Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/workqueue.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/delay.h>
34 #include <linux/cache.h>
35 #include <linux/interrupt.h>
36 #include <linux/irqflags.h>
37 #include <linux/cpu.h>
38 #include <linux/timex.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/ipl.h>
43 #include <asm/setup.h>
44 #include <asm/sigp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/irq.h>
47 #include <asm/cpcmd.h>
48 #include <asm/tlbflush.h>
49 #include <asm/timer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/cputime.h>
53 #include <asm/vdso.h>
54 #include <asm/cpu.h>
55 #include "entry.h"
56
57 /* logical cpu to cpu address */
58 unsigned short __cpu_logical_map[NR_CPUS];
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76
77 static void smp_ext_bitcall(int, int);
78
79 static int raw_cpu_stopped(int cpu)
80 {
81         u32 status;
82
83         switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
84         case sigp_status_stored:
85                 /* Check for stopped and check stop state */
86                 if (status & 0x50)
87                         return 1;
88                 break;
89         default:
90                 break;
91         }
92         return 0;
93 }
94
95 static inline int cpu_stopped(int cpu)
96 {
97         return raw_cpu_stopped(cpu_logical_map(cpu));
98 }
99
100 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
101 {
102         struct _lowcore *lc, *current_lc;
103         struct stack_frame *sf;
104         struct pt_regs *regs;
105         unsigned long sp;
106
107         if (smp_processor_id() == 0)
108                 func(data);
109         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
110         /* Disable lowcore protection */
111         __ctl_clear_bit(0, 28);
112         current_lc = lowcore_ptr[smp_processor_id()];
113         lc = lowcore_ptr[0];
114         if (!lc)
115                 lc = current_lc;
116         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
117         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
118         if (!cpu_online(0))
119                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
120         while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
121                 cpu_relax();
122         sp = lc->panic_stack;
123         sp -= sizeof(struct pt_regs);
124         regs = (struct pt_regs *) sp;
125         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
126         regs->psw = lc->psw_save_area;
127         sp -= STACK_FRAME_OVERHEAD;
128         sf = (struct stack_frame *) sp;
129         sf->back_chain = regs->gprs[15];
130         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
131 }
132
133 void smp_send_stop(void)
134 {
135         int cpu, rc;
136
137         /* Disable all interrupts/machine checks */
138         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
139         trace_hardirqs_off();
140
141         /* stop all processors */
142         for_each_online_cpu(cpu) {
143                 if (cpu == smp_processor_id())
144                         continue;
145                 do {
146                         rc = sigp(cpu, sigp_stop);
147                 } while (rc == sigp_busy);
148
149                 while (!cpu_stopped(cpu))
150                         cpu_relax();
151         }
152 }
153
154 /*
155  * This is the main routine where commands issued by other
156  * cpus are handled.
157  */
158
159 static void do_ext_call_interrupt(unsigned int ext_int_code,
160                                   unsigned int param32, unsigned long param64)
161 {
162         unsigned long bits;
163
164         kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
165         /*
166          * handle bit signal external calls
167          */
168         bits = xchg(&S390_lowcore.ext_call_fast, 0);
169
170         if (test_bit(ec_schedule, &bits))
171                 scheduler_ipi();
172
173         if (test_bit(ec_call_function, &bits))
174                 generic_smp_call_function_interrupt();
175
176         if (test_bit(ec_call_function_single, &bits))
177                 generic_smp_call_function_single_interrupt();
178 }
179
180 /*
181  * Send an external call sigp to another cpu and return without waiting
182  * for its completion.
183  */
184 static void smp_ext_bitcall(int cpu, int sig)
185 {
186         /*
187          * Set signaling bit in lowcore of target cpu and kick it
188          */
189         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
190         while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
191                 udelay(10);
192 }
193
194 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
195 {
196         int cpu;
197
198         for_each_cpu(cpu, mask)
199                 smp_ext_bitcall(cpu, ec_call_function);
200 }
201
202 void arch_send_call_function_single_ipi(int cpu)
203 {
204         smp_ext_bitcall(cpu, ec_call_function_single);
205 }
206
207 #ifndef CONFIG_64BIT
208 /*
209  * this function sends a 'purge tlb' signal to another CPU.
210  */
211 static void smp_ptlb_callback(void *info)
212 {
213         __tlb_flush_local();
214 }
215
216 void smp_ptlb_all(void)
217 {
218         on_each_cpu(smp_ptlb_callback, NULL, 1);
219 }
220 EXPORT_SYMBOL(smp_ptlb_all);
221 #endif /* ! CONFIG_64BIT */
222
223 /*
224  * this function sends a 'reschedule' IPI to another CPU.
225  * it goes straight through and wastes no time serializing
226  * anything. Worst case is that we lose a reschedule ...
227  */
228 void smp_send_reschedule(int cpu)
229 {
230         smp_ext_bitcall(cpu, ec_schedule);
231 }
232
233 /*
234  * parameter area for the set/clear control bit callbacks
235  */
236 struct ec_creg_mask_parms {
237         unsigned long orvals[16];
238         unsigned long andvals[16];
239 };
240
241 /*
242  * callback for setting/clearing control bits
243  */
244 static void smp_ctl_bit_callback(void *info)
245 {
246         struct ec_creg_mask_parms *pp = info;
247         unsigned long cregs[16];
248         int i;
249
250         __ctl_store(cregs, 0, 15);
251         for (i = 0; i <= 15; i++)
252                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
253         __ctl_load(cregs, 0, 15);
254 }
255
256 /*
257  * Set a bit in a control register of all cpus
258  */
259 void smp_ctl_set_bit(int cr, int bit)
260 {
261         struct ec_creg_mask_parms parms;
262
263         memset(&parms.orvals, 0, sizeof(parms.orvals));
264         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
265         parms.orvals[cr] = 1UL << bit;
266         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
267 }
268 EXPORT_SYMBOL(smp_ctl_set_bit);
269
270 /*
271  * Clear a bit in a control register of all cpus
272  */
273 void smp_ctl_clear_bit(int cr, int bit)
274 {
275         struct ec_creg_mask_parms parms;
276
277         memset(&parms.orvals, 0, sizeof(parms.orvals));
278         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
279         parms.andvals[cr] = ~(1UL << bit);
280         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
281 }
282 EXPORT_SYMBOL(smp_ctl_clear_bit);
283
284 #ifdef CONFIG_ZFCPDUMP
285
286 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
287 {
288         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
289                 return;
290         if (cpu >= NR_CPUS) {
291                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
292                            "the dump\n", cpu, NR_CPUS - 1);
293                 return;
294         }
295         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
296         while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
297                 cpu_relax();
298         memcpy_real(zfcpdump_save_areas[cpu],
299                     (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
300                     sizeof(struct save_area));
301 }
302
303 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
304 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
305
306 #else
307
308 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
309
310 #endif /* CONFIG_ZFCPDUMP */
311
312 static int cpu_known(int cpu_id)
313 {
314         int cpu;
315
316         for_each_present_cpu(cpu) {
317                 if (__cpu_logical_map[cpu] == cpu_id)
318                         return 1;
319         }
320         return 0;
321 }
322
323 static int smp_rescan_cpus_sigp(cpumask_t avail)
324 {
325         int cpu_id, logical_cpu;
326
327         logical_cpu = cpumask_first(&avail);
328         if (logical_cpu >= nr_cpu_ids)
329                 return 0;
330         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
331                 if (cpu_known(cpu_id))
332                         continue;
333                 __cpu_logical_map[logical_cpu] = cpu_id;
334                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
335                 if (!cpu_stopped(logical_cpu))
336                         continue;
337                 set_cpu_present(logical_cpu, true);
338                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
339                 logical_cpu = cpumask_next(logical_cpu, &avail);
340                 if (logical_cpu >= nr_cpu_ids)
341                         break;
342         }
343         return 0;
344 }
345
346 static int smp_rescan_cpus_sclp(cpumask_t avail)
347 {
348         struct sclp_cpu_info *info;
349         int cpu_id, logical_cpu, cpu;
350         int rc;
351
352         logical_cpu = cpumask_first(&avail);
353         if (logical_cpu >= nr_cpu_ids)
354                 return 0;
355         info = kmalloc(sizeof(*info), GFP_KERNEL);
356         if (!info)
357                 return -ENOMEM;
358         rc = sclp_get_cpu_info(info);
359         if (rc)
360                 goto out;
361         for (cpu = 0; cpu < info->combined; cpu++) {
362                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
363                         continue;
364                 cpu_id = info->cpu[cpu].address;
365                 if (cpu_known(cpu_id))
366                         continue;
367                 __cpu_logical_map[logical_cpu] = cpu_id;
368                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
369                 set_cpu_present(logical_cpu, true);
370                 if (cpu >= info->configured)
371                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
372                 else
373                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
374                 logical_cpu = cpumask_next(logical_cpu, &avail);
375                 if (logical_cpu >= nr_cpu_ids)
376                         break;
377         }
378 out:
379         kfree(info);
380         return rc;
381 }
382
383 static int __smp_rescan_cpus(void)
384 {
385         cpumask_t avail;
386
387         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
388         if (smp_use_sigp_detection)
389                 return smp_rescan_cpus_sigp(avail);
390         else
391                 return smp_rescan_cpus_sclp(avail);
392 }
393
394 static void __init smp_detect_cpus(void)
395 {
396         unsigned int cpu, c_cpus, s_cpus;
397         struct sclp_cpu_info *info;
398         u16 boot_cpu_addr, cpu_addr;
399
400         c_cpus = 1;
401         s_cpus = 0;
402         boot_cpu_addr = __cpu_logical_map[0];
403         info = kmalloc(sizeof(*info), GFP_KERNEL);
404         if (!info)
405                 panic("smp_detect_cpus failed to allocate memory\n");
406         /* Use sigp detection algorithm if sclp doesn't work. */
407         if (sclp_get_cpu_info(info)) {
408                 smp_use_sigp_detection = 1;
409                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
410                         if (cpu == boot_cpu_addr)
411                                 continue;
412                         if (!raw_cpu_stopped(cpu))
413                                 continue;
414                         smp_get_save_area(c_cpus, cpu);
415                         c_cpus++;
416                 }
417                 goto out;
418         }
419
420         if (info->has_cpu_type) {
421                 for (cpu = 0; cpu < info->combined; cpu++) {
422                         if (info->cpu[cpu].address == boot_cpu_addr) {
423                                 smp_cpu_type = info->cpu[cpu].type;
424                                 break;
425                         }
426                 }
427         }
428
429         for (cpu = 0; cpu < info->combined; cpu++) {
430                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
431                         continue;
432                 cpu_addr = info->cpu[cpu].address;
433                 if (cpu_addr == boot_cpu_addr)
434                         continue;
435                 if (!raw_cpu_stopped(cpu_addr)) {
436                         s_cpus++;
437                         continue;
438                 }
439                 smp_get_save_area(c_cpus, cpu_addr);
440                 c_cpus++;
441         }
442 out:
443         kfree(info);
444         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
445         get_online_cpus();
446         __smp_rescan_cpus();
447         put_online_cpus();
448 }
449
450 /*
451  *      Activate a secondary processor.
452  */
453 int __cpuinit start_secondary(void *cpuvoid)
454 {
455         cpu_init();
456         preempt_disable();
457         init_cpu_timer();
458         init_cpu_vtimer();
459         pfault_init();
460
461         notify_cpu_starting(smp_processor_id());
462         ipi_call_lock();
463         set_cpu_online(smp_processor_id(), true);
464         ipi_call_unlock();
465         __ctl_clear_bit(0, 28); /* Disable lowcore protection */
466         S390_lowcore.restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
467         S390_lowcore.restart_psw.addr =
468                 PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
469         __ctl_set_bit(0, 28); /* Enable lowcore protection */
470         /*
471          * Wait until the cpu which brought this one up marked it
472          * active before enabling interrupts.
473          */
474         while (!cpumask_test_cpu(smp_processor_id(), cpu_active_mask))
475                 cpu_relax();
476         local_irq_enable();
477         /* cpu_idle will call schedule for us */
478         cpu_idle();
479         return 0;
480 }
481
482 struct create_idle {
483         struct work_struct work;
484         struct task_struct *idle;
485         struct completion done;
486         int cpu;
487 };
488
489 static void __cpuinit smp_fork_idle(struct work_struct *work)
490 {
491         struct create_idle *c_idle;
492
493         c_idle = container_of(work, struct create_idle, work);
494         c_idle->idle = fork_idle(c_idle->cpu);
495         complete(&c_idle->done);
496 }
497
498 static int __cpuinit smp_alloc_lowcore(int cpu)
499 {
500         unsigned long async_stack, panic_stack;
501         struct _lowcore *lowcore;
502
503         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
504         if (!lowcore)
505                 return -ENOMEM;
506         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
507         panic_stack = __get_free_page(GFP_KERNEL);
508         if (!panic_stack || !async_stack)
509                 goto out;
510         memcpy(lowcore, &S390_lowcore, 512);
511         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
512         lowcore->async_stack = async_stack + ASYNC_SIZE;
513         lowcore->panic_stack = panic_stack + PAGE_SIZE;
514         lowcore->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
515         lowcore->restart_psw.addr =
516                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
517         if (user_mode != HOME_SPACE_MODE)
518                 lowcore->restart_psw.mask |= PSW_ASC_HOME;
519 #ifndef CONFIG_64BIT
520         if (MACHINE_HAS_IEEE) {
521                 unsigned long save_area;
522
523                 save_area = get_zeroed_page(GFP_KERNEL);
524                 if (!save_area)
525                         goto out;
526                 lowcore->extended_save_area_addr = (u32) save_area;
527         }
528 #else
529         if (vdso_alloc_per_cpu(cpu, lowcore))
530                 goto out;
531 #endif
532         lowcore_ptr[cpu] = lowcore;
533         return 0;
534
535 out:
536         free_page(panic_stack);
537         free_pages(async_stack, ASYNC_ORDER);
538         free_pages((unsigned long) lowcore, LC_ORDER);
539         return -ENOMEM;
540 }
541
542 static void smp_free_lowcore(int cpu)
543 {
544         struct _lowcore *lowcore;
545
546         lowcore = lowcore_ptr[cpu];
547 #ifndef CONFIG_64BIT
548         if (MACHINE_HAS_IEEE)
549                 free_page((unsigned long) lowcore->extended_save_area_addr);
550 #else
551         vdso_free_per_cpu(cpu, lowcore);
552 #endif
553         free_page(lowcore->panic_stack - PAGE_SIZE);
554         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
555         free_pages((unsigned long) lowcore, LC_ORDER);
556         lowcore_ptr[cpu] = NULL;
557 }
558
559 /* Upping and downing of CPUs */
560 int __cpuinit __cpu_up(unsigned int cpu)
561 {
562         struct _lowcore *cpu_lowcore;
563         struct create_idle c_idle;
564         struct task_struct *idle;
565         struct stack_frame *sf;
566         u32 lowcore;
567         int ccode;
568
569         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
570                 return -EIO;
571         idle = current_set[cpu];
572         if (!idle) {
573                 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
574                 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
575                 c_idle.cpu = cpu;
576                 schedule_work(&c_idle.work);
577                 wait_for_completion(&c_idle.done);
578                 if (IS_ERR(c_idle.idle))
579                         return PTR_ERR(c_idle.idle);
580                 idle = c_idle.idle;
581                 current_set[cpu] = c_idle.idle;
582         }
583         init_idle(idle, cpu);
584         if (smp_alloc_lowcore(cpu))
585                 return -ENOMEM;
586         do {
587                 ccode = sigp(cpu, sigp_initial_cpu_reset);
588                 if (ccode == sigp_busy)
589                         udelay(10);
590                 if (ccode == sigp_not_operational)
591                         goto err_out;
592         } while (ccode == sigp_busy);
593
594         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
595         while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
596                 udelay(10);
597
598         cpu_lowcore = lowcore_ptr[cpu];
599         cpu_lowcore->kernel_stack = (unsigned long)
600                 task_stack_page(idle) + THREAD_SIZE;
601         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
602         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
603                                      - sizeof(struct pt_regs)
604                                      - sizeof(struct stack_frame));
605         memset(sf, 0, sizeof(struct stack_frame));
606         sf->gprs[9] = (unsigned long) sf;
607         cpu_lowcore->save_area[15] = (unsigned long) sf;
608         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
609         atomic_inc(&init_mm.context.attach_count);
610         asm volatile(
611                 "       stam    0,15,0(%0)"
612                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
613         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
614         cpu_lowcore->current_task = (unsigned long) idle;
615         cpu_lowcore->cpu_nr = cpu;
616         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
617         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
618         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
619         memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
620                MAX_FACILITY_BIT/8);
621         eieio();
622
623         while (sigp(cpu, sigp_restart) == sigp_busy)
624                 udelay(10);
625
626         while (!cpu_online(cpu))
627                 cpu_relax();
628         return 0;
629
630 err_out:
631         smp_free_lowcore(cpu);
632         return -EIO;
633 }
634
635 static int __init setup_possible_cpus(char *s)
636 {
637         int pcpus, cpu;
638
639         pcpus = simple_strtoul(s, NULL, 0);
640         init_cpu_possible(cpumask_of(0));
641         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
642                 set_cpu_possible(cpu, true);
643         return 0;
644 }
645 early_param("possible_cpus", setup_possible_cpus);
646
647 #ifdef CONFIG_HOTPLUG_CPU
648
649 int __cpu_disable(void)
650 {
651         struct ec_creg_mask_parms cr_parms;
652         int cpu = smp_processor_id();
653
654         set_cpu_online(cpu, false);
655
656         /* Disable pfault pseudo page faults on this cpu. */
657         pfault_fini();
658
659         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
660         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
661
662         /* disable all external interrupts */
663         cr_parms.orvals[0] = 0;
664         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
665                                 1 << 10 | 1 <<  9 | 1 <<  6 | 1 <<  5 |
666                                 1 <<  4);
667         /* disable all I/O interrupts */
668         cr_parms.orvals[6] = 0;
669         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
670                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
671         /* disable most machine checks */
672         cr_parms.orvals[14] = 0;
673         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
674                                  1 << 25 | 1 << 24);
675
676         smp_ctl_bit_callback(&cr_parms);
677
678         return 0;
679 }
680
681 void __cpu_die(unsigned int cpu)
682 {
683         /* Wait until target cpu is down */
684         while (!cpu_stopped(cpu))
685                 cpu_relax();
686         while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
687                 udelay(10);
688         smp_free_lowcore(cpu);
689         atomic_dec(&init_mm.context.attach_count);
690 }
691
692 void __noreturn cpu_die(void)
693 {
694         idle_task_exit();
695         while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
696                 cpu_relax();
697         for (;;);
698 }
699
700 #endif /* CONFIG_HOTPLUG_CPU */
701
702 void __init smp_prepare_cpus(unsigned int max_cpus)
703 {
704 #ifndef CONFIG_64BIT
705         unsigned long save_area = 0;
706 #endif
707         unsigned long async_stack, panic_stack;
708         struct _lowcore *lowcore;
709
710         smp_detect_cpus();
711
712         /* request the 0x1201 emergency signal external interrupt */
713         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
714                 panic("Couldn't request external interrupt 0x1201");
715
716         /* Reallocate current lowcore, but keep its contents. */
717         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
718         panic_stack = __get_free_page(GFP_KERNEL);
719         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
720         BUG_ON(!lowcore || !panic_stack || !async_stack);
721 #ifndef CONFIG_64BIT
722         if (MACHINE_HAS_IEEE)
723                 save_area = get_zeroed_page(GFP_KERNEL);
724 #endif
725         local_irq_disable();
726         local_mcck_disable();
727         lowcore_ptr[smp_processor_id()] = lowcore;
728         *lowcore = S390_lowcore;
729         lowcore->panic_stack = panic_stack + PAGE_SIZE;
730         lowcore->async_stack = async_stack + ASYNC_SIZE;
731 #ifndef CONFIG_64BIT
732         if (MACHINE_HAS_IEEE)
733                 lowcore->extended_save_area_addr = (u32) save_area;
734 #endif
735         set_prefix((u32)(unsigned long) lowcore);
736         local_mcck_enable();
737         local_irq_enable();
738 #ifdef CONFIG_64BIT
739         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
740                 BUG();
741 #endif
742 }
743
744 void __init smp_prepare_boot_cpu(void)
745 {
746         BUG_ON(smp_processor_id() != 0);
747
748         current_thread_info()->cpu = 0;
749         set_cpu_present(0, true);
750         set_cpu_online(0, true);
751         S390_lowcore.percpu_offset = __per_cpu_offset[0];
752         current_set[0] = current;
753         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
754         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
755 }
756
757 void __init smp_cpus_done(unsigned int max_cpus)
758 {
759 }
760
761 void __init smp_setup_processor_id(void)
762 {
763         S390_lowcore.cpu_nr = 0;
764         __cpu_logical_map[0] = stap();
765 }
766
767 /*
768  * the frequency of the profiling timer can be changed
769  * by writing a multiplier value into /proc/profile.
770  *
771  * usually you want to run this on all CPUs ;)
772  */
773 int setup_profiling_timer(unsigned int multiplier)
774 {
775         return 0;
776 }
777
778 #ifdef CONFIG_HOTPLUG_CPU
779 static ssize_t cpu_configure_show(struct sys_device *dev,
780                                 struct sysdev_attribute *attr, char *buf)
781 {
782         ssize_t count;
783
784         mutex_lock(&smp_cpu_state_mutex);
785         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
786         mutex_unlock(&smp_cpu_state_mutex);
787         return count;
788 }
789
790 static ssize_t cpu_configure_store(struct sys_device *dev,
791                                   struct sysdev_attribute *attr,
792                                   const char *buf, size_t count)
793 {
794         int cpu = dev->id;
795         int val, rc;
796         char delim;
797
798         if (sscanf(buf, "%d %c", &val, &delim) != 1)
799                 return -EINVAL;
800         if (val != 0 && val != 1)
801                 return -EINVAL;
802
803         get_online_cpus();
804         mutex_lock(&smp_cpu_state_mutex);
805         rc = -EBUSY;
806         /* disallow configuration changes of online cpus and cpu 0 */
807         if (cpu_online(cpu) || cpu == 0)
808                 goto out;
809         rc = 0;
810         switch (val) {
811         case 0:
812                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
813                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
814                         if (!rc) {
815                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
816                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
817                         }
818                 }
819                 break;
820         case 1:
821                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
822                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
823                         if (!rc) {
824                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
825                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
826                         }
827                 }
828                 break;
829         default:
830                 break;
831         }
832 out:
833         mutex_unlock(&smp_cpu_state_mutex);
834         put_online_cpus();
835         return rc ? rc : count;
836 }
837 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
838 #endif /* CONFIG_HOTPLUG_CPU */
839
840 static ssize_t cpu_polarization_show(struct sys_device *dev,
841                                      struct sysdev_attribute *attr, char *buf)
842 {
843         int cpu = dev->id;
844         ssize_t count;
845
846         mutex_lock(&smp_cpu_state_mutex);
847         switch (smp_cpu_polarization[cpu]) {
848         case POLARIZATION_HRZ:
849                 count = sprintf(buf, "horizontal\n");
850                 break;
851         case POLARIZATION_VL:
852                 count = sprintf(buf, "vertical:low\n");
853                 break;
854         case POLARIZATION_VM:
855                 count = sprintf(buf, "vertical:medium\n");
856                 break;
857         case POLARIZATION_VH:
858                 count = sprintf(buf, "vertical:high\n");
859                 break;
860         default:
861                 count = sprintf(buf, "unknown\n");
862                 break;
863         }
864         mutex_unlock(&smp_cpu_state_mutex);
865         return count;
866 }
867 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
868
869 static ssize_t show_cpu_address(struct sys_device *dev,
870                                 struct sysdev_attribute *attr, char *buf)
871 {
872         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
873 }
874 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
875
876
877 static struct attribute *cpu_common_attrs[] = {
878 #ifdef CONFIG_HOTPLUG_CPU
879         &attr_configure.attr,
880 #endif
881         &attr_address.attr,
882         &attr_polarization.attr,
883         NULL,
884 };
885
886 static struct attribute_group cpu_common_attr_group = {
887         .attrs = cpu_common_attrs,
888 };
889
890 static ssize_t show_capability(struct sys_device *dev,
891                                 struct sysdev_attribute *attr, char *buf)
892 {
893         unsigned int capability;
894         int rc;
895
896         rc = get_cpu_capability(&capability);
897         if (rc)
898                 return rc;
899         return sprintf(buf, "%u\n", capability);
900 }
901 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
902
903 static ssize_t show_idle_count(struct sys_device *dev,
904                                 struct sysdev_attribute *attr, char *buf)
905 {
906         struct s390_idle_data *idle;
907         unsigned long long idle_count;
908         unsigned int sequence;
909
910         idle = &per_cpu(s390_idle, dev->id);
911 repeat:
912         sequence = idle->sequence;
913         smp_rmb();
914         if (sequence & 1)
915                 goto repeat;
916         idle_count = idle->idle_count;
917         if (idle->idle_enter)
918                 idle_count++;
919         smp_rmb();
920         if (idle->sequence != sequence)
921                 goto repeat;
922         return sprintf(buf, "%llu\n", idle_count);
923 }
924 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
925
926 static ssize_t show_idle_time(struct sys_device *dev,
927                                 struct sysdev_attribute *attr, char *buf)
928 {
929         struct s390_idle_data *idle;
930         unsigned long long now, idle_time, idle_enter;
931         unsigned int sequence;
932
933         idle = &per_cpu(s390_idle, dev->id);
934         now = get_clock();
935 repeat:
936         sequence = idle->sequence;
937         smp_rmb();
938         if (sequence & 1)
939                 goto repeat;
940         idle_time = idle->idle_time;
941         idle_enter = idle->idle_enter;
942         if (idle_enter != 0ULL && idle_enter < now)
943                 idle_time += now - idle_enter;
944         smp_rmb();
945         if (idle->sequence != sequence)
946                 goto repeat;
947         return sprintf(buf, "%llu\n", idle_time >> 12);
948 }
949 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
950
951 static struct attribute *cpu_online_attrs[] = {
952         &attr_capability.attr,
953         &attr_idle_count.attr,
954         &attr_idle_time_us.attr,
955         NULL,
956 };
957
958 static struct attribute_group cpu_online_attr_group = {
959         .attrs = cpu_online_attrs,
960 };
961
962 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
963                                     unsigned long action, void *hcpu)
964 {
965         unsigned int cpu = (unsigned int)(long)hcpu;
966         struct cpu *c = &per_cpu(cpu_devices, cpu);
967         struct sys_device *s = &c->sysdev;
968         struct s390_idle_data *idle;
969         int err = 0;
970
971         switch (action) {
972         case CPU_ONLINE:
973         case CPU_ONLINE_FROZEN:
974                 idle = &per_cpu(s390_idle, cpu);
975                 memset(idle, 0, sizeof(struct s390_idle_data));
976                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
977                 break;
978         case CPU_DEAD:
979         case CPU_DEAD_FROZEN:
980                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
981                 break;
982         }
983         return notifier_from_errno(err);
984 }
985
986 static struct notifier_block __cpuinitdata smp_cpu_nb = {
987         .notifier_call = smp_cpu_notify,
988 };
989
990 static int __devinit smp_add_present_cpu(int cpu)
991 {
992         struct cpu *c = &per_cpu(cpu_devices, cpu);
993         struct sys_device *s = &c->sysdev;
994         int rc;
995
996         c->hotpluggable = 1;
997         rc = register_cpu(c, cpu);
998         if (rc)
999                 goto out;
1000         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1001         if (rc)
1002                 goto out_cpu;
1003         if (!cpu_online(cpu))
1004                 goto out;
1005         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1006         if (!rc)
1007                 return 0;
1008         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1009 out_cpu:
1010 #ifdef CONFIG_HOTPLUG_CPU
1011         unregister_cpu(c);
1012 #endif
1013 out:
1014         return rc;
1015 }
1016
1017 #ifdef CONFIG_HOTPLUG_CPU
1018
1019 int __ref smp_rescan_cpus(void)
1020 {
1021         cpumask_t newcpus;
1022         int cpu;
1023         int rc;
1024
1025         get_online_cpus();
1026         mutex_lock(&smp_cpu_state_mutex);
1027         cpumask_copy(&newcpus, cpu_present_mask);
1028         rc = __smp_rescan_cpus();
1029         if (rc)
1030                 goto out;
1031         cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
1032         for_each_cpu(cpu, &newcpus) {
1033                 rc = smp_add_present_cpu(cpu);
1034                 if (rc)
1035                         set_cpu_present(cpu, false);
1036         }
1037         rc = 0;
1038 out:
1039         mutex_unlock(&smp_cpu_state_mutex);
1040         put_online_cpus();
1041         if (!cpumask_empty(&newcpus))
1042                 topology_schedule_update();
1043         return rc;
1044 }
1045
1046 static ssize_t __ref rescan_store(struct sysdev_class *class,
1047                                   struct sysdev_class_attribute *attr,
1048                                   const char *buf,
1049                                   size_t count)
1050 {
1051         int rc;
1052
1053         rc = smp_rescan_cpus();
1054         return rc ? rc : count;
1055 }
1056 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1057 #endif /* CONFIG_HOTPLUG_CPU */
1058
1059 static ssize_t dispatching_show(struct sysdev_class *class,
1060                                 struct sysdev_class_attribute *attr,
1061                                 char *buf)
1062 {
1063         ssize_t count;
1064
1065         mutex_lock(&smp_cpu_state_mutex);
1066         count = sprintf(buf, "%d\n", cpu_management);
1067         mutex_unlock(&smp_cpu_state_mutex);
1068         return count;
1069 }
1070
1071 static ssize_t dispatching_store(struct sysdev_class *dev,
1072                                  struct sysdev_class_attribute *attr,
1073                                  const char *buf,
1074                                  size_t count)
1075 {
1076         int val, rc;
1077         char delim;
1078
1079         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1080                 return -EINVAL;
1081         if (val != 0 && val != 1)
1082                 return -EINVAL;
1083         rc = 0;
1084         get_online_cpus();
1085         mutex_lock(&smp_cpu_state_mutex);
1086         if (cpu_management == val)
1087                 goto out;
1088         rc = topology_set_cpu_management(val);
1089         if (!rc)
1090                 cpu_management = val;
1091 out:
1092         mutex_unlock(&smp_cpu_state_mutex);
1093         put_online_cpus();
1094         return rc ? rc : count;
1095 }
1096 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1097                          dispatching_store);
1098
1099 static int __init topology_init(void)
1100 {
1101         int cpu;
1102         int rc;
1103
1104         register_cpu_notifier(&smp_cpu_nb);
1105
1106 #ifdef CONFIG_HOTPLUG_CPU
1107         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1108         if (rc)
1109                 return rc;
1110 #endif
1111         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1112         if (rc)
1113                 return rc;
1114         for_each_present_cpu(cpu) {
1115                 rc = smp_add_present_cpu(cpu);
1116                 if (rc)
1117                         return rc;
1118         }
1119         return 0;
1120 }
1121 subsys_initcall(topology_init);