Merge tag 'r8169-20060920-00' of git://electric-eye.fr.zoreil.com/home/romieu/linux...
[pandora-kernel.git] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/config.h>
24 #include <linux/kprobes.h>
25 #include <linux/ptrace.h>
26 #include <linux/preempt.h>
27 #include <linux/stop_machine.h>
28 #include <asm/cacheflush.h>
29 #include <asm/kdebug.h>
30 #include <asm/sections.h>
31 #include <asm/uaccess.h>
32 #include <linux/module.h>
33
34 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
35 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36
37 int __kprobes arch_prepare_kprobe(struct kprobe *p)
38 {
39         /* Make sure the probe isn't going on a difficult instruction */
40         if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
41                 return -EINVAL;
42
43         if ((unsigned long)p->addr & 0x01) {
44                 printk("Attempt to register kprobe at an unaligned address\n");
45                 return -EINVAL;
46                 }
47
48         /* Use the get_insn_slot() facility for correctness */
49         if (!(p->ainsn.insn = get_insn_slot()))
50                 return -ENOMEM;
51
52         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53
54         get_instruction_type(&p->ainsn);
55         p->opcode = *p->addr;
56         return 0;
57 }
58
59 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
60 {
61         switch (*(__u8 *) instruction) {
62         case 0x0c:      /* bassm */
63         case 0x0b:      /* bsm   */
64         case 0x83:      /* diag  */
65         case 0x44:      /* ex    */
66                 return -EINVAL;
67         }
68         switch (*(__u16 *) instruction) {
69         case 0x0101:    /* pr    */
70         case 0xb25a:    /* bsa   */
71         case 0xb240:    /* bakr  */
72         case 0xb258:    /* bsg   */
73         case 0xb218:    /* pc    */
74         case 0xb228:    /* pt    */
75                 return -EINVAL;
76         }
77         return 0;
78 }
79
80 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
81 {
82         /* default fixup method */
83         ainsn->fixup = FIXUP_PSW_NORMAL;
84
85         /* save r1 operand */
86         ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
87
88         /* save the instruction length (pop 5-5) in bytes */
89         switch (*(__u8 *) (ainsn->insn) >> 4) {
90         case 0:
91                 ainsn->ilen = 2;
92                 break;
93         case 1:
94         case 2:
95                 ainsn->ilen = 4;
96                 break;
97         case 3:
98                 ainsn->ilen = 6;
99                 break;
100         }
101
102         switch (*(__u8 *) ainsn->insn) {
103         case 0x05:      /* balr */
104         case 0x0d:      /* basr */
105                 ainsn->fixup = FIXUP_RETURN_REGISTER;
106                 /* if r2 = 0, no branch will be taken */
107                 if ((*ainsn->insn & 0x0f) == 0)
108                         ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
109                 break;
110         case 0x06:      /* bctr */
111         case 0x07:      /* bcr  */
112                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
113                 break;
114         case 0x45:      /* bal  */
115         case 0x4d:      /* bas  */
116                 ainsn->fixup = FIXUP_RETURN_REGISTER;
117                 break;
118         case 0x47:      /* bc   */
119         case 0x46:      /* bct  */
120         case 0x86:      /* bxh  */
121         case 0x87:      /* bxle */
122                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
123                 break;
124         case 0x82:      /* lpsw */
125                 ainsn->fixup = FIXUP_NOT_REQUIRED;
126                 break;
127         case 0xb2:      /* lpswe */
128                 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
129                         ainsn->fixup = FIXUP_NOT_REQUIRED;
130                 }
131                 break;
132         case 0xa7:      /* bras */
133                 if ((*ainsn->insn & 0x0f) == 0x05) {
134                         ainsn->fixup |= FIXUP_RETURN_REGISTER;
135                 }
136                 break;
137         case 0xc0:
138                 if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
139                         || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
140                 ainsn->fixup |= FIXUP_RETURN_REGISTER;
141                 break;
142         case 0xeb:
143                 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
144                         *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
145                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
146                 }
147                 break;
148         case 0xe3:      /* bctg */
149                 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
150                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
151                 }
152                 break;
153         }
154 }
155
156 static int __kprobes swap_instruction(void *aref)
157 {
158         struct ins_replace_args *args = aref;
159         int err = -EFAULT;
160
161         asm volatile(
162                 "0: mvc  0(2,%2),0(%3)\n"
163                 "1: la   %0,0\n"
164                 "2:\n"
165                 EX_TABLE(0b,2b)
166                 : "+d" (err), "=m" (*args->ptr)
167                 : "a" (args->ptr), "a" (&args->new), "m" (args->new));
168         return err;
169 }
170
171 void __kprobes arch_arm_kprobe(struct kprobe *p)
172 {
173         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
174         unsigned long status = kcb->kprobe_status;
175         struct ins_replace_args args;
176
177         args.ptr = p->addr;
178         args.old = p->opcode;
179         args.new = BREAKPOINT_INSTRUCTION;
180
181         kcb->kprobe_status = KPROBE_SWAP_INST;
182         stop_machine_run(swap_instruction, &args, NR_CPUS);
183         kcb->kprobe_status = status;
184 }
185
186 void __kprobes arch_disarm_kprobe(struct kprobe *p)
187 {
188         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
189         unsigned long status = kcb->kprobe_status;
190         struct ins_replace_args args;
191
192         args.ptr = p->addr;
193         args.old = BREAKPOINT_INSTRUCTION;
194         args.new = p->opcode;
195
196         kcb->kprobe_status = KPROBE_SWAP_INST;
197         stop_machine_run(swap_instruction, &args, NR_CPUS);
198         kcb->kprobe_status = status;
199 }
200
201 void __kprobes arch_remove_kprobe(struct kprobe *p)
202 {
203         mutex_lock(&kprobe_mutex);
204         free_insn_slot(p->ainsn.insn);
205         mutex_unlock(&kprobe_mutex);
206 }
207
208 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
209 {
210         per_cr_bits kprobe_per_regs[1];
211
212         memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
213         regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
214
215         /* Set up the per control reg info, will pass to lctl */
216         kprobe_per_regs[0].em_instruction_fetch = 1;
217         kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
218         kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
219
220         /* Set the PER control regs, turns on single step for this address */
221         __ctl_load(kprobe_per_regs, 9, 11);
222         regs->psw.mask |= PSW_MASK_PER;
223         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
224 }
225
226 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
227 {
228         kcb->prev_kprobe.kp = kprobe_running();
229         kcb->prev_kprobe.status = kcb->kprobe_status;
230         kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
231         memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
232                                         sizeof(kcb->kprobe_saved_ctl));
233 }
234
235 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
236 {
237         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
238         kcb->kprobe_status = kcb->prev_kprobe.status;
239         kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
240         memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
241                                         sizeof(kcb->kprobe_saved_ctl));
242 }
243
244 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245                                                 struct kprobe_ctlblk *kcb)
246 {
247         __get_cpu_var(current_kprobe) = p;
248         /* Save the interrupt and per flags */
249         kcb->kprobe_saved_imask = regs->psw.mask &
250             (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
251         /* Save the control regs that govern PER */
252         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
253 }
254
255 /* Called with kretprobe_lock held */
256 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
257                                         struct pt_regs *regs)
258 {
259         struct kretprobe_instance *ri;
260
261         if ((ri = get_free_rp_inst(rp)) != NULL) {
262                 ri->rp = rp;
263                 ri->task = current;
264                 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
265
266                 /* Replace the return addr with trampoline addr */
267                 regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
268
269                 add_rp_inst(ri);
270         } else {
271                 rp->nmissed++;
272         }
273 }
274
275 static int __kprobes kprobe_handler(struct pt_regs *regs)
276 {
277         struct kprobe *p;
278         int ret = 0;
279         unsigned long *addr = (unsigned long *)
280                 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
281         struct kprobe_ctlblk *kcb;
282
283         /*
284          * We don't want to be preempted for the entire
285          * duration of kprobe processing
286          */
287         preempt_disable();
288         kcb = get_kprobe_ctlblk();
289
290         /* Check we're not actually recursing */
291         if (kprobe_running()) {
292                 p = get_kprobe(addr);
293                 if (p) {
294                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
295                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
296                                 regs->psw.mask &= ~PSW_MASK_PER;
297                                 regs->psw.mask |= kcb->kprobe_saved_imask;
298                                 goto no_kprobe;
299                         }
300                         /* We have reentered the kprobe_handler(), since
301                          * another probe was hit while within the handler.
302                          * We here save the original kprobes variables and
303                          * just single step on the instruction of the new probe
304                          * without calling any user handlers.
305                          */
306                         save_previous_kprobe(kcb);
307                         set_current_kprobe(p, regs, kcb);
308                         kprobes_inc_nmissed_count(p);
309                         prepare_singlestep(p, regs);
310                         kcb->kprobe_status = KPROBE_REENTER;
311                         return 1;
312                 } else {
313                         p = __get_cpu_var(current_kprobe);
314                         if (p->break_handler && p->break_handler(p, regs)) {
315                                 goto ss_probe;
316                         }
317                 }
318                 goto no_kprobe;
319         }
320
321         p = get_kprobe(addr);
322         if (!p) {
323                 if (*addr != BREAKPOINT_INSTRUCTION) {
324                         /*
325                          * The breakpoint instruction was removed right
326                          * after we hit it.  Another cpu has removed
327                          * either a probepoint or a debugger breakpoint
328                          * at this address.  In either case, no further
329                          * handling of this interrupt is appropriate.
330                          *
331                          */
332                         ret = 1;
333                 }
334                 /* Not one of ours: let kernel handle it */
335                 goto no_kprobe;
336         }
337
338         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339         set_current_kprobe(p, regs, kcb);
340         if (p->pre_handler && p->pre_handler(p, regs))
341                 /* handler has already set things up, so skip ss setup */
342                 return 1;
343
344 ss_probe:
345         prepare_singlestep(p, regs);
346         kcb->kprobe_status = KPROBE_HIT_SS;
347         return 1;
348
349 no_kprobe:
350         preempt_enable_no_resched();
351         return ret;
352 }
353
354 /*
355  * Function return probe trampoline:
356  *      - init_kprobes() establishes a probepoint here
357  *      - When the probed function returns, this probe
358  *              causes the handlers to fire
359  */
360 void __kprobes kretprobe_trampoline_holder(void)
361 {
362         asm volatile(".global kretprobe_trampoline\n"
363                      "kretprobe_trampoline: bcr 0,0\n");
364 }
365
366 /*
367  * Called when the probe at kretprobe trampoline is hit
368  */
369 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
370 {
371         struct kretprobe_instance *ri = NULL;
372         struct hlist_head *head;
373         struct hlist_node *node, *tmp;
374         unsigned long flags, orig_ret_address = 0;
375         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
376
377         spin_lock_irqsave(&kretprobe_lock, flags);
378         head = kretprobe_inst_table_head(current);
379
380         /*
381          * It is possible to have multiple instances associated with a given
382          * task either because an multiple functions in the call path
383          * have a return probe installed on them, and/or more then one return
384          * return probe was registered for a target function.
385          *
386          * We can handle this because:
387          *     - instances are always inserted at the head of the list
388          *     - when multiple return probes are registered for the same
389          *       function, the first instance's ret_addr will point to the
390          *       real return address, and all the rest will point to
391          *       kretprobe_trampoline
392          */
393         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
394                 if (ri->task != current)
395                         /* another task is sharing our hash bucket */
396                         continue;
397
398                 if (ri->rp && ri->rp->handler)
399                         ri->rp->handler(ri, regs);
400
401                 orig_ret_address = (unsigned long)ri->ret_addr;
402                 recycle_rp_inst(ri);
403
404                 if (orig_ret_address != trampoline_address) {
405                         /*
406                          * This is the real return address. Any other
407                          * instances associated with this task are for
408                          * other calls deeper on the call stack
409                          */
410                         break;
411                 }
412         }
413         BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
414         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
415
416         reset_current_kprobe();
417         spin_unlock_irqrestore(&kretprobe_lock, flags);
418         preempt_enable_no_resched();
419
420         /*
421          * By returning a non-zero value, we are telling
422          * kprobe_handler() that we don't want the post_handler
423          * to run (and have re-enabled preemption)
424          */
425         return 1;
426 }
427
428 /*
429  * Called after single-stepping.  p->addr is the address of the
430  * instruction whose first byte has been replaced by the "breakpoint"
431  * instruction.  To avoid the SMP problems that can occur when we
432  * temporarily put back the original opcode to single-step, we
433  * single-stepped a copy of the instruction.  The address of this
434  * copy is p->ainsn.insn.
435  */
436 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
437 {
438         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
439
440         regs->psw.addr &= PSW_ADDR_INSN;
441
442         if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
443                 regs->psw.addr = (unsigned long)p->addr +
444                                 ((unsigned long)regs->psw.addr -
445                                  (unsigned long)p->ainsn.insn);
446
447         if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
448                 if ((unsigned long)regs->psw.addr -
449                     (unsigned long)p->ainsn.insn == p->ainsn.ilen)
450                         regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
451
452         if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
453                 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
454                                                 (regs->gprs[p->ainsn.reg] -
455                                                 (unsigned long)p->ainsn.insn))
456                                                 | PSW_ADDR_AMODE;
457
458         regs->psw.addr |= PSW_ADDR_AMODE;
459         /* turn off PER mode */
460         regs->psw.mask &= ~PSW_MASK_PER;
461         /* Restore the original per control regs */
462         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
463         regs->psw.mask |= kcb->kprobe_saved_imask;
464 }
465
466 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
467 {
468         struct kprobe *cur = kprobe_running();
469         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
470
471         if (!cur)
472                 return 0;
473
474         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
475                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
476                 cur->post_handler(cur, regs, 0);
477         }
478
479         resume_execution(cur, regs);
480
481         /*Restore back the original saved kprobes variables and continue. */
482         if (kcb->kprobe_status == KPROBE_REENTER) {
483                 restore_previous_kprobe(kcb);
484                 goto out;
485         }
486         reset_current_kprobe();
487 out:
488         preempt_enable_no_resched();
489
490         /*
491          * if somebody else is singlestepping across a probe point, psw mask
492          * will have PER set, in which case, continue the remaining processing
493          * of do_single_step, as if this is not a probe hit.
494          */
495         if (regs->psw.mask & PSW_MASK_PER) {
496                 return 0;
497         }
498
499         return 1;
500 }
501
502 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
503 {
504         struct kprobe *cur = kprobe_running();
505         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
506         const struct exception_table_entry *entry;
507
508         switch(kcb->kprobe_status) {
509         case KPROBE_SWAP_INST:
510                 /* We are here because the instruction replacement failed */
511                 return 0;
512         case KPROBE_HIT_SS:
513         case KPROBE_REENTER:
514                 /*
515                  * We are here because the instruction being single
516                  * stepped caused a page fault. We reset the current
517                  * kprobe and the nip points back to the probe address
518                  * and allow the page fault handler to continue as a
519                  * normal page fault.
520                  */
521                 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
522                 regs->psw.mask &= ~PSW_MASK_PER;
523                 regs->psw.mask |= kcb->kprobe_saved_imask;
524                 if (kcb->kprobe_status == KPROBE_REENTER)
525                         restore_previous_kprobe(kcb);
526                 else
527                         reset_current_kprobe();
528                 preempt_enable_no_resched();
529                 break;
530         case KPROBE_HIT_ACTIVE:
531         case KPROBE_HIT_SSDONE:
532                 /*
533                  * We increment the nmissed count for accounting,
534                  * we can also use npre/npostfault count for accouting
535                  * these specific fault cases.
536                  */
537                 kprobes_inc_nmissed_count(cur);
538
539                 /*
540                  * We come here because instructions in the pre/post
541                  * handler caused the page_fault, this could happen
542                  * if handler tries to access user space by
543                  * copy_from_user(), get_user() etc. Let the
544                  * user-specified handler try to fix it first.
545                  */
546                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
547                         return 1;
548
549                 /*
550                  * In case the user-specified fault handler returned
551                  * zero, try to fix up.
552                  */
553                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
554                 if (entry) {
555                         regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
556                         return 1;
557                 }
558
559                 /*
560                  * fixup_exception() could not handle it,
561                  * Let do_page_fault() fix it.
562                  */
563                 break;
564         default:
565                 break;
566         }
567         return 0;
568 }
569
570 /*
571  * Wrapper routine to for handling exceptions.
572  */
573 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
574                                        unsigned long val, void *data)
575 {
576         struct die_args *args = (struct die_args *)data;
577         int ret = NOTIFY_DONE;
578
579         switch (val) {
580         case DIE_BPT:
581                 if (kprobe_handler(args->regs))
582                         ret = NOTIFY_STOP;
583                 break;
584         case DIE_SSTEP:
585                 if (post_kprobe_handler(args->regs))
586                         ret = NOTIFY_STOP;
587                 break;
588         case DIE_TRAP:
589         case DIE_PAGE_FAULT:
590                 /* kprobe_running() needs smp_processor_id() */
591                 preempt_disable();
592                 if (kprobe_running() &&
593                     kprobe_fault_handler(args->regs, args->trapnr))
594                         ret = NOTIFY_STOP;
595                 preempt_enable();
596                 break;
597         default:
598                 break;
599         }
600         return ret;
601 }
602
603 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
604 {
605         struct jprobe *jp = container_of(p, struct jprobe, kp);
606         unsigned long addr;
607         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
608
609         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
610
611         /* setup return addr to the jprobe handler routine */
612         regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
613
614         /* r14 is the function return address */
615         kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
616         /* r15 is the stack pointer */
617         kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
618         addr = (unsigned long)kcb->jprobe_saved_r15;
619
620         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
621                MIN_STACK_SIZE(addr));
622         return 1;
623 }
624
625 void __kprobes jprobe_return(void)
626 {
627         asm volatile(".word 0x0002");
628 }
629
630 void __kprobes jprobe_return_end(void)
631 {
632         asm volatile("bcr 0,0");
633 }
634
635 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
636 {
637         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
638         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
639
640         /* Put the regs back */
641         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
642         /* put the stack back */
643         memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
644                MIN_STACK_SIZE(stack_addr));
645         preempt_enable_no_resched();
646         return 1;
647 }
648
649 static struct kprobe trampoline_p = {
650         .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
651         .pre_handler = trampoline_probe_handler
652 };
653
654 int __init arch_init_kprobes(void)
655 {
656         return register_kprobe(&trampoline_p);
657 }