Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[pandora-kernel.git] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 {
40         /* Make sure the probe isn't going on a difficult instruction */
41         if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42                 return -EINVAL;
43
44         if ((unsigned long)p->addr & 0x01)
45                 return -EINVAL;
46
47         /* Use the get_insn_slot() facility for correctness */
48         if (!(p->ainsn.insn = get_insn_slot()))
49                 return -ENOMEM;
50
51         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52
53         get_instruction_type(&p->ainsn);
54         p->opcode = *p->addr;
55         return 0;
56 }
57
58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
59 {
60         switch (*(__u8 *) instruction) {
61         case 0x0c:      /* bassm */
62         case 0x0b:      /* bsm   */
63         case 0x83:      /* diag  */
64         case 0x44:      /* ex    */
65                 return -EINVAL;
66         }
67         switch (*(__u16 *) instruction) {
68         case 0x0101:    /* pr    */
69         case 0xb25a:    /* bsa   */
70         case 0xb240:    /* bakr  */
71         case 0xb258:    /* bsg   */
72         case 0xb218:    /* pc    */
73         case 0xb228:    /* pt    */
74                 return -EINVAL;
75         }
76         return 0;
77 }
78
79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
80 {
81         /* default fixup method */
82         ainsn->fixup = FIXUP_PSW_NORMAL;
83
84         /* save r1 operand */
85         ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
86
87         /* save the instruction length (pop 5-5) in bytes */
88         switch (*(__u8 *) (ainsn->insn) >> 6) {
89         case 0:
90                 ainsn->ilen = 2;
91                 break;
92         case 1:
93         case 2:
94                 ainsn->ilen = 4;
95                 break;
96         case 3:
97                 ainsn->ilen = 6;
98                 break;
99         }
100
101         switch (*(__u8 *) ainsn->insn) {
102         case 0x05:      /* balr */
103         case 0x0d:      /* basr */
104                 ainsn->fixup = FIXUP_RETURN_REGISTER;
105                 /* if r2 = 0, no branch will be taken */
106                 if ((*ainsn->insn & 0x0f) == 0)
107                         ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
108                 break;
109         case 0x06:      /* bctr */
110         case 0x07:      /* bcr  */
111                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
112                 break;
113         case 0x45:      /* bal  */
114         case 0x4d:      /* bas  */
115                 ainsn->fixup = FIXUP_RETURN_REGISTER;
116                 break;
117         case 0x47:      /* bc   */
118         case 0x46:      /* bct  */
119         case 0x86:      /* bxh  */
120         case 0x87:      /* bxle */
121                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
122                 break;
123         case 0x82:      /* lpsw */
124                 ainsn->fixup = FIXUP_NOT_REQUIRED;
125                 break;
126         case 0xb2:      /* lpswe */
127                 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
128                         ainsn->fixup = FIXUP_NOT_REQUIRED;
129                 }
130                 break;
131         case 0xa7:      /* bras */
132                 if ((*ainsn->insn & 0x0f) == 0x05) {
133                         ainsn->fixup |= FIXUP_RETURN_REGISTER;
134                 }
135                 break;
136         case 0xc0:
137                 if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
138                         || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
139                 ainsn->fixup |= FIXUP_RETURN_REGISTER;
140                 break;
141         case 0xeb:
142                 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
143                         *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
144                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
145                 }
146                 break;
147         case 0xe3:      /* bctg */
148                 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
149                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150                 }
151                 break;
152         }
153 }
154
155 static int __kprobes swap_instruction(void *aref)
156 {
157         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
158         unsigned long status = kcb->kprobe_status;
159         struct ins_replace_args *args = aref;
160         int rc;
161
162         kcb->kprobe_status = KPROBE_SWAP_INST;
163         rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
164         kcb->kprobe_status = status;
165         return rc;
166 }
167
168 void __kprobes arch_arm_kprobe(struct kprobe *p)
169 {
170         struct ins_replace_args args;
171
172         args.ptr = p->addr;
173         args.old = p->opcode;
174         args.new = BREAKPOINT_INSTRUCTION;
175         stop_machine(swap_instruction, &args, NULL);
176 }
177
178 void __kprobes arch_disarm_kprobe(struct kprobe *p)
179 {
180         struct ins_replace_args args;
181
182         args.ptr = p->addr;
183         args.old = BREAKPOINT_INSTRUCTION;
184         args.new = p->opcode;
185         stop_machine(swap_instruction, &args, NULL);
186 }
187
188 void __kprobes arch_remove_kprobe(struct kprobe *p)
189 {
190         if (p->ainsn.insn) {
191                 free_insn_slot(p->ainsn.insn, 0);
192                 p->ainsn.insn = NULL;
193         }
194 }
195
196 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
197 {
198         per_cr_bits kprobe_per_regs[1];
199
200         memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
201         regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
202
203         /* Set up the per control reg info, will pass to lctl */
204         kprobe_per_regs[0].em_instruction_fetch = 1;
205         kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
206         kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
207
208         /* Set the PER control regs, turns on single step for this address */
209         __ctl_load(kprobe_per_regs, 9, 11);
210         regs->psw.mask |= PSW_MASK_PER;
211         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
212 }
213
214 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
215 {
216         kcb->prev_kprobe.kp = kprobe_running();
217         kcb->prev_kprobe.status = kcb->kprobe_status;
218         kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
219         memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
220                                         sizeof(kcb->kprobe_saved_ctl));
221 }
222
223 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
224 {
225         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
226         kcb->kprobe_status = kcb->prev_kprobe.status;
227         kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
228         memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
229                                         sizeof(kcb->kprobe_saved_ctl));
230 }
231
232 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
233                                                 struct kprobe_ctlblk *kcb)
234 {
235         __get_cpu_var(current_kprobe) = p;
236         /* Save the interrupt and per flags */
237         kcb->kprobe_saved_imask = regs->psw.mask &
238             (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
239         /* Save the control regs that govern PER */
240         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
241 }
242
243 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
244                                         struct pt_regs *regs)
245 {
246         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
247
248         /* Replace the return addr with trampoline addr */
249         regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
250 }
251
252 static int __kprobes kprobe_handler(struct pt_regs *regs)
253 {
254         struct kprobe *p;
255         int ret = 0;
256         unsigned long *addr = (unsigned long *)
257                 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
258         struct kprobe_ctlblk *kcb;
259
260         /*
261          * We don't want to be preempted for the entire
262          * duration of kprobe processing
263          */
264         preempt_disable();
265         kcb = get_kprobe_ctlblk();
266
267         /* Check we're not actually recursing */
268         if (kprobe_running()) {
269                 p = get_kprobe(addr);
270                 if (p) {
271                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
272                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
273                                 regs->psw.mask &= ~PSW_MASK_PER;
274                                 regs->psw.mask |= kcb->kprobe_saved_imask;
275                                 goto no_kprobe;
276                         }
277                         /* We have reentered the kprobe_handler(), since
278                          * another probe was hit while within the handler.
279                          * We here save the original kprobes variables and
280                          * just single step on the instruction of the new probe
281                          * without calling any user handlers.
282                          */
283                         save_previous_kprobe(kcb);
284                         set_current_kprobe(p, regs, kcb);
285                         kprobes_inc_nmissed_count(p);
286                         prepare_singlestep(p, regs);
287                         kcb->kprobe_status = KPROBE_REENTER;
288                         return 1;
289                 } else {
290                         p = __get_cpu_var(current_kprobe);
291                         if (p->break_handler && p->break_handler(p, regs)) {
292                                 goto ss_probe;
293                         }
294                 }
295                 goto no_kprobe;
296         }
297
298         p = get_kprobe(addr);
299         if (!p)
300                 /*
301                  * No kprobe at this address. The fault has not been
302                  * caused by a kprobe breakpoint. The race of breakpoint
303                  * vs. kprobe remove does not exist because on s390 we
304                  * use stop_machine to arm/disarm the breakpoints.
305                  */
306                 goto no_kprobe;
307
308         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
309         set_current_kprobe(p, regs, kcb);
310         if (p->pre_handler && p->pre_handler(p, regs))
311                 /* handler has already set things up, so skip ss setup */
312                 return 1;
313
314 ss_probe:
315         prepare_singlestep(p, regs);
316         kcb->kprobe_status = KPROBE_HIT_SS;
317         return 1;
318
319 no_kprobe:
320         preempt_enable_no_resched();
321         return ret;
322 }
323
324 /*
325  * Function return probe trampoline:
326  *      - init_kprobes() establishes a probepoint here
327  *      - When the probed function returns, this probe
328  *              causes the handlers to fire
329  */
330 static void __used kretprobe_trampoline_holder(void)
331 {
332         asm volatile(".global kretprobe_trampoline\n"
333                      "kretprobe_trampoline: bcr 0,0\n");
334 }
335
336 /*
337  * Called when the probe at kretprobe trampoline is hit
338  */
339 static int __kprobes trampoline_probe_handler(struct kprobe *p,
340                                               struct pt_regs *regs)
341 {
342         struct kretprobe_instance *ri = NULL;
343         struct hlist_head *head, empty_rp;
344         struct hlist_node *node, *tmp;
345         unsigned long flags, orig_ret_address = 0;
346         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
347
348         INIT_HLIST_HEAD(&empty_rp);
349         kretprobe_hash_lock(current, &head, &flags);
350
351         /*
352          * It is possible to have multiple instances associated with a given
353          * task either because an multiple functions in the call path
354          * have a return probe installed on them, and/or more than one return
355          * return probe was registered for a target function.
356          *
357          * We can handle this because:
358          *     - instances are always inserted at the head of the list
359          *     - when multiple return probes are registered for the same
360          *       function, the first instance's ret_addr will point to the
361          *       real return address, and all the rest will point to
362          *       kretprobe_trampoline
363          */
364         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
365                 if (ri->task != current)
366                         /* another task is sharing our hash bucket */
367                         continue;
368
369                 if (ri->rp && ri->rp->handler)
370                         ri->rp->handler(ri, regs);
371
372                 orig_ret_address = (unsigned long)ri->ret_addr;
373                 recycle_rp_inst(ri, &empty_rp);
374
375                 if (orig_ret_address != trampoline_address) {
376                         /*
377                          * This is the real return address. Any other
378                          * instances associated with this task are for
379                          * other calls deeper on the call stack
380                          */
381                         break;
382                 }
383         }
384         kretprobe_assert(ri, orig_ret_address, trampoline_address);
385         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
386
387         reset_current_kprobe();
388         kretprobe_hash_unlock(current, &flags);
389         preempt_enable_no_resched();
390
391         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
392                 hlist_del(&ri->hlist);
393                 kfree(ri);
394         }
395         /*
396          * By returning a non-zero value, we are telling
397          * kprobe_handler() that we don't want the post_handler
398          * to run (and have re-enabled preemption)
399          */
400         return 1;
401 }
402
403 /*
404  * Called after single-stepping.  p->addr is the address of the
405  * instruction whose first byte has been replaced by the "breakpoint"
406  * instruction.  To avoid the SMP problems that can occur when we
407  * temporarily put back the original opcode to single-step, we
408  * single-stepped a copy of the instruction.  The address of this
409  * copy is p->ainsn.insn.
410  */
411 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
412 {
413         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
414
415         regs->psw.addr &= PSW_ADDR_INSN;
416
417         if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
418                 regs->psw.addr = (unsigned long)p->addr +
419                                 ((unsigned long)regs->psw.addr -
420                                  (unsigned long)p->ainsn.insn);
421
422         if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
423                 if ((unsigned long)regs->psw.addr -
424                     (unsigned long)p->ainsn.insn == p->ainsn.ilen)
425                         regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
426
427         if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
428                 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
429                                                 (regs->gprs[p->ainsn.reg] -
430                                                 (unsigned long)p->ainsn.insn))
431                                                 | PSW_ADDR_AMODE;
432
433         regs->psw.addr |= PSW_ADDR_AMODE;
434         /* turn off PER mode */
435         regs->psw.mask &= ~PSW_MASK_PER;
436         /* Restore the original per control regs */
437         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
438         regs->psw.mask |= kcb->kprobe_saved_imask;
439 }
440
441 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
442 {
443         struct kprobe *cur = kprobe_running();
444         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
445
446         if (!cur)
447                 return 0;
448
449         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
450                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
451                 cur->post_handler(cur, regs, 0);
452         }
453
454         resume_execution(cur, regs);
455
456         /*Restore back the original saved kprobes variables and continue. */
457         if (kcb->kprobe_status == KPROBE_REENTER) {
458                 restore_previous_kprobe(kcb);
459                 goto out;
460         }
461         reset_current_kprobe();
462 out:
463         preempt_enable_no_resched();
464
465         /*
466          * if somebody else is singlestepping across a probe point, psw mask
467          * will have PER set, in which case, continue the remaining processing
468          * of do_single_step, as if this is not a probe hit.
469          */
470         if (regs->psw.mask & PSW_MASK_PER) {
471                 return 0;
472         }
473
474         return 1;
475 }
476
477 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
478 {
479         struct kprobe *cur = kprobe_running();
480         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481         const struct exception_table_entry *entry;
482
483         switch(kcb->kprobe_status) {
484         case KPROBE_SWAP_INST:
485                 /* We are here because the instruction replacement failed */
486                 return 0;
487         case KPROBE_HIT_SS:
488         case KPROBE_REENTER:
489                 /*
490                  * We are here because the instruction being single
491                  * stepped caused a page fault. We reset the current
492                  * kprobe and the nip points back to the probe address
493                  * and allow the page fault handler to continue as a
494                  * normal page fault.
495                  */
496                 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
497                 regs->psw.mask &= ~PSW_MASK_PER;
498                 regs->psw.mask |= kcb->kprobe_saved_imask;
499                 if (kcb->kprobe_status == KPROBE_REENTER)
500                         restore_previous_kprobe(kcb);
501                 else
502                         reset_current_kprobe();
503                 preempt_enable_no_resched();
504                 break;
505         case KPROBE_HIT_ACTIVE:
506         case KPROBE_HIT_SSDONE:
507                 /*
508                  * We increment the nmissed count for accounting,
509                  * we can also use npre/npostfault count for accouting
510                  * these specific fault cases.
511                  */
512                 kprobes_inc_nmissed_count(cur);
513
514                 /*
515                  * We come here because instructions in the pre/post
516                  * handler caused the page_fault, this could happen
517                  * if handler tries to access user space by
518                  * copy_from_user(), get_user() etc. Let the
519                  * user-specified handler try to fix it first.
520                  */
521                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
522                         return 1;
523
524                 /*
525                  * In case the user-specified fault handler returned
526                  * zero, try to fix up.
527                  */
528                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
529                 if (entry) {
530                         regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
531                         return 1;
532                 }
533
534                 /*
535                  * fixup_exception() could not handle it,
536                  * Let do_page_fault() fix it.
537                  */
538                 break;
539         default:
540                 break;
541         }
542         return 0;
543 }
544
545 /*
546  * Wrapper routine to for handling exceptions.
547  */
548 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
549                                        unsigned long val, void *data)
550 {
551         struct die_args *args = (struct die_args *)data;
552         int ret = NOTIFY_DONE;
553
554         switch (val) {
555         case DIE_BPT:
556                 if (kprobe_handler(args->regs))
557                         ret = NOTIFY_STOP;
558                 break;
559         case DIE_SSTEP:
560                 if (post_kprobe_handler(args->regs))
561                         ret = NOTIFY_STOP;
562                 break;
563         case DIE_TRAP:
564                 /* kprobe_running() needs smp_processor_id() */
565                 preempt_disable();
566                 if (kprobe_running() &&
567                     kprobe_fault_handler(args->regs, args->trapnr))
568                         ret = NOTIFY_STOP;
569                 preempt_enable();
570                 break;
571         default:
572                 break;
573         }
574         return ret;
575 }
576
577 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
578 {
579         struct jprobe *jp = container_of(p, struct jprobe, kp);
580         unsigned long addr;
581         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
582
583         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
584
585         /* setup return addr to the jprobe handler routine */
586         regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
587
588         /* r14 is the function return address */
589         kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
590         /* r15 is the stack pointer */
591         kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
592         addr = (unsigned long)kcb->jprobe_saved_r15;
593
594         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
595                MIN_STACK_SIZE(addr));
596         return 1;
597 }
598
599 void __kprobes jprobe_return(void)
600 {
601         asm volatile(".word 0x0002");
602 }
603
604 void __kprobes jprobe_return_end(void)
605 {
606         asm volatile("bcr 0,0");
607 }
608
609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
610 {
611         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
613
614         /* Put the regs back */
615         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
616         /* put the stack back */
617         memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
618                MIN_STACK_SIZE(stack_addr));
619         preempt_enable_no_resched();
620         return 1;
621 }
622
623 static struct kprobe trampoline_p = {
624         .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
625         .pre_handler = trampoline_probe_handler
626 };
627
628 int __init arch_init_kprobes(void)
629 {
630         return register_kprobe(&trampoline_p);
631 }
632
633 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
634 {
635         if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
636                 return 1;
637         return 0;
638 }