Merge branch 'stable/bug.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/workqueue.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/delay.h>
34 #include <linux/cache.h>
35 #include <linux/interrupt.h>
36 #include <linux/irqflags.h>
37 #include <linux/cpu.h>
38 #include <linux/timex.h>
39 #include <linux/bootmem.h>
40 #include <linux/slab.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/ipl.h>
43 #include <asm/setup.h>
44 #include <asm/sigp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/irq.h>
47 #include <asm/cpcmd.h>
48 #include <asm/tlbflush.h>
49 #include <asm/timer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/cputime.h>
53 #include <asm/vdso.h>
54 #include <asm/cpu.h>
55 #include "entry.h"
56
57 /* logical cpu to cpu address */
58 unsigned short __cpu_logical_map[NR_CPUS];
59
60 static struct task_struct *current_set[NR_CPUS];
61
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
64
65 enum s390_cpu_state {
66         CPU_STATE_STANDBY,
67         CPU_STATE_CONFIGURED,
68 };
69
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
74
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
76
77 static void smp_ext_bitcall(int, int);
78
79 static int raw_cpu_stopped(int cpu)
80 {
81         u32 status;
82
83         switch (raw_sigp_ps(&status, 0, cpu, sigp_sense)) {
84         case sigp_status_stored:
85                 /* Check for stopped and check stop state */
86                 if (status & 0x50)
87                         return 1;
88                 break;
89         default:
90                 break;
91         }
92         return 0;
93 }
94
95 static inline int cpu_stopped(int cpu)
96 {
97         return raw_cpu_stopped(cpu_logical_map(cpu));
98 }
99
100 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
101 {
102         struct _lowcore *lc, *current_lc;
103         struct stack_frame *sf;
104         struct pt_regs *regs;
105         unsigned long sp;
106
107         if (smp_processor_id() == 0)
108                 func(data);
109         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
110         /* Disable lowcore protection */
111         __ctl_clear_bit(0, 28);
112         current_lc = lowcore_ptr[smp_processor_id()];
113         lc = lowcore_ptr[0];
114         if (!lc)
115                 lc = current_lc;
116         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
117         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
118         if (!cpu_online(0))
119                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
120         while (sigp(0, sigp_stop_and_store_status) == sigp_busy)
121                 cpu_relax();
122         sp = lc->panic_stack;
123         sp -= sizeof(struct pt_regs);
124         regs = (struct pt_regs *) sp;
125         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
126         regs->psw = lc->psw_save_area;
127         sp -= STACK_FRAME_OVERHEAD;
128         sf = (struct stack_frame *) sp;
129         sf->back_chain = regs->gprs[15];
130         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
131 }
132
133 void smp_send_stop(void)
134 {
135         int cpu, rc;
136
137         /* Disable all interrupts/machine checks */
138         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
139         trace_hardirqs_off();
140
141         /* stop all processors */
142         for_each_online_cpu(cpu) {
143                 if (cpu == smp_processor_id())
144                         continue;
145                 do {
146                         rc = sigp(cpu, sigp_stop);
147                 } while (rc == sigp_busy);
148
149                 while (!cpu_stopped(cpu))
150                         cpu_relax();
151         }
152 }
153
154 /*
155  * This is the main routine where commands issued by other
156  * cpus are handled.
157  */
158
159 static void do_ext_call_interrupt(unsigned int ext_int_code,
160                                   unsigned int param32, unsigned long param64)
161 {
162         unsigned long bits;
163
164         kstat_cpu(smp_processor_id()).irqs[EXTINT_IPI]++;
165         /*
166          * handle bit signal external calls
167          */
168         bits = xchg(&S390_lowcore.ext_call_fast, 0);
169
170         if (test_bit(ec_schedule, &bits))
171                 scheduler_ipi();
172
173         if (test_bit(ec_call_function, &bits))
174                 generic_smp_call_function_interrupt();
175
176         if (test_bit(ec_call_function_single, &bits))
177                 generic_smp_call_function_single_interrupt();
178 }
179
180 /*
181  * Send an external call sigp to another cpu and return without waiting
182  * for its completion.
183  */
184 static void smp_ext_bitcall(int cpu, int sig)
185 {
186         /*
187          * Set signaling bit in lowcore of target cpu and kick it
188          */
189         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
190         while (sigp(cpu, sigp_emergency_signal) == sigp_busy)
191                 udelay(10);
192 }
193
194 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
195 {
196         int cpu;
197
198         for_each_cpu(cpu, mask)
199                 smp_ext_bitcall(cpu, ec_call_function);
200 }
201
202 void arch_send_call_function_single_ipi(int cpu)
203 {
204         smp_ext_bitcall(cpu, ec_call_function_single);
205 }
206
207 #ifndef CONFIG_64BIT
208 /*
209  * this function sends a 'purge tlb' signal to another CPU.
210  */
211 static void smp_ptlb_callback(void *info)
212 {
213         __tlb_flush_local();
214 }
215
216 void smp_ptlb_all(void)
217 {
218         on_each_cpu(smp_ptlb_callback, NULL, 1);
219 }
220 EXPORT_SYMBOL(smp_ptlb_all);
221 #endif /* ! CONFIG_64BIT */
222
223 /*
224  * this function sends a 'reschedule' IPI to another CPU.
225  * it goes straight through and wastes no time serializing
226  * anything. Worst case is that we lose a reschedule ...
227  */
228 void smp_send_reschedule(int cpu)
229 {
230         smp_ext_bitcall(cpu, ec_schedule);
231 }
232
233 /*
234  * parameter area for the set/clear control bit callbacks
235  */
236 struct ec_creg_mask_parms {
237         unsigned long orvals[16];
238         unsigned long andvals[16];
239 };
240
241 /*
242  * callback for setting/clearing control bits
243  */
244 static void smp_ctl_bit_callback(void *info)
245 {
246         struct ec_creg_mask_parms *pp = info;
247         unsigned long cregs[16];
248         int i;
249
250         __ctl_store(cregs, 0, 15);
251         for (i = 0; i <= 15; i++)
252                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
253         __ctl_load(cregs, 0, 15);
254 }
255
256 /*
257  * Set a bit in a control register of all cpus
258  */
259 void smp_ctl_set_bit(int cr, int bit)
260 {
261         struct ec_creg_mask_parms parms;
262
263         memset(&parms.orvals, 0, sizeof(parms.orvals));
264         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
265         parms.orvals[cr] = 1UL << bit;
266         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
267 }
268 EXPORT_SYMBOL(smp_ctl_set_bit);
269
270 /*
271  * Clear a bit in a control register of all cpus
272  */
273 void smp_ctl_clear_bit(int cr, int bit)
274 {
275         struct ec_creg_mask_parms parms;
276
277         memset(&parms.orvals, 0, sizeof(parms.orvals));
278         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
279         parms.andvals[cr] = ~(1UL << bit);
280         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
281 }
282 EXPORT_SYMBOL(smp_ctl_clear_bit);
283
284 #ifdef CONFIG_ZFCPDUMP
285
286 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
287 {
288         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
289                 return;
290         if (cpu >= NR_CPUS) {
291                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
292                            "the dump\n", cpu, NR_CPUS - 1);
293                 return;
294         }
295         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
296         while (raw_sigp(phy_cpu, sigp_stop_and_store_status) == sigp_busy)
297                 cpu_relax();
298         memcpy_real(zfcpdump_save_areas[cpu],
299                     (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
300                     sizeof(struct save_area));
301 }
302
303 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
304 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
305
306 #else
307
308 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
309
310 #endif /* CONFIG_ZFCPDUMP */
311
312 static int cpu_known(int cpu_id)
313 {
314         int cpu;
315
316         for_each_present_cpu(cpu) {
317                 if (__cpu_logical_map[cpu] == cpu_id)
318                         return 1;
319         }
320         return 0;
321 }
322
323 static int smp_rescan_cpus_sigp(cpumask_t avail)
324 {
325         int cpu_id, logical_cpu;
326
327         logical_cpu = cpumask_first(&avail);
328         if (logical_cpu >= nr_cpu_ids)
329                 return 0;
330         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
331                 if (cpu_known(cpu_id))
332                         continue;
333                 __cpu_logical_map[logical_cpu] = cpu_id;
334                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
335                 if (!cpu_stopped(logical_cpu))
336                         continue;
337                 set_cpu_present(logical_cpu, true);
338                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
339                 logical_cpu = cpumask_next(logical_cpu, &avail);
340                 if (logical_cpu >= nr_cpu_ids)
341                         break;
342         }
343         return 0;
344 }
345
346 static int smp_rescan_cpus_sclp(cpumask_t avail)
347 {
348         struct sclp_cpu_info *info;
349         int cpu_id, logical_cpu, cpu;
350         int rc;
351
352         logical_cpu = cpumask_first(&avail);
353         if (logical_cpu >= nr_cpu_ids)
354                 return 0;
355         info = kmalloc(sizeof(*info), GFP_KERNEL);
356         if (!info)
357                 return -ENOMEM;
358         rc = sclp_get_cpu_info(info);
359         if (rc)
360                 goto out;
361         for (cpu = 0; cpu < info->combined; cpu++) {
362                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
363                         continue;
364                 cpu_id = info->cpu[cpu].address;
365                 if (cpu_known(cpu_id))
366                         continue;
367                 __cpu_logical_map[logical_cpu] = cpu_id;
368                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
369                 set_cpu_present(logical_cpu, true);
370                 if (cpu >= info->configured)
371                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
372                 else
373                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
374                 logical_cpu = cpumask_next(logical_cpu, &avail);
375                 if (logical_cpu >= nr_cpu_ids)
376                         break;
377         }
378 out:
379         kfree(info);
380         return rc;
381 }
382
383 static int __smp_rescan_cpus(void)
384 {
385         cpumask_t avail;
386
387         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
388         if (smp_use_sigp_detection)
389                 return smp_rescan_cpus_sigp(avail);
390         else
391                 return smp_rescan_cpus_sclp(avail);
392 }
393
394 static void __init smp_detect_cpus(void)
395 {
396         unsigned int cpu, c_cpus, s_cpus;
397         struct sclp_cpu_info *info;
398         u16 boot_cpu_addr, cpu_addr;
399
400         c_cpus = 1;
401         s_cpus = 0;
402         boot_cpu_addr = __cpu_logical_map[0];
403         info = kmalloc(sizeof(*info), GFP_KERNEL);
404         if (!info)
405                 panic("smp_detect_cpus failed to allocate memory\n");
406         /* Use sigp detection algorithm if sclp doesn't work. */
407         if (sclp_get_cpu_info(info)) {
408                 smp_use_sigp_detection = 1;
409                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
410                         if (cpu == boot_cpu_addr)
411                                 continue;
412                         if (!raw_cpu_stopped(cpu))
413                                 continue;
414                         smp_get_save_area(c_cpus, cpu);
415                         c_cpus++;
416                 }
417                 goto out;
418         }
419
420         if (info->has_cpu_type) {
421                 for (cpu = 0; cpu < info->combined; cpu++) {
422                         if (info->cpu[cpu].address == boot_cpu_addr) {
423                                 smp_cpu_type = info->cpu[cpu].type;
424                                 break;
425                         }
426                 }
427         }
428
429         for (cpu = 0; cpu < info->combined; cpu++) {
430                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
431                         continue;
432                 cpu_addr = info->cpu[cpu].address;
433                 if (cpu_addr == boot_cpu_addr)
434                         continue;
435                 if (!raw_cpu_stopped(cpu_addr)) {
436                         s_cpus++;
437                         continue;
438                 }
439                 smp_get_save_area(c_cpus, cpu_addr);
440                 c_cpus++;
441         }
442 out:
443         kfree(info);
444         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
445         get_online_cpus();
446         __smp_rescan_cpus();
447         put_online_cpus();
448 }
449
450 /*
451  *      Activate a secondary processor.
452  */
453 int __cpuinit start_secondary(void *cpuvoid)
454 {
455         /* Setup the cpu */
456         cpu_init();
457         preempt_disable();
458         /* Enable TOD clock interrupts on the secondary cpu. */
459         init_cpu_timer();
460         /* Enable cpu timer interrupts on the secondary cpu. */
461         init_cpu_vtimer();
462         /* Enable pfault pseudo page faults on this cpu. */
463         pfault_init();
464
465         /* call cpu notifiers */
466         notify_cpu_starting(smp_processor_id());
467         /* Mark this cpu as online */
468         ipi_call_lock();
469         set_cpu_online(smp_processor_id(), true);
470         ipi_call_unlock();
471         /* Switch on interrupts */
472         local_irq_enable();
473         /* cpu_idle will call schedule for us */
474         cpu_idle();
475         return 0;
476 }
477
478 struct create_idle {
479         struct work_struct work;
480         struct task_struct *idle;
481         struct completion done;
482         int cpu;
483 };
484
485 static void __cpuinit smp_fork_idle(struct work_struct *work)
486 {
487         struct create_idle *c_idle;
488
489         c_idle = container_of(work, struct create_idle, work);
490         c_idle->idle = fork_idle(c_idle->cpu);
491         complete(&c_idle->done);
492 }
493
494 static int __cpuinit smp_alloc_lowcore(int cpu)
495 {
496         unsigned long async_stack, panic_stack;
497         struct _lowcore *lowcore;
498
499         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
500         if (!lowcore)
501                 return -ENOMEM;
502         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
503         panic_stack = __get_free_page(GFP_KERNEL);
504         if (!panic_stack || !async_stack)
505                 goto out;
506         memcpy(lowcore, &S390_lowcore, 512);
507         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
508         lowcore->async_stack = async_stack + ASYNC_SIZE;
509         lowcore->panic_stack = panic_stack + PAGE_SIZE;
510
511 #ifndef CONFIG_64BIT
512         if (MACHINE_HAS_IEEE) {
513                 unsigned long save_area;
514
515                 save_area = get_zeroed_page(GFP_KERNEL);
516                 if (!save_area)
517                         goto out;
518                 lowcore->extended_save_area_addr = (u32) save_area;
519         }
520 #else
521         if (vdso_alloc_per_cpu(cpu, lowcore))
522                 goto out;
523 #endif
524         lowcore_ptr[cpu] = lowcore;
525         return 0;
526
527 out:
528         free_page(panic_stack);
529         free_pages(async_stack, ASYNC_ORDER);
530         free_pages((unsigned long) lowcore, LC_ORDER);
531         return -ENOMEM;
532 }
533
534 static void smp_free_lowcore(int cpu)
535 {
536         struct _lowcore *lowcore;
537
538         lowcore = lowcore_ptr[cpu];
539 #ifndef CONFIG_64BIT
540         if (MACHINE_HAS_IEEE)
541                 free_page((unsigned long) lowcore->extended_save_area_addr);
542 #else
543         vdso_free_per_cpu(cpu, lowcore);
544 #endif
545         free_page(lowcore->panic_stack - PAGE_SIZE);
546         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
547         free_pages((unsigned long) lowcore, LC_ORDER);
548         lowcore_ptr[cpu] = NULL;
549 }
550
551 /* Upping and downing of CPUs */
552 int __cpuinit __cpu_up(unsigned int cpu)
553 {
554         struct _lowcore *cpu_lowcore;
555         struct create_idle c_idle;
556         struct task_struct *idle;
557         struct stack_frame *sf;
558         u32 lowcore;
559         int ccode;
560
561         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
562                 return -EIO;
563         idle = current_set[cpu];
564         if (!idle) {
565                 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
566                 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
567                 c_idle.cpu = cpu;
568                 schedule_work(&c_idle.work);
569                 wait_for_completion(&c_idle.done);
570                 if (IS_ERR(c_idle.idle))
571                         return PTR_ERR(c_idle.idle);
572                 idle = c_idle.idle;
573                 current_set[cpu] = c_idle.idle;
574         }
575         init_idle(idle, cpu);
576         if (smp_alloc_lowcore(cpu))
577                 return -ENOMEM;
578         do {
579                 ccode = sigp(cpu, sigp_initial_cpu_reset);
580                 if (ccode == sigp_busy)
581                         udelay(10);
582                 if (ccode == sigp_not_operational)
583                         goto err_out;
584         } while (ccode == sigp_busy);
585
586         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
587         while (sigp_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
588                 udelay(10);
589
590         cpu_lowcore = lowcore_ptr[cpu];
591         cpu_lowcore->kernel_stack = (unsigned long)
592                 task_stack_page(idle) + THREAD_SIZE;
593         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
594         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
595                                      - sizeof(struct pt_regs)
596                                      - sizeof(struct stack_frame));
597         memset(sf, 0, sizeof(struct stack_frame));
598         sf->gprs[9] = (unsigned long) sf;
599         cpu_lowcore->save_area[15] = (unsigned long) sf;
600         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
601         atomic_inc(&init_mm.context.attach_count);
602         asm volatile(
603                 "       stam    0,15,0(%0)"
604                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
605         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
606         cpu_lowcore->current_task = (unsigned long) idle;
607         cpu_lowcore->cpu_nr = cpu;
608         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
609         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
610         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
611         memcpy(cpu_lowcore->stfle_fac_list, S390_lowcore.stfle_fac_list,
612                MAX_FACILITY_BIT/8);
613         eieio();
614
615         while (sigp(cpu, sigp_restart) == sigp_busy)
616                 udelay(10);
617
618         while (!cpu_online(cpu))
619                 cpu_relax();
620         return 0;
621
622 err_out:
623         smp_free_lowcore(cpu);
624         return -EIO;
625 }
626
627 static int __init setup_possible_cpus(char *s)
628 {
629         int pcpus, cpu;
630
631         pcpus = simple_strtoul(s, NULL, 0);
632         init_cpu_possible(cpumask_of(0));
633         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
634                 set_cpu_possible(cpu, true);
635         return 0;
636 }
637 early_param("possible_cpus", setup_possible_cpus);
638
639 #ifdef CONFIG_HOTPLUG_CPU
640
641 int __cpu_disable(void)
642 {
643         struct ec_creg_mask_parms cr_parms;
644         int cpu = smp_processor_id();
645
646         set_cpu_online(cpu, false);
647
648         /* Disable pfault pseudo page faults on this cpu. */
649         pfault_fini();
650
651         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
652         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
653
654         /* disable all external interrupts */
655         cr_parms.orvals[0] = 0;
656         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 11 |
657                                 1 << 10 | 1 <<  9 | 1 <<  6 | 1 <<  4);
658         /* disable all I/O interrupts */
659         cr_parms.orvals[6] = 0;
660         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
661                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
662         /* disable most machine checks */
663         cr_parms.orvals[14] = 0;
664         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
665                                  1 << 25 | 1 << 24);
666
667         smp_ctl_bit_callback(&cr_parms);
668
669         return 0;
670 }
671
672 void __cpu_die(unsigned int cpu)
673 {
674         /* Wait until target cpu is down */
675         while (!cpu_stopped(cpu))
676                 cpu_relax();
677         while (sigp_p(0, cpu, sigp_set_prefix) == sigp_busy)
678                 udelay(10);
679         smp_free_lowcore(cpu);
680         atomic_dec(&init_mm.context.attach_count);
681 }
682
683 void __noreturn cpu_die(void)
684 {
685         idle_task_exit();
686         while (sigp(smp_processor_id(), sigp_stop) == sigp_busy)
687                 cpu_relax();
688         for (;;);
689 }
690
691 #endif /* CONFIG_HOTPLUG_CPU */
692
693 void __init smp_prepare_cpus(unsigned int max_cpus)
694 {
695 #ifndef CONFIG_64BIT
696         unsigned long save_area = 0;
697 #endif
698         unsigned long async_stack, panic_stack;
699         struct _lowcore *lowcore;
700
701         smp_detect_cpus();
702
703         /* request the 0x1201 emergency signal external interrupt */
704         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
705                 panic("Couldn't request external interrupt 0x1201");
706
707         /* Reallocate current lowcore, but keep its contents. */
708         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
709         panic_stack = __get_free_page(GFP_KERNEL);
710         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
711         BUG_ON(!lowcore || !panic_stack || !async_stack);
712 #ifndef CONFIG_64BIT
713         if (MACHINE_HAS_IEEE)
714                 save_area = get_zeroed_page(GFP_KERNEL);
715 #endif
716         local_irq_disable();
717         local_mcck_disable();
718         lowcore_ptr[smp_processor_id()] = lowcore;
719         *lowcore = S390_lowcore;
720         lowcore->panic_stack = panic_stack + PAGE_SIZE;
721         lowcore->async_stack = async_stack + ASYNC_SIZE;
722 #ifndef CONFIG_64BIT
723         if (MACHINE_HAS_IEEE)
724                 lowcore->extended_save_area_addr = (u32) save_area;
725 #endif
726         set_prefix((u32)(unsigned long) lowcore);
727         local_mcck_enable();
728         local_irq_enable();
729 #ifdef CONFIG_64BIT
730         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
731                 BUG();
732 #endif
733 }
734
735 void __init smp_prepare_boot_cpu(void)
736 {
737         BUG_ON(smp_processor_id() != 0);
738
739         current_thread_info()->cpu = 0;
740         set_cpu_present(0, true);
741         set_cpu_online(0, true);
742         S390_lowcore.percpu_offset = __per_cpu_offset[0];
743         current_set[0] = current;
744         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
745         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
746 }
747
748 void __init smp_cpus_done(unsigned int max_cpus)
749 {
750 }
751
752 void __init smp_setup_processor_id(void)
753 {
754         S390_lowcore.cpu_nr = 0;
755         __cpu_logical_map[0] = stap();
756 }
757
758 /*
759  * the frequency of the profiling timer can be changed
760  * by writing a multiplier value into /proc/profile.
761  *
762  * usually you want to run this on all CPUs ;)
763  */
764 int setup_profiling_timer(unsigned int multiplier)
765 {
766         return 0;
767 }
768
769 #ifdef CONFIG_HOTPLUG_CPU
770 static ssize_t cpu_configure_show(struct sys_device *dev,
771                                 struct sysdev_attribute *attr, char *buf)
772 {
773         ssize_t count;
774
775         mutex_lock(&smp_cpu_state_mutex);
776         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
777         mutex_unlock(&smp_cpu_state_mutex);
778         return count;
779 }
780
781 static ssize_t cpu_configure_store(struct sys_device *dev,
782                                   struct sysdev_attribute *attr,
783                                   const char *buf, size_t count)
784 {
785         int cpu = dev->id;
786         int val, rc;
787         char delim;
788
789         if (sscanf(buf, "%d %c", &val, &delim) != 1)
790                 return -EINVAL;
791         if (val != 0 && val != 1)
792                 return -EINVAL;
793
794         get_online_cpus();
795         mutex_lock(&smp_cpu_state_mutex);
796         rc = -EBUSY;
797         /* disallow configuration changes of online cpus and cpu 0 */
798         if (cpu_online(cpu) || cpu == 0)
799                 goto out;
800         rc = 0;
801         switch (val) {
802         case 0:
803                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
804                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
805                         if (!rc) {
806                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
807                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
808                         }
809                 }
810                 break;
811         case 1:
812                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
813                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
814                         if (!rc) {
815                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
816                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
817                         }
818                 }
819                 break;
820         default:
821                 break;
822         }
823 out:
824         mutex_unlock(&smp_cpu_state_mutex);
825         put_online_cpus();
826         return rc ? rc : count;
827 }
828 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
829 #endif /* CONFIG_HOTPLUG_CPU */
830
831 static ssize_t cpu_polarization_show(struct sys_device *dev,
832                                      struct sysdev_attribute *attr, char *buf)
833 {
834         int cpu = dev->id;
835         ssize_t count;
836
837         mutex_lock(&smp_cpu_state_mutex);
838         switch (smp_cpu_polarization[cpu]) {
839         case POLARIZATION_HRZ:
840                 count = sprintf(buf, "horizontal\n");
841                 break;
842         case POLARIZATION_VL:
843                 count = sprintf(buf, "vertical:low\n");
844                 break;
845         case POLARIZATION_VM:
846                 count = sprintf(buf, "vertical:medium\n");
847                 break;
848         case POLARIZATION_VH:
849                 count = sprintf(buf, "vertical:high\n");
850                 break;
851         default:
852                 count = sprintf(buf, "unknown\n");
853                 break;
854         }
855         mutex_unlock(&smp_cpu_state_mutex);
856         return count;
857 }
858 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
859
860 static ssize_t show_cpu_address(struct sys_device *dev,
861                                 struct sysdev_attribute *attr, char *buf)
862 {
863         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
864 }
865 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
866
867
868 static struct attribute *cpu_common_attrs[] = {
869 #ifdef CONFIG_HOTPLUG_CPU
870         &attr_configure.attr,
871 #endif
872         &attr_address.attr,
873         &attr_polarization.attr,
874         NULL,
875 };
876
877 static struct attribute_group cpu_common_attr_group = {
878         .attrs = cpu_common_attrs,
879 };
880
881 static ssize_t show_capability(struct sys_device *dev,
882                                 struct sysdev_attribute *attr, char *buf)
883 {
884         unsigned int capability;
885         int rc;
886
887         rc = get_cpu_capability(&capability);
888         if (rc)
889                 return rc;
890         return sprintf(buf, "%u\n", capability);
891 }
892 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
893
894 static ssize_t show_idle_count(struct sys_device *dev,
895                                 struct sysdev_attribute *attr, char *buf)
896 {
897         struct s390_idle_data *idle;
898         unsigned long long idle_count;
899         unsigned int sequence;
900
901         idle = &per_cpu(s390_idle, dev->id);
902 repeat:
903         sequence = idle->sequence;
904         smp_rmb();
905         if (sequence & 1)
906                 goto repeat;
907         idle_count = idle->idle_count;
908         if (idle->idle_enter)
909                 idle_count++;
910         smp_rmb();
911         if (idle->sequence != sequence)
912                 goto repeat;
913         return sprintf(buf, "%llu\n", idle_count);
914 }
915 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
916
917 static ssize_t show_idle_time(struct sys_device *dev,
918                                 struct sysdev_attribute *attr, char *buf)
919 {
920         struct s390_idle_data *idle;
921         unsigned long long now, idle_time, idle_enter;
922         unsigned int sequence;
923
924         idle = &per_cpu(s390_idle, dev->id);
925         now = get_clock();
926 repeat:
927         sequence = idle->sequence;
928         smp_rmb();
929         if (sequence & 1)
930                 goto repeat;
931         idle_time = idle->idle_time;
932         idle_enter = idle->idle_enter;
933         if (idle_enter != 0ULL && idle_enter < now)
934                 idle_time += now - idle_enter;
935         smp_rmb();
936         if (idle->sequence != sequence)
937                 goto repeat;
938         return sprintf(buf, "%llu\n", idle_time >> 12);
939 }
940 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
941
942 static struct attribute *cpu_online_attrs[] = {
943         &attr_capability.attr,
944         &attr_idle_count.attr,
945         &attr_idle_time_us.attr,
946         NULL,
947 };
948
949 static struct attribute_group cpu_online_attr_group = {
950         .attrs = cpu_online_attrs,
951 };
952
953 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
954                                     unsigned long action, void *hcpu)
955 {
956         unsigned int cpu = (unsigned int)(long)hcpu;
957         struct cpu *c = &per_cpu(cpu_devices, cpu);
958         struct sys_device *s = &c->sysdev;
959         struct s390_idle_data *idle;
960         int err = 0;
961
962         switch (action) {
963         case CPU_ONLINE:
964         case CPU_ONLINE_FROZEN:
965                 idle = &per_cpu(s390_idle, cpu);
966                 memset(idle, 0, sizeof(struct s390_idle_data));
967                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
968                 break;
969         case CPU_DEAD:
970         case CPU_DEAD_FROZEN:
971                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
972                 break;
973         }
974         return notifier_from_errno(err);
975 }
976
977 static struct notifier_block __cpuinitdata smp_cpu_nb = {
978         .notifier_call = smp_cpu_notify,
979 };
980
981 static int __devinit smp_add_present_cpu(int cpu)
982 {
983         struct cpu *c = &per_cpu(cpu_devices, cpu);
984         struct sys_device *s = &c->sysdev;
985         int rc;
986
987         c->hotpluggable = 1;
988         rc = register_cpu(c, cpu);
989         if (rc)
990                 goto out;
991         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
992         if (rc)
993                 goto out_cpu;
994         if (!cpu_online(cpu))
995                 goto out;
996         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
997         if (!rc)
998                 return 0;
999         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1000 out_cpu:
1001 #ifdef CONFIG_HOTPLUG_CPU
1002         unregister_cpu(c);
1003 #endif
1004 out:
1005         return rc;
1006 }
1007
1008 #ifdef CONFIG_HOTPLUG_CPU
1009
1010 int __ref smp_rescan_cpus(void)
1011 {
1012         cpumask_t newcpus;
1013         int cpu;
1014         int rc;
1015
1016         get_online_cpus();
1017         mutex_lock(&smp_cpu_state_mutex);
1018         cpumask_copy(&newcpus, cpu_present_mask);
1019         rc = __smp_rescan_cpus();
1020         if (rc)
1021                 goto out;
1022         cpumask_andnot(&newcpus, cpu_present_mask, &newcpus);
1023         for_each_cpu(cpu, &newcpus) {
1024                 rc = smp_add_present_cpu(cpu);
1025                 if (rc)
1026                         set_cpu_present(cpu, false);
1027         }
1028         rc = 0;
1029 out:
1030         mutex_unlock(&smp_cpu_state_mutex);
1031         put_online_cpus();
1032         if (!cpumask_empty(&newcpus))
1033                 topology_schedule_update();
1034         return rc;
1035 }
1036
1037 static ssize_t __ref rescan_store(struct sysdev_class *class,
1038                                   struct sysdev_class_attribute *attr,
1039                                   const char *buf,
1040                                   size_t count)
1041 {
1042         int rc;
1043
1044         rc = smp_rescan_cpus();
1045         return rc ? rc : count;
1046 }
1047 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1048 #endif /* CONFIG_HOTPLUG_CPU */
1049
1050 static ssize_t dispatching_show(struct sysdev_class *class,
1051                                 struct sysdev_class_attribute *attr,
1052                                 char *buf)
1053 {
1054         ssize_t count;
1055
1056         mutex_lock(&smp_cpu_state_mutex);
1057         count = sprintf(buf, "%d\n", cpu_management);
1058         mutex_unlock(&smp_cpu_state_mutex);
1059         return count;
1060 }
1061
1062 static ssize_t dispatching_store(struct sysdev_class *dev,
1063                                  struct sysdev_class_attribute *attr,
1064                                  const char *buf,
1065                                  size_t count)
1066 {
1067         int val, rc;
1068         char delim;
1069
1070         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1071                 return -EINVAL;
1072         if (val != 0 && val != 1)
1073                 return -EINVAL;
1074         rc = 0;
1075         get_online_cpus();
1076         mutex_lock(&smp_cpu_state_mutex);
1077         if (cpu_management == val)
1078                 goto out;
1079         rc = topology_set_cpu_management(val);
1080         if (!rc)
1081                 cpu_management = val;
1082 out:
1083         mutex_unlock(&smp_cpu_state_mutex);
1084         put_online_cpus();
1085         return rc ? rc : count;
1086 }
1087 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1088                          dispatching_store);
1089
1090 static int __init topology_init(void)
1091 {
1092         int cpu;
1093         int rc;
1094
1095         register_cpu_notifier(&smp_cpu_nb);
1096
1097 #ifdef CONFIG_HOTPLUG_CPU
1098         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1099         if (rc)
1100                 return rc;
1101 #endif
1102         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1103         if (rc)
1104                 return rc;
1105         for_each_present_cpu(cpu) {
1106                 rc = smp_add_present_cpu(cpu);
1107                 if (rc)
1108                         return rc;
1109         }
1110         return 0;
1111 }
1112 subsys_initcall(topology_init);