Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/workqueue.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/delay.h>
34 #include <linux/cache.h>
35 #include <linux/interrupt.h>
36 #include <linux/irqflags.h>
37 #include <linux/cpu.h>
38 #include <linux/timex.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/ipl.h>
43 #include <asm/setup.h>
44 #include <asm/sigp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/irq.h>
47 #include <asm/s390_ext.h>
48 #include <asm/cpcmd.h>
49 #include <asm/tlbflush.h>
50 #include <asm/timer.h>
51 #include <asm/lowcore.h>
52 #include <asm/sclp.h>
53 #include <asm/cputime.h>
54 #include <asm/vdso.h>
55 #include <asm/cpu.h>
56 #include "entry.h"
57
58 /* logical cpu to cpu address */
59 unsigned short __cpu_logical_map[NR_CPUS];
60
61 static struct task_struct *current_set[NR_CPUS];
62
63 static u8 smp_cpu_type;
64 static int smp_use_sigp_detection;
65
66 enum s390_cpu_state {
67         CPU_STATE_STANDBY,
68         CPU_STATE_CONFIGURED,
69 };
70
71 DEFINE_MUTEX(smp_cpu_state_mutex);
72 int smp_cpu_polarization[NR_CPUS];
73 static int smp_cpu_state[NR_CPUS];
74 static int cpu_management;
75
76 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77
78 static void smp_ext_bitcall(int, int);
79
80 static int raw_cpu_stopped(int cpu)
81 {
82         u32 status;
83
84         switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
85         case sigp_status_stored:
86                 /* Check for stopped and check stop state */
87                 if (status & 0x50)
88                         return 1;
89                 break;
90         default:
91                 break;
92         }
93         return 0;
94 }
95
96 static inline int cpu_stopped(int cpu)
97 {
98         return raw_cpu_stopped(cpu_logical_map(cpu));
99 }
100
101 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
102 {
103         struct _lowcore *lc, *current_lc;
104         struct stack_frame *sf;
105         struct pt_regs *regs;
106         unsigned long sp;
107
108         if (smp_processor_id() == 0)
109                 func(data);
110         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
111         /* Disable lowcore protection */
112         __ctl_clear_bit(0, 28);
113         current_lc = lowcore_ptr[smp_processor_id()];
114         lc = lowcore_ptr[0];
115         if (!lc)
116                 lc = current_lc;
117         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
118         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
119         if (!cpu_online(0))
120                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
121         while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
122                 cpu_relax();
123         sp = lc->panic_stack;
124         sp -= sizeof(struct pt_regs);
125         regs = (struct pt_regs *) sp;
126         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
127         regs->psw = lc->psw_save_area;
128         sp -= STACK_FRAME_OVERHEAD;
129         sf = (struct stack_frame *) sp;
130         sf->back_chain = regs->gprs[15];
131         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
132 }
133
134 void smp_send_stop(void)
135 {
136         int cpu, rc;
137
138         /* Disable all interrupts/machine checks */
139         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
140         trace_hardirqs_off();
141
142         /* stop all processors */
143         for_each_online_cpu(cpu) {
144                 if (cpu == smp_processor_id())
145                         continue;
146                 do {
147                         rc = sigp(cpu, sigp_stop);
148                 } while (rc == sigp_busy);
149
150                 while (!cpu_stopped(cpu))
151                         cpu_relax();
152         }
153 }
154
155 /*
156  * This is the main routine where commands issued by other
157  * cpus are handled.
158  */
159
160 static void do_ext_call_interrupt(unsigned int ext_int_code,
161                                   unsigned int param32, unsigned long param64)
162 {
163         unsigned long bits;
164
165         kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
166         /*
167          * handle bit signal external calls
168          */
169         bits = xchg(&S390_lowcore.ext_call_fast, 0);
170
171         if (test_bit(ec_schedule, &bits))
172                 scheduler_ipi();
173
174         if (test_bit(ec_call_function, &bits))
175                 generic_smp_call_function_interrupt();
176
177         if (test_bit(ec_call_function_single, &bits))
178                 generic_smp_call_function_single_interrupt();
179 }
180
181 /*
182  * Send an external call sigp to another cpu and return without waiting
183  * for its completion.
184  */
185 static void smp_ext_bitcall(int cpu, int sig)
186 {
187         /*
188          * Set signaling bit in lowcore of target cpu and kick it
189          */
190         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
191         while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
192                 udelay(10);
193 }
194
195 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
196 {
197         int cpu;
198
199         for_each_cpu(cpu, mask)
200                 smp_ext_bitcall(cpu, ec_call_function);
201 }
202
203 void arch_send_call_function_single_ipi(int cpu)
204 {
205         smp_ext_bitcall(cpu, ec_call_function_single);
206 }
207
208 #ifndef CONFIG_64BIT
209 /*
210  * this function sends a 'purge tlb' signal to another CPU.
211  */
212 static void smp_ptlb_callback(void *info)
213 {
214         __tlb_flush_local();
215 }
216
217 void smp_ptlb_all(void)
218 {
219         on_each_cpu(smp_ptlb_callback, NULL, 1);
220 }
221 EXPORT_SYMBOL(smp_ptlb_all);
222 #endif /* ! CONFIG_64BIT */
223
224 /*
225  * this function sends a 'reschedule' IPI to another CPU.
226  * it goes straight through and wastes no time serializing
227  * anything. Worst case is that we lose a reschedule ...
228  */
229 void smp_send_reschedule(int cpu)
230 {
231         smp_ext_bitcall(cpu, ec_schedule);
232 }
233
234 /*
235  * parameter area for the set/clear control bit callbacks
236  */
237 struct ec_creg_mask_parms {
238         unsigned long orvals[16];
239         unsigned long andvals[16];
240 };
241
242 /*
243  * callback for setting/clearing control bits
244  */
245 static void smp_ctl_bit_callback(void *info)
246 {
247         struct ec_creg_mask_parms *pp = info;
248         unsigned long cregs[16];
249         int i;
250
251         __ctl_store(cregs, 0, 15);
252         for (i = 0; i <= 15; i++)
253                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
254         __ctl_load(cregs, 0, 15);
255 }
256
257 /*
258  * Set a bit in a control register of all cpus
259  */
260 void smp_ctl_set_bit(int cr, int bit)
261 {
262         struct ec_creg_mask_parms parms;
263
264         memset(&parms.orvals, 0, sizeof(parms.orvals));
265         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
266         parms.orvals[cr] = 1 << bit;
267         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
268 }
269 EXPORT_SYMBOL(smp_ctl_set_bit);
270
271 /*
272  * Clear a bit in a control register of all cpus
273  */
274 void smp_ctl_clear_bit(int cr, int bit)
275 {
276         struct ec_creg_mask_parms parms;
277
278         memset(&parms.orvals, 0, sizeof(parms.orvals));
279         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
280         parms.andvals[cr] = ~(1L << bit);
281         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
282 }
283 EXPORT_SYMBOL(smp_ctl_clear_bit);
284
285 #ifdef CONFIG_ZFCPDUMP
286
287 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
288 {
289         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
290                 return;
291         if (cpu >= NR_CPUS) {
292                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
293                            "the dump\n", cpu, NR_CPUS - 1);
294                 return;
295         }
296         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
297         while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
298                 cpu_relax();
299         memcpy_real(zfcpdump_save_areas[cpu],
300                     (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
301                     sizeof(struct save_area));
302 }
303
304 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
305 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
306
307 #else
308
309 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
310
311 #endif /* CONFIG_ZFCPDUMP */
312
313 static int cpu_known(int cpu_id)
314 {
315         int cpu;
316
317         for_each_present_cpu(cpu) {
318                 if (__cpu_logical_map[cpu] == cpu_id)
319                         return 1;
320         }
321         return 0;
322 }
323
324 static int smp_rescan_cpus_sigp(cpumask_t avail)
325 {
326         int cpu_id, logical_cpu;
327
328         logical_cpu = cpumask_first(&avail);
329         if (logical_cpu >= nr_cpu_ids)
330                 return 0;
331         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
332                 if (cpu_known(cpu_id))
333                         continue;
334                 __cpu_logical_map[logical_cpu] = cpu_id;
335                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
336                 if (!cpu_stopped(logical_cpu))
337                         continue;
338                 cpu_set(logical_cpu, cpu_present_map);
339                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
340                 logical_cpu = cpumask_next(logical_cpu, &avail);
341                 if (logical_cpu >= nr_cpu_ids)
342                         break;
343         }
344         return 0;
345 }
346
347 static int smp_rescan_cpus_sclp(cpumask_t avail)
348 {
349         struct sclp_cpu_info *info;
350         int cpu_id, logical_cpu, cpu;
351         int rc;
352
353         logical_cpu = cpumask_first(&avail);
354         if (logical_cpu >= nr_cpu_ids)
355                 return 0;
356         info = kmalloc(sizeof(*info), GFP_KERNEL);
357         if (!info)
358                 return -ENOMEM;
359         rc = sclp_get_cpu_info(info);
360         if (rc)
361                 goto out;
362         for (cpu = 0; cpu < info->combined; cpu++) {
363                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
364                         continue;
365                 cpu_id = info->cpu[cpu].address;
366                 if (cpu_known(cpu_id))
367                         continue;
368                 __cpu_logical_map[logical_cpu] = cpu_id;
369                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
370                 cpu_set(logical_cpu, cpu_present_map);
371                 if (cpu >= info->configured)
372                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
373                 else
374                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
375                 logical_cpu = cpumask_next(logical_cpu, &avail);
376                 if (logical_cpu >= nr_cpu_ids)
377                         break;
378         }
379 out:
380         kfree(info);
381         return rc;
382 }
383
384 static int __smp_rescan_cpus(void)
385 {
386         cpumask_t avail;
387
388         cpus_xor(avail, cpu_possible_map, cpu_present_map);
389         if (smp_use_sigp_detection)
390                 return smp_rescan_cpus_sigp(avail);
391         else
392                 return smp_rescan_cpus_sclp(avail);
393 }
394
395 static void __init smp_detect_cpus(void)
396 {
397         unsigned int cpu, c_cpus, s_cpus;
398         struct sclp_cpu_info *info;
399         u16 boot_cpu_addr, cpu_addr;
400
401         c_cpus = 1;
402         s_cpus = 0;
403         boot_cpu_addr = __cpu_logical_map[0];
404         info = kmalloc(sizeof(*info), GFP_KERNEL);
405         if (!info)
406                 panic("smp_detect_cpus failed to allocate memory\n");
407         /* Use sigp detection algorithm if sclp doesn't work. */
408         if (sclp_get_cpu_info(info)) {
409                 smp_use_sigp_detection = 1;
410                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
411                         if (cpu == boot_cpu_addr)
412                                 continue;
413                         if (!raw_cpu_stopped(cpu))
414                                 continue;
415                         smp_get_save_area(c_cpus, cpu);
416                         c_cpus++;
417                 }
418                 goto out;
419         }
420
421         if (info->has_cpu_type) {
422                 for (cpu = 0; cpu < info->combined; cpu++) {
423                         if (info->cpu[cpu].address == boot_cpu_addr) {
424                                 smp_cpu_type = info->cpu[cpu].type;
425                                 break;
426                         }
427                 }
428         }
429
430         for (cpu = 0; cpu < info->combined; cpu++) {
431                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
432                         continue;
433                 cpu_addr = info->cpu[cpu].address;
434                 if (cpu_addr == boot_cpu_addr)
435                         continue;
436                 if (!raw_cpu_stopped(cpu_addr)) {
437                         s_cpus++;
438                         continue;
439                 }
440                 smp_get_save_area(c_cpus, cpu_addr);
441                 c_cpus++;
442         }
443 out:
444         kfree(info);
445         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
446         get_online_cpus();
447         __smp_rescan_cpus();
448         put_online_cpus();
449 }
450
451 /*
452  *      Activate a secondary processor.
453  */
454 int __cpuinit start_secondary(void *cpuvoid)
455 {
456         /* Setup the cpu */
457         cpu_init();
458         preempt_disable();
459         /* Enable TOD clock interrupts on the secondary cpu. */
460         init_cpu_timer();
461         /* Enable cpu timer interrupts on the secondary cpu. */
462         init_cpu_vtimer();
463         /* Enable pfault pseudo page faults on this cpu. */
464         pfault_init();
465
466         /* call cpu notifiers */
467         notify_cpu_starting(smp_processor_id());
468         /* Mark this cpu as online */
469         ipi_call_lock();
470         cpu_set(smp_processor_id(), cpu_online_map);
471         ipi_call_unlock();
472         /* Switch on interrupts */
473         local_irq_enable();
474         /* cpu_idle will call schedule for us */
475         cpu_idle();
476         return 0;
477 }
478
479 struct create_idle {
480         struct work_struct work;
481         struct task_struct *idle;
482         struct completion done;
483         int cpu;
484 };
485
486 static void __cpuinit smp_fork_idle(struct work_struct *work)
487 {
488         struct create_idle *c_idle;
489
490         c_idle = container_of(work, struct create_idle, work);
491         c_idle->idle = fork_idle(c_idle->cpu);
492         complete(&c_idle->done);
493 }
494
495 static int __cpuinit smp_alloc_lowcore(int cpu)
496 {
497         unsigned long async_stack, panic_stack;
498         struct _lowcore *lowcore;
499
500         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
501         if (!lowcore)
502                 return -ENOMEM;
503         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
504         panic_stack = __get_free_page(GFP_KERNEL);
505         if (!panic_stack || !async_stack)
506                 goto out;
507         memcpy(lowcore, &S390_lowcore, 512);
508         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
509         lowcore->async_stack = async_stack + ASYNC_SIZE;
510         lowcore->panic_stack = panic_stack + PAGE_SIZE;
511
512 #ifndef CONFIG_64BIT
513         if (MACHINE_HAS_IEEE) {
514                 unsigned long save_area;
515
516                 save_area = get_zeroed_page(GFP_KERNEL);
517                 if (!save_area)
518                         goto out;
519                 lowcore->extended_save_area_addr = (u32) save_area;
520         }
521 #else
522         if (vdso_alloc_per_cpu(cpu, lowcore))
523                 goto out;
524 #endif
525         lowcore_ptr[cpu] = lowcore;
526         return 0;
527
528 out:
529         free_page(panic_stack);
530         free_pages(async_stack, ASYNC_ORDER);
531         free_pages((unsigned long) lowcore, LC_ORDER);
532         return -ENOMEM;
533 }
534
535 static void smp_free_lowcore(int cpu)
536 {
537         struct _lowcore *lowcore;
538
539         lowcore = lowcore_ptr[cpu];
540 #ifndef CONFIG_64BIT
541         if (MACHINE_HAS_IEEE)
542                 free_page((unsigned long) lowcore->extended_save_area_addr);
543 #else
544         vdso_free_per_cpu(cpu, lowcore);
545 #endif
546         free_page(lowcore->panic_stack - PAGE_SIZE);
547         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
548         free_pages((unsigned long) lowcore, LC_ORDER);
549         lowcore_ptr[cpu] = NULL;
550 }
551
552 /* Upping and downing of CPUs */
553 int __cpuinit __cpu_up(unsigned int cpu)
554 {
555         struct _lowcore *cpu_lowcore;
556         struct create_idle c_idle;
557         struct task_struct *idle;
558         struct stack_frame *sf;
559         u32 lowcore;
560         int ccode;
561
562         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
563                 return -EIO;
564         idle = current_set[cpu];
565         if (!idle) {
566                 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
567                 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
568                 c_idle.cpu = cpu;
569                 schedule_work(&c_idle.work);
570                 wait_for_completion(&c_idle.done);
571                 if (IS_ERR(c_idle.idle))
572                         return PTR_ERR(c_idle.idle);
573                 idle = c_idle.idle;
574                 current_set[cpu] = c_idle.idle;
575         }
576         init_idle(idle, cpu);
577         if (smp_alloc_lowcore(cpu))
578                 return -ENOMEM;
579         do {
580                 ccode = sigp(cpu, sigp_initial_cpu_reset);
581                 if (ccode == sigp_busy)
582                         udelay(10);
583                 if (ccode == sigp_not_operational)
584                         goto err_out;
585         } while (ccode == sigp_busy);
586
587         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
588         while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
589                 udelay(10);
590
591         cpu_lowcore = lowcore_ptr[cpu];
592         cpu_lowcore->kernel_stack = (unsigned long)
593                 task_stack_page(idle) + THREAD_SIZE;
594         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
595         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
596                                      - sizeof(struct pt_regs)
597                                      - sizeof(struct stack_frame));
598         memset(sf, 0, sizeof(struct stack_frame));
599         sf->gprs[9] = (unsigned long) sf;
600         cpu_lowcore->save_area[15] = (unsigned long) sf;
601         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
602         atomic_inc(&init_mm.context.attach_count);
603         asm volatile(
604                 "       stam    0,15,0(%0)"
605                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
606         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
607         cpu_lowcore->current_task = (unsigned long) idle;
608         cpu_lowcore->cpu_nr = cpu;
609         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
610         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
611         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
612         memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
613                MAX_FACILITY_BIT/8);
614         eieio();
615
616         while (sigp(cpu, sigp_restart) == sigp_busy)
617                 udelay(10);
618
619         while (!cpu_online(cpu))
620                 cpu_relax();
621         return 0;
622
623 err_out:
624         smp_free_lowcore(cpu);
625         return -EIO;
626 }
627
628 static int __init setup_possible_cpus(char *s)
629 {
630         int pcpus, cpu;
631
632         pcpus = simple_strtoul(s, NULL, 0);
633         init_cpu_possible(cpumask_of(0));
634         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
635                 set_cpu_possible(cpu, true);
636         return 0;
637 }
638 early_param("possible_cpus", setup_possible_cpus);
639
640 #ifdef CONFIG_HOTPLUG_CPU
641
642 int __cpu_disable(void)
643 {
644         struct ec_creg_mask_parms cr_parms;
645         int cpu = smp_processor_id();
646
647         cpu_clear(cpu, cpu_online_map);
648
649         /* Disable pfault pseudo page faults on this cpu. */
650         pfault_fini();
651
652         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
653         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
654
655         /* disable all external interrupts */
656         cr_parms.orvals[0] = 0;
657         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
658                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
659         /* disable all I/O interrupts */
660         cr_parms.orvals[6] = 0;
661         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
662                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
663         /* disable most machine checks */
664         cr_parms.orvals[14] = 0;
665         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
666                                  1 << 25 | 1 << 24);
667
668         smp_ctl_bit_callback(&cr_parms);
669
670         return 0;
671 }
672
673 void __cpu_die(unsigned int cpu)
674 {
675         /* Wait until target cpu is down */
676         while (!cpu_stopped(cpu))
677                 cpu_relax();
678         while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
679                 udelay(10);
680         smp_free_lowcore(cpu);
681         atomic_dec(&init_mm.context.attach_count);
682 }
683
684 void cpu_die(void)
685 {
686         idle_task_exit();
687         while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
688                 cpu_relax();
689         for (;;);
690 }
691
692 #endif /* CONFIG_HOTPLUG_CPU */
693
694 void __init smp_prepare_cpus(unsigned int max_cpus)
695 {
696 #ifndef CONFIG_64BIT
697         unsigned long save_area = 0;
698 #endif
699         unsigned long async_stack, panic_stack;
700         struct _lowcore *lowcore;
701
702         smp_detect_cpus();
703
704         /* request the 0x1201 emergency signal external interrupt */
705         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
706                 panic("Couldn't request external interrupt 0x1201");
707
708         /* Reallocate current lowcore, but keep its contents. */
709         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
710         panic_stack = __get_free_page(GFP_KERNEL);
711         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
712         BUG_ON(!lowcore || !panic_stack || !async_stack);
713 #ifndef CONFIG_64BIT
714         if (MACHINE_HAS_IEEE)
715                 save_area = get_zeroed_page(GFP_KERNEL);
716 #endif
717         local_irq_disable();
718         local_mcck_disable();
719         lowcore_ptr[smp_processor_id()] = lowcore;
720         *lowcore = S390_lowcore;
721         lowcore->panic_stack = panic_stack + PAGE_SIZE;
722         lowcore->async_stack = async_stack + ASYNC_SIZE;
723 #ifndef CONFIG_64BIT
724         if (MACHINE_HAS_IEEE)
725                 lowcore->extended_save_area_addr = (u32) save_area;
726 #endif
727         set_prefix((u32)(unsigned long) lowcore);
728         local_mcck_enable();
729         local_irq_enable();
730 #ifdef CONFIG_64BIT
731         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
732                 BUG();
733 #endif
734 }
735
736 void __init smp_prepare_boot_cpu(void)
737 {
738         BUG_ON(smp_processor_id() != 0);
739
740         current_thread_info()->cpu = 0;
741         cpu_set(0, cpu_present_map);
742         cpu_set(0, cpu_online_map);
743         S390_lowcore.percpu_offset = __per_cpu_offset[0];
744         current_set[0] = current;
745         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
746         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
747 }
748
749 void __init smp_cpus_done(unsigned int max_cpus)
750 {
751 }
752
753 void __init smp_setup_processor_id(void)
754 {
755         S390_lowcore.cpu_nr = 0;
756         __cpu_logical_map[0] = stap();
757 }
758
759 /*
760  * the frequency of the profiling timer can be changed
761  * by writing a multiplier value into /proc/profile.
762  *
763  * usually you want to run this on all CPUs ;)
764  */
765 int setup_profiling_timer(unsigned int multiplier)
766 {
767         return 0;
768 }
769
770 #ifdef CONFIG_HOTPLUG_CPU
771 static ssize_t cpu_configure_show(struct sys_device *dev,
772                                 struct sysdev_attribute *attr, char *buf)
773 {
774         ssize_t count;
775
776         mutex_lock(&smp_cpu_state_mutex);
777         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
778         mutex_unlock(&smp_cpu_state_mutex);
779         return count;
780 }
781
782 static ssize_t cpu_configure_store(struct sys_device *dev,
783                                   struct sysdev_attribute *attr,
784                                   const char *buf, size_t count)
785 {
786         int cpu = dev->id;
787         int val, rc;
788         char delim;
789
790         if (sscanf(buf, "%d %c", &val, &delim) != 1)
791                 return -EINVAL;
792         if (val != 0 && val != 1)
793                 return -EINVAL;
794
795         get_online_cpus();
796         mutex_lock(&smp_cpu_state_mutex);
797         rc = -EBUSY;
798         /* disallow configuration changes of online cpus and cpu 0 */
799         if (cpu_online(cpu) || cpu == 0)
800                 goto out;
801         rc = 0;
802         switch (val) {
803         case 0:
804                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
805                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
806                         if (!rc) {
807                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
808                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
809                         }
810                 }
811                 break;
812         case 1:
813                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
814                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
815                         if (!rc) {
816                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
817                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
818                         }
819                 }
820                 break;
821         default:
822                 break;
823         }
824 out:
825         mutex_unlock(&smp_cpu_state_mutex);
826         put_online_cpus();
827         return rc ? rc : count;
828 }
829 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
830 #endif /* CONFIG_HOTPLUG_CPU */
831
832 static ssize_t cpu_polarization_show(struct sys_device *dev,
833                                      struct sysdev_attribute *attr, char *buf)
834 {
835         int cpu = dev->id;
836         ssize_t count;
837
838         mutex_lock(&smp_cpu_state_mutex);
839         switch (smp_cpu_polarization[cpu]) {
840         case POLARIZATION_HRZ:
841                 count = sprintf(buf, "horizontal\n");
842                 break;
843         case POLARIZATION_VL:
844                 count = sprintf(buf, "vertical:low\n");
845                 break;
846         case POLARIZATION_VM:
847                 count = sprintf(buf, "vertical:medium\n");
848                 break;
849         case POLARIZATION_VH:
850                 count = sprintf(buf, "vertical:high\n");
851                 break;
852         default:
853                 count = sprintf(buf, "unknown\n");
854                 break;
855         }
856         mutex_unlock(&smp_cpu_state_mutex);
857         return count;
858 }
859 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
860
861 static ssize_t show_cpu_address(struct sys_device *dev,
862                                 struct sysdev_attribute *attr, char *buf)
863 {
864         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
865 }
866 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
867
868
869 static struct attribute *cpu_common_attrs[] = {
870 #ifdef CONFIG_HOTPLUG_CPU
871         &attr_configure.attr,
872 #endif
873         &attr_address.attr,
874         &attr_polarization.attr,
875         NULL,
876 };
877
878 static struct attribute_group cpu_common_attr_group = {
879         .attrs = cpu_common_attrs,
880 };
881
882 static ssize_t show_capability(struct sys_device *dev,
883                                 struct sysdev_attribute *attr, char *buf)
884 {
885         unsigned int capability;
886         int rc;
887
888         rc = get_cpu_capability(&capability);
889         if (rc)
890                 return rc;
891         return sprintf(buf, "%u\n", capability);
892 }
893 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
894
895 static ssize_t show_idle_count(struct sys_device *dev,
896                                 struct sysdev_attribute *attr, char *buf)
897 {
898         struct s390_idle_data *idle;
899         unsigned long long idle_count;
900         unsigned int sequence;
901
902         idle = &per_cpu(s390_idle, dev->id);
903 repeat:
904         sequence = idle->sequence;
905         smp_rmb();
906         if (sequence & 1)
907                 goto repeat;
908         idle_count = idle->idle_count;
909         if (idle->idle_enter)
910                 idle_count++;
911         smp_rmb();
912         if (idle->sequence != sequence)
913                 goto repeat;
914         return sprintf(buf, "%llu\n", idle_count);
915 }
916 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
917
918 static ssize_t show_idle_time(struct sys_device *dev,
919                                 struct sysdev_attribute *attr, char *buf)
920 {
921         struct s390_idle_data *idle;
922         unsigned long long now, idle_time, idle_enter;
923         unsigned int sequence;
924
925         idle = &per_cpu(s390_idle, dev->id);
926         now = get_clock();
927 repeat:
928         sequence = idle->sequence;
929         smp_rmb();
930         if (sequence & 1)
931                 goto repeat;
932         idle_time = idle->idle_time;
933         idle_enter = idle->idle_enter;
934         if (idle_enter != 0ULL && idle_enter < now)
935                 idle_time += now - idle_enter;
936         smp_rmb();
937         if (idle->sequence != sequence)
938                 goto repeat;
939         return sprintf(buf, "%llu\n", idle_time >> 12);
940 }
941 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
942
943 static struct attribute *cpu_online_attrs[] = {
944         &attr_capability.attr,
945         &attr_idle_count.attr,
946         &attr_idle_time_us.attr,
947         NULL,
948 };
949
950 static struct attribute_group cpu_online_attr_group = {
951         .attrs = cpu_online_attrs,
952 };
953
954 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
955                                     unsigned long action, void *hcpu)
956 {
957         unsigned int cpu = (unsigned int)(long)hcpu;
958         struct cpu *c = &per_cpu(cpu_devices, cpu);
959         struct sys_device *s = &c->sysdev;
960         struct s390_idle_data *idle;
961         int err = 0;
962
963         switch (action) {
964         case CPU_ONLINE:
965         case CPU_ONLINE_FROZEN:
966                 idle = &per_cpu(s390_idle, cpu);
967                 memset(idle, 0, sizeof(struct s390_idle_data));
968                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
969                 break;
970         case CPU_DEAD:
971         case CPU_DEAD_FROZEN:
972                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
973                 break;
974         }
975         return notifier_from_errno(err);
976 }
977
978 static struct notifier_block __cpuinitdata smp_cpu_nb = {
979         .notifier_call = smp_cpu_notify,
980 };
981
982 static int __devinit smp_add_present_cpu(int cpu)
983 {
984         struct cpu *c = &per_cpu(cpu_devices, cpu);
985         struct sys_device *s = &c->sysdev;
986         int rc;
987
988         c->hotpluggable = 1;
989         rc = register_cpu(c, cpu);
990         if (rc)
991                 goto out;
992         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
993         if (rc)
994                 goto out_cpu;
995         if (!cpu_online(cpu))
996                 goto out;
997         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
998         if (!rc)
999                 return 0;
1000         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1001 out_cpu:
1002 #ifdef CONFIG_HOTPLUG_CPU
1003         unregister_cpu(c);
1004 #endif
1005 out:
1006         return rc;
1007 }
1008
1009 #ifdef CONFIG_HOTPLUG_CPU
1010
1011 int __ref smp_rescan_cpus(void)
1012 {
1013         cpumask_t newcpus;
1014         int cpu;
1015         int rc;
1016
1017         get_online_cpus();
1018         mutex_lock(&smp_cpu_state_mutex);
1019         newcpus = cpu_present_map;
1020         rc = __smp_rescan_cpus();
1021         if (rc)
1022                 goto out;
1023         cpus_andnot(newcpus, cpu_present_map, newcpus);
1024         for_each_cpu_mask(cpu, newcpus) {
1025                 rc = smp_add_present_cpu(cpu);
1026                 if (rc)
1027                         cpu_clear(cpu, cpu_present_map);
1028         }
1029         rc = 0;
1030 out:
1031         mutex_unlock(&smp_cpu_state_mutex);
1032         put_online_cpus();
1033         if (!cpus_empty(newcpus))
1034                 topology_schedule_update();
1035         return rc;
1036 }
1037
1038 static ssize_t __ref rescan_store(struct sysdev_class *class,
1039                                   struct sysdev_class_attribute *attr,
1040                                   const char *buf,
1041                                   size_t count)
1042 {
1043         int rc;
1044
1045         rc = smp_rescan_cpus();
1046         return rc ? rc : count;
1047 }
1048 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1049 #endif /* CONFIG_HOTPLUG_CPU */
1050
1051 static ssize_t dispatching_show(struct sysdev_class *class,
1052                                 struct sysdev_class_attribute *attr,
1053                                 char *buf)
1054 {
1055         ssize_t count;
1056
1057         mutex_lock(&smp_cpu_state_mutex);
1058         count = sprintf(buf, "%d\n", cpu_management);
1059         mutex_unlock(&smp_cpu_state_mutex);
1060         return count;
1061 }
1062
1063 static ssize_t dispatching_store(struct sysdev_class *dev,
1064                                  struct sysdev_class_attribute *attr,
1065                                  const char *buf,
1066                                  size_t count)
1067 {
1068         int val, rc;
1069         char delim;
1070
1071         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1072                 return -EINVAL;
1073         if (val != 0 && val != 1)
1074                 return -EINVAL;
1075         rc = 0;
1076         get_online_cpus();
1077         mutex_lock(&smp_cpu_state_mutex);
1078         if (cpu_management == val)
1079                 goto out;
1080         rc = topology_set_cpu_management(val);
1081         if (!rc)
1082                 cpu_management = val;
1083 out:
1084         mutex_unlock(&smp_cpu_state_mutex);
1085         put_online_cpus();
1086         return rc ? rc : count;
1087 }
1088 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1089                          dispatching_store);
1090
1091 static int __init topology_init(void)
1092 {
1093         int cpu;
1094         int rc;
1095
1096         register_cpu_notifier(&smp_cpu_nb);
1097
1098 #ifdef CONFIG_HOTPLUG_CPU
1099         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1100         if (rc)
1101                 return rc;
1102 #endif
1103         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1104         if (rc)
1105                 return rc;
1106         for_each_present_cpu(cpu) {
1107                 rc = smp_add_present_cpu(cpu);
1108                 if (rc)
1109                         return rc;
1110         }
1111         return 0;
1112 }
1113 subsys_initcall(topology_init);