
510
511         cpus_xor(avail, cpu_possible_map, cpu_present_map);
512         if (smp_use_sigp_detection)
513                 return smp_rescan_cpus_sigp(avail);
514         else
515                 return smp_rescan_cpus_sclp(avail);
516 }
517
518 static void __init smp_detect_cpus(void)
519 {
520         unsigned int cpu, c_cpus, s_cpus;
521         struct sclp_cpu_info *info;
522         u16 boot_cpu_addr, cpu_addr;
523
524         c_cpus = 1;
525         s_cpus = 0;
526         boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
527         info = kmalloc(sizeof(*info), GFP_KERNEL);
528         if (!info)
529                 panic("smp_detect_cpus failed to allocate memory\n");
530         /* Use sigp detection algorithm if sclp doesn't work. */
531         if (sclp_get_cpu_info(info)) {
532                 smp_use_sigp_detection = 1;
533                 for (cpu = 0; cpu <= 65535; cpu++) {
534                         if (cpu == boot_cpu_addr)
535                                 continue;
536                         __cpu_logical_map[CPU_INIT_NO] = cpu;
537                         if (!cpu_stopped(CPU_INIT_NO))
538                                 continue;
539                         smp_get_save_area(c_cpus, cpu);
540                         c_cpus++;
541                 }
542                 goto out;
543         }
544
545         if (info->has_cpu_type) {
546                 for (cpu = 0; cpu < info->combined; cpu++) {
547                         if (info->cpu[cpu].address == boot_cpu_addr) {
548                                 smp_cpu_type = info->cpu[cpu].type;
549                                 break;
550                         }
551                 }
552         }
553
554         for (cpu = 0; cpu < info->combined; cpu++) {
555                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
556                         continue;
557                 cpu_addr = info->cpu[cpu].address;
558                 if (cpu_addr == boot_cpu_addr)
559                         continue;
560                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
561                 if (!cpu_stopped(CPU_INIT_NO)) {
562                         s_cpus++;
563                         continue;
564                 }
565                 smp_get_save_area(c_cpus, cpu_addr);
566                 c_cpus++;
567         }
568 out:
569         kfree(info);
570         printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
571         get_online_cpus();
572         smp_rescan_cpus();
573         put_online_cpus();
574 }
575
576 /*
577  *      Activate a secondary processor.
578  */
579 int __cpuinit start_secondary(void *cpuvoid)
580 {
581         /* Setup the cpu */
582         cpu_init();
583         preempt_disable();
584         /* Enable TOD clock interrupts on the secondary cpu. */
585         init_cpu_timer();
586 #ifdef CONFIG_VIRT_TIMER
587         /* Enable cpu timer interrupts on the secondary cpu. */
588         init_cpu_vtimer();
589 #endif
590         /* Enable pfault pseudo page faults on this cpu. */
591         pfault_init();
592
593         /* Mark this cpu as online */
594         cpu_set(smp_processor_id(), cpu_online_map);
595         /* Switch on interrupts */
596         local_irq_enable();
597         /* Print info about this processor */
598         print_cpu_info(&S390_lowcore.cpu_data);
599         /* cpu_idle will call schedule for us */
600         cpu_idle();
601         return 0;
602 }
603
604 static void __init smp_create_idle(unsigned int cpu)
605 {
606         struct task_struct *p;
607
608         /*
609          *  don't care about the psw and regs settings since we'll never
610          *  reschedule the forked task.
611          */
612         p = fork_idle(cpu);
613         if (IS_ERR(p))
614                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
615         current_set[cpu] = p;
616         spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
617 }
618
619 static int __cpuinit smp_alloc_lowcore(int cpu)
620 {
621         unsigned long async_stack, panic_stack;
622         struct _lowcore *lowcore;
623         int lc_order;
624
625         lc_order = sizeof(long) == 8 ? 1 : 0;
626         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
627         if (!lowcore)
628                 return -ENOMEM;
629         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
630         if (!async_stack)
631                 goto out_async_stack;
632         panic_stack = __get_free_page(GFP_KERNEL);
633         if (!panic_stack)
634                 goto out_panic_stack;
635
636         *lowcore = S390_lowcore;
637         lowcore->async_stack = async_stack + ASYNC_SIZE;
638         lowcore->panic_stack = panic_stack + PAGE_SIZE;
639
640 #ifndef CONFIG_64BIT
641         if (MACHINE_HAS_IEEE) {
642                 unsigned long save_area;
643
644                 save_area = get_zeroed_page(GFP_KERNEL);
645                 if (!save_area)
646                         goto out_save_area;
647                 lowcore->extended_save_area_addr = (u32) save_area;
648         }
649 #endif
650         lowcore_ptr[cpu] = lowcore;
651         return 0;
652
653 #ifndef CONFIG_64BIT
654 out_save_area:
655         free_page(panic_stack);
656 #endif
657 out_panic_stack:
658         free_pages(async_stack, ASYNC_ORDER);
659 out_async_stack:
660         free_pages((unsigned long) lowcore, lc_order);
661         return -ENOMEM;
662 }
663
664 #ifdef CONFIG_HOTPLUG_CPU
665 static void smp_free_lowcore(int cpu)
666 {
667         struct _lowcore *lowcore;
668         int lc_order;
669
670         lc_order = sizeof(long) == 8 ? 1 : 0;
671         lowcore = lowcore_ptr[cpu];
672 #ifndef CONFIG_64BIT
673         if (MACHINE_HAS_IEEE)
674                 free_page((unsigned long) lowcore->extended_save_area_addr);
675 #endif
676         free_page(lowcore->panic_stack - PAGE_SIZE);
677         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
678         free_pages((unsigned long) lowcore, lc_order);
679         lowcore_ptr[cpu] = NULL;
680 }
681 #endif /* CONFIG_HOTPLUG_CPU */
682
683 /* Upping and downing of CPUs */
684 int __cpuinit __cpu_up(unsigned int cpu)
685 {
686         struct task_struct *idle;
687         struct _lowcore *cpu_lowcore;
688         struct stack_frame *sf;
689         sigp_ccode ccode;
690
691         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
692                 return -EIO;
693         if (smp_alloc_lowcore(cpu))
694                 return -ENOMEM;
695
696         ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
697                                    cpu, sigp_set_prefix);
698         if (ccode) {
699                 printk("sigp_set_prefix failed for cpu %d "
700                        "with condition code %d\n",
701                        (int) cpu, (int) ccode);
702                 return -EIO;
703         }
704
705         idle = current_set[cpu];
706         cpu_lowcore = lowcore_ptr[cpu];
707         cpu_lowcore->kernel_stack = (unsigned long)
708                 task_stack_page(idle) + THREAD_SIZE;
709         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
710         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
711                                      - sizeof(struct pt_regs)
712                                      - sizeof(struct stack_frame));
713         memset(sf, 0, sizeof(struct stack_frame));
714         sf->gprs[9] = (unsigned long) sf;
715         cpu_lowcore->save_area[15] = (unsigned long) sf;
716         __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
717         asm volatile(
718                 "       stam    0,15,0(%0)"
719                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
720         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
721         cpu_lowcore->current_task = (unsigned long) idle;
722         cpu_lowcore->cpu_data.cpu_nr = cpu;
723         cpu_lowcore->softirq_pending = 0;
724         cpu_lowcore->ext_call_fast = 0;
725         eieio();
726
727         while (signal_processor(cpu, sigp_restart) == sigp_busy)
728                 udelay(10);
729
730         while (!cpu_online(cpu))
731                 cpu_relax();
732         return 0;
733 }
734
735 static int __init setup_possible_cpus(char *s)
736 {
737         int pcpus, cpu;
738
739         pcpus = simple_strtoul(s, NULL, 0);
740         cpu_possible_map = cpumask_of_cpu(0);
741         for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
742                 cpu_set(cpu, cpu_possible_map);
743         return 0;
744 }
745 early_param("possible_cpus", setup_possible_cpus);
746
747 #ifdef CONFIG_HOTPLUG_CPU
748
749 int __cpu_disable(void)
750 {
751         struct ec_creg_mask_parms cr_parms;
752         int cpu = smp_processor_id();
753
754         cpu_clear(cpu, cpu_online_map);
755
756         /* Disable pfault pseudo page faults on this cpu. */
757         pfault_fini();
758
759         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
760         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
761
762         /* disable all external interrupts */
763         cr_parms.orvals[0] = 0;
764         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
765                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
766         /* disable all I/O interrupts */
767         cr_parms.orvals[6] = 0;
768         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
769                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
770         /* disable most machine checks */
771         cr_parms.orvals[14] = 0;
772         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
773                                  1 << 25 | 1 << 24);
774
775         smp_ctl_bit_callback(&cr_parms);
776
777         return 0;
778 }
779
780 void __cpu_die(unsigned int cpu)
781 {
782         /* Wait until target cpu is down */
783         while (!smp_cpu_not_running(cpu))
784                 cpu_relax();
785         smp_free_lowcore(cpu);
786         printk(KERN_INFO "Processor %d spun down\n", cpu);
787 }
788
789 void cpu_die(void)
790 {
791         idle_task_exit();
792         signal_processor(smp_processor_id(), sigp_stop);
793         BUG();
794         for (;;);
795 }
796
797 #endif /* CONFIG_HOTPLUG_CPU */
798
799 void __init smp_prepare_cpus(unsigned int max_cpus)
800 {
801         unsigned int cpu;
802
803         smp_detect_cpus();
804
805         /* request the 0x1201 emergency signal external interrupt */
806         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
807                 panic("Couldn't request external interrupt 0x1201");
808         memset(lowcore_ptr, 0, sizeof(lowcore_ptr));
809         print_cpu_info(&S390_lowcore.cpu_data);
810         smp_alloc_lowcore(smp_processor_id());
811
812 #ifndef CONFIG_64BIT
813         if (MACHINE_HAS_IEEE)
814                 ctl_set_bit(14, 29); /* enable extended save area */
815 #endif
816         set_prefix((u32)(unsigned long) lowcore_ptr[smp_processor_id()]);
817
818         for_each_possible_cpu(cpu)
819                 if (cpu != smp_processor_id())
820                         smp_create_idle(cpu);
821 }
822
823 void __init smp_prepare_boot_cpu(void)
824 {
825         BUG_ON(smp_processor_id() != 0);
826
827         current_thread_info()->cpu = 0;
828         cpu_set(0, cpu_present_map);
829         cpu_set(0, cpu_online_map);
830         S390_lowcore.percpu_offset = __per_cpu_offset[0];
831         current_set[0] = current;
832         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
833         spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
834 }
835
836 void __init smp_cpus_done(unsigned int max_cpus)
837 {
838 }
839
840 /*
841  * the frequency of the profiling timer can be changed
842  * by writing a multiplier value into /proc/profile.
843  *
844  * usually you want to run this on all CPUs ;)
845  */
846 int setup_profiling_timer(unsigned int multiplier)
847 {
848         return 0;
849 }
850
851 #ifdef CONFIG_HOTPLUG_CPU
852 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
853 {
854         ssize_t count;
855
856         mutex_lock(&smp_cpu_state_mutex);
857         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
858         mutex_unlock(&smp_cpu_state_mutex);
859         return count;
860 }
861
862 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
863                                    size_t count)
864 {
865         int cpu = dev->id;
866         int val, rc;
867         char delim;
868
869         if (sscanf(buf, "%d %c", &val, &delim) != 1)
870                 return -EINVAL;
871         if (val != 0 && val != 1)
872                 return -EINVAL;
873
874         mutex_lock(&smp_cpu_state_mutex);
875         get_online_cpus();
876         rc = -EBUSY;
877         if (cpu_online(cpu))
878                 goto out;
879         rc = 0;
880         switch (val) {
881         case 0:
882                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
883                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
884                         if (!rc)
885                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
886                 }
887                 break;
888         case 1:
889                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
890                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
891                         if (!rc)
892                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
893                 }
894                 break;
895         default:
896                 break;
897         }
898 out:
899         put_online_cpus();
900         mutex_unlock(&smp_cpu_state_mutex);
901         return rc ? rc : count;
902 }
903 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
904 #endif /* CONFIG_HOTPLUG_CPU */
905
906 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
907 {
908         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
909 }
910 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
911
912
913 static struct attribute *cpu_common_attrs[] = {
914 #ifdef CONFIG_HOTPLUG_CPU
915         &attr_configure.attr,
916 #endif
917         &attr_address.attr,
918         NULL,
919 };
920
921 static struct attribute_group cpu_common_attr_group = {
922         .attrs = cpu_common_attrs,
923 };
924
925 static ssize_t show_capability(struct sys_device *dev, char *buf)
926 {
927         unsigned int capability;
928         int rc;
929
930         rc = get_cpu_capability(&capability);
931         if (rc)
932                 return rc;
933         return sprintf(buf, "%u\n", capability);
934 }
935 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
936
937 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
938 {
939         struct s390_idle_data *idle;
940         unsigned long long idle_count;
941
942         idle = &per_cpu(s390_idle, dev->id);
943         spin_lock_irq(&idle->lock);
944         idle_count = idle->idle_count;
945         spin_unlock_irq(&idle->lock);
946         return sprintf(buf, "%llu\n", idle_count);
947 }
948 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
949
950 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
951 {
952         struct s390_idle_data *idle;
953         unsigned long long new_time;
954
955         idle = &per_cpu(s390_idle, dev->id);
956         spin_lock_irq(&idle->lock);
957         if (idle->in_idle) {
958                 new_time = get_clock();
959                 idle->idle_time += new_time - idle->idle_enter;
960                 idle->idle_enter = new_time;
961         }
962         new_time = idle->idle_time;
963         spin_unlock_irq(&idle->lock);
964         return sprintf(buf, "%llu\n", new_time >> 12);
965 }
966 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
967
968 static struct attribute *cpu_online_attrs[] = {
969         &attr_capability.attr,
970         &attr_idle_count.attr,
971         &attr_idle_time_us.attr,
972         NULL,
973 };
974
975 static struct attribute_group cpu_online_attr_group = {
976         .attrs = cpu_online_attrs,
977 };
978
979 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
980                                     unsigned long action, void *hcpu)
981 {
982         unsigned int cpu = (unsigned int)(long)hcpu;
983         struct cpu *c = &per_cpu(cpu_devices, cpu);
984         struct sys_device *s = &c->sysdev;
985         struct s390_idle_data *idle;
986
987         switch (action) {
988         case CPU_ONLINE:
989         case CPU_ONLINE_FROZEN:
990                 idle = &per_cpu(s390_idle, cpu);
991                 spin_lock_irq(&idle->lock);
992                 idle->idle_enter = 0;
993                 idle->idle_time = 0;
994                 idle->idle_count = 0;
995                 spin_unlock_irq(&idle->lock);
996                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
997                         return NOTIFY_BAD;
998                 break;
999         case CPU_DEAD:
1000         case CPU_DEAD_FROZEN:
1001                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1002                 break;
1003         }
1004         return NOTIFY_OK;
1005 }
1006
1007 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1008         .notifier_call = smp_cpu_notify,
1009 };
1010
1011 static int smp_add_present_cpu(int cpu)
1012 {
1013         struct cpu *c = &per_cpu(cpu_devices, cpu);
1014         struct sys_device *s = &c->sysdev;
1015         int rc;
1016
1017         c->hotpluggable = 1;
1018         rc = register_cpu(c, cpu);
1019         if (rc)
1020                 goto out;
1021         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1022         if (rc)
1023                 goto out_cpu;
1024         if (!cpu_online(cpu))
1025                 goto out;
1026         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1027         if (!rc)
1028                 return 0;
1029         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1030 out_cpu:
1031 #ifdef CONFIG_HOTPLUG_CPU
1032         unregister_cpu(c);
1033 #endif
1034 out:
1035         return rc;
1036 }
1037
1038 #ifdef CONFIG_HOTPLUG_CPU
1039 static ssize_t rescan_store(struct sys_device *dev, const char *buf,
1040                             size_t count)
1041 {
1042         cpumask_t newcpus;
1043         int cpu;
1044         int rc;
1045
1046         mutex_lock(&smp_cpu_state_mutex);
1047         get_online_cpus();
1048         newcpus = cpu_present_map;
1049         rc = smp_rescan_cpus();
1050         if (rc)
1051                 goto out;
1052         cpus_andnot(newcpus, cpu_present_map, newcpus);
1053         for_each_cpu_mask(cpu, newcpus) {
1054                 rc = smp_add_present_cpu(cpu);
1055                 if (rc)
1056                         cpu_clear(cpu, cpu_present_map);
1057         }
1058         rc = 0;
1059 out:
1060         put_online_cpus();
1061         mutex_unlock(&smp_cpu_state_mutex);
1062         return rc ? rc : count;
1063 }
1064 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1065 #endif /* CONFIG_HOTPLUG_CPU */
1066
1067 static int __init topology_init(void)
1068 {
1069         int cpu;
1070         int rc;
1071
1072         register_cpu_notifier(&smp_cpu_nb);
1073
1074 #ifdef CONFIG_HOTPLUG_CPU
1075         rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1076                                &attr_rescan.attr);
1077         if (rc)
1078                 return rc;
1079 #endif
1080         for_each_present_cpu(cpu) {
1081                 rc = smp_add_present_cpu(cpu);
1082                 if (rc)
1083                         return rc;
1084         }
1085         return 0;
1086 }
1087 subsys_initcall(topology_init);